Journal article Open Access

Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Tapano Kumar Hotta; S P Venkateshan

JSON Export

  "files": [
      "links": {
        "self": ""
      "checksum": "md5:062ae441d3626c30f1a87bea2eba2cb2", 
      "bucket": "47dc65eb-db47-4eb4-ab2c-ba47bb35831d", 
      "key": "9581.pdf", 
      "type": "pdf", 
      "size": 676059
  "owners": [
  "doi": "10.5281/zenodo.1073038", 
  "stats": {
    "version_unique_downloads": 71.0, 
    "unique_views": 35.0, 
    "views": 35.0, 
    "version_views": 35.0, 
    "unique_downloads": 71.0, 
    "version_unique_views": 35.0, 
    "volume": 50704425.0, 
    "version_downloads": 75.0, 
    "downloads": 75.0, 
    "version_volume": 50704425.0
  "links": {
    "doi": "", 
    "conceptdoi": "", 
    "bucket": "", 
    "conceptbadge": "", 
    "html": "", 
    "latest_html": "", 
    "badge": "", 
    "latest": ""
  "conceptdoi": "10.5281/zenodo.1073037", 
  "created": "2018-01-19T21:32:45.836333+00:00", 
  "updated": "2020-01-20T13:31:35.135725+00:00", 
  "conceptrecid": "1073037", 
  "revision": 6, 
  "id": 1073038, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.1073038", 
    "description": "Steady state experiments have been conducted for\nnatural and mixed convection heat transfer, from five different sized\nprotruding discrete heat sources, placed at the bottom position on a\nPCB and mounted on a vertical channel. The characteristic length (\nLh ) of heat sources vary from 0.005 to 0.011 m. The study has been\ndone for different range of Reynolds number and modified Grashof\nnumber. From the experiment, the surface temperature distribution\nand the Nusselt number of discrete heat sources have been obtained\nand the effects of Reynold number and Richardson number on them\nhave been discussed. The objective is to find the rate of heat\ndissipation from heat sources, by placing them at the bottom position\non a PCB and to compare both modes of cooling of heat sources.", 
    "language": "eng", 
    "title": "Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB", 
    "license": {
      "id": "CC-BY-4.0"
    "relations": {
      "version": [
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "1073037"
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "1073038"
    "communities": [
        "id": "waset"
    "version": "9581", 
    "references": [
      "S. Baskaya, U. Erturhan, and M. Sivrioglu, \"An experimental study on\nconvection heat transfer from an array of discrete heat sources\",\n.International Communications in Heat and Mass Transfer, 32 (1-2):\n248- 257, 2005.", 
      "H. Bhowmik, CP Tso, and KW Tou, \"Analyses of convection heat\ntransfer from discrete heat sources in a vertical rectangular channel\",\nJournal of Electronic Packaging, 127: 215, 2005.", 
      "CY Choi and SJ Kim, \"Conjugate mixed convection in a channel:\nmodified five percent deviation rule\", International Journal of Heat\nand Mass Transfer, 39 (6):1223 - 1234, 1996.", 
      "P.T.J.R. Culham and MM Yovanovich, \"Comprehensive review of\nnatural and mixed convection heat transfer models for circuit board\narrays\", Journal of Electronics Manufacturing, 7 (2):79-92, 1997.", 
      "IA Ermolaev and AI Zhbanov, \"Mixed convection in a horizontal\nchannel with local heating from below\", Fluid Dynamics, (1):29-35,\n2004.", 
      "B. Ghasemi and S.M. Aminossadati, \"Numerical simulation of mixed\nconvection in a rectangular enclosure with different numbers and\narrangements of discrete heat sources\", Arabian Journal for Science\nand Engineering, 33 (1):189, 2008.", 
      "G.G. Kumar and C.G. Rao, \"Interaction of surface radiation with\nconjugate mixed convection from a vertical plate with multiple non\nidentical discrete heat sources\", Chemical Engineering\nCommunications, 198 (5): 692-710, 2011.", 
      "La Pica, G. Rodonn, and R. Volpes, \"An experimental investigation on\nnatural convection of air in a vertical channel\", International Journal of\nHeat and Mass Transfer, 36 (3):611-616, 1993.", 
      "S. Lee, JR Culham, and MM Yovanovich, \"Parametric investigation of\nconjugate heat transfer from microelectronic circuit boards under\nmixed convection cooling\", International electronic packaging\nconference, San Diego, September, pages 15 - 19, 1991.\n[10] G.M. Rao and G. Narasimham, \"Laminar conjugate mixed convection\nin a vertical channel with heat generating components\", International\nJournal of Heat and Mass Transfer, 50 (17-18):3561-3574, 2007.\n[11] SM Sawant and C. Gururaja Rao, \"Conjugate mixed convection with\nsurface radiation from a vertical electronic board with multiple discrete\nheat sources\", Heat and Mass Transfer, 44 (12):1485-1495, 2008.\n[12] H. Turkoglu and N. Yucel, \"Mixed convection in vertical channels with\na discrete heat source\", Heat and Mass Transfer, 30 (3):159-166, 1995.\n[13] T.V.V. Sudhakar, A. Shori, C. Balaji, and S.P. Venkateshan.,\"Optimal\nheat distribution among discrete protruding heat sources in a vertical\nduct: A combined numerical and experimental study\", Journal of Heat\nTransfer, 132 : 011401, 2010.\n[14] S. P. Venkateshan, \"Mechanical Mesurements\", Ane Books, New Delhi,\nIndia, 2008."
    "keywords": [
      "Discrete heat source", 
      "mixed convection", 
      "vertical channel"
    "publication_date": "2012-08-25", 
    "creators": [
        "name": "Tapano Kumar Hotta"
        "name": "S P Venkateshan"
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    "related_identifiers": [
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.1073037", 
        "relation": "isVersionOf"
All versions This version
Views 3535
Downloads 7575
Data volume 50.7 MB50.7 MB
Unique views 3535
Unique downloads 7171


Cite as