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Abstract— Energy efficiency is likely to be the litmus test for 
the sustainability of upcoming 5G networks. Before the new 
generation of cellular networks are ready to roll out, their 
architecture designers are motivated to leverage the SDN 
technology for the sake of its offered flexibility, scalability, and 
programmability to achieve the 5G KPI of 10 times lower energy 
consumption. In this paper, we present Proofs-of-Concept of 
Energy Management and Monitoring Applications (EMMAs) in 
the context of three challenging, realistic case studies, along with a 
SDN/NFV-based MANO architecture to manage converged  
fronthaul/backhaul 5G transport networks.  
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I.    INTRODUCTION 
In the past, actions aimed at improving hardware efficiency 
have led to high energy savings at device and infrastructure 
levels in mobile communication. To address the expected 
densification brought about by the upcoming 5G networks [1], 
gradual hardware improvements are no longer sufficient, 
especially energy efficiency is set to become a crucial feature. 
The reduction of the energy footprint of 5G networks, while 
maintaining the expected Quality of Service (QoS) for each 
Mobile Network Operator (MNO) or for end users, requires 
novel control-plane solutions that leverage the flexibility of 
Software-Defined Network (SDN) concepts. 
For this purpose, Energy Management and Monitoring 
Applications (EMMAs) have been designed in the 5G-
Crosshaul project [2] to monitor the energy parameters of the 
fronthaul and backhaul network elements, to estimate their 
energy consumption and trigger reactions. Conveniently 
deployed along with a standard ETSI MANO, EMMAs can also 
collect information about several network aspects like traffic 
routing paths, traffic load levels, user throughput, number of 
active sessions, radio coverage, interference of radio resources, 
and equipment activation intervals. Such data can be used to 
compute a virtual infrastructure energy budget for subsequent 
analysis and reactions using machine learning and optimization 
techniques. 

 
The fundamental EMMA design addresses the optimal schedule 
of power operational states and levels of power consumption of 
nodes, jointly performing load balancing and frequency 
bandwidth assignment, in highly heterogeneous SDN domains. 

EMMAs are based on algorithms that provide a heuristic 
solution to an optimization problem for energy-efficient flow 
routing in the integrated backhaul/fronthaul network [3]. 
Furthermore, although it is outside the scope of this paper, the 
re-allocation of virtual functions across backhaul and fronthaul 
can be done as part of the optimization actions. Virtual network 
functions can thus be mode to less power-consuming or less-
loaded servers, reducing the overall energy demand in the 
network. Arguably, such actions can be instrumental in meeting 
the target KPI of 10 times lower energy consumption.  
 
The literature shows several efforts toward more widespread 
energy saving in SDNs. In general, all authors agree that finding 
minimum-power network subsets in an SDN is an NP-hard 
problem, therefore all resort to some form of heuristics, as we 
did. This approach is exemplified by [4], where hybrid and 
partially deployed SDNs were considered and the heuristic is 
based on a spanning-tree approach. In [5], the authors solve the 
energy-saving optimization problem through a heuristic 
algorithm that minimizes the in-band control traffic by properly 
placing controllers. Greedy algorithms for energy-efficient 
routing in SDN using link utilization and packet delay as 
constraints are also defined in [6]. However, all the above works 
evaluate the performance of their algorithms in simple idealized 
settings through either analysis, simulation or limited 
emulation, while in this paper we strive to present real 
implementations of the EMMAs through Proof-of-Concepts 
(PoC) for realistic use cases. Additionally, our EMMA 
applications are thoroughly integrated in an SDN ecosystem 
that includes monitoring and management capabilities for 
single and multi-tenant cases, as explained below.     

II.   THE EMMA ARCHITECTURE 
The monitoring and management of power consumption in 5G-
Crosshaul infrastructures operate over different kinds of 
network technology domains, as exemplified in Figure 1. In 
particular, a monitoring layer, developed on top of an SDN 
controller, collects, aggregates and elaborates energy-related 
measurements for network domains such as: (1) networks 
composed of software-based switches named Crosshaul Packet 
Forwarding Elements (XPFEs), (2) mmWave links, and (3) 
analogue Radio over Fibre (RoF) technologies. Importantly, 
energy consumption information can be collected not only for 



network paths, but also for virtual network slices, network 
services and tenants.  
Energy management is then implemented above the monitoring 
application to determine an optimal resource allocation for both 
network connections and cloud-based services. Specifically, as 
depicted in Figure 1, energy-based optimization is achieved 
through several modules, each implementing a different task: 
routing (and re-routing) of traffic flows, Virtual Network 
Functions (VNFs) placement, and regulation of network node 
power states (including their On/Off switching) depending on 
the network resource demand. We remark that such 
optimization is either performed upon on-demand instantiation 
or automatically triggered by the monitoring application when 
re-planning is needed. EMMAs indeed include management 
interfaces that can put in place, through the southbound 
interface, the decisions made by the aforementioned modules, 
within each domain. This is achieved through signaling across 
the XCI, i.e., the Crosshaul Control Infrastructure, composed of 
a hierarchy of network and cloud controllers, together with 
orchestration and management entities. 
In the next sections, we present PoC prototypes of the EMMAs, 
applied to the three domains shown in Figure 1: a software 
switch network domain, a mmWave domain, and an analogue 
RoF domain for ground-to-train radio access. In particular, we 
focus on the energy management module for the automatic 
power regulation of nodes and their On/Off switching.  
 

 
Figure 1: EMMA architecture: EMMAs operate over different 
domains and effectively monitors energy consumption for 
system optimization 

III.   EMMA FOR SOFTWARE SWITCHES NETWORKS 
The PoC prototype of the EMMA for the energy optimization 
of software switch networks has been developed on the 
SDN/NFV-based integrated backhaul/fronthaul transport 
network, defined by the 5G-Crosshaul project [7]. The 
implementation is based on the OpenDaylight Beryllium 
framework1 and includes features for (i) power consumption 
monitoring of both physical and virtual infrastructures; and (ii) 
optimization of the network device power states. The prototype 
is now deployed in the 5TONIC2 laboratory in Madrid.  

                                                
1 https://www.opendaylight.org/odlbe  

2 https://www.5tonic.org/  

 
Figure 2: Software architecture of the EMMA PoC 

The EMMA PoC software architecture is illustrated in 
Figure 2. The data plane is based on Lagopus3 software 
switches controlled via the OpenFlow protocol. The switches 
implement an SNMP (Simple Network Management Protocol) 
agent based on the Energy MANagement (EMAN) MIB [8] for 
the monitoring of power consumption and dynamic regulation 
of power states. Each power state is associated with an 
increasing static value of power consumption (i.e., independent 
of the current traffic load of the device) and it is characterized 
by some forwarding capacity. For example, in sleeping mode, 
which guarantees the minimum power consumption, only 
management messages can be handled, while in medium active 
mode also data plane traffic is supported but with some 
restrictions in terms of bandwidth or delay. In full active mode, 
the nodes operate at full speed but with maximum static power 
consumption. Furthermore, in our model we assume that the 
total power consumed by a node also includes an additional 
variable component that linearly depends on the real-time 
traffic load.   

The OpenDaylight SDN controller implements the south-
bound plugins for both OpenFlow and SNMP protocols, thus 
enabling the programmability and monitoring of the devices at 
the EMMA application level. These low-level protocols are 
abstracted to the application through the north-bound APIs 
exposed by the controller services for flow configuration, 
topology management and statistics collection. On top of them, 
new EMMA software modules implement the logic to compute 
the real-time power consumption for the whole physical 
infrastructure and for the virtual instances running on top, as 
well as to establish connection services while adapting the 
power states of the data plane devices to the current traffic load.  

The Analytics module elaborates traffic statistics as well as 
data about power states configuration and consumption in 
physical nodes, to identify the variable component of the 
infrastructure power consumption and its mapping on the active 

3 http://www.lagopus.org/  



connections and tenants (see Figure 3). The OpenDaylight 
DLUX web interface has been extended to show the related 
real-time graphs for the EMMA application.  

 

 
Figure 3: Screenshot of power consumption monitoring per 
service and per tenant over time 

The Provisioning Manager handles the setup of new 
network connections, as well as rerouting of existing traffic 
flows, in the data plane using Open-Flow, based on the paths 
computed by the energy-based Smart Routing service. These 
algorithms consider the current power states of the nodes, 
together with the current load of links and traffic demand for 
requested paths. The switches are usually switched off or kept 
in sleeping mode to minimize the power consumption of the 
whole physical infrastructure, and they are moved to the active 
power states only when forwarding traffic for active flow 
connections. We refer the interested reader to [3] for a detailed 
description of such algorithms. The Power State Manager 
configures the power states via SNMP and it is automatically 
triggered by the Provisioning Manager, which selects the 
suitable states depending on traffic requirements as an 
integrated step of the connection setup procedure.  

 

 
Figure 4: Test scenario and instantiated paths for EMMA 
experiments on XPFEs domain 

The prototype has been functionally validated in the 
5TONIC testbed using a simplified deployment with 3 XPFEs 
(Figure 4), with the objective to evaluate the impact of the 
automated power state management on the service provisioning 
time.  

During the test, path 1, 2 and 3 are progressively 
instantiated, as detailed in Table 1. Path 1 setup requires 
activating XPFE2 and XPFE3, while Path 2 setup requires the 
additional activation of XPFE1. On the other hand, when Path 
3 is established all the XPFEs are already active and no further 
changes in the power state of XPFE are needed. 

Table 1: Paths installed for EMMA tests on XPFEs domain 

Path Source Destination Traversed nodes 
Path 1 H2 H3 XPFE 2 – XPFE 3 
Path 2 H1 H2 XPFE1 – XPFE 3 
Path 3 H1 H3 XPFE 1 – XPFE 2 
 

Figure 5 compares the average power consumption in W 
with a different number of established paths when EMMA is 
adopted (blue) and using a shortest path first algorithm without 
EMMA, i.e., always keeping all nodes in full active mode (red). 
In this deployment, the EMMA approach yields benefits just 
when zero or one path is established (29% and 10% of power 
saving respectively), since keeping some nodes in sleeping 
mode reduces the power consumption of the global network. 
From the second path on, all the nodes are already in full active 
mode and no further gain can be achieved. 

 
Figure 5: Power consumption saving: comparison between 
EMMA and shortest path without EMMA 

Figure 6 shows the setup time (in seconds) for the three 
paths (values computed averaging from 10 executions), 
together with the time required to change the power state of the 
XPFEs. Setup time for Path 1 and Path 2, which includes the 
activation of the XPFEs, is much longer than the time required 
to establish Path 3, where all the XPFEs are already active. The 
configuration of the power states of devices clearly introduces 
the largest delay. While the internal procedures (i.e., 
provisioning coordination and path computation) takes just few 
milliseconds, the actions that require an interaction between 
controller and devices are in the order of hundreds of 
milliseconds for the configuration of OpenFlow flow rules and 
few seconds for the configuration of the power state. The 
configuration of the power state constitutes indeed the main 
difference in the provisioning procedure, if compared with the 
traditional connection setup where all the nodes are always 
maintained active, and it adds a further component of the end-
to-end provisioning time.  

However, since the SNMP interaction between controller 
and devices is implemented through asynchronous and parallel 



messages, this delay does not increase linearly with the number 
of nodes to be switched on but varies in a limited range. This 
means that in wider networks, where EMMA can reach its best 
performance due to the high number of nodes that can be 
maintained in sleeping mode, this delay can be kept in a 
reasonable range independently on the increasing number of 
XPFEs to be activated. 

 
Figure 6: Average, max and min values of setup time (top) and 
time for power state change (bottom) for three paths 

IV.    EMMA FOR MMWAVE MESH NETWORKS  
In the dense urban scenario, one of the important scenarios 

in 5G, network densification is necessary to accommodate the 
high traffic volume generated not only by smartphones/tablets 
but also by augmented reality information such as from sensors 
and wireless-connected cameras. Typical environments are 
shopping malls, airports, open squares, street canyons, etc., 
where mobile users tend to gather and move as large, dynamic 
crowds while expecting to keep their connectivity to the 
Internet.  

In this section, we propose another EMMA algorithm to 
provide efficient deployment and management of a mmWave 
meshed network for such densely-deployed access networks, as 
the one depicted in Figure 7. In this scenario, mmWave nodes 
are overlaid on an LTE macro cell to play a role of both relay 
(i.e., XPFE) and (mmWave) access with three or four sectors 
for both access and backhaul/fronthaul [9]. The LTE macro 
base station also plays a role of mmWave gateway in the cell to 
accommodate time-variant and spatially non-uniform traffic by 
forming a mmWave meshed network dynamically. The 
prominent goal of EMMA in this scenario is to reduce the 
energy consumption of mmWave meshed networks by 
switching off as many mmWave nodes as possible in an area 
with low traffic demand [10]. The EMMA controller is located 
in the LTE macro BS and it is in charge of signaling the switch 

On/Off control messages over the XCI. Signaling messages are 
sent over LTE as out-of-band control plane messages. Thus, 
EMMA can control the On/Off state of mmWave nodes and set 
up physical paths between them. In the following, we will 
evaluate the performance of our proposed EMMA algorithm for 
the mmWave meshed network scenarios by dynamically 
changing the density of users. 

 

 
Figure 7: mmWave meshed network overlaid on a LTE macro 
cell. 

 

The evaluation has been conducted with a system-level 
simulation, whose parameters are given in Table 2. In total, 90 
mmWave nodes are deployed uniformly on a LTE macro cell 
with a radius of 250 m, and 5000 users are placed over the 
service area. To spatially reproduce non-uniform user 
distribution, the user location is assumed to follow a 2-D 
Gaussian distribution with mean µ and standard deviation 
s. The mean µ corresponds to a hotspot location, where user 
density is higher, while s captures the non-uniformity of user 
distribution.  

Table 2: Simulation Parameters 

Parameter LTE macro mmWave node 

# of nodes  1 90 

Frequency 2.1 GHz 60 GHz 

Bandwidth 10 MHz 2 x 2.16 GHz 

Antenna gain 17 dBi 26 dBi 

Tx power 46 dBm  10 dBm 

 

Figure 8 shows an example of the On/Off state of the 
mmWave nodes (marked as APs) and the physical paths 
established by the EMMA algorithm in the case of s =100 m 
with µ = (200, 0) m. In this example, the mmWave nodes 
located far from the hotspot are switched off, and mmWave 
backhaul resources are concentrated on the area of the hotspot 
to accommodate all traffic from/to users.  



 
Figure 8: Map showing the On/Off state of mmWave nodes 
when s =100m. 

The overall energy consumption of the mmWave meshed 
network is evaluated in Figure 9 by changing s, to analyze the 
impact of the non-uniformity of user distribution. The smaller 
the s, the less uniform the spatial distribution of users.  

 
Figure 9: Energy consumption of network against s. 

Three approaches for mmWave node activation are 
compared. The first solution is our baseline scheme, denoted by 
“Always On”, namely without EMMA algorithm. The second 
and third ones are our proposed schemes: the “User centric 
EMMA” where mmWave nodes are turned on based on the 
location of users, and the “Network centric EMMA” where 
mmWave nodes are turned on to lower the overall energy 
consumption with minimum degradation of user experience. 
From the plot, it is obvious that EMMA has a large margin to 
save energy. Compared to the “always on” case, the EMMA 
algorithm can save nearly 60% of energy consumption when 
s =50 m.  Besides, both user and network centric EMMA can 
save more energy when the distribution of users is less uniform. 

It is to be noted that the network-centric EMMA is the most 
effective solution, by switching off more mmWave nodes in 
areas with low traffic load and forcing the corresponding users 
to associate with other mmWave nodes or LTE macro BS.  

V. EMMA FOR HIGH-SPEED TRAINS 
In high-speed train deployment, RoF is integrated as the 
fronthaul technology for ground-to-train radio access to 
overcome doppler effects.  RoF nodes are deployed inside 
tunnels to provide constant coverage. Currently, the deployed 
nodes are active all the time regardless of the presence of the 
trains within the tunnel. This leads to a waste of energy, thus 
our goal is to develop a software-defined energy-efficient RoF 
management system in an attempt to move toward greener 
communication. Therefore, in this section, we propose an 
EMMA for the high-speed train scenario. 
     In this scenario, EMMA controls the power state of RoF 
whenever the presence of a high-speed train in close proximity 
of the nodes is reported. The application signals to the XCI that 
idle RoF nodes should be switched off when unused. The goal 
is to minimize the energy footprint of the deployed distributed 
RoF nodes in the crosshaul network without degrading the QoS 
of ground-to-train communication.  
EMMA is composed of the following three modules: 
• Context Information Module, in charge of gathering the 

context information related to train mobility to determine the 
current location of the train. It collects the information from 
the eNBs and stores the information in the database; 

• Statistics Module, in charge of storage and retrieval of context 
information. It allows the XCI to periodically retrieve new 
records from the database and updates the XCI about the 
current location of the train; 

• Management Module, responsible for the actual control of 
RoF nodes. It decides to switch on or off the RoF nodes via 
SNMP protocol based on the received context information. 

     An example scenario is described in Figure 10, which shows 
that the RoF nodes are connected to the eNB B and C. 
 

 
Figure 10: Scenario of EMMA-specific High-speed Train 

 As the moving train enters the coverage of eNB B, the context 
information log (such as the physical cell id) is pushed to the IPC 
(Industrial Personal Computer) server, which is installed on the 
train via CPE (Customer Premises Equipment). The IPC then 
extracts the relevant information and posts it to the database. The 
Database then notifies the EMMA application sitting on top of 



XCI upon the reception of new entries. After the retrieval of 
records, the EMMA application decides based on the mapping 
table (RoF nodes mapped to Physical Cell ID of eNBs), if it needs 
to switch On or Off the connected RoF nodes via SNMP protocol 
and the specific eNB it has to associate to. 
      In our scenario, EMMA switches on the connected nodes as 
the moving train enters the coverage area and switches them off 
when it leaves. OpenDaylight is used for the XCI control plane 
which exposes two northbound APIs: snmp-get and snmp-set. 
Specifically, once the train enters the tunnel in the coverage 
area of eNB B, RoF nodes connected to eNB B are switched on 
via the SNMP protocol. When the train hands over from eNB B 
to eNB C, the RoF nodes connected to both eNBs are switched 
on without degrading the QoS of ground-to-train 
communication.  
Considering !" east-bound and !#	west-bound trains per day, 
and assuming that the serving time for each train by a single 
eNB is %& seconds, the fraction of the idle time '()*+ of a RoF 
node in a day period can be expressed as:  

'()*+ = 1 − !" + !# ∙ %&
86400  

     For instance, when !"=90, !#=83, and %&=50, then each 
RoF node is idle for nearly 90% of the time. This behavior 
matches the design where RoF can be turned on only when there 
are trains to serve. The energy consumption for RoF nodes can 
be reduced to 10% compared to the current usage. 
     In our experimental setup, the offline mobility context 
information is used by EMMA to emulate a real-time scenario. 
In such a scenario, the high-speed train operates daily between 
6 AM and 11 PM and RoF nodes are switched on constantly, 
regardless of operational time of the train. Figure 11 illustrates 
the comparison of energy consumption of RoF nodes with and 
without EMMA. The x-axis represents the time of day by hour 
increments. The y-axis represents the energy consumption per 
hour in percentage. With the EMMA-integrated solution, RoF 
nodes will be switched on only to serve the high-speed train 
when it is approaching, thus saving significant energy. 
 

VI.    CONCLUSIONS 
In this paper, we have presented proof-of-concept prototypes of 
Energy Management and Monitoring Applications, applied to 
three realistic use cases: a software switch network, a mmWave 
mesh network, and an analogue RoF domain for ground-to-train 
radio access. We have shown the versatility of our solutions and 
their potential to curb the energy consumption in upcoming 5G 
networks, without compromising the user experience 
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Figure 11: Comparison of energy consumption without (blue) 
and with (red) EMMA  
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