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On the outlier Detection in Nonlinear
Regression
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Abstract—The detection of outliers is very essential because of
their responsibility for producing huge interpretative problem in
linear as well as in nonlinear regression analysis. Much work has
been accomplished on the identification of outlier in linear
regression, but not in nonlinear regression. In this article we propose
several outlier detection techniques for nonlinear regression. The
main idea is to use the linear approximation of a nonlinear model and
consider the gradient as the design matrix.  Subsequently, the
detection techniques are formulated. Six detection measures are
developed that combined with three estimation techniques such as the
Least-Squares, M and MM-estimators. The study shows that among
the six measures, only the studentized residual and Cook Distance
which combined with the MM estimator, consistently capable of
identifying the correct outliers.

Keywords—Nonlinear Regression, outliers, Gradient, Least
Square, M-estimate, MM-estimate.

I. INTRODUCTION

ANY statistics practitioners have been using residuals

for the identification of outliers. The use of residuals
resulting from the ordinary least squares (OLS) estimates will
give a misleading conclusion because the residuals are
functions of leverages and true errors. According to Habshah
et al. [9], the high leverage points together with large errors
(outliers) and the residuals are responsible for the cause of
masking and swamping of outliers in linear regressions. There
are a considerable amount of good written papers relating to
identification of outliers in linear regression [see for example,
Hadi [10], Habshah et al. [9], Cook and Weisberg [7], Belsley
et al.[6], Anscombe and Tukey [1] and the discussion on the
properties of Atkinson’s distances in [3] and [4] ). However,
not much work has been explored in the formulation of the
outlier‘s identification method in nonlinear regression. Cook
and Weisberg [6] and Fox et al. [7] introduced a measure for
the identification of outliers in nonlinear model, which is
based on the OLS method. However, it is now evident that
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outliers have an adverse effect on the OLS estimates (see for
example Habshah et al. [9] ). In this situation, we suspect that
any measures which are based on the OLS estimates are not
efficient and this may cause swamping (false positive) and
masking (false negative) effects. In this paper, an attempt is
made to propose robust method of identification of outliers in
nonlinear model.

Il. ROBUST NONLINEAR REGRESSION

Consider the nonlinear model with additive error terms:
=1n(0)+ (1)
where Y =[y,,V,,...,¥,]"is nx1 response vector,
n(@) = [f(Xl; 0),..., f(Xn;H)] is nx1 vector of function
models f(x;;6)’s, X, =[x, X,,,.-, X, ]" is k dimensional
=[e.&,0me,]" is nxl

vector of iid residuals, which under normality assumption
assumed to have normal distribution with mean zero and

predictor (design) vector,

. 2 . .
variance ol , and @ € ‘R’ and p dimensional unknown

n L
parameter vector. The least squares estimator, & of the

nonlinear regression in (3) are found by minimizing the error
sum of squares:

oy - 2

0,, =arg m0|n||r|| @)
where r is the  residual  wvectors  with
elements7, = v, — f(x,;6), and ||.|| is the Euclidean norm.
However, many statistics practitioners are not aware of the
fact that outliers have an unduly effects on the OLS estimates.
As an alternative, robust methods which are not easily
affected by outliers are put forward to remedy these problems.
There are many robust methods in the literatures and in this

paper, only the M and MM estimators are considered (See
Huber [14] and Stromberg [20]).

The M estimator is obtained by minimizing:
éM =arg mgin h(6) 3)
where A (6) is given by

h@:i{dm}

o
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and (@) is a robust loss function satisfies the Huber

conditions (see [14] ). The Newton method (see [21] ) is used
to estimate the parameter theta. When convergence is not
achieved due to large residuals, the Levenberg-Marquardt is
utilized.

Yohai [22] and Stromberg [20] introduced the the MM
estimator in linear and nonlinear regression, respectively.
Stromberg proposed the computation of MM estimator in
three stages as follows;

Stage 1 : Obtain a consistent high breakdown estimator

Stage 2 : Use stage 1 to calculate the M-estimate of
scale using rho function p,

Stage 3 : Compute the M estimate using rho function
0, by using stage 1 and stage 2.

There are several rho functions, to choose from, and in this
study, the Hampel redescending rho function (See [11])

denoted as o, , is used in the analysis. Yohai (See [22])
revealed that p,(7) and p,(r) can be taken to be

py(rlky) and p,, (r/k,), respectively. Stromberg [20]

demonstrated that selecting ko = 0.212 and k; = .9014 will
guarantee a high breakdown estimate and will result in 95%
efficiency under normal errors, respectively. The parameter
estimates computed by these three techniques will be utilized
in the development of the outlier measures in nonlinear
regression that is discussed in Section IlI.

I1l. THE OUTLIER MEASURES

Consider the multiple linear regressions,
Y=XB+¢
Where matrix X is the explanatory variablenx p, Y is

nx1 vector of response vector, ¢ is identically independent
distributed error vector, n is number of observations, g is p
dimensional unknown vector of coefficients. After the least
squares estimates of the parameters 2 have been computed,
the predicted value of the response variable can be written in
the form of the Hat matrix as follows;

y=XpB =Wy ()
where W is the hat matrix of
W=XX"X)"xT (5)

The elements of W are shown by w; . It can be seen from

equation (4) that the influence of the response values on the
prediction, depends on the values of w; . Equation (4) can be

rewritten as:

n
YVi=w,y; + Zwijyj

J#ij=1
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Hoaglin and Welsh [13] suggested a direct use of w; as
diagnostic of identifying high leverage points, if w, is large
relative to the remaining terms. The fitted value y, is more
dominated by response w;y,;, so w, is interpreted as the

amount of influence or leverage of j/j on ;. In nonlinear

regression, the linear approximation of function model is used,
and replaces the explanatory matrix in linear regression, by
the gradient of the function model. The linear approximation
form can be derived by expanding the function model (1)

around the true value @~

n@) =n@)+V(O-6)

of (x;0)
06

where V = is nx p gradient matrix computed

at estimated point. Based on this approximation, an equivalent
measure for equation (5) which is called as tangent plane
leverage matrix is given by

H=v{y'v)yw" (6)

This leverage matrix in nonlinear plays a similar role as the
Hat matrix W in linear form, as defined by equation (5) (see
[7] p.187 and [16] Chapter 10).

Linear regression uses the Hat Matrix 7 as a beginning idea
of influence detection tool, and creates several statistical
measures for outlier detection. In this article, the leverage
matrix H in Equation (6) is used in the formulation of the
method of the identification of outliers in nonlinear
regression.

In this section we extend the idea of influence outlier
measures of linear regression for nonlinear case. Instead of
using the Hat matrix W defined in (5), the gradient matrix H,
as defined in (6) is utilized in the formulation of the influence
measure.

A prevalent way of developing an influence detection
method is to re fit a model with deleting a special case or a set
of cases. Then, observe the amount of change of some
statistics such as the parameter estimates, predicted,
likelihoods, residuals, and so on, for a recalculated measure
with the i’th data point, removed. The notation (-i ) is used
for each removed observation. It is important to point out that
the three estimators namely the OLS, the M and the MM
estimator are used to estimates the parameters of the nonlinear
regression.

Subsequently, the respective estimates were utilized in the
computation of the influence measures.  The Six outlier
measures are briefly discussed as follows;

A. Studentized and Deletion Studentized Residuals
This measure (hereafter refer as¢,) is used for identifying

outliers. Suppose 4, is the diagonal of leverage matrix 4

based on gradient in Equation (6), the studentized residual
and the deleted studentized residuals are defined as follows

scholar.waset.org/1307-6892/9291


http://waset.org/publication/On-the-outlier-Detection-in-Nonlinear-Regression/9291
http://scholar.waset.org/1307-6892/9291

International Science Index, Mathematical and Computational Sciences Vol:3, No:12, 2009 waset.org/Publication/9291

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:3, No:12, 2009

(See [19], [1]) :

7
t,=FF7——
o1-h,
and
7 .
d, = ——————, respectively

&yl

i
where oA'H) is the estimated standard deviation in the

absence of the i’th observation. The residuals, denoted as

ro=y,—f(x; é) is obtained from the OLS, M and the MM
estimates.

The i'th observation is considered as an outlier if

|t |or|d, |>2.50r3.

B. Hadi potential

Hadi [10] proposed Hadi’s potential denoted as pii to detect
high leverage points or large residuals:

h,

11

) 1- hii
Hadi [10] proposed a cut-off point for pii as
Median(p, )+ c- MAD(p, ) where MAD represents the

Mean Absolute Deviance defined by:

MAD(p,) = Median{p, — Median(p,)}/0.6745

Pii

C is an appropriately chosen constant such as 2 or 3.

C. Elliptic Norm (Cook Distance)

The Cook Distance (hereafter is refereed as CD) which is
defined by Cook and Weisberg [7], is used to asses the
influential observations. An observation is influence if the
value of CD is greater than one. They defined CD as

D7V, p5*) =(0-00,) V' V)O-0.,)/p5°
where HAH) is the parameter estimates when the i’th

observation is removed. When 9(_,.) is replaced by the linear

approximation (see [7], and [8]), this norm changes to

2

ST A t: h.

CD,(V"V,p6?)=-+-—~—

pl-h,
Where ¢, and p is the studentized residual and the number of
parameters in the model, respectively. With the cut of point
equal to 1, that is the expectation of 50% confidence ellipsoid
of parameter estimates.

D. Difference in Fits

Difference in Fits, denoted by DFFITS, is another
diagnostics measure used in measuring the influence, defined
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by Belsley et al. [6].
defined as

For the i’th observation, DFFITS is

DFFITS, = Ny |d, |
1_hii

where d, is the deleted studentized residual. They
considered observation is an outlier when DFFITS exceeds

the cut of point equals to 2,/ p/n .

E. Atkinson’s Distance
Atkinson distance (hereafter refer as C,) for observation i

was developed by Atkinson [1] and it is used to detect the
influential observation (See [3] and [4] for the discussion of
the Atkinson’s property). Atkinson [1] defined the Atkinson’s
distance as follows;

- h.
- :( nppﬁ}di'

1

where d, is the deleted studentized residuals. He suggested
a cut-off value equals to 2.

IVV. NUMERICAL EXAMPLE

In this section, a real data which is referred as the lake data,
taken from Stromberg [20] is used to compare the preceding
methods. The data set is collected from 29 lakes in Florida by
United States Environmental Protection Agency (1978).
Stromberg [20] has identified observations 10 and 23 as
outliers.

The data presents the relationship between the mean annual
total nitrogen concentration, TN, as the response variable and
the average influence nitrogen concentration, NIN, and water
retention time, TW, as predictors. The model associated with
the data is:

NIN.,

IN, =———

1+oTW,

with unknown parameter vector € = (5, ). The results
of the six measures are shown in table 1 and 2.

i=1..29 (7

+&,,

The results of tables 1 and 2 suggest that most of the
diagnostic measures that are based on the OLS and M
estimates fail to identify the two observations as outliers. The

;"M based and p, -OLS based can correctly identify the
two outliers but swamp two points (cases 11 and 16) as
outliers. The results of Table 2 also point out that the d, -MM

based fail to identify any outlier. The p,-M based can
correctly identify the two outliers but swamps one observation
(case 16) as outliers. Furthermore, the DFFITS and C, fail to

detect observations 10 and 23 as outliers but swamp
observation one as outlier. On the other hand, the studentized
residuals and Cook’s distance measures which are based on
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the MM estimates identify correctly observations 10 and 23 as
outliers.

TABLE | SIX OUTLIER MEASURES BASED ON OLS FOR LAKE DATA

three parameters are considered (a=2575, b=41, 0.11) . The
residuals are generated from normal distribution with mean

zero and standard deviation o =70. The x,’s, are

generated from a uniform distribution on [3,50] with a
sample size 20.
Three different cases of contamination are considered,

Case A. The first good datum point (x;, y,), is replaced

cut | i d, CD; D prrirs;,  C,
poiﬁi 3.0 3.0 1.0 0.066  0.525 2.000
S
Index
I 1525  -1146 0642 035 0682 2507
2 2772 0032 0183  0.009 0003 0011
3 0370 0013 0037  0.020 0002  0.007
4 0.886 0007 0055  0.008 0001  0.002
5 1740 0089 0248  0.041 0018  0.066
6 0088 0003 0009  0.021 0.000  0.001
7| 080  -0676 0223  0.35 0.248 0912
8 0.73¢ 0005 0045  0.008 0.000  0.002
9 1635 0150 0291  0.063 0038 0138
10 0228 0020 0052  0.104 0.009 0035
11| -1259 0220 0250  0.079 0.065  0.237
12 0437 0006 0027  0.008 0001  0.002
13 0057 0002 0006  0.020 0.000  0.001
14 0865 0114 0165  0.073 0031 0113
15 0369 0021 0044  0.028 0.004 0013
16 0495 0263 0154  0.193 0116 0426
17 1223 0023 0104 0015 0.003 0010
18 0058 0001 0003  0.007 0.000  0.000
19 0088 0001 0004  0.005 0.000  0.000
20| -0.380  -0004 0018  0.005 0.000 0001
21| -0007 0000 0001  0.016 0.000  0.000
22 1240 0008 0064  0.005 0001  0.002
23 -3.067  -11.428 4528  4.359 23861  87.673
24 1458 0038 0127 0015 0005 0017
25| -0411 0010 0031 0011 0001  0.004
26| 0035  -0001 0003  0.018 0.000  0.001
27 0137 0019 0027  0.079 0.005  0.020
28| -0.354 0012 0032  0.016 0001  0.005
29 0.264 0002 0014  0.006 0.000  0.001

with a new value y; which is equals to y; +1000.

Case B. The 6th, 7th and 8th data points are replaced with
their corresponding y values increased by 1000 unit.

Case C. Six high leverage points were created by
replacing the last six observations with (x,y) pair values
(90,6500), (92,6510), (93,6400), (93,6520), (90,6600),
(94,6600).

The six outlier detection techniques were then applied to
the sets of A, B and C data based on the OLS, M and MM
estimates. The results are exhibited in Tables 3-5. Due to
space limitations, only the results on the outlier measures
which are based on OLS and MM are presented. The
results of the M based measures are discussed event though
they are not displayed.

It can be observed from Table 3 that all methods fail to

detect the single outlier except the #,-OLS based, CD-M
based #,-MM based and CD-MM based. The results also

point out that the p, based on the OLS, M and MM

swamp two observations as outliers (cases 18 and 19).
It is interesting to note the results of Table 4, when there

are three outliers in the y directions. The ¢,-M based, the

t;,-MM based and the CD-MM based are able to identify
the 3 outliers correctly. Other outliers measures fail to
identify even a single outlier. For instance, the p,-MM

based masked the 3 outliers and swamps 2 observations
(cases 18 and 19).

The presence of six high leverage points makes it harder
for almost all outlier detection methods to detect high
leverage points correctly. In this situation, most detection
measures fail to identify even a single high leverage point

V. SIMULATION STUDY

In this Section, a simulation study was performed to
investigate whether the results of the simulation study confirm
the conclusion of the real data set that the ti-MM based and
CD-MM based are capable of identifying correct outliers.

The simulated value from the logistic model is based on the
following function:

3 a
1+be ™
where & =(a,b,c) are the parameters of the model. This

model is chosen to mimic a real life chicken data set presented
by Riazoshams and Midi (see [18] ). In this simulation study,

V; +¢&; (8)
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because of the masking effects. It can be seen from Table 5
that again the ti-MM based and CD-MM based did a credible
job. Both measures can identify the six high leverage points
correctly.
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TABLE Il SIX OUTLIER MEASURES BASED ON M AND MM ESTIMATES FOR LAKE DATA

M-estimate MM-estimate
cutt | 1 d; CD; Pii DFFITS;  C; t d, CD; Pii DFFITS;  C;
oints
ndex | 3.0 3.0 1.000 0067  0.525 2.0 3.0 3.0 1.0 oo7g  952° 2.0
1 -1.846 -1.945 0.799 0.375 1.191 4.374 -1.591 -1.780 0.469 0.174 0.742 2.728
2 3.823 0.041 0.248 0.008 0.004 0.014 1.505 2477 0.159 0.022 0.371 1.362
3 0.583 0.023 0.054 0.017 0.003 0.011 0.035 0.000 0.002 0.008 0.000 0.000
4 1.244 0.011 0.077 0.008 0.001 0.004 -0.477 -0.063 0.030 0.008 0.006 0.020
5 2.497 0.091 0.334 0.036 0.017 0.063 1.091 0.010 0.110 0.020 0.001 0.005
6 0.204 0.008 0.020 0.019 0.001 0.004 -1.016 -0.014 0.077 0.012 0.002 0.006
7 -1.016 -1.249 0.264 0.135 0.459 1.688 -1.039 -1.086 0.182 0.061 0.269 0.988
8 1.035 0.008 0.063 0.007 0.001 0.002 -0.675 -0.078 0.042 0.008 0.007 0.025
st 9 2.365 0.142 0.390 0.054 0.033 0.122 1.689 0.009 0.182 0.023 0.001 0.005
% 10 0.373 0.052 0.083 0.100 0.017 0.061 -10.473 -0.132 5.615 0.575 0.100 0.367
-% 11 -1.625 -0.681 0.352 0.094 0.209 0.767 -1.203 -1.054 0.260 0.093 0.322 1.183
(&]
= 12 0.648 0.012 0.037 0.007 0.001 0.004 0.299 0.000 0.012 0.003 0.000 0.000
% 13 0.157 0.011 0.015 0.018 0.001 0.005 -0.465 -0.001 0.030 0.009 0.000 0.000
S 14 1.312 0.163 0.241 0.067 0.042 0.155 1.020 0.010 0.119 0.027 0.002 0.006
g 15 0.587 0.040 0.067 0.026 0.006 0.024 0.373 0.003 0.027 0.011 0.000 0.001
§ 16 0.873 0.498 0.291 0.223 0.235 0.863 1.326 0.145 0.379 0.163 0.058 0.215
:— 17 1.746 0.034 0.141 0.013 0.004 0.014 0.828 -0.004 0.051 0.008 0.000 0.001
§ 18 0.121 0.006 0.007 0.006 0.001 0.002 -0.017 0.001 0.001 0.003 0.000 0.000
2 19 0.158 0.005 0.007 0.004 0.000 0.001 -0.047 0.000 0.001 0.002 0.000 0.000
g 20 -0.498 -0.010 0.028 0.006 0.001 0.003 -0.076 0.023 0.012 0.049 0.005 0.019
é 21 0.037 0.013 0.004 0.023 0.002 0.007 0.815 0.153 0.224 0.151 0.060 0.219
boo] 22 1.713 0.020 0.086 0.005 0.001 0.005 -0.571 -0.242 0.074 0.033 0.044 0.163
g 23 -3.354 -17.324 4.792 4.081 34.998 128.592 -31.818 -0.234 32.941 2.144 0.343 1.259
.3‘; 24 2.063 0.046 0.167 0.013 0.005 0.019 1.730 0.001 0.093 0.006 0.000 0.000
(o8
g 25 -0.521 -0.038 0.043 0.013 0.004 0.016 -0.360 0.007 0.029 0.013 0.001 0.003
g 26 0.027 0.006 0.002 0.016 0.001 0.003 -0.724 -0.003 0.047 0.008 0.000 0.001
g 27 0.344 0.047 0.063 0.067 0.012 0.045 -0.987 -0.009 0.127 0.033 0.002 0.006
(s]
B 28 -0.440 -0.044 0.046 0.022 0.007 0.024 0.156 0.051 0.034 0.097 0.016 0.058
_§ 29 0.405 0.005 0.021 0.005 0.000 0.001 -0.285 -0.004 0.011 0.003 0.000 0.001
é TABLE 111 SIX OUTLIER MEASURES BASED ON OLS AND MM ESTIMATES FOR DATA SET WITH ONE OUTLIER
= Least Square-estimate MM-estimate
Q
5 ol d, CD, p, DFFITS, C, |t d, CD, p,  DFFITS, C,200
g ;Lnts 3.000 3.000 1.000 0.243 0.775 2.000 3.000 3.000 1.000 0.335 0.775
% 1 3.810 0.741 0.643 0.085 0.216 0.515 9.515 0.000 1.155 0.044 1.78E-05 4.25E-05
g 2 -0.907  -0.138 0.166 0.100 0.044 0.104 -1.357 0.000 0.192 0.060 5.13E-05 1.22E-04
3 -0.386  -0.061 0.075 0.114 0.020 0.049 -0.062 0.000 0.010 0.079 1.11E-04 2.63E-04
4 0.110 0.019 0.022 0.125 0.007 0.016 1.170 -0.001 0.214 0.100 1.82E-04 4.33E-04
S -0.406  -0.070 0.085 0.131 0.025 0.061 0.017 -0.001 0.003 0.120 3.64E-04 8.66E-04
6 -0.442  -0.074 0.093 0.132 0.027 0.064 -0.043 -0.002 0.009 0.137 5.90E-04 1.40E-03
! -0.163  -0.025 0.033 0.127 0.009 0.021 0.608 -0.002 0.134 0.146 7.27E-04 1.73E-03
8 -0.394  -0.053 0.078 0.119 0.018 0.043 -0.010 -0.003 0.002 0.146 1.22E-03 2.89E-03
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TABLE II(CONTINUE). SIX OUTLIER MEASURES BASED ON OLS AND MM ESTIMATES FOR DATA SET WITH ONE OUTLIER

V1. CONCLUSION

In this paper, a linear approximation of a nonlinear model is
formulated and subsequently leverage matrix based on the
gradient is formed. The outlier measures for nonlinear
regression are then formulated by incorporating the leverage
matrix and the commonly used detection measures based on
the OLS, M and MM estimates.  The results of the study
clearly reveal that the proposed measures which are based on
the OLS and M estimates can hardly detect the high leverage

International Scholarly and Scientific Research & Innovation 3(12) 2009
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points correctly. The studentized residuals-OLS based and
CD-M based can detect a single outlier correctly while the

t; -M based able to detect 3 outliers correctly. The results of

°| 0012 0001 0002 0112 0000 0001 | 0.787 0003 0170  0.139 9.72E-04 2.31E-03

101 o695 0077 0135 0113 0026 0061 | -1.015 0329 0216 0135 1.21E-01 2.88E-01
11 o731 0087 0149 0124 0030 0072 | -1.310 -0330 0286  0.143 1.25E-01 2.97E-01
120 0307 0042 0068 0146 0016 0038 | 0.933 0002 0219  0.166 6.29E-04 1.50E-03
131 0877 0148 0211 0173 0062  0.146 | 2.064 0004 0529  0.197 1.64E-03 3.91E-03
141 oes9 0132 0167  0.193 0058 0138 | 1.342 0004 0362  0.218 2.05E-03 4.87E-03
151 0112 0028 002 0195 0010 0024 | -0.093 0033 0025 0211 1.52E-02 3.61E-02
161 0160 0032 0039 0179 0013 0032 | -0.765 -0174 0190  0.185 7.47E-02 1.78E-01
71 0088 0015 0021 0169 0006 0015 | -0.095 0030 0023 0172 1.25E-02 2.98E-02
181 0200 0059 0076 0208 0027 0064 | -0.810 0123 0219 0219 5.77E-02 1.37E-01
191 o362 0133 0130 0386 0082 0196 | -0.687 0075 0248 0392 4.70E-02 1.12E-01

g 29| o260 0252 0152 1028 0255  0.608 | 1.225 -0.002 0657  0.863 2.25E-03 5.35E-03

|

S

% TABLE IV SIX OUTLIER MEASURI?S BASED ON OLS AND MM ESTIMATES FOR DATA SET WITH 3 OUTLIEBS (CASE 6,7,8)

2 Least Square-estimate MM-estimate

g cuwst| & d, CD, p, DFFITS, C, |t  d, CD, p, DFFITS, C,

;g Ingg;”ts 3000 3000 1000 0235 0775 2000 | 5o 3.000 1.000  0.335 0.775  2.000

§_ Y1 0704 0101 0167 0170 0042 0099 | -0117 -9.65E-05 0014  0.044 203E-05 4.83E-05

% 21 1141 0167 0271  0.169 0069 0164 | -1.079  -2.19E-04 0.153  0.060 5.35E-05 1.27E-04

i j 0807 -0107 0188  0.163 0043 0103 | -0050 -4.32E-04 0.008 0.079 121E-04  2.89E-04

S 0494 -0059 0111 0151 0023 0055 | 0930 -6.17E-04 0170 0.100 1.95E-04  4.64E-04

8 5| 0880 0097 0187 0136 0036 0085 | 0013 -115E-03 0003 0.121 4.00E-04 9.51E-04

kS 61 1992 0232 0398 0120 0080 0192 | 7978 -153E-03 1706 0.137 5.66E-04 1.35E-03

2 1 2156 0245 0406  0.107 0080 0191 | 8526 -217E-03 1882 0.146 8.31E-04  1.98E-03

é 8| 1989 0216 0362 0099 0068 0162 | 8033 -297E-03 1771 0.146 113E-03  2.70E-03

g %| o626 0068 0115  0.101 0022 0051 | 0623 -304E-03 0134 0139 1.14E-03  2.71E-03

S 101 1060 -0145 0206  0.11 0048 0115 | -0.809 -312E-01 0172 0.135 115601  2.73E-01

2 L1 4052 0168 0218 0129 0060 0143 | -1.044 -359E-01 0228 0.143 1.36E-01 3.23E-01

3 120 0274 0045 0061  0.149 0017 0041 | 0738 -2.84E-03 0174 0.166 1.16E-03  2.75E-03

% 131 0196 0034 0046  0.164 0014 0032 | 1636  529E-03 0420 0.197 2.35E-03  5.60E-03

i 140 0137 0023 0032  0.168 0009 0022 | 1.062  219E-03 0286 0218 1.02E-03  2.44E-03

;— 151 0134 0020 0031 0159 0008 0019 | -0079 -459E-02 0021 0211 211E-02  5.02E-02

2 161 0215 -0029 0047  0.146 0011 0026 | -0613 -192E-01 0152 0.185 8.27E-02  1.97E-01

% 1 0054 0008 0012  0.50 0003 0007 | -0081 -3.28E-02 0019 0172 1.36E-02  3.25E-02

3 181 0112 0023 002 0202 0010 0024 | -0648 -1.50E-01 0175 0219 7.04E-02  1.68E-01

g 191 o068 -0028 0024 0372 0017 0040 | -0550 -7.21E-02  0.199  0.392 451E-02  1.07E-01

g 20| 0468 0439 0255  0.887 0414 0986 | 0969  -3.65E-03 0519  0.862 3.39E-03  8.07E-03

£

simulation study agree reasonably well with the results of the
real data that the ti-MM based and CD-MM based are the best
outlier measures in nonlinear regression because they
consistently can identify outliers correctly in different outliers
scenarios.
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TABLE V SIX OUTLIER MEASURES BASED ON THE OLS AND MM ESTIMATES WITH 6 HIGH LEVERAGE POINTS(THE LAST 6 OBSERVATIONS)

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:3, No:12, 2009

Least Square-estimate MM-estimate
cutor | 1 d, CD, p, DFFITS, C, |t d, CD, p, DFFITS, C, 200
points | 3.000
Index 3.000 1.000 0.241 0.679 2.000 3.000 3.000 1.000 0.298

! -0.841 -0.027 0.095 0.038 0.005 0.015 -0.111 -8.30E-05 0.010 0.022 1.23E-05 3.41E-05

2 -1.709 -0.070 0.209 0.045 0.015 0.041 -1.026 -1.98E-04 0.105 0.031 3.50E-05 9.68E-05

8 -0.858 -0.038 0.113 0.052 0.009 0.024 -0.047 -3.67E-04 0.006 0.043 7.65E-05 2.12E-04

4 -0.038 -0.002 0.005 0.060 0.000 0.001 0.879 -5.62E-04 0.123 0.059 1.36E-04 3.77E-04

5 -0.792 -0.045 0.119 0.067 0.012 0.032 0.011 -9.74E-04 0.002 0.077 2.70E-04 7.47E-04

6 -0.772 -0.049 0.122 0.075 0.013 0.037 -0.035 -1.48E-03 0.006 0.096 4.59E-04 1.27E-03

! -0.232 -0.016 0.038 0.081 0.005 0.013 0.456 -1.89E-03 0.089 0.115 6.41E-04 1.77E-03

8 -0.482 -0.035 0.082 0.086 0.010 0.029 -0.012 -3.00E-03 0.003 0.129 1.08E-03 2.98E-03

9 0.265 0.020 0.046 0.090 0.006 0.017 0.595 -2.89E-03 0.127 0.136 1.07E-03 2.95E-03

10 -0.682 -0.054 0.119 0.091 0.016 0.045 -0.785 -2.58E-01 0.166 0.135 9.47E-02 2.62E-01

1 -0.588 -0.046 0.102 0.090 0.014 0.039 -1.006 -2.46E-01 0.208 0.128 8.80E-02 2.44E-01

12 1.193 0.097 0.203 0.087 0.029 0.079 0.690 -3.08E-03 0.139 0.122 1.08E-03 2.98E-03

13 2.169 0.191 0.363 0.084 0.055 0.153 1.519 3.76E-03 0.307 0.122 1.32E-03 3.65E-03

14 1.852 0.160 0.308 0.083 0.046 0.128 0.978 6.04E-04 0.205 0.132 2.19E-04 6.08E-04

15 0.955 0.084 0.163 0.088 0.025 0.069 -0.083 -3.01E-02 0.018 0.147 1.16E-02 3.20E-02

16 0.367 0.037 0.068 0.103 0.012 0.033 -0.594 -1.90E-01 0.138 0.163 7.67E-02 2.12E-01

Y1 o454 0060 0096 0.135 0022 0061 | -0086  -196E-02 0021 0172 811E-03  2.25E-02

18 -0.632 -0.117 0.161 0.194 0.052 0.143 -0.620 -1.39E-01 0.148 0.171 5.76E-02 1.60E-01

19 -1.431 -0.406 0.448 0.294 0.220 0.609 -0.492 -5.99E-02 0.114 0.162 2.42E-02 6.69E-02

2 -1.497 -0.644 0.586 0.459 0.437 1.209 0.728 -3.01E-03 0.163 0.150 1.16E-03 3.22E-03

a 0.648 0.124 0.166 0.197 0.055 0.153 31.062 -1.64E-04 7.779 0.188 7.13E-05 1.98E-04

2 -0.056 -0.011 0.014 0.200 0.005 0.013 31.156 -1.35E-04 7.838 0.190 5.89E-05 1.63E-04

3 -1.206 -0.263 0.324 0.216 0.122 0.338 30.293 -1.22E-04 7.636 0.191 5.34E-05 1.48E-04

2 -0.349 -0.074 0.094 0.216 0.034 0.095 31.242 -1.22E-04 7.875 0.191 5.34E-05 1.48E-04

% 1.356 0.269 0.347 0.197 0.119 0.330 31.852 -1.64E-04 7.976 0.188 7.13E-05 1.98E-04

2 -0.127 -0.030 0.036 0.243 0.015 0.041 31.880 -1.11E-04 8.051 0.191 4.85E-05 1.34E-04
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