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ABSTRACT 

The electricity market sector has suffered massive changes in the last few decades. The worldwide electricity 

market restructuring has been conducted to potentiate the increase in competitiveness and thus decrease 

electricity prices. However, the complexity in this sector has grown significantly as well, with the emergence 

of several new types of players, interacting in a constantly changing environment. Several electricity market 

simulators have been introduced in recent years with the purpose of supporting operators, regulators, and the 

involved players in understanding and dealing with this complex environment. This paper presents a new, 

enhanced version of MASCEM (Multi-Agent System for Competitive Electricity Markets), an electricity 

market simulator with over ten years of existence, which had to be restructured in order to be able to face the 

highly demanding requirements that the decision support in this field requires. This restructuring optimizes the 

performance of MASCEM, both in results and execution time. 
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1. Introduction 

All over the world the electricity markets’ restructuring placed several challenges to governments and 

companies that are involved in generation, transmission and distribution of electrical energy. Potential benefits, 

however, depend on the efficient operation of the market. Definition of the market structure implies a set of 

                                                 
* Corresponding author: Tiago Pinto is with GECAD - Research Group on Intelligent Engineering and 

Computing for Advanced Innovation and Development, R. Dr. António Bernardino de Almeida, 431, 4200-072 

Porto, Portugal; Tel.: +351 22 8340500; Fax: +351 22 8321159, Website: http://www.gecad.isep.ipp.pt / E-

mail: tmcfp@isep.ipp.pt 

http://www.gecad.isep.ipp.pt/
mailto:tmcfp@isep.ipp.pt


 

2 

 

complex rules and regulations that should not encourage strategic behaviours that might reduce market 

performance and lead to market power inefficiency [1]. 

Real-world restructured electricity markets are sequential open-ended games with multiple participants 

trading for electric power. Market players and regulators are very interested in foreseeing market behaviour: 

regulators to test rules before they are implemented and to detect market inefficiencies; market players to 

understand market behaviour and operate in order to maximize their profits [2]. 

The restructuring turned electricity markets into an attractive domain for developers of software tools [3-

9]. Simulation and Artificial Intelligence techniques become essential under this context. Multi-agent based 

simulation is particularly well fitted to analyse dynamic and adaptive systems with complex interactions among 

its constituents [3]. This is supported by the several multi-agent modelling tools that can be fruitfully applied 

to the study of restructured wholesale power markets. Some relevant tools in this domain are AMES (Agent-

based Modelling of Electricity Systems) [5], EMCAS (Electricity Market Complex Adaptive System) [6] and 

MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) [3, 4]. 

MASCEM is a modelling tool that has been firstly introduced to the scientific community in 2003 [3] to 

allow the study of restructured electricity markets. As market players are complex entities, with particular 

characteristics and objectives, making their decisions and interacting with other players, a multi-agent 

architecture is used and proved to be adequate. Experimental results show that a coherent market behaviour 

emerges from the simulated environment [4, 10]. 

Since MASCEM was firstly introduced, many changes have occurred in the electricity markets field. The 

increase in competitiveness brought by the restructuring process, together with the increasing need to 

accommodate large scale distributed generation from renewable sources (such as wind and solar generation), 

the transformation towards the unification of regional markets [11], the need for an active participation from 

the consumers side, and the introduction of new paradigms (e.g. smart grids [12]) and players (e.g. Virtual 

Power Players [10]), bring an exponential need for simulation and decision support capabilities that cannot be 

easily fulfilled with old and outdated models and architectures. 

Realistic electricity market simulators, capable of providing scenarios based on real data, are an enormous 

asset for the study of electricity markets. Market operators and regulators are able to experiment and test new 

market rules and mechanisms, which could not be tested directly in reality due to the impact that such 
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experiments could have for the global population, and obtain valuable insights regarding the consequences of 

such changes, both in what affects the market itself and also in what way it influences the market players. 

Electricity market simulators also provide the means for supporting electricity market participant players 

in their decisions, so that they can be able to take the best advantage from the market environment, by testing 

different strategic behaviours, and analysing their results. Real market players are also able to thoroughly 

studying competitor players’ actions, coming to understand how they behave, act and react in different 

circumstances and contexts, meaning an invaluable tool for adapting their own behaviours to the expected 

actions from competitors. This ultimately leads to the achievement of higher profits from sellers, and the 

decrease of purchase costs from buyers. 

Besides the advantages for market players, regulators, and operators, also students, researchers, and 

ultimately, the end energy consumers can benefit from electricity market simulators as well, with the potential 

price decrease brought by the increase in competitiveness and also from the improved energy use efficiency 

that may result from simulation studies. “Since MASCEM is being developed by GECAD, which is a research 

group from the School of Engineering of the Polytechnic of Porto, students play an important role in the 

development of MASCEM. They use MASCEM to explore the current market models and mechanisms in 

Europe, and learn how they work and what are the impacts of the participation of different types of players. 

Students also take advantage of the simulator's different market types, to perform comparison studies and reach 

conclusions on the different outcomes achieved by using different market models, or even by performing slight 

changes in market rules (such as offer types and complex conditions). The use of real data in MASCEM 

simulations is also essential for practitioners, as it allows exploring the impacts of considering different levels 

if penetration of players with different characteristics and behaviours (e.g. generators based on different 

sources). The real data based simulations also allow experimenting the potential effects of changing the market 

models of a certain market operator (e.g. what would happen if MIBEL started using the market models from 

EPEX of Nord Pool). This can be studied using the exact real players that participate in MIBEL, under altered 

market conditions. Finally, the possibility for co-simulation with smart grids, provides students with the chance 

to further explore the possible pathways of global energy markets, by studying possible alternative scenarios of 

integration of markets at a local level, besides the spread of market mechanisms, towards the unification of 

electricity markets.” 



 

4 

 

Given that MASCEM is a simulation tool with potential to be used by entities of very different natures, 

and consequently with very different scopes of study, it is important that the simulator is able to suit the 

simulation capabilities to each context of use. For this reason, an adequate balance between what is important 

to be executed at each time, and the execution time degradation that the execution of each different module 

brings, is essential. The decision support to the participation in real time or near real time markets, such as 

balancing markets [13] or ancillary services [14], which require the submission of actions to the market in a 

matter of minutes (usually every five minutes) [14], make the fast execution times of MASCEM (around one 

minute per simulated day without decision support features for players’ actions, as shown in section IV) seem 

less fast when several alternative scenarios need to be timely experimented. Considering the inclusion of 

decision support capabilities, the achievement of results in useful time becomes even more challenging, and 

requires a careful balancing between the execution time that is available, and the quality of results that is 

provided. Another critical context of use is the simulation of smart grids, considering the planning, management 

and scheduling of distributed energy resources, such as wind and solar based generation, different types of 

consumers, and the inclusion of plug-in electric vehicles (EVs) [15]. This type of planning is usually done with 

some time in advance, but it needs to be adapted in near real time due to the difficulty in forecasting highly 

volatile resources from very intermittent natures, such as the wind speed, or the charge/discharge of EVs. In 

these cases, the available minutes need to be used for the forecasting, scheduling and optimization of the 

resources, while the market simulation is secondary and needs to provide quick results, even if only indicative 

of the expected market prices, in order to feed the optimization processes. Even when considering a day-ahead 

planning, and due to the mentioned difficulty in achieving good quality forecasts for many resources in advance 

(the larger the advance of the planning, i.e. the longer time available to execute simulations, the worst quality 

of forecasts will be achieved [16]), the execution time problem still persists, since the uncertainty of the 

performed forecasts requires the execution of many alternative scenarios, with different players’ participation, 

with different players’ behaviours, with different characteristics and penetration of players. Hence, apparently 

fast execution times do not represent an optimal response for all cases, as there are many contexts of use that 

require extremely fast responses that come within the required timings, even if that represents a certain degree 

of degradation in the quality of simulated results. 
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This paper presents a novel version of the MASCEM simulator, characterized by a drastic change in the 

architectural approach, which aims at easily supporting the integration of new and complementary models, from 

diverse natures. The facilitation in accommodating different tools and mechanisms is provided by important 

structural implementation decisions, making MASCEM able to deal with the constantly changing and highly 

demanding environment of electricity markets. MASCEM’s restructuring brings the use of ontologies to support 

players’ communications [17, 18], providing the means for an easier cooperation with external agent societies 

that come to complement MASCEM’s simulation capabilities. Important examples are ALBidS (Adaptive 

Learning strategic Bidding System) [19], which provides decision support capabilities to market negotiating 

players; and MASGriP (Multi-Agent Smart Grid Platform) [20], a multi-agent platform that supports the 

simulation of micro and smart grids. 

Several implementation decisions, such as the use of parallel computing, the careful choice of programming 

languages for each different algorithm depending on its purpose and requirements, the intelligent distribution 

of agents by the machines available in the network, the use of heuristic methods when necessary, and the 

integration of a mechanism to manage the balance between the efficiency and effectiveness (2E) of the system, 

come to significantly decrease simulations execution time when such is necessary. 

Finally, the use of real electricity markets data, gathered from the websites of several market operators, in 

real time, provides the new version of MASCEM the chance to simulate realistic scenarios that transpose the 

reality, just as it occurs. 

The contribution of this paper is a multi-agent based model that optimizes both the effectiveness and 

computational efficiency of electricity markets’ simulation. The efficiency of the system is achieved by 

managing the balance between the execution time and the quality of results depending on the necessities of each 

simulation; and the effectiveness of the simulation is accomplished by the system’s architecture, which 

facilitates the integration of several models and distinct systems, enabling more realistic, flexible and 

comprehensive simulations. This contribution is, therefore, not a single model, directed to a specific problem, 

but a combination of several modules and systems, which together form a collaborative network that enables 

an enhanced multi-agent based simulation performance. 

After this introductory section, Section II presents an overview of the related work concerning multi-agent 

simulation of electricity markets. Section III outlines the main features of the novel version of the MASCEM 
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simulator, including the multi-agent model, the architectural and structural implementation decisions, the 

introduction of the use of ontologies in agents’ communications, and the integration of the automatic data-

extraction tool and of the 2E balance management mechanism. Section IV presents a case study, in which the 

novel MASCEM simulator capabilities are tested and demonstrated under two perspectives: (i) the capability 

in simulating real environments, even with a reduced number of participating agents; and (ii) the simulations’ 

execution time. Finally, Section V presents the most relevant conclusions and future work. 

 

2. Related Work 

Multi-agent technology is being increasingly used to represent, model and simulate complex and dynamic 

environments [3-10, 21]. Each agent can represent a physical or virtual entity acting according their perception 

of the environment, behaviour profile and goals. The autonomy, the perception of the other players’ actions, 

and the use of artificial intelligence algorithms are the most important characteristics of each agent. These 

characteristics turn the multi-agent simulation platforms much more complex than standard distributed 

simulation tools [22]. The possibility of representing different entities as independent software agents with their 

own particular behaviour and objectives; and the opportunity for easily enlarging the represented models, are 

some of the main reasons why multi-agent technology is widely chosen as the best option for developing 

complex simulation tools for constantly evolving environments such as the electricity markets. 

The multi-agent systems can be used in a more general view in cyber-physical systems due to their capacity 

to manage and control real equipment and devices, taking decisions according the context and also the human 

interaction. Each agent can be developed in a different programming language following their own syntax 

according the hardware requirements. An upper level ontology should be defined and used as a middleware to 

provide a common communication channel for all agents [23]. In some cases, a facilitator agent is necessary to 

control the information flow and most important, to assure the confidentiality and authentication of the 

communication between agents. The upper ontology allows the communication between agents inside a multi-

agent platform but also the communication between different multi-agent platforms. A good example this 

interoperability is the interaction between the agents of MASCEM, MASGriP and ALBidS. It is important to 

refer that MASGriP interacts with real hardware (loads, distributed generators, storage systems, real-time digital 
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simulator device and control devices based in android and windows) using different communication protocols 

(TCP-IP, Modbus, RS-485, ZigBee, etc.) [24]. 

 

2.1. Multi-agent simulators 

SEPIA (Simulator for Electric Power Industry Agents) [25] is based on a Plug and Play architecture, 

offering the possibility of using several processing units to perform simulations, distributing simulations 

through several machines inside a network. The interactions and behaviours of all players of a simulation can 

be followed and studied in SEPIA. 

EMCAS (Electricity Market Complex Adaptive System) [6] models the market players using software 

agents. Players’ bidding strategies are based on adaptive machine learning algorithms. EMCAS allows 

performing simulations for time-horizons that reach several decades. 

Power Web [26] is a Web based platform, which enables users to interact from distinct geographical points, 

offering the possibility of participating in an open market, in which users can compete with players controlled 

by other users or by virtual entities. 

SREMS (Short – Medium run Electricity Market Simulator) [27] is especially dedicated to the Italian 

electricity market. SREMS uses a game theory based scenario analysis algorithm with the objective of 

calculating negotiating players’ optimal hourly bids. 

AMES (Agent-based Modelling of Electricity Systems) [5] is directed to the study of the U.S. Federal 

Energy Regulatory Commission (FERC) market design. Generators’ bidding decisions in the electricity market 

are supported by stochastic reinforcement learning algorithms. 

GAPEX (Genoa Artificial Power Exchange) [7] is able to reproduce the market clearing procedures of the 

most important European power-exchange markets. This agent-based framework is highly directed to the study 

of the power exchanges between electricity market negotiating entities. 

MASCEM (Multi-Agent Simulator for Competitive Electricity Markets) [3, 4] has been firstly introduced 

to the scientific community in 2003 [3]. The first version of MASCEM was implemented on top of OAA (Open 

Agent Architecture) and included a rather reduced set of different players and market models. Since then 

MASCEM has been accommodating several functionalities in order to cope with the constant evolution of the 

electricity markets environment. MASCEM is able to recreate a high diversity of market clearing models, based 
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on the mechanisms used in different countries all around the world [13, 28, 29] and even the representation of 

possible evolution of electricity markets [30]. The introduction of Virtual Power Players (VPPs) has been 

presented in [4], and the simulation of a smart grid environment has been approached in [10]. The contemplation 

of decision support to market players in MASCEM’s scope has been firstly approached in [19], and later in [31] 

with the introduction of ALBidS. 

The continuous development of MASCEM has been, and still is, important for the study and decision 

support in electricity markets. However, with the constant updates MASCEM has accommodated, the multi-

agent environment has become overly complex, and has uncovered much fragility in the old dated architecture 

and on the agents’ communication platform (OAA), which have started to become barely capable of supporting 

the evolution of the system. For this reason, a complete restructuring of the system has become essential, 

including the definition of the multi-agent model, the system’s implementation architecture, and the use of 

proper mechanisms to deal with the highly demanding execution time requirements. This paper deals with these 

gaps, by presenting a novel, restructured version of MASCEM. 

 

2.2. MIBEL - Iberian market overview 

The typical EM environment consists of a day-ahead pool (symmetric or asymmetric) where energy for the 

following day is negotiated. Typically, a floor for bilateral contracts is also considered [32]. Moreover, intraday 

markets are required to provide the means to renegotiate the previously traded power in order to meet the 

required adjustments towards the feasibility of the daily program and of the last scheduling [13]. 

The MIBEL day-ahead market consists of 24 hourly periods per day. The Iberian system is treated as a 

single system defining the same market price for both Portugal and Spain. However, when there are congestions 

on the interconnection between both areas, a split mechanism is used, enabling the best possible use of the 

available interconnections capacity, which may result in a distinct market price per area [33]. 

A buying or selling bid can be carried out based on 25 offers per period. Regular bids feature for each offer 

a price and amount of power. If it is a selling bid, the price shall increase in each offer, while if it is a buying 

bid the price must decrease. Intentions of selling energy can still be accompanied by certain restrictions 

denominated complex conditions. 
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Regarding the intraday (or balancing) market, although being very similar to the daily market, it contains 

6 market sessions, where players can renegotiate previously negotiated periods in the spot market, in order to 

fit their needs. The first session of the market sets the price adjustments for the last 3 hours of the trading day 

and for the 24 hours of the following day; in the second session the price for the 24 hours of the following day 

may be adjusted; the third session sets the adjustments for 20 hours: between the 5th and the 24th hour of the 

following day; the fourth session adjusts the price for the 17 hours between the 8th and the 24th hour of the 

following day; the fifth session adjusts the price for the 13 hours between the 12th and 24th hour of the following 

trading day; and finally, the sixth session sets the price adjustments for the 9 hours between the 16th and 24th 

hour of the following trading day [34]. In this market type buyers are allowed to sell and sellers are allowed to 

buy. 

MIBEL delivers monthly reports with information about the market results, characterization, energy 

placed, its evolution, etc. Figure 1 shows data about the energy negotiated in the daily market for October 2015, 

as seen in the MIBEL website [35]. 

Data on the energy placed in the day-ahead market, October 2015 [35] Fig. 1 

As it can be easily seen the main energy sources placed in the market in October 2015, for both Portugal 

and Spain, are from Renewables & Cogen sources. 

3. MASCEM Restructuring  

Since its first appearance in 2003, MASCEM has come to accommodate the modelling of a huge number 

of different players and market types. MASCEM’s restructuring aims at optimizing the performance of this 

multi-agent simulator, providing the means to cope with an evolving complex dynamic reality in order to 

provide players with adequate tools to adapt themselves to the new reality, gaining experience to act in the 

frame of a changing economic, financial, and regulatory environment. With this renewed and enhanced multi-

agent simulation tool the model may be easily enlarged and future evolution of markets may be accomplished. 

The integration of different models and the interconnection with other systems, with their own social 

environment are some of the most important advantages of multi-agent based platforms, which are potentiated 

by this renovation. 
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3.1. Architecture  

The definition of MASCEM’s global structure has been based on a careful analysis on how the system 

should behave, both in an internal, independent perspective, and also in what concerns its connection and 

efficient communication with external multi-agent systems. For that it has been necessary to consider in a high 

account the design of its structure in terms of programming issues, while at the same time guaranteeing the 

higher possible performance in what concerns the agent’s interconnectivity and communications. 

When re-designing MASCEM, high importance had to be given to defining its architecture. The 

architecture depends on the characteristics of the system, and will influence all its conception. Choosing the 

MVC (Model-View-Controller) architecture ensures the independence between the data (model), the user 

interface (view), and the business layer (controller). 

A clear separation between the user interface, the data, and the business layer, makes it possible to develop, 

change, and update each different component independently, without affecting the others. This facilitates the 

integration of different models and tools, which can be easily developed as independent platforms, and then 

used by MASCEM without the need to make changes to the code. A reference example is the user interface, 

which is loaded automatically from information stored in a XML file. This allows the interface to be changed 

at any time, with no influence on the performance of the system. The user interface is also dynamic, in a way 

that it is only used when required. In situations when less experienced users use MASCEM, or for demonstration 

purposes, the user interface is activated. Otherwise, when the main requirement is the optimization of the 

system’s performance from an execution time perspective, the user interface is omitted, reducing the execution 

time, and the inputs can be loaded from a XML file as well, or alternatively, from an excel template file. This 

dependency injection culminates in the automatic loading of configurations, which can be altered off-line, 

facilitating the control of the system. 

Restructuring a highly complex system such as MASCEM in a way that it becomes a solid and adequately 

structured simulation platform, requires the use of good software engineering practices. Several design patterns 

have been used [36, 37], namely some of the original Gang of Four (GoF) design patterns, listed in the book 

[36].  

Some examples of the used structural patterns are: Adapter, which allows classes with disparate interfaces 

to work together by creating a common object by which they may communicate and interact; and the Facade, 
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which creates a single interface for a set of interfaces within a system. This allows layering systems and 

subsystems with many dependencies between each other.  

Some behavioural design patterns have also been fundamental for the restructuring of MASCEM, by 

allowing taking advantage of classes’ polymorphism, namely: Strategy, which defines a set of encapsulated 

algorithms that can be swapped to carry out a specific behaviour. This is crucial for the implementation of 

several alternative bidding strategies, such as the ones used by ALBidS. This way the behaviour of a class (in 

this case, the desired strategic approach) can be defined at runtime; Observer, which lets one or more objects 

be notified of state changes in other objects within the system. This highly facilitates the sensing capabilities of 

the agents within the system, enabling agents to perform their actions in the most suitable timings, by being 

aware of certain changes that occur in other parts of the multi-agent society.  

From the creational group of design patterns, the Factory has been used; this pattern provides an interface 

that delegates creation calls to other concrete classes in order to deliver specific objects. The creation of 

MASCEM negotiating players, and of ALBidS’ strategies is performed using a Factory implementation. 

 

3.2. Multi-Agent Model  

One of the most important outcomes of MASCEM’s restructuring process is the compliance with the FIPA 

(Foundation for Intelligent Physical Agents) standards [38], allowing the integration with external platforms. 

FIPA is devoted to develop and promote open specifications that support interoperability among agents 

and agent-based applications [38]. Multi-agent systems using FIPA’s standards should be able to interoperate, 

however, it does not mean that the agents are able to share useful information due to the employment of different 

ontologies. 

FIPA proposes the Agent Communication Language (ACL) as a standard for communications between 

agents. The content of the message includes the content language and the ontology. The former specifies the 

syntax, while the latter provides the semantics of the message [39]. This way the correct interpretation of the 

meaning of the message is assured, removing the ambiguity about the content. The FIPA-SL content language 

is the only one that reached a stable standard. Ontologies are used by agents for exchanging information, ask 

questions, and request the execution of actions related to their specific domain. 
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Coping with FIPA standards meant implementing MASCEM’s agent society in JADE (Java Agent 

DEvelopment Framework) [40], a development framework that simplifies the implementation of multi-agent 

systems, and supports the majority and most important FIPA specifications. This way MASCEM is able to 

interact with other multi-agent systems using a common language. However, so that messages and all the 

concerned concepts can be understood by different systems it is also necessary that they share a common 

vocabulary and semantics. To this end, ontologies are used, enabling the standardization of communications 

and interpretation of concepts between independent systems. 

In recent years, MASCEM’s multi-agent architecture has been largely expanded in order to accommodate 

the simulation of a diversity of player types [4, 10]. Virtual Power Players (VPPs) represent alliances of small 

producers, mainly based on distributed generation and renewable sources, and small consumers which are not 

able to compete in the market on equal footing with the big companies. VPPs manage their aggregates 

information, and negotiate in the market on their behalf. They also need to negotiate with players in order to 

establish contract conditions, and determine the revenues or costs of each aggregated player, depending on the 

outcomes of VPPs’ participation in electricity markets. VPPs’ operation has been modelled as an independent 

society within MASCEM’s environment. Additionally, a huge number of different small players’ types started 

to be required; some examples are electric vehicles, different types of production units, and different types of 

consumers (e.g. domestic, small commerce, rural consumers). 

The large number of players acting in the frame of MASCEM, together with the inclusion of decision 

support capabilities with the integration of ALBidS [19, 31], yet another multi-agent system; signified a big 

increase in the complexity MASCEM’s multi-agent model, and with it, a huge degradation of the execution 

time (over twenty times slower when considering a single player using ALBidS as decision support). Although 

each different agent community (MASCEM’s market environment, VPPs’ operation, and ALBidS) has been 

implemented in a way it should be as independent from the other as possible, including the implementation of 

specific facilitators to manage each of the different systems’ communications to make them as independent and 

parallel as possible; the limitations of OAA were highly uncovered. 

The transition to JADE facilitated the interaction with different, external, multi-agent systems, and 

eliminated the previous restraints concerning the use of multiple parallel facilitators to manage each 

independent agent society. This potentiated the definitive separation of the different systems, making each more 
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efficient in its purposes, interacting with the other only in the required measure, therefore diminishing the 

overflow of communications within the system that had little or none importance for specific groups of the 

agent community (e.g. the communications between agents of ALBidS do not bring any valuable information 

for the market operator, only for the market players negotiating players that are using the decision support 

capabilities; and the communications between VPPs and their aggregates are not important for players outside 

the coalition). 

The separation of the different agent communities, and the development of MASGriP [20], which came to 

support the simulation of the smaller players that act at a smart grids’ level, potentiated a huge reduction and 

simplification of MASCEM’s multi-agent model. MASCEM allows the participation in the wholesale market 

of aggregators representing those smart grids, as can be seen in [41] and [42]. MASCEM’s market models can 

also be applied to transactions at the local (smart grid) level, being used to support the negotiations between 

small players, as detailed in [43]. 

The new version of MASCEM includes only five different types of agents, besides the ones provided by 

JADE to control the user interfaces, and to manage communications, much like the previous version facilitators. 

The five agent types are: 

• Main Agent – enables the user’s interaction with the system. It is responsible for starting the 

market entities from the input file or user’s interface; for converting the input data into the 

respective RDF knowledge bases and for sending them to the respective players and operators; 

for distributing the various agents by the machines available for the simulation, considering the 

machines’ features and the agents’ processing needs; and for properly killing the agents when the 

user decides to terminate the application; 

• MIB Agent – (using the SNMP protocol) it is responsible for reading the management information 

base of each machine, creating a report and sending it to the Main Agent so that it can decide 

which agents will move to each machine, as explained in section 3.4; 

• Market Operator – regulates pool negotiations by validating and analysing the players’ bids 

depending on the type of negotiation, and determines the market price, the accepted and refused 

bids, and the economical dispatch that will be sent to the system operator; 
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• System Operator (ISO) – examines the technical feasibility from the power system point of view 

and solves congestion problems that may arise. It is responsible for the system's security as well 

as to assure that all conditions are met within the system; 

• Player – represents buyer, seller or aggregator agents. On one hand, it may be a consumer or 

distribution company which participates in the EM in order to buy certain amounts of power. On 

the other hand, it may simulate electricity producers or other entities able to sell energy in the 

market, or even aggregations of several entities. 

 

These core agents, much like the first version of MASCEM, in 2003 [3], allow a simple, yet effective 

electricity market simulation. More complex and advanced simulation studies are achieved through the 

collaboration between the different multi-agent systems, as presented in Figure 2. 

 

Collaboration between independent multi-agent systems Fig. 2 

 

As can be seen by Figure 2, the core simulation environment provided by MASCEM can be extended by 

the integration of VPPs, or even other small buyers and sellers that are part of a VPP coalition but wish to 

participate in market negotiations on their own. Other players, which act in a smart grid environment in the 

scope of MASGriP, or that are part of other multi-agent simulators of electricity markets, are also able to 

participate in MASCEM’s electricity market negotiations. All these players can use the decision support 

capabilities provided by ALBidS. 

Regarding the market models, MASCEM allows the simulation of several market types: day-ahead pool 

(asymmetric or symmetric, with or without complex conditions), bilateral contracts, balancing market, forward 

markets and ancillary services. Hybrid simulations are also permitted by selecting a combination of the market 

models mentioned above. Some other market types can be provided by different systems. A reference example 

is that of MASGriP [20]. Players in MASCEM are able to take part in smart grid related negotiations by 

participating in MASGriP simulations. The collaboration between the diversity of agent societies is achieved 

by using an upper-ontology, which defines the main concepts that must be understood by agents that participate 

in power systems and electricity markets’ related simulations. 
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3.3. Ontologies for Multi-Agent Systems Interoperability  

Mapping all the concepts that different systems share, so that agents from different environments can 

properly understand and cooperate with each other, is not a trivial task [18]. In an attempt to solve this problem 

FIPA suggests the use of an ontology agent that provides a set of related services [44]. However, the mappings 

must still be done by ontologies’ designers, increasing the human effort required and costs of implementation. 

Alternatively, [45] proposes the use of an upper ontology representing the general concepts of the domain, 

ensuring a common basis for the representation of those concepts and their relations between systems while 

reducing the complexity of ontology mapping. 

In [23, 41 a high level-ontology has been proposed, which contains the main concepts that are required by 

entities that participate in electricity market and power system simulations. This ontology is used by MASCEM 

in order to guarantee a proper collaboration with agents from other multi-agent societies, enabling knowledge 

exchange between them in order to take full advantage of their functionalities, and promoting the adoption of a 

common semantic that enables the communication between heterogeneous systems. 

 

3.4. Execution Time Optimization 

The diversity of algorithms and approaches that are used by MASCEM brings out the need for the 

development of a mechanism that is able to manage the balance between the Efficiency and Effectiveness (2E) 

of the system. This mechanism provides the means for the system to adapt its execution time to the purpose of 

the simulation, i.e., if the expected results from the simulation are as best as it is able to achieve, or, on the other 

hand, if the main requirement is for the system to be executed rapidly, since the purpose of the considered 

simulation is to analyse issues other than player’s optimal performance in the electricity market. The 2E 

Management mechanism manipulates the strategies both externally and internally. From the system’s 

perspective this mechanism contributes by deciding which tools are used at each moment for each circumstance; 

depending on their observed performance in terms of efficiency and effectiveness. This way this mechanism 

can choose to exclude certain strategies when they are not fulfilling the requirements for the case in matter. The 

algorithms that are chosen to be executed are also manipulated internally, so that they can adapt their individual 

results quality/execution time balance to the needs of each on-going simulation. 
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The adaptation process is performed by means of a fuzzy process [46, 47]. Two dynamic fuzzy variables 

characterize the efficiency and the effectiveness of each strategy. The characterization is what concerns the 

efficiency of each strategy comprises the difference between each strategy’s execution time, and the reference 

execution time of the simulation without the use of decision support. This means that the higher the difference 

is, i.e. the longer a strategy takes to achieve results, when compared to the reference simulation time, a worse 

classification is attributed to the strategy. Regarding the characterization of the efficiency of each strategy, the 

quality of the forecasts is analysed, comparing the forecasted value, and the actual market price that was 

verified. The confusion matrix that combines the two fuzzy variables, plus the preference value of the user for 

a faster or better decision support, determines which strategies must be excluded from the system, for taking 

too long to achieve not so good results, or which must adapt their execution times, reducing them in by a certain 

amount. The internal adaptation of each strategy concerning the execution time is dependent on the 

characteristics of each strategy (e.g. a neural network can reduce the training data, to achieve faster, yet worse, 

results; the game theory strategy can reduce the number of considered scenarios; the optimization based 

strategies can use heuristic processes rather than deterministic approaches, in order to achieve faster results, 

even if only near-optimal). 

The dynamism of the fuzzy process is achieved by adapting the fuzzy membership functions in execution 

time, as new events occur. This means that when each MASCEM simulation ends, the reference execution time 

to which all strategies’ execution times are compared is updated, signifying new fuzzy limits of the membership 

functions. Also, when a strategy takes longer than any other before to execute, the limit values that were 

assumed as representing a very big execution time are also updated. Regarding the modelling of the strategies’ 

effectiveness, the same type of membership functions’ update occurs, e.g. if strategies all start providing very 

bad results, comparing to what has been verified until that point, the values that were considered bad before, 

can now be considered a bit better, given the new circumstances. The detailed description of the 2E balance 

mechanism can be found in [47]. 

Besides the use of the 2E balance management mechanism, the execution time reduction issue has been 

dealt with by some other resources. Parallel computing has been used in the access to data. Although agents 

are, by their nature, parallel execution entities, there are still moments in which extra parallelism is necessary 
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in order to decrease execution time. The access to huge amounts of data when necessary is one of the main 

times in which parallel computing is used. 

A quick exhaustion of the resources of a machine can be led by the huge amount of parallel execution, and 

for this reason a mechanism that analyses the processing level of each machine available for the simulations, 

and distributes the agents accordingly, has been implemented. This is the mechanism used by the MIB Agent 

and Main Agent of MASCEM. The MIB Agent is a remote agent that reads the management information bases 

of each machine, generating a report that is after sent to the MASCEM’s Main Agent. After receiving the report 

of each machine, the Main Agent redistributes MASCEM’s agents by the available machines according to their 

characteristics and processing needs. 

Another important contribution for the optimization of MASCEM’s computational efficiency is the use of 

meta-heuristics, which diminishes the processing time of the required optimizations. Finally, the choice of the 

most adequate programming language for each of the developed algorithms has also been taken into account. 

MatLab has been used to implement mathematical calculations, like heuristics and optimization problems; 

Prolog for logic-based strategies; and C for other time-demanding modules. These developments also come to 

optimize the performance of the global Java based system, especially taking into account the need to support 

simulations involving several distinct agents from different simulators. 

 

3.5. Automatic Data Extraction 

Information is available online, concerning market proposals, including quantities and prices; accepted 

proposals and established market prices; proposals details; execution of physical bilateral contracts; statement 

outages, accumulated by unit type and technology; among others. 

Since different operators make available different types of information, some of them providing even 

entities’ technical characteristics and localization, it is important to be sure of the complete data available. This 

process implies analysing different types of files with different updating times that must be automatically 

downloaded, analysed and saved. 

The automatic data extraction tool maintains a database updated with historical information from real 

electricity markets in order to be used by others systems, such as market simulators. For that, four major steps 

are considered: 
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• Download data: the download of several files containing the new data; 

• Parse data: extraction of the stored data from the downloaded files; 

• Store data: storage of collected data in the database; 

• Automatic data updates: define downloads periodicity automatically using machine learning 

techniques. 

Since electricity markets information grows in a very dynamic way, the need for checking information 

updates is crucial. The implementation of a mechanism able to automatically check for information updates for 

downloading and performing database updates is of major importance, so that data can be used as soon as it is 

available online. 

 

4. Case Study  

The main goal of this case study is to test and demonstrate the enhanced simulation capabilities of 

MASCEM. Aiming at this goal, the performance of MASCEM is evaluated under two perspectives: (i) the 

quality of simulation results; (ii) the simulations’ execution time. 

 

4.1. Definition  

In order to test the capability of MASCEM in representing the electricity market reality, the automatic data 

extraction tool, presented in [48], has been used to gather data from the Iberian electricity market – MIBEL 

[49], namely the players’ characteristics (type of technology, installed capacity, number of groups, owner, etc.) 

and the market bids (energy, price and complex conditions for each negotiation period). The first undertaken 

simulation is referred to as Simulation 0 and uses the MIBEL players’ data to create a set of MASCEM 

negotiating agents where each agent represents the characteristics and action behaviour of a real market player 

from MIBEL. This simulation allows testing the extent in which MASCEM is able to reflect the MIBEL 

electricity market reality when the number and characteristics of the involved agents are exactly equal to the 

players which participate in this market in the reality. The number of players that take part in this simulation is 

1446 – the same players that have participated in the MIBEL day-ahead spot market in June, 1st 2012 [49]. The 

daily market has been chosen since it is the main MIBEL market (the market type with the largest amount of 
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traded power) and also because it is easier to compare the results achieved by MASCEM simulation with the 

results of MIBEL for each day, in order to validate the MASCEM’s market model. However, detailed results 

of the balancing market of MIBEL in MASCEM can be found in [13]. The integration of ancillary services can 

be seen in [50], using a case based on CAISO, where the transparency is greater, therefore being an efficient 

means to prove its validity. Concerning the ancillary services, there is no available data in MIBEL’s web site, 

being impossible to compare the results and validate if the mechanism works correctly. 

Taking into account the essential requirement that is the simulations’ execution time, it becomes 

indispensable that MASCEM is able to represent realistic simulation scenarios which are able to summarize the 

reality, allowing undertaking valuable simulation studies in a reduced time frame, using a reduced amount of 

software agents. For this reason, two summarized simulation scenarios have been created. Using the complete 

set of agents that were created for Simulation 0, Scenario 1 bases the scenario summarization on the criterion 

of real players’ dimension. This means that Scenario 1 contains only the agents that represent the real MIBEL 

players that negotiate the larger amounts of power in the electricity market. Three simulations are performed 

using Scenario 1:  

• Simulation 1.1 includes the 48 players with the highest amount of trading power (24 sellers and 

24 buyers);  

• Simulation 1.2 includes the 24 players with the highest amount of trading power (12 sellers and 

12 buyers); 

• Simulation 1.3 includes the 12 players with the highest amount of trading power (6 sellers and 6 

buyers). 

With these simulations, based on Scenario 1, the performance of MASCEM in reflecting the reality is 

tested as the number of negotiating players decreases. This scenario also provides the means for testing whether 

the negotiating amount of power of real players is an adequate criterion for supporting the reduction in 

represented software agents, aiming at a critical reduction in simulations execution time. 

Scenario 2 bases the reduction of the considered negotiating players in a different criterion: the bid price 

competitiveness. Under this scenario the selection of players to participate in the simulation enhances players’ 

bid prices competitiveness, i.e. the selected players are the sellers that practice higher prices, and the buyers 
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that are only willing to buy at the lower prices. Analogously to Scenario 1, also three simulations are performed 

using Scenario 2: 

• Simulation 2.1 includes the 48 players with the most competitive prices (24 sellers and 24 buyers);  

• Simulation 2.2 includes 24 players (12 sellers and 12 buyers); 

• Simulation 2.3 includes the 12 players with the most competitive prices (6 sellers and 6 buyers). 

The simulation scenarios refer to the 24 hourly periods of the MIBEL day-ahead spot market, of one 

negotiating day – June, 1st 2012. The market price results in each of the seven simulations (Simulation 0, three 

simulations using Scenario 1, and three simulations using Scenario 2) are compared to the real electricity market 

price that has been established during the same day, in order to compare the extent in which such summarized 

simulation scenarios are able to reflect the real electricity market outputs.  

Finally, the execution time of the simulations is compared, in order to take conclusions on the advantage 

of using reduced, representative scenario, from a simulation efficiency standpoint.   

All simulations have been performed on a computer with two Intel® Xeon® X5450 3.0GHz processors, 

each one with 2 cores, 4GB of random-access-memory and Windows Server 2008 32 bits operating system. 

 

4.2. Results – Established Market Prices  

Figure 3 presents the comparison between the market prices that have been achieved in each of the three 

simulations of Scenario 1, the real electricity market price of the considered day, and the market prices resulting 

from Simulation 0. 

 

Comparison of the real electricity market prices from MIBEL day-ahead spot market in June 1st 2012 

with the market prices resulting from Simulation 0 and from the three simulations using Scenario 1 

Fig. 3 

 

From Figure 3 it is visible that the market prices that resulted from Simulation 0 are exactly equal, in all 24 

negotiating periods of the considered day, to those that resulted from the MIBEL day-ahead spot market. These 

results show that, by using the automatic data extraction tool, MASCEM is able to represent the real electricity 

market players as software agents, flawlessly. Also, when using the exact same number of correctly represented 



 

21 

 

negotiating players, the simulated spot market results exactly as in the reality, proving the quality of negotiating 

models representation in MASCEM. 

When reducing the number of represented players, the similarity of the results also decreases when 

compared to the real MIBEL outputs. When considering 48 simulated players (Simulation 1.1) the electricity 

market price curve follows       the tendency of the real market price, accompanying the decrease in price in the 

first periods of the day, and the small peak in period 23. Reducing the number of players to 24 (Simulation 1.2) 

reflects into an increase of the price variation, distancing the resulting market price from the real MIBEL market 

price, although still following the real price tendency. Finally, when reducing the number of players to 12 

(Simulation 1.3), it becomes obvious that the simulation is no longer capable of reflecting the reality. An 

enormous reduction of the number of players (6 buyers and 6 sellers, when the number of players participating 

in the MIBEL spot market is nearly 1500) leads to an incoherent representation of the market environment, 

when the selection of the players is performed depending on their negotiating amount of power. 

Figure 4 presents the comparison between the market prices that have been achieved in each of the three 

simulations of Scenario 2 and the real electricity market price of the considered day. 

 

Electricity market prices achieved in each of the three simulations undertaken under Scenario 2, and real 

electricity market price of MIBEL in June 1st, 2012 

Fig. 4 

 

From Figure 4 it is visible that the market prices that resulted from each of the three simulations performed 

using Scenario 2 are, most of the times, equal to the real electricity market price of MIBEL for the same day. 

In fact, in the first two simulations, considering 48 and 24 players, respectively, only 3 from the 24 hourly 

periods of the day present market prices that do not coincide with the real prices. This results in a complete 

overlap of the real electricity market prices’ curve in the graph of Figure 4. The third simulation, considering 

only 12 electricity market negotiating players, resulted in 8 hourly periods in which the achieved market price 

is different from the real one. However, even the referred 8 periods present very similar results when compared 

to real outputs of the MIBEL electricity market for the considered day – the difference is always inferior to 1 

€/MWh. 
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These results show that MASCEM is able to properly represent the reality, even when the number of 

considered market negotiating agents is very small, as is the case of the third simulation – using only 12 agents. 

This representation is possible due to the simulator’s capability in using real and adequate electricity market 

data, by using the automatic data extraction tool. The difference in results from the simulations of Scenario 1 

to Scenario 2, even though using the same number of agents, show that having access to important data is not 

enough, but the proper use of these data is essential. 

Table I shows a comparison of the error achieved in each of the seven simulations, when comparing the 

established electricity market price in each of the simulations, and the real market price of MIBEL during the 

24 hours of the considered day. The comparison is performed using the Mean Absolute Percentage Error 

(MAPE). 

 

Simulated market price MAPE values (%) Table I 

 

From Table I it is visible that Simulation 0, reaching a market price equal to the real one during all the 24 

periods of the considered day, achieved a MAPE value of 0, showing the effectiveness of the used algorithm. 

Regarding the simulations performed using Scenario 1, the MAPE value clearly increases as the number of 

simulated players decreases. Finally, considering Scenario 2, the MAPE value also increases when the number 

of players present in the simulation decreases, however, this increase is very small, and the error values remain 

very low throughout all three simulations. 

The difference in results from the simulations of Scenario 1 to those of Scenario 2 shows that the criteria 

for choosing the players involved in the simulations is critical to the outcomes and realism of the simulation 

environment. While in Scenario 1 the involved players negotiate huge amounts of power, their bids are highly 

conservative, in fact, most of the times the bigger buyers present their bids at the highest allowed price (180 

€/MWh); while the bigger sellers present bids with the value of 0 €/MWh, in order to guarantee the transaction 

of the proposed amounts of power. This leads, however, to reaching very low market prices, or even null when 

considering only players that present such bids, as is the case of Simulation 1.3. On the other hand, in Scenario 

2, the selection of the players depending on their bids competitiveness leads to achieving very close market 

prices to the reality. This occurs because the players involved in this simulation, even in Simulation 2.3, with 
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only 12 simulated players, are the same ones that define the market price in the reality (the most competitive 

players – the ones with the bid prices closest to the market price). 

 

4.3. Results – Execution Time  

Table II shows the average execution time of MASCEM (in milliseconds) when performing simulations of 

the MIBEL day-ahead spot market with: 12 players, 24 players, 48 players, and 1446 players. 

 

Average execution time of MASCEM (in milliseconds) Table II 

 

From Table II one can see that the difference in execution time from simulations with 12 players to 48 

players is very small – about 1200 milliseconds. In fact, simulations in MASCEM with a rather reduced number 

of participating players are very fast. Executing a realistic electricity market simulation in 5 seconds is excellent. 

However, when increasing the number of considering players in order to represent all the real players means a 

huge increase in execution time – more than 1 minute for each simulation, which means that simulating a month 

takes more than half an hour. This becomes more than most people would be willing to wait for instantaneous 

results. This becomes even more evident when adding decision support capabilities to market players’ 

behaviours. Note that the simulations presented in this case study include no decision support features for 

players’ actions. Players’ bids are exclusively based on the real MIBEL players auctioned prices and powers 

for the considered day, with no adaptation or learning features. Adding decision support capabilities for players’ 

actions leads to an enormous increase in execution time, as showed by Table III, for a reference simulation 

scenario of MASCEM with 24 negotiating players, with only one of these using ALBidS for decision support, 

for a single negotiation period. 

 

Average execution time of MASCEM using ALBidS for decision support of players actions, with 

different percentages of preference the decision support effectiveness (in milliseconds) 

Table III 

 

Table III shows that using the decision support features of ALBidS at the maximum level of capabilities 

leads to a very significant increase of the execution time. The inclusion of all learning algorithms at their best 
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performance is highly demanding. This type of decision support is critical when used by players for actual 

market negotiations. However, when MASCEM is used for studying purposes, where the extreme quality of 

the decision support is not critical, the use of the Efficiency/Effectiveness (2E) balance management mechanism 

allows using the decision support capabilities only in the required amount, in order to degrade the simulation 

execution time merely in the required measure. As seen by the case of 0% preference for the effectiveness of 

the decision support, where maximum preference is given to the computational efficiency of the simulation, the 

decision support is still used, but only in a very small extent, in a way that the increase in execution time is 

nearly not noticed. The advantages of using the 2E balance management mechanism are enormous, as it allows 

balancing the execution time requirements of each simulation, with the decision support needs. 

Such drastic reductions in execution time are achieved by adapting each independent ALBidS’ decision 

support strategy internally, forcing them to take less time to execute, when required, even if signifying a smaller 

effectiveness of results. 

A good example of the execution time reduction when required is the execution of the ALBidS’ Artificial 

Neural Network (ANN). The amount of training data is decreased when the demand for faster results increases, 

leading to a much faster training process, which still results in fairly good forecasts, achieved much more 

quickly than when aiming at the best possible forecast result. Table IV shows the comparison of the training 

process of the ANN when using different amounts of training data 

 

ANN’s average execution time, with and without parallel computing (in milliseconds) Table IV 

 

The increase in execution time as the amount of training data increases is visible by Table IV. The use of 

a faster, yet less effective forecast, or a great forecast with the adjacent time demand, is decided by the 2E 

balance management mechanism. Another important aspect to be taken from Table IV is the huge decrease in 

execution time when using parallelism in the access to data. Although a multi-agent system, such as MASCEM 

and ALBidS, is by definition a parallel execution framework, where all agents are executed at the same time, 

there are still situations in which extra parallelism can be essential. The access to data, when it is done in a large 

scale, is a reference example, as can be seen by Table IV. 
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Regarding the comparison with the previous version of MASCEM [4], the average execution time is now 

over ten times faster. Before the restructuring process that is presented in this paper, MASCEM agent 

framework was implemented on top of OAA (Open Agent Architecture), which led to several limitations, 

starting from the difficulties in making this platform a suitable simulation framework (requiring huge time-

demanding computation just to adapt the OAA architecture to suit a simulation environment), and most 

importantly, limitations in the number of available players (MASCEM could not support the execution of more 

than 92 agents at simultaneously). 

The average execution time of a simulation with 24 negotiating agents, with no decision support, in the 

previous version MASCEM is about 58364 milliseconds. This value is over ten times higher than an equivalent 

simulation in the new version of MASCEM (as presented in Table II). In fact, the execution time of such 

simulation (24 agents) in the previous version of MASCEM is close to the time amount required by a simulation 

with 1446 agents in the new version (Table II); and also close to the time demanded by a simulation in the new 

version using the decision support of ALBidS with 80% preference for effectiveness (Table III), which means 

using a very complete set of machine learning and decision support algorithms. 

 

5. Conclusions and Future Work 

This paper presented MASCEM, a multi-agent simulator of competitive electricity markets. MASCEM‘s 

restructuring resulted in an enhanced multi-agent simulator, which is able to interact and cooperate with other 

multi-agent societies through the use of ontologies that manage agents’ communications. The integration of an 

automatic data extraction tool provides MASCEM the necessary information to recreate the electricity markets 

reality in a controlled environment. The purpose of each simulation is taken into account in order to adapt the 

balancing between the execution time and the quality of results, so that it most suits the expectation of the user. 

The possibility for the integration of such modules is accommodated by the architectural design of the simulator, 

which provides a flexible framework, which can be easily extended or integrated with other tools and platforms, 

increasing the scope of application of MASCEM, and with it, its usefulness for professionals and students of 

the field. 
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The presented case study showed that the use of real data allows MASCEM to recreate real scenarios in a 

simulation environment. MASCEM’s capability of representing the reality in a reduced and controlled way can 

be achieved even when using a summarized number of agents, as long as this summarization is done 

appropriately. The need for a coherent and automatic creation of scenarios is one of the most important future 

works to be taken into account. The automatic generation of scenarios must take into account, not only the 

dimension of the scenario (number of participating players), but also the most important characteristics for each 

simulation and that should be used as reference for the summarization of the real players in which the scenario 

is based. 

The management of the simulations’ execution time depending on the purpose of each simulation has also 

been demonstrated in the case study. The results have showed that MASCEM is able to reduce drastically its 

execution time when necessary, by reducing the execution time of some decision support strategies, or even, in 

the most extreme cases, excluding the most time-demanding decision support algorithms, so that the simulation 

can be executed as quickly as possible. In any case, the use of some implementation decisions, such as the 

parallelism in accessing data, the distribution of software agents by different available machines inside the 

network, and the implementation of algorithms in the most appropriate programming languages, make 

MASCEM’s execution time be extremely fast by default. The difference of the average execution time of 

electricity market simulations in the novel version of MASCEM is very significant when compared to the 

previous version, as showed in the case study. 
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Fig. 1. Data on the energy placed in the day-ahead market, October 2016 [35] 
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Fig. 2. Collaboration between independent multi-agent systems 
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Fig. 3. Comparison of the real electricity market prices from MIBEL day-ahead spot market in June 1st 2012 

with the market prices resulting from Simulation 0 and from the three simulations using Scenario 1 
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Fig. 4. Electricity market prices achieved in each of the three simulations undertaken under Scenario 2, and 

real electricity market price of MIBEL in June 1st, 2012 
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List of Tables 

 

TABLE I – SIMULATED MARKET PRICE MAPE VALUES (%) 

 

  Simulation   

Scenario 
0  

(All Players) 
1 

(48 Players) 
2 

(24 Players) 
3 

(12 Players) 

1 

0 

0,0843 0,1714 0,9998 

2 0,0023 0,0024 0,0031 
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TABLE II - AVERAGE EXECUTION TIME OF MASCEM (IN MILLISECONDS) 

 

1446 Players 48 Players 24 Players 12 Players 

65327 5628 4841 4426 
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TABLE III – AVERAGE EXECUTION TIME OF MASCEM USING ALBIDS FOR DECISION SUPPORT OF PLAYERS 

ACTIONS, WITH DIFFERENT PERCENTAGES OF PREFERENCE THE DECISION SUPPORT EFFECTIVENESS (IN 

MILLISECONDS) 

 

Without 

ALBidS 
ALBidS with 0%   ALBidS with 20%  ALBidS with 50%  ALBidS with 80%  ALBidS with 100%  

4234 4680 13183 21156 69283 76971 
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TABLE IV – ANN’S AVERAGE EXECUTION TIME, WITH AND WITHOUT PARALLEL COMPUTING (IN 

MILLISECONDS) 

 

Training data amount (number of days) Without parallelism  With parallelism  

60 15 000 11 000 

120 18 000 13 000 

200 22 000 14 000 

365 30 000 17 000 

730 49 000 20 000 

 


