Conference paper Open Access

Using multi-dimensional correlation for matching and alignment of MoCap and video signals

Buccoli, Michele; Di Giorgi, Bruno; Zanoni, Massimiliano; Antonacci, Fabio; Sarti, Augusto


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Correlation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Feature extraction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Reliability</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Streaming media</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Cameras</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Three-dimensional displays</subfield>
  </datafield>
  <controlfield tag="005">20200120172016.0</controlfield>
  <controlfield tag="001">1078509</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">17-18 October 2017</subfield>
    <subfield code="g">MMSP</subfield>
    <subfield code="a">2017 IEEE 19th International Workshop on Multimedia Signal Processing</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32 - 20133 Milano, Italy</subfield>
    <subfield code="a">Di Giorgi, Bruno</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32 - 20133 Milano, Italy</subfield>
    <subfield code="a">Zanoni, Massimiliano</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32 - 20133 Milano, Italy</subfield>
    <subfield code="a">Antonacci, Fabio</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32 - 20133 Milano, Italy</subfield>
    <subfield code="a">Sarti, Augusto</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1340136</subfield>
    <subfield code="z">md5:a856dd1418247c1e4407f4c52e0da262</subfield>
    <subfield code="u">https://zenodo.org/record/1078509/files/MAIN.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-10-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-wholodance_eu</subfield>
    <subfield code="o">oai:zenodo.org:1078509</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Multimedia Signal Processing (MMSP)</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32 - 20133 Milano, Italy</subfield>
    <subfield code="a">Buccoli, Michele</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Using multi-dimensional correlation for matching and alignment of MoCap and video signals</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-wholodance_eu</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Motion analysis and tracking often relies on multimodal signals, e.g., video, depth map, motion capture (MoCap), due to the completeness of information they jointly provide. The joint analysis of multimodal signals requires to know the correct timing, i.e., the signals to be aligned. In this paper we propose an approach to automatically estimate the correct matching and alignment between a video and a MoCap recording acquired from the same session, based on the multi-dimensional correlation of velocity-based features extracted from the two recordings. We validate our approach over a dataset of dance recordings of four genres, and we achieve promising results for both the alignment and matching scenarios.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/MMSP.2017.8122222</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
108
104
views
downloads
Views 108
Downloads 104
Data volume 139.4 MB
Unique views 105
Unique downloads 103

Share

Cite as