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ABSTRACT 16 

Home energy management system (HEMS) is essential for residential electricity consumers to participate 17 

actively in demand response (DR) programs. Dynamic pricing schemes are not sufficiently effective for end-18 

users without utilizing a HEMS for consumption management. In this paper, an intelligent HEMS algorithm is 19 

proposed to schedule the consumption of controllable appliances in a smart household. Electric vehicle (EV) 20 

and electric water heater (EWH) are incorporated in the HEMS. They are controllable appliances with storage 21 

capability. EVs are flexible energy-intensive loads, which can provide advantages of a dispatchable source. It 22 

is expected that the penetration of EVs will grow considerably in future. This algorithm is designed for a smart 23 

household with a rooftop photovoltaic (PV) system integrated with an energy storage system (ESS). Simulation 24 

results are presented under different pricing and DR programs to demonstrate the application of the HEMS and 25 

to verify its’ effectiveness. Case studies are conducted using real measurements. They consider the household 26 

load, the rooftop PV generation forecast and the built-in parameters of controllable appliances as inputs. The 27 

results exhibit that the daily household energy cost reduces 29.5%-31.5% by using the proposed optimization-28 

based algorithm in the HEMS instead of a simple rule-based algorithm under different pricing schemes. 29 
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Nomenclature 33 

Indices 

t  Time intervals. 

h  Hours. 

k  Tariff categories of time-of-use (TOU) pricing schemes. 

v  EVs. 

s  ESSs. 

Variables 

RTPCost  
Daily electricity cost under real-time pricing (RTP) scheme [€]. 

TOUCost  
Daily electricity cost under TOU pricing scheme [€]  

buy
tP  

Power to be purchased from the grid at each time interval t [kW]. 

sell
tP  

Power to be sold to the grid at each time interval t [kW]. 

EWH
tP  

Power consumption of EWH in time interval t [kW] 

PV,home/sell
tP  

Photovoltaic (PV) generation for household consumption/selling to grid at each time interval 

[kW]. 
,Ch/Dchv

tP  Charging/discharging power of EV v [kW]. 

,Ch/Dchs
tP  Charging/discharging power of ESS s [kW]. 

,home/sellv
tP  

EV discharging power for household consumption/selling to the grid at each time interval 

[kW]. 
,home/sells

tP  
ESS discharging power for household consumption/selling to the grid at each time interval 

[kW]. 
,Chv
tx  Charging status of EV v in period t (1 if the EV is charging in 𝑡 ∈ Τ$and 0 otherwise).  

,Dchv
tx  Discharging status of EV v in period t (1 if the EV is discharging in 𝑡 ∈ Τ$and 0 otherwise). 

,Chs
tx  

Charging status of ESS s in period t (1 if the ESS is charging in time interval t and 0 

otherwise).  
,Dchs
tx  

Discharging status of ESS s in period t (1 if the ESS is charging in time interval t and 0 

otherwise). 
EWH
tx  Operating status of EWH in period t (1 if the EWH is operating in time interval t and 0 

otherwise). 
EWH
tθ  

Water temperature at time interval t [ᵒC]. 

v
tSoC  

State of charge (SoC) of EV v in the end of time interval t [kWh]. 

s
tSoC  SoC of ESS s in the end of time interval t [kWh]. 
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hDR  
Consumption of the customer below the baseline load in hour h [kWh]. 

dE  Daily peak demand [kWh]. 

Parameters 

kC  
Electricity TOU tariff for category k. 

τ  Time interval duration [h]. 
buy
tπ  

Price of buying electricity from the grid at time interval t [€/kWh]. 

sell
tπ  

Price of selling electricity to the grid [€/kWh]. 

DPTπ  
Daily power-based network tariff [€/kW]. 

Ch/Dch
vη  Charging/discharging efficiency of EV v. 

Ch/Dch
sη  Charging/discharging efficiency of ESS s. 

d
vSoC  

Expected SoC of EV v at the departure time [kWh].  

vα  
Arrival time of EV v. 

vβ  
Departure time of the EV v. 

Min/Max
vSoC  

Minimum/Maximum SoC level of EV v [kWh].  

Min/Max
sSoC  

Minimum/Maximum SoC level of ESS s [kWh].  

tm  Average hourly hot water usage at time interval t. 

M  Capacity of the water tank of the EWH [L] 

R  Thermal resistance of EWH [ᵒC/kW] 

C  Thermal capacitance of EWH [kWh/ᵒC] 

Q  EWH power rate [kW] 

a
tθ  

Ambient temperature at time interval t [ᵒC]. 

EWH
Low/Up,tθ  

Lower/Upper bound of the hot temperature of the EWH at time interval t [ᵒC]. 

firm
tl  

Firm load at time interval t [kW]. 

PV
tP  

PV generation forecast at time interval t [kW]. 

baseline
hl  Baseline load [kW]. 

hFI  Financial incentives offered to the customer for consuming below the baseline load (€/kWh) 

MaxP  Maximum demand power from the grid [kW]. 

Sets 

Τ  Set of time periods in the scheduling horizon. 

kΩ  
Set of time periods that belong to tariff category k. 

hΩ  
Set of time periods in each hour h. 
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DRΩ  
Set of hours that the retailer has offered incentives for demand reduction. 

sΩ  
Set of ESSs in the household. 

vΩ  
Set of EVs in the household. 

K  Set of tariff categories in TOU pricing scheme. 

H  Set of hours in the scheduling horizon. 

vΤ  
vΤ ⊆Τ is the set of periods in which EV v is connected to the grid; 

{ }:v v vt tα βΤ = ∈Τ ≤ ≤ . 

1. Introduction 34 

The rise in power generation volatility and the uncertainty of the electric grid, which are caused by the high 35 

penetration of renewable energy sources, can be tackled effectively by implementing DR programs. Employing 36 

DR programs enables the demand-side to closely follow the variable generation [1]. DR represents the demand-37 

side capability to alter the consumption pattern in response to price changes or financial incentives [1]. DR 38 

programs induce customers to reduce electricity consumption during the periods with high electricity prices or 39 

the periods in which an incentive is considered for voluntary demand reduction [2]. DR prevents the operation 40 

of high-cost/emission generating units and defers the capital intensive reinforcements [3]. 41 

In central demand-side management, the peak load of the grid is controlled by a separate entity rather than 42 

the consumers, while in an individual demand-side management the households can proactively control the 43 

consumption [4]. Optimization of consumption scheduling is the core part of the demand-side management in 44 

both cases, which is done externally in the first case and carried out internally by the consumer itself in the 45 

second case. In one classification, DR programs are divided to two categories of price-responsive and 46 

controllable DR programs. In price-responsive DR programs, consumption is adjusted by the consumer in 47 

response to dynamic rates, while in controllable DR programs, the consumer accepts load curtailment by another 48 

entity under specific circumstances. 49 

There are several obstacles for the widespread utilization of DR programs for households and residential 50 

customers. The main obstacle is the lack of appropriate smart metering infrastructure. Overcoming this primary 51 

obstacle enables the implementation of dynamic pricing schemes by utility companies, but does not ensure 52 

considerable improvements in demand-side activity. The next barrier is customers’ limitations to effectively 53 

respond to the pricing or incentive signals. By addressing this issue, we can expect active electricity consumers 54 

to be able to be seen as resources for the power system. An acceptable solution for this problem is employing 55 

an optimization-based or a rule-based control system that automatically responds to these signals. This 56 

automated system that usually operates with an optimization algorithm is generally referred as a HEMS [5]. It 57 

provides automatic responses to price changes and incentive signals. Therefore, it is envisioned as one of the 58 

necessary means of successful implementation of smart grids [6]. Deployment of smart meters, sensors and 59 

automatic control systems at the consumers’ level through a two-way communication network, and the market 60 
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liberalization reforms in parallel with these technological advancements are the enablers for consumption 61 

scheduling [7]. They have an effective role in utilizing the DR strategies [8]. The residential customers that are 62 

equipped with HEMS, can actively participate in price-based and incentive-based DR programs [5]. In other 63 

words, implementing HEMS increases the price responsiveness of the electricity consumers in general. 64 

A smart household within the context of smart grids refers to an active electricity consumer that is equipped 65 

with an intelligent HEMS [9]. Smart meters provide the possibility of monitoring the energy consumption in 66 

real-time for utilities and customers. The combination of a smart metering system and HEMS enables the 67 

consumers to reduce their electricity bill by using an optimal consumption schedule [8]. The HEMS can 68 

optimally schedule the operation of household controllable loads and storage units. It can also determine the 69 

amount of surplus energy from distributed generation (DG) units in order to sell to the grid for those customers 70 

who have installed DG units and have had an opportunity of selling electricity to the grid. 71 

Different entities of electricity markets have been motivated by the potential benefits of DR programs to 72 

plan for activating DR programs [3]. Traditionally in power systems, scheduling and unit commitment were 73 

done by the system operator to operate generating units. Conventional loads were not controllable and the 74 

measuring system at the end-use points was not developed to a level of maturity that would enable consumption 75 

scheduling and load commitment [7]. Development of smart grid technologies motivated different entities in 76 

electricity markets to offer their clients the DR programs. Those entities that may benefit from DR 77 

implementation are the companies which are conducting retailing business in electricity markets. DR programs 78 

offered by the retail electricity providers to the customers reward both sides; it is a tool for retailers to manage 79 

the financial risks and reduce peak load and acts as a means for consumers to reduce the energy cost [2].  The 80 

optimal operation of a HEMS under DR programs depends on the information received from the retail 81 

companies, which requires the coordination and interaction of the HEMS and the retailers. Retailers share the 82 

price data and the incentive-based DR programs with the HEMS to obtain the optimal schedule for the 83 

appliances in a home [9]. In addition, the consumer preferences should significantly influence the operation of 84 

the HEMS. 85 

1.1. Objectives 86 

The main purpose of the present paper is to develop an optimization-based HEMS that schedules the 87 

appliances and resources in a smart household. The proposed HEMS algorithm can be embedded in the load 88 

control unit of smart meters or incorporated into automated decision-making technologies, such as home 89 

automation systems [2]. It optimally controls the operation of appliances in response to dynamic price signals 90 

or the financial incentives of the DR programs that have been offered under time-of-use (TOU) pricing schemes 91 

[10]. In this paper, the financial incentive plans [11,12] offered to households under DR programs are used as 92 

inputs of the proposed HEMS model. The focus of the decision-making framework is on reducing the costs 93 

associated with the electricity bill of the customers. Scheduling is carried out in response to the price signals 94 

that are received from the retailers while taking into account the preferences of the customers [5]. The results 95 

of this study show how the responsive customers can benefit from using an optimization-based HEMS and the 96 

time-varying electricity prices. 97 
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Controllable loads are used in the smart household model to implement different types of DR programs. 98 

EVs have the possibility of storing energy, and the thermostatically controlled appliances like EWHs have 99 

thermal storage capabilities. These loads are good candidates for DR implementation [7]. In this model, the 100 

detailed dynamic models of EWH and EV loads are used for potential DR applications. The possibility of selling 101 

electricity to the grid at variable prices is also considered for the customers. Consumers use EVs, ESS, 102 

photovoltaic (PV) systems to sell energy to the grid. Different operating modes of EVs in the discharging status, 103 

such as vehicle-to-home (V2H) and vehicle-to-grid (V2G) are modeled in this paper [9]. In V2G and V2H 104 

operating modes, EV serves as a DG resource for the grid rather than just serving as a vehicle [8,13]. The EV 105 

owners can sell the excess energy stored in the battery back to the grid or use it for the household consumption. 106 

Selling electricity to the grid from V2G requires the essential equipment, such as bidirectional chargers and 107 

communication devices, as well as the legislation and regulations that allow this trade. In V2G mode, the 108 

electricity flows from the battery to the distribution network. Another market opportunity for EV owners is 109 

participating in ancillary service markets [14].  110 

The priorities of customers are also taken into account in scheduling process. Consumers can update arrival 111 

and departure time of the EVs, their expected initial storage level and the required charge at departure time. 112 

Users’ choices on thermostat settings of EWH are considered with a time-varying temperature band.  113 

1.2. Related work 114 

In order to clarify unique contributions of this paper, a survey on reported research on implementing DR 115 

programs via HEMS in smart households is outlined here. Designing load scheduling programs to control the 116 

consumption of appliances on a daily basis has drawn much interest in the literature recently. The reasons of 117 

this interest are the concept of non-emergency ancillary services provision through demand-side, the possibility 118 

of buying electricity at dynamic prices for residential customers, and the emerging market of EVs [15]. The 119 

mechanism proposed by Alizadeh et al.  [15] can be used to strategically compensate the customers who allow 120 

retail companies to directly schedule their consumption, whenever the retailers want to use an eligible appliance. 121 

Retailers compute the incentives and post them as publicly available menus, allowing the customers to decide 122 

whether to participate or not [15]. 123 

The HEMS models developed by Erdinc et al. [8] and Paterakis et al. [9] determine the optimal day-ahead 124 

appliance scheduling of a smart household. The consumption and production scheduling of various types of 125 

controllable appliances and DG units are performed under real-time pricing (RTP) scheme. The model proposed 126 

by Erdinc et al. [8] allows an electricity customer to change the priority of the sources that can provide electricity 127 

to the grid. Hard and soft peak power-limiting-based DR strategies are also taken into account by Paterakis et 128 

al. [9]. 129 

The operation of household appliances during a DR event is modeled by Fernandes et al. [16]. A dynamic 130 

load priority method is proposed to change the load priority during the DR event. The operation of controllable 131 

appliances within a price-based HEMS is prioritized from the customer’s viewpoint by Rastegar et al. [5]. The 132 

operational priority of each appliance is indicated with the value of lost load. The HEMS minimizes energy and 133 
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reliability costs by considering the appliances’ value of lost load, electricity tariffs, and operational constraints 134 

of appliances. A HEMS model that controls a residential battery system which is connected to a rooftop PV 135 

system is presented by Marzband et al. [17]. The main focus in this model is to examine the impact of PV 136 

generation and energy load forecast errors on household economics. 137 

Bozchalui et al. [2]  developed a decision-making framework for a residential energy hub. The proposed 138 

mathematical optimization model can be incorporated into automated decision-making technologies in smart 139 

grids to optimally control residential loads, storage and production components in real-time. The customers’ 140 

preferences and expected comfort levels were also considered in the model [2]. 141 

Electrification of the transport sector has potential to reduce CO2 emissions from this sector, while reducing 142 

the mobility operating costs [18]. It is expected that in the future, EVs will become one of the high energy 143 

consuming appliances at homes [19]. Therefore, it is essential to include them in energy management models 144 

at different levels of scheduling in power systems, particularly for load management at the consumer level. 145 

Rassaei et al. [19] have proved that for certain practical distribution of EV’s usage, it is possible to accommodate 146 

EVs for all users in the system and still keep the same peak demand as when there is no EV in the system. The 147 

problem of scheduling the EVs’ charging is formulated by Jin et al. [20] as a mixed integer linear programming 148 

(MILP) model. It investigates the utilization of EVs and ESSs together. The aggregators’ revenue is maximized 149 

by using this approach. The cost of EV owner and the discharging capability of the EVs’ battery for injecting 150 

energy to the grid or using at households are not taken into account in this model. 151 

Thermal loads, such as heating, ventilation and air conditioning (HVAC) and water heating systems 152 

constitute a significant share of the household energy consumption [21]. The energy scheduling problem of a 153 

residential building with solar assisted HVAC and water heating system is investigated by Nguyen et al. [21]. 154 

The objective was to minimize the electricity cost under RTP environment while maintaining the thermal 155 

comfort requirements of the user. In this model, the thermal solar water tank is used as a dynamic storage facility 156 

to support the thermal demand of water heating and the HVAC system [21]. 157 

The price-based DR program for electric storage space heating loads is modeled by Kilkki and Seilonen 158 

[1]. The electricity retail company seeks the optimal consumer electricity price for these loads. The problem of 159 

price determination is formulated within a game-theoretic framework, where the procurement and consumption 160 

profiles of the retailer and customer are based on the set price [1]. 161 

The HEMS algorithm that is developed by Du and Lu [7] for consumption scheduling of households with 162 

thermostatically loads, optimizes the payment while taking into account the individual requirements of the 163 

customers. Customers can specify the acceptable range of temperature changes, and these requirements are 164 

considered as operational constraints during the process of scheduling. In this model, the EWH is used as an 165 

example of a thermostatically load. The predicted hot water demand of the users is taken into account as the 166 

input of the model. The comfort zone of the EWH reflects the range of the hot water temperature set by the 167 

customers. 168 
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The DR potential of residential EWH and HVAC loads is studied by Safdarian et al. [3]. It develops a 169 

distributed framework to iteratively coordinate the operation cycle of residential consumers’ HVAC and EWHs, 170 

and shows how this coordination can in practice bring considerable peak reductions. In this direct load control 171 

(DLC) model, the operator that serves multiple domestic consumers can control the operating cycle of EWH 172 

and HVAC loads without overriding the users’ thermal preferences [3]. DLC program has been the most 173 

frequently used DR program since the 1960s. It was usually used for emergency purposes such as reducing 174 

demand quickly due to a supply-demand mismatch in the system. EWHs, HVAC systems and pool pumps are 175 

the most eligible appliances for DLC programs [22]. 176 

The multi-scale rule-based energy management system proposed by Pourmousavi [6] is developed for an 177 

islanded MG that operates independently in a remote area. The operation of controllable appliances, such as 178 

ON/OFF control of EWHs and battery’s charging/discharging is modeled with a rule-based algorithm. 179 

Compared to optimization-based approaches, they are easy to implement, incredibly fast and computationally 180 

efficient, but obtaining the minimum cost is not guaranteed in this approach [6]. 181 

1.3. Contributions 182 

From a detailed review of the technical literature, it is clear that most of the existent work only consider 183 

the RTP schemes for the scheduling of appliances. They are mostly designed to minimize the daily household 184 

energy cost, without properly taking into account the incentive-based DR programs and the impact of network 185 

charges for the peak demand. RTP still has not been applicable in many retail markets and requires the state 186 

legislation in those markets. In this situation, the retail companies are more interested in independently offering 187 

incentive-based DR programs to their clients in order to manage their own payoff in the volatile electricity 188 

market. Therefore, an essential need of consumers is energy management systems in demand-side which are 189 

also compatible with TOU pricing schemes and the incentive-based DR programs that are offered under these 190 

pricing programs. To fill the gap present in the literature, this paper proposes an optimization-based HEMS that 191 

can be employed by the consumers under both RTP and TOU pricing schemes. It also takes the incentive-based 192 

DR programs as inputs and schedules the electricity consumption based on price and DR signals. In addition, a 193 

rule-based HEMS model is developed in the paper to validate the performance of the proposed optimization-194 

based algorithm. Another contribution of this work is considering the impact of the network charges. To 195 

accomplish this, the cost of peak demand is incorporated in scheduling procedure. Consequently, the HEMS 196 

cannot simply shift the consumption from the high price periods to periods with lower prices, and it should 197 

consider the charges of the network due to the peak consumption. 198 

2. Problem description 199 

Implementation of advanced metering infrastructure largely depends on the effective operation of 200 

information technology and communication systems. Information and communication technologies in the smart 201 

grid context can provide the access of both utilities and customers to metering data of the smart meters. As a 202 

result, various utility applications, such as billing, load forecast, load profiling and customer information 203 

services, can be enhanced [23]. Managing the household energy cost requires smart decisions about 204 
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consumption, which is far beyond only providing the access to price and demand information in real-time. End-205 

users need some tools to help them make optimal consumption choices [24]. Requesting domestic electricity 206 

consumers to create an optimal consumption schedule based on price and incentive signals is impractical when 207 

they are not using appropriate energy management systems [7]. Thus, some intelligent algorithms are required 208 

to determine the optimal consumption schedule of household appliances. The attempt in this paper is to design 209 

an intelligent algorithm for a HEMS to operate under TOU pricing and RTP schemes, considering DR programs. 210 

Household appliances have different levels of demand flexibility [15]. DR can not be applied to appliances 211 

that need on-demand power supply without deteriorating the users’ comfort levels. The primary focus for 212 

consumption scheduling purposes in smart households is on flexible and controllable loads. EVs and EWHs 213 

that respectively provide electricity and thermal storage are considered in the proposed HEMS model. They can 214 

be scheduled without having major effects on customer comfort levels [2]. Controlling these time-shiftable 215 

loads can significantly increase the residential demand elasticity [19]. The proposed load profile control 216 

performed under price- or incentive-based DR programs is an alternative to DLC programs. 217 

 218 

Figure 1. A schematic representation of a smart household. 219 

Figure 1 represents a schematic of the smart household model used in this paper. The electricity retail 220 

company sends the price and incentive data to the HEMS on a daily basis and receives the consumption data in 221 

real-time from smart meters. The historical data and price data are also provided to the HEMS. The ON/OFF 222 

status, charging, cycling, or mode switching of the appliances are controlled and monitored wirelessly through 223 
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the HEMS. Customers’ preferences are a priority for HEMS, and the consumption scheduling should not 224 

deteriorate defined comfort levels. The built-in parameters of the appliances are stored in HEMS and the 225 

customer is allowed to update several settings of the HEMS before each scheduling. 226 

HEMS models can be classified on the basis of different aspects. One of the aspects is choosing the target 227 

of controllable appliances for the HEMS and adjusting the model to incorporate their dynamic conditions. There 228 

is a wide range of controllable loads, such as thermostatically controllable loads [7,25–29], non-thermostatically 229 

controllable loads (e.g., washing machine and dishwasher) [5,30,31] and EVs [8,9], which can provide the 230 

required flexibility for the demand-side [32]. EVs and EWHs are considered as the target appliances in this 231 

study, due to their storage capability. Utilizing the storage capability of EVs and EWHs can prevent households 232 

from investing on expensive battery technologies for ESSs. However, the current model can be easily extended 233 

to incorporate more categories of appliances. It can be done by including the dynamic behavior of each load. 234 

The operation of HEMS models also depends on the type of the decision-making entity, whether it is the 235 

consumer itself or the aggregator. The HEMS model is developed from the perspective of an individual 236 

consumer in this model, which receives the price signals from the retailer. 237 

2.1. Retailers’ interaction with consumers 238 

The residential electricity customers that can not or do not want to directly take part in energy markets 239 

make contracts with an intermediary, such as a retailer or an aggregator [19]. The retailer or aggregator conducts 240 

the price and demand negotiations with market operators and generation companies on behalf of their clients 241 

[19]. The retailer plays the role of a mediator in the electricity market, allowing residential consumers to 242 

associate with the market and participate in DR programs efficiently [19]. In deregulated markets, retail 243 

companies submit demand bids to the day-ahead market. The bids contain demand and price components. It 244 

means that the retailer is buying energy only if the market clearing price is less than the desired price [19]. 245 

The development of smart grids can significantly influence the relationship between retailers and electricity 246 

consumers [33]. Smart grid solutions can enable the active participation of consumers, which are modeled in 247 

the form of DR programs. The retailer seeks to influence its customers’ demand profile for several reasons. 248 

Demand flexibility has a time-varying value because the retailers purchase electricity in the wholesale markets 249 

at variable prices [15]. This concept is practically demonstrated when the retailers are offering incentive-based 250 

DR programs to their customers. For some periods they pay incentives for demand reduction and for other 251 

periods they may promote the demand rise. Retailers convince customers to voluntarily change their 252 

consumption pattern by offering DR programs to them. Incentives can vary dynamically with time and 253 

appliance cluster.  254 

In electricity market, several entities can offer DR programs to consumers. Purposes of these entities are 255 

not necessarily similar to each other, although all of them may expect similar reactions from the consumers, 256 

which are shifting the electric usage from peak to off-peak periods [8]. Controlling and shifting the electricity 257 

consumption through DR programs reduces the electricity demand during peak times when the use of older less 258 

efficient generating units is required. Therefore, DR implementation reduces the release of CO2 emissions that 259 
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contribute to global warming [24]. Retail companies offer DR programs to obtain higher profits in the market, 260 

while the operators usually implement DR program to maintain the stability of the network by reducing the 261 

stress on utility-handled assets. 262 

Some retail companies or smart meter operators provide additional services for customers to manage the 263 

costs with hourly pricing. These services are offered to guide the client to take control of the electricity costs, 264 

and they consist of real-time high price alerts, online bill comparison tool and mobile applications [24]. Usually, 265 

the customers have to pay the delivery service charges regardless of the electric supply choice (RTP or TOU 266 

pricing) [24]. 267 

2.2. Pricing schemes 268 

Retailers offer time-varying electricity prices, such as TOU and RTP to influence and guide energy 269 

consumption [34]. In some markets the end-use customers sign up for hourly electricity pricing scheme based 270 

on market prices [35]. The customers that purchase electricity under RTP tariffs, which represents a dynamic 271 

pricing scheme in the retail market, pay hourly prices for electricity. It is based on the day-ahead or hour-ahead 272 

market prices, and thus the variations of the electricity prices in this scheme depend on the variations of the 273 

wholesale market price. [35]. RTP is considered as one of the most efficient price-based DR programs [36]. 274 

HEMS is needed when a consumer with flexible demand faces variable electricity rates. The more price 275 

variations, the more intelligent algorithms are needed to schedule the consumption. Tariff structures with price 276 

variations can motivate customers to schedule their consumption. The proposed HEMS in this paper is designed 277 

to operate under RTP and TOU pricing schemes. 278 

2.3. Energy storage 279 

Implementing some sorts of energy storage is expected to become highly prevalent in households. 280 

Electrical energy storage at the household level can play several roles. Its’ unique capability is to cope with the 281 

critical characteristics of electricity markets, such as hourly variation of electricity price [37]. The produced 282 

energy can be captured when the price is lower to use at the periods with higher prices [37]. Apart from the 283 

ESSs, some loads can also be utilized to store energy. 284 

EVs are becoming the new appliances in households, which have higher consumption than any other 285 

electricity-powered device in a home. Charging level of a small sized EV may even exceed the total installed 286 

power of many households [8]. Several solutions are proposed to enable the charging of EVs in homes. In many 287 

cases, the electrical supply of the home should be upgraded to support higher operating currents. Some EV 288 

manufacturers offer connector to the EV owners to provide the possibility of charging the car at home [38]. 289 

EVs need a certain amount of energy stored in their batteries during a specified time frame. During this 290 

time frame, they potentially can give energy back in order to be used locally in home or to be injected into the 291 

grid [19]. They can also be considered as a resource for the grid when they are used in V2H and V2G modes. 292 

The EV’s DR can help to reduce the household electricity cost, especially under dynamic pricing schemes. It 293 
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also contributes to peak demand reduction by shaping the daily demand profile. Some utility companies install 294 

new meters specifically for the EV, which allows applying different rates for the charging of the EVs [39]. 295 

Figure 2 shows the EV load model which is used by the proposed HEMS model. There are some built-in 296 

parameters within these loads, which do not require updating before each consumption scheduling. They are 297 

permanent characteristics of the EVs. Other inputs should be updated before each load scheduling. However, 298 

the consumer may use some intelligent algorithms to estimate these inputs, for instance, the initial level of 299 

battery stored energy can be estimated based on the historical data of the EV owner. 300 

 301 

Figure 2. Block diagram of EV load model. 302 

Electric heating is another major residential electricity load. Heating loads can be curtailed or deferred 303 

easily, without sacrificing users’ comfort [1]. Water heating is an energy-intensive load for households, which 304 

is shiftable in time without influencing the comfort levels. EWHs represent a significant load demand in modern 305 

grids and have a capacity for energy storage in form of heat [40]. The controllable residential EWH loads are 306 

used in this paper to model the implementation of DR programs through HEMS. Compared with other loads in 307 

households, they are less time critical loads and can be shed first [41]. EWHs are responsive loads that have the 308 

energy storage capability [6]. Controlling the water heating is easy, due to the large specific heat capacity of 309 

water and the fact that the users are not sensitive to small changes in the set point temperature [42]. Currently, 310 

most of the hot water tanks maintain the water temperature at a constant set point temperature. This archaic way 311 

consumes a lot of energy [42]. Using smart energy storage by water heaters can defer the consumption to more 312 

inexpensive periods without deteriorating the comfort levels [1]. Utilities or aggregators can also control the 313 

grid-interactive EWHs in order to perform several grid services such as DR, grid stabilization, and peak load 314 

shavings [40]. Grid-interactive EWHs send the temperature and status of the appliance and can be remotely 315 

controlled by the utility or the aggregator [41]. 316 
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Figure 3 shows the block diagram of an EWH load. The built-in parameters are shown in the gray box and 317 

the inputs are the parameters that require updates before each load scheduling. Hot water consumption profile 318 

and the desirable temperature range of hot water are the most important inputs. 319 

An average hourly hot water consumption profile can be estimated for each household [43]. Hot water 320 

usage can be predicted by historical data that has been provided from the flow meter or from the hourly 321 

electricity consumption of an EWH. Average hourly consumption refers to the mean volume of the hot water 322 

consumed during the specified time interval [44]. Several studies on hot water consumption have developed 323 

forecasting methods to forecast the individual hot water usage profile [42]. Forecasting hot water usage pattern 324 

is useful for demand-side management.  325 

The bounds on temperature reflect individual needs of the users. They are considered as operational 326 

constraints in the scheduling process [7]. Customers can provide more flexibility in scheduling by increasing 327 

the temperature range of the EWHs. This behavior can decrease their energy costs [7]. The setpoint temperature 328 

can be adjusted according to the hourly price changes [42]. Considering a wide range of the comfortable 329 

temperature provides more flexibility for the EWH for DR implementation [42]. 330 

 331 

Figure 3. Block diagram of EWH load model. 332 

3. Mathematical model 333 

Optimization models have been widely used in resources management problems, especially when there is 334 

a lack of sufficient resources or the considerable cost variations highly depend on the decision maker’s 335 

strategies. Several similarities can be found between energy resources management and water resources 336 

management problems. In water resources management, the decision-making model is developed for different 337 

purposes such as irrigated agriculture [45–49]. In the proposed energy resources management model at demand-338 

side, the energy resources and the demand are optimally scheduled to reduce the household energy cost. In 339 
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contrast to water resources management problems, in which the decision-maker has to deal with shortages of 340 

the resources, the main purpose here is to reduce the electricity bill of the consumer. 341 

The consumption schedule of controllable household appliances and decisions for selling the surplus 342 

energy to the grid are the main outputs of the proposed optimization-based HEMS. In this model, the consumer 343 

can benefit from several sources for selling energy to the grid. The optimization model decides when to sell the 344 

PV production to the grid or when to consume it in the household. Similar decisions are made for the energy 345 

stored in ESSs and EVs. The scheduled household demand for the next day helps the owner to find out the 346 

dispatch of the local energy sources and the load in advance. In this optimization model, minimizing the daily 347 

energy cost of the household is the main objective. 348 

This optimization problem requires technical data of EWHs and EVs, outdoor temperature, and consumers’ 349 

hot water demand as inputs. Whereas the hot water temperature, operating cycle of EWH, charging and 350 

discharging power of the EVs and ESSs are decision variables. The implementation of incentive-based DR 351 

programs for EWH and EV loads under TOU pricing programs is overlooked in the proposed HEMS models 352 

in the literature. Therefore, introducing this optimization model can be considered as the main contribution of 353 

the paper. A simple rule-based HEMS is also introduced at the end of this part. This algorithm is used in the 354 

case studies to verify the benefits of the intelligent HEMS algorithm for the end-users. 355 

The proposed model is based on the following assumptions: 356 

• The charging of the EVs takes place at homes. 357 

• The EV owner connects the EV to the grid when it arrives, but this does not mean that the charging 358 

starts immediately. An intelligent algorithm and the dedicated charger controls the charging process, 359 

namely the power injection flowing from the outlet [19]. 360 

• Since our focus is on EV and EWH loads, all other appliances either flexible or inflexible are 361 

considered firm. 362 

• The temperature of the inlet water in EWH is near to the ambient temperature. 363 

• The forecasts of daily water consumption and the PV production with sufficient level of accuracy is 364 

available. 365 

The principal objective of the HEMS is to minimize the cost function of the customer while taking the 366 

preferences and the priorities of the customer into account. The main purpose of this paper is to demonstrate 367 

the operation of HEMS and the optimal consumption scheduling while implementing DR programs. Therefore, 368 

two cost functions for the HEMS are formulated here, one as a price-based DR program and the other as an 369 

incentive-based DR program. 370 

In order to implement the price-based DR program, the daily household energy cost under RTP scheme is 371 

calculated using the following equation: 372 
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( )buy buy sell sell DPT
RTPCost ,t t t t d

t
P P Eτ π τ π π

∈Τ

= ⋅ ⋅ − ⋅ ⋅ + ⋅∑  (1)  

where 𝑃&
'() is the electricity that the customer buys at variable prices (𝜋&

'()) and 𝜏 is the duration of each time 373 

period. The customer can also sell the excess electricity (𝑃&,-..) to the grid at variable prices (𝜋&,-..). The last 374 

term in (1) refers to the cost of daily power-based network tariff (DPT), which is determined by the daily peak 375 

demand of the household (𝐸0) [35]. The customer is charged (𝜋123) for each kW of the daily peak demand. 376 

Shifting the load to periods with lower electricity prices may be achieved at the expense of increasing the peak 377 

demand. This term shows that considering the network tariff associated with the peak demand will avoid this 378 

impact. 379 

The energy cost of the household under TOU pricing scheme (Cost389) is formulated as: 380 

buy sell sell DPT
TOU

K H
Cost .

k

k
t t t h h d

k t ht

C P P DR FI Eτ τ π π
∈ ∈Τ ∈∈Ω

⎛ ⎞
= ⋅ ⋅ − ⋅ ⋅ − ⋅ + ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑  (2)  

The first term of the cost function (2) indicates the cost of energy with regard to the tariff category. The 381 

price of electricity under category k is shown with 𝐶;. The second term shows the revenue from selling 382 

electricity to the grid. The third term is the potential revenue of the household from participating in incentive-383 

based DR programs. 𝐷𝑅>is the difference between the baseline load and the and the actual demand from the 384 

grid, which will receive the financial incentive of 𝐹𝐼> for each kWh of consuming below the baseline load. 385 

Consumptions above the baseline load will be penalized with 𝐹𝐼> for each kWh of consumption above the 386 

baseline load. The last term in this function refers to the cost of DPT.  387 

The constraint below enforces that the hourly purchases from the grid is always below the daily peak 388 

demand 𝐸0 389 

buy ,       .
h

t d
t

P E hτ
∈Ω

⋅ ≤ ∀∑  (3)  

The set of time periods that are defined in each hour is shown with Ω>. Constraint (4) enforces a limit on 390 

the power that can be purchased from the grid during each time interval by 𝑃BCD 391 

buy Max ,       .tP P t≤ ∀  (4)  

The amount of electricity that the consumer purchases from the grid or sells to the grid can be respectively 392 

expressed as follows:  393 

( ) ( )buy firm EWH ,Ch ,home ,Ch ,home PV,home+  ;        ,
v s

v v s s
t t t t t t t t

v s

P l P P P P P P t
∀ ∈Ω ∀ ∈Ω

= + + − − − ∀∑ ∑  (5)  

sell ,sell ,sell PV,sell+ ;         .
v s

v s
t t t t

v s

P P P P t
∀ ∈Ω ∀ ∈Ω

= + ∀∑ ∑  (6)  

The difference between the household consumption and local production expresses the amount of power 394 

purchase from the grid. Household consumption is composed of the firm load (𝑙&FGHI), the consumption of the 395 

EWH (𝑃&JKL) and the charging power of EVs (𝑃&
$,NO) and ESSs (𝑃&

P,NO). The local production consists of the 396 
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power discharged from the EVs (𝑃&
$,OQI-) and the ESSs (𝑃&

P,OQI-) and the power production of PV (𝑃&
2R,OQI-), 397 

which are considered for internal consumption. The selling power consists of the discharging power of EVs 398 

(𝑃&
$,,-..) and ESSs (𝑃&

P,,-..) and the production of PV (𝑃&
2R,,-..), which are considered to be injected to the grid. 399 

The set of the EVs and ESSs of the household are respectively illustrated with Ω$ and ΩP. 400 

Incentive-based DR programs influence the consumption scheduling in HEMS. The consumer can decrease 401 

its daily energy cost by reducing the consumption. The equation below sates that the 𝐷𝑅> is the difference 402 

between the baseline load (𝑙>STPUVWXU) and the total purchase from the grid at hour h: 403 

baseline buy DR,               .
h

h h t
t

DR l P hτ
∈Ω

= − ⋅ ∀ ∈Ω∑  (7)  

It is positive when the consumer reduces the load below the baseline load, and therefore reduces the daily 404 

household energy cost in (2). 𝐷𝑅>is negative when the end-user is consuming above the baseline load, which 405 

means that the consumer will receive penalty for those hours according to the difference between the baseline 406 

load and the actual demand from the grid. The set of hours that the retailer has offered incentives for demand 407 

reduction is shown with Ω1Y. 408 

3.1. ESS operational constraints 409 

The following constraints (8) and (9) enforce that the charging and discharging power of the ESS should 410 

be respectively lower than 𝑃ZT[
P,NO and 𝑃ZT[

P,\]O  411 

,Ch ,Ch ,Ch
Max0 ;           , T,s s s s

t tP P x s t≤ ≤ ⋅ ∀ ∈Ω ∀ ∈  (8)  

,Dch ,Dch ,Dch
Max0 ;           , T,s s s s

t tP P x s t≤ ≤ ⋅ ∀ ∈Ω ∀ ∈  (9)  

where the binary decision variable 𝑥&
P,_>and 𝑥&

P,\`> respectively express whether the ESS is in charging or 412 

discharging modes [50]. 413 

The restriction over simultaneous charging and discharging of the ESS is applied with  414 

,Ch ,Dch 1,            , T.s s s
t tx x s t+ ≤ ∀ ∈Ω ∀ ∈  (10)  

The discharged power of ESSs can be used to serve the household loads or to be sold to the grid: 415 

,Dch ,sell ,home
Dch ,           , T.s s s s s

t t tP P P s tη⋅ = + ∀ ∈Ω ∀ ∈  (11)  

The stored energy in the ESS in the end of time interval t depends on the remaining energy from the 416 

previous period and the charging and discharging in that period. The following equations are used to calculate 417 

the state of charge (SoC) update function respectively in the first time interval and the remaining time periods: 418 

,Ch ,Dch
Initial Ch= + ;           , 1,s s s s s s

t t tSoC SoC P P s tτ η⎡ ⎤⋅ ⋅ − ∀ ∈Ω =⎣ ⎦  (12)  

,Ch ,Dch
-1 Ch= + ;           , T, 1.s s s s s s

t t t tSoC SoC P P s t tτ η⎡ ⎤⋅ ⋅ − ∀ ∈Ω ∀ ∈ ≠⎣ ⎦  (13)  

The SoC of the ESS must be within a certain range represented by its minimum storage level (𝑆𝑜𝐶BGcP ) and 419 

its capacity (𝑆𝑜𝐶BCDP ) [50]. This limitation is imposed on the problem by the following constraint: 420 
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Min Max ,           , T.s s s s
tSoC SoC SoC s t≤ ≤ ∀ ∈Ω ∀ ∈  (14)  

3.2. EV operational constraints 421 

The charging power and discharging power of EVs should be within the range of the charging and 422 

discharging rates of the EVs. This limitation is formulated as follows: 423 

,Ch ,Ch ,Ch
Max0 ;           , ,v v v v v

t tP P x v t≤ ≤ ⋅ ∀ ∈Ω ∀ ∈Τ  (15)  

,Dch ,Dch ,Dch
Max0 ;           , ,v v v v v

t tP P x v t≤ ≤ ⋅ ∀ ∈Ω ∀ ∈Τ  (16)  

where 𝑃BCD
$.NO/1]O is the maximum charging/discharging rate. The simultaneous charging and discharging of the 424 

EVs is avoided with the following constraint: 425 

,Ch ,Dch 1,            , .v v v v
t tx x v t+ ≤ ∀ ∈Ω ∀ ∈Τ  (17)  

The energy stored in the EV, while it is parked at home (i.e., during T$), can be used for household needs 426 

or can be sold to the grid at market prices, i.e., 427 

,Dch ,sell ,home
Dch = ,           , .v v v v v v

t t tP P P v tη⋅ + ∀ ∈Ω ∀ ∈Τ  (18)  

Constraint (18) states that during the periods that the EV is plugged in at home, the discharging power 428 

(𝑃&JR.1]O) is used in home (V2H mode) or injected to the grid (V2G mode). 429 

The SoC update function is represented as follows: 430 

,Ch ,Dch
Initial Ch= + ;           , .v v v v v v

t t tSoC SoC P P v tτ η α⎡ ⎤⋅ ⋅ − ∀ ∈Ω =⎣ ⎦  (19)  

,Ch ,Dch
-1 Ch= + ;           , , ,v v v v v v v

t t t tSoC SoC P P v t tτ η α⎡ ⎤⋅ ⋅ − ∀ ∈Ω ∀ ∈Τ ≠⎣ ⎦  (20)  

where equation (19) calculates the SoC of the EV at the end of the first time period after the arrival and equation 431 

(20) calculates it for the remaining time periods. The SoC of the EVs’ battery should always be within a certain 432 

range 433 

Min Max ,           , .v v v v v
tSoC SoC SoC v t≤ ≤ ∀ ∈Ω ∀ ∈Τ  (21)  

Constraint (21) guarantees high battery efficiency during its’ lifetime [51]. Although an EV is very similar 434 

to an ESS, in terms of operational scheduling, a few extra constraints should be enforced on the 435 

charging/discharging status of EVs [51]. For instance, they are only available between the arrival and departure 436 

time of the EV (T$) or the SoC of the EV should be at the specific amount by the departure time. These two 437 

characteristics are mathematically described as: 438 

,Ch ,Dch 0;            , ,v v v v
t tx x v t+ = ∀ ∈Ω ∀ ∉Τ  (22)  

d ;           , ,v v v v
tSoC SoC v t β= ∀ ∈Ω =  (23)  

where 𝑆𝑜𝐶0$ is the required energy level of the battery at the departure time. Constraint (22) shows that during 439 

the periods that the EV is not connected to the grid, charging and discharging tasks cannot be performed. 440 
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Constraint (23) enforces that the EV should be charged to a specific amount when the user is taking the car for 441 

daily trips (23). 442 

3.3. EWH operational constraints 443 

The model introduced by Du and Lu [7] is used to show the scheduling aspects of an EWH in a household. 444 

The thermal dynamics of the EWH, considering the heat exchange with environment and with the cold water 445 

inflows is formulated as follows [7]:  446 

( ) ( )EWH a EWH a EWH
1 exp ,           .t

t t t t t
M m

R P tR CM
τθ θ θ θ −

−⎛ ⎞ −= + ⋅ − − ∀ ∈Τ⎜ ⎟ ⋅⎝ ⎠
 (24)  

The thermal dynamics of the EWH is considered as a function of hot water usage, temperature of the 447 

ambient, thermal parameters and the ON/OFF status of the EWH [7]. The impact of heat exchange with the 448 

environment and cold inlet water on the water temperature inside the tank is also taken into account [9]. In this 449 

equation, water temperature and the ambient temperature at period t are respectively shown by 𝜃&hijand 𝜃&T. 450 

The average hourly hot water usage is shown with 𝑚&, and M denotes the capacity of water tank. 451 

EWH is turned on to compensate the heat loss via the tanker walls and the heat losses due to the cold water 452 

inflows, which are always followed by the hot water usage. Thermal resistance (R) and capacitance (C) are used 453 

to model the thermal behavior of EWH. These parameters can be calculated with statistical and regression 454 

techniques [7]. Another way is to obtain these values from the 2015 ASHRAE Handbook [7,52].  455 

The load profile of the EWH is zero during the periods that it is in the OFF status and operates at its capacity 456 

(Q) during the ON periods (𝑥&hij = 1): 457 

EWH EWH= ,               .t tP Q x t⋅ ∀  (25)  

The permissible limits of hot water temperature at each time interval are set by  458 

EWH EWH EWH
Low, Up, ,               .t t t tθ θ θ≤ ≤ ∀  (26)  

𝜃nQoJKL and 𝜃9pJKL define the acceptable temperature range. They are chosen by the customer according to 459 

their thermal preferences [3]. Wider ranges provide more flexibility, while tighter ranges are desirable for 460 

consumers whose thermal comfort is their first and foremost priority [3]. 461 

3.4. Rule-based HEMS 462 

A simple rule-based approach is introduced for consumption scheduling. The main purpose of using this 463 

approach for load scheduling is to have a benchmark for measuring the effectiveness of implementing the 464 

proposed intelligent HEMS algorithm. 465 

Algorithm 1. EWH scheduling. 466 
1: for 𝑡 = 1 to 𝑡 = 𝑛(T) with step 1 do 
2: 𝑙𝑜𝑎𝑑& ← 𝑙𝑜𝑎𝑑&FGHI − 𝑃&2R 
3: 𝑥&JKL ← 1 
4: 𝑃&JKL ← 𝑥&JKL ∙ 𝑄 
5: Calculate 𝜃&JKL with (24) 
6:  if 𝜃&JKL ≥ 𝜃9p.&JKL then 
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7:  𝑥&JKL ← 0 
8:  end if 
9: 𝑃&JKL ← 𝑥&JKL ∙ 𝑄 

10: 𝑎 ← 𝑙𝑜𝑎𝑑& + 𝑃&JKL 
11:  if 𝑎 > 𝑃BCD then 
12:  𝑥&JKL ← 0 
13:  end if 
14: 𝑃&JKL ← 𝑥&JKL ∙ 𝑄 
15: 𝑙𝑜𝑎𝑑& ← 𝑙𝑜𝑎𝑑& + 𝑃&JKL 
16: Calculate 𝜃&JKL (24). 
17: end for 

 467 

Algorithm 2. EV charging scheduling. 468 
1: for 𝑡 = 1 to 𝑡 = 𝑛(T) with step 1 do 
2:  if 𝑡 ∈ 𝑇$ then 
3:   if 𝑆𝑂𝐶&��$ = 𝑆𝑂𝐶�$ do 
4:   𝑆𝑂𝐶&$ ← 𝑆𝑂𝐶&��$  
5:   𝑃&$._> ← 0 
6:   else 
7:   𝑅 ← 𝑆𝑂𝐶�$ − 𝑆𝑂𝐶&��$  
8:    if 𝑅 ≤ 𝜏 ∙ 𝜂𝒄𝒉$ ∙ 𝑃BCD$.NO then 
9:    𝑃&$._> ← 𝑅 ∙ (1/𝜂𝒄𝒉$ ) 

10:    𝑆𝑂𝐶&$ ← 𝑆𝑂𝐶�$ 
11:    else 
12:    𝑃&$._> ← 𝑃BCD$.NO 
13:    𝑆𝑂𝐶&$ ← 𝑆𝑂𝐶&��$ + 𝜏 ∙ 𝜂𝒄𝒉$ ∙ 𝑃&$._> 
14:    end if 
15:    if 𝑃&$._> + 𝑙𝑜𝑎𝑑& ≤ 𝑃ZT[ then 
16:    𝑃&$._> ← 𝑃&$._> 
17:    else 
18:    𝑃&$._> ← 𝑃ZT[ − 𝑙𝑜𝑎𝑑& 
19:    𝑆𝑂𝐶&$ ← 𝑆𝑂𝐶&��$ + 𝜏 ∙ 𝜂𝒄𝒉$ ∙ 𝑃&$._> 
20:    end if 
21:  else 
22:  𝑃&$._> ← 0 
23:  𝑆𝑂𝐶&$ ← 0 
24:  end if 
25: 𝑙𝑜𝑎𝑑& ← 𝑃&$._> + 𝑙𝑜𝑎𝑑& 
26: end for 

 469 

In this rule-based approach the PV generation is used in household and the surplus is sold to the grid. In 470 

the first step the EWH load is scheduled as shown in algorithm 1. The cardinality of set T is illustrated by 𝑛(T). 471 

The main constraints for scheduling are not violating the maximum water temperature and the maximum power 472 

limit of the household. 473 

Algorithm 2, which runs after the EWH scheduling is a heuristic algorithm for scheduling of the EVs’ 474 

charging. The EV that arrives first is charged first up to the desirable energy level by the departure time, and 475 

again the main constraint here is not to violate the maximum household power limit. 476 
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4. Test system 477 

Load scheduling of a smart household with 17.25 kVA contracted power is carried out in this paper to show 478 

the performance of the proposed intelligent algorithm.  It is considered in this paper that the household includes 479 

a small-scale PV system of 5 kW. The expected household firm load is obtained from the public data sets 480 

provided by the Intelligent Systems Subcommittee of the PSACE IEEE PES [53] and were also used by 481 

Fernandes et al. [54]. The PV generation over the scheduling horizon is presented in Figure 4. The PV 482 

generation profile is taken from the installed rooftop PV system of GECAD research center. The scheduling 483 

horizon is 24 hours and begins at 9:00 AM. The main reason for starting the scheduling horizon at 9:00 AM is 484 

the arrival and departure of EVs, assuming that these actions happen chronologically in this time horizon, and 485 

therefore the total connection time is within the scheduling horizon. The selected time slot for optimization is 486 

5 min. Thus, the 24 hours scheduling horizon consists of 288 time intervals. 487 

 488 

Figure 4. Expected firm load and PV production of the smart household during the scheduling horizon 489 

The prices under RTP and TOU pricing are shown in Figures 5 and 6 respectively. The prices under RTP 490 

scheme reflect price changes of a typical day in the Iberian electricity market (MIBEL) [55]. The day-ahead 491 

prices are modified by assuming a fixed markup for the retail company. The tri-hourly price scheme of the EDP 492 

Comercial, the incumbent Portuguese electricity retailer in the liberalized market, for a typical weekday is 493 

considered with few modifications for the TOU pricing program [56]. This scheme consists of prices in three 494 

categories of: normal, economic, and super economic. In Figure 6 normal prices are illustrated in red, economic 495 

prices in blue, and super economic prices in green. 496 
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 497 

Figure 5. Prices under the RTP scheme. 498 
 499 

 500 

Figure 6. Prices under the TOU pricing scheme [56]. 501 

By participating in incentive-based DR programs, the consumer receives the incentive plan in advance. The 502 

proposed HEMS algorithm uses the incentive plan shown in Table 1. The plan indicates that the incentives are 503 

assigned to the hours when the consumption is below the baseline load, and penalties are assigned when the 504 

consumption is above the baseline load. Consumers can benefit from the opportunity of receiving financial 505 

incentives for each kWh demand reduction below the baseline load. They are charged with the TOU prices for 506 

other hours during the scheduling horizon. 507 

Table 1. Incentive plan. 508 

Hours Incentive/Penalty 
(€/kWh) 

Baseline load 
(kWh) 

19:00 0.030 6.5 
20:00 0.025 6.0 
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0:00 0.020 9.0 
1:00 0.042 8.5 
2:00 0.035 8.1 
5:00 0.026 7.5 
7:00 0.032 8.0 

 509 

The controllable household appliances are 2 EVs and an EWH. Characteristics of the EVs and the ESS are 510 

shown in Table 2. EV 1 has less capacity and less charging/discharging rate compared to EV 2. In Table 3, the 511 

built-in parameters of the EWH is shown. 512 

Table 2. Built-in characteristics of the EVs and the ESS. 513 

  Brand Capacity 
(kWh) 

Charging 
rate 

(kW/h) 

Discharging rate 
(kW/h) 

Charging 
efficiency 

Discharging 
efficiency 

EV 1 Chevy Spark 
EV 19 3.3 2.805 0.89 0.91 

EV 2 Ford Focus 
Electric 23 6.6 4.818 0.94 0.92 

ESS - 46 4.5 3.8 0.86 0.85 

 514 

Table 3. Built-in characteristics of EWH [7]. 515 

Capacity 
(kW) 

Water tank 
capacity (L) 

Thermal resistance 
(ᵒC/kW) 

Thermal capacitance 
(kWh/ᵒC) 

4.5 400 1.52 863.4 

The HEMS optimal load scheduling depends on the data that the user updates in a daily basis. This data 516 

refers to some temporary features of the controllable loads. These parameters are not permanent and change 517 

day to day. The arrival and departure time of the EVs and the expected SoC of the EVs’ batteries at the arrival 518 

and departure time should be updated in daily basis by the consumer or through some interfaces that may operate 519 

with intelligent algorithms to predict these parameters. Table 4 shows the characteristics of EVs at arrival and 520 

departure. The HEMS requires the forecasts of water consumption and ambient temperature, in order to 521 

schedule the EWH for the following day. Figure 7 shows the forecasts of ambient temperature [57] and the 522 

expected daily water consumption [58]. 523 

Table 4. EVs' expected SoC at arrival and departure. 524 

 
Arrival 

time 
Departure 

time 

EVs' SOC (percentage of 
the total capacity 

  Arrival Departure 

EV 1 10:15 21:35 14% 87% 

EV 2 17:05 8:25 19% 91% 

 525 
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 526 

Figure 7. Forecasts of water consumption and ambient temperature. 527 

 528 

5. Case studies 529 

The main reason for using HEMS in households is to ensure customer benefits. This section provides 530 

simulation results to demonstrate the performance and the efficiency of the proposed framework. The proposed 531 

algorithm can be used in HEMS and aims to minimize daily electricity cost of the users, without violating their 532 

comfort levels.  533 

5.1. Cases 534 

In order to show the performance of the automated HEMS and the benefits of using an intelligent algorithm 535 

to control the EV charging and consumption scheduling, 5 case studies are carried out. The main features of the 536 

case studies are summarized in Table 5. In cases 1 and 2, the electricity consumer employs the rule-based 537 

algorithm rather than the proposed intelligent algorithm to schedule the consumption and to manage the 538 

charging of EVs. The only difference between these two case studies is the pricing scheme: case 1 is under RTP 539 

scheme and case 2 is under TOU pricing program. In cases 3 and 4, the proposed intelligent algorithm for the 540 

HEMS is employed respectively for RTP and TOU pricing. Therefore, the first 4 cases are representing the two 541 

HEMS models under the two pricing schemes. The outcomes of the 2 HEMS models can be compared with 542 

each other when they operate under similar pricing program. In case 5, the customer is paying under TOU 543 

pricing scheme and the incentive plans are also taken into account. It is also assumed that in all cases the 544 

consumer can also sell electricity to the grid. The selling price can also be time variable, but for all case studies 545 

a fixed price of 0.10443 €/kWh is considered for the selling price. This price is below the average price that the 546 

consumer is buying electricity from the grid. 547 

 548 
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Table 5. Features of the case studies. 549 

  HEMS 
algorithm RTP TOU Incentive-based DR V2H V2G PV ESS 

Case 1 Rule-based P - - - - P P 

Case 2 Rule-based - P - - - P P 

Case 3 Optimization P - - P P P P 

Case 4 Optimization - P - P P P P 

Case 5 Optimization - P P P P P P 

 550 

5.2. Results 551 

The HEMS model is developed as a MILP problem. In MILP problems only some of the variables are 552 

constrained to be integers, while the rest are allowed to be non-integers. In this problem, the integer variables 553 

are used to model the charging and discharging status of the EVs and the ESSs and the ON/OFF status of the 554 

EWH during the scheduling horizon. The computational complexity of the case studies is illustrated in Table 6. 555 

In this table, the cardinality of sets is denoted by 𝑛(∙). Obviously, the size of the problem changes under 556 

incentive-based DR programs, since the number of variables and constraints to be considered changes. The 557 

MILP optimization problems are modeled in GAMS 24.4.6 with the execution time of few seconds in a 558 

computer with an Intel Xeon E5-2620 2.10 GHz processor with 16 GB of RAM and Windows 8.1. The problems 559 

are solved by the commercial solver CPLEX 12 [59]. CPLEX uses a branch-and-cut search to obtain the global 560 

optimal solution of a linear problem with integer variables. The branch-and-cut procedure manages a search 561 

tree consisting of nodes, where each node is associated with a linear programming subproblem [59,60].  562 

Table 6. Computational complexity of case studies. 563 

  Number of continuous 
variables 

Number of binary 
variables Number of constraints 

Case studies 3 
and 4 
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 564 

Table 7 shows the main outcomes for all case studies. The highest household energy cost with the lowest 565 

peak hourly demand is identified in the first two cases, where the customer is using a rule-based HEMS to 566 

schedule the consumption. The optimization-based approach obtains lower daily costs for the household energy 567 

consumption under each pricing scheme, compared to the rule-based algorithm. The daily energy cost reduces 568 

29.5% under the RTP scheme by using the optimization-based algorithm instead of the rule-based approach, 569 

and under TOU pricing scheme the cost reduces by 31.5% when the optimization-based algorithm is 570 
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implemented in the HEMS. The minimum cost and the highest peak hourly demand is observed in case 5, when 571 

the consumer is buying electricity at TOU tariffs and participates in incentive-based DR programs. 572 

Table 7. Comparison of case study outputs. 573 

  Cost [€] 

Peak hourly 

demand 

[kW] 

EWH daily energy 

consumption 

[kWh] 

Total V2G energy 

transaction [kWh] 

Total V2H energy 

transaction [kWh] 

Case 1 13.20 9.14 66.00 - - 

Case 2 13.42 9.14 66.00 - - 

Case 3 9.30 11.43 53.63 10.33 2.28 

Case 4 9.19 9.41 53.63 12.95 2.91 

Case 5 8.63 12.29 54.00 0.02 6.97 

 574 

The hot water temperature in the cases that the intelligent algorithm is used for the HEMS can vary in a 575 

range between 46°C and 58°C. In the rule-based approach, the only characteristic that should be taken into 576 

account is the maximum demand, which should not be violated. Figure 8 shows the ON periods of the EWH 577 

and the changes of the water temperature. Although in cases 1 and 2, the EWH consumes more energy (about 578 

23% more) compared to other cases, the temperature goes below 46°C at 21:10, which means that the comfort 579 

levels are also not maintained when the HEMS is not operating with an intelligent algorithm. 580 

 581 
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Figure 8. EWH’s temperature and consumption schedule. 582 

The SoC of the EVs is shown in figure 9. In cases 1 and 2, which V2G and V2H is not possible, the curve 583 

is only rising. In other case studies, the energy level of the EVs’ battery decreases in some periods due to the 584 

power injected to the grid or to the house. As shown in Table 7, highest amount of V2G and V2H energy 585 

transaction are scheduled respectively for cases 4 and 5. In case 5 a significant decrease in the SoC of EV2 is 586 

observed during hours 19 and 20. During these hours the firm load is high and the EWH is also ON, therefore 587 

the HEMS schedules the energy stored in the EV2’s battery for V2H. 588 
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Figure 9. EVs’ SoC during the connection time. 589 
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The potential gain of the consumer from participating in incentive-based DR programs can be calculated 590 

from the hourly load profile of the periods that the incentives have been assigned. Figure 10 shows the difference 591 

between the baseline load and the scheduled consumption. Positive values that are shown by green bars denote 592 

the periods that the consumption is below the baseline load and the negative values demonstrated with red bars 593 

refer to the periods that scheduled consumption is above the baseline load. The consumer gains 1.07 € from 594 

participating in incentive-based DR programs. The amount of electricity that is scheduled to be purchased from 595 

the grid is shown in Figure 11. In case 5, during the periods that the retailer offers the incentives for demand 596 

reduction, the scheduled power profile to be purchased from the grid significantly reduces. The amount of 597 

energy purchase from the grid under each case study is shown in Table 8. In the rule-based approach, energy 598 

purchases from the grid during the charging process of each EV, which begins after the arrival of the EV and 599 

ends when the EV is charged to the requested amount, is higher than the optimization-based approach in the 600 

same time window, though there is not significant difference among different case studies in terms of the total 601 

daily purchase from the grid. EV1 arrives at 10:15 and is charged to 87% of the total battery capacity until 14:55 602 

with the rule-based HEMS, and during this period 28.20% of the total purchase from the grid occurs. EV2 603 

arrives at 17:05 and is charged to 91% of the total battery capacity until 19:45 with the rule-based approach, 604 

and during this period 22.69% of the total purchase from the grid occurs. 605 

 606 

 607 

Figure 10. Difference between the baseline load and the scheduled consumption. 608 
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Figure 11. Power purchase from the grid. 609 

Table 8. Variations of power purchase from the grid. 610 

  Cases 1 
and 2 Case 3 Case 4 Case 5 

Daily purchase from grid (kWh) 102.89 108.70 111.80 97.75 

Purchase during 10:15-14:55 
(charging period of EV1 in 

rule-based HEMS) 

kWh 29.02 11.55 0.11 0.21 
Percentage of the 

daily purchase 28.20% 10.63% 0.10% 0.22% 

Purchase during 17:05-19:45 
(charging period of EV2 in 

rule-based HEMS) 

kWh 23.35 5.78 16.74 16.92 
Percentage of the 

daily purchase 22.69% 5.32% 14.98% 17.31% 

 611 

The quality and accuracy of modeling the dynamic behavior of appliances are crucial to obtain optimal 612 

solutions in a HEMS. Solving an optimization-based HEMS model with high levels of accuracy based on a not 613 

enough accurate model for the controllable appliances is useless [61]. However, there should be always a trade-614 

off between realism and complexity. In the proposed HEMS for instance, a linear model is used to represent the 615 

thermostatic behavior of EWHs. The purpose was to keep the linearity of the optimization problem. 616 

Nevertheless, in some cases, the linearized models might not be able to fully represent the features of a 617 

thermostatically controllable EWH.  618 

Updating the HMES inputs based on the daily preferences of the customers also complicates the designing 619 

process of the model. The proposed model has been tested to be robust enough to operate under different feasible 620 

requests of the consumer and make the optimal decisions while limiting the consumer in advance to make 621 

impracticable requests. For instance, requesting the HEMS to schedule the full charging of the vehicle in a short 622 

time or high water temperature despite using large amounts of water. 623 
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6. Conclusions and future work 624 

In this paper, an intelligent algorithm is proposed to manage the consumption of controllable loads with 625 

energy storage capability, such as EVs and EWHs. This algorithm can be integrated into HEMS to help 626 

household owners to automatically schedule the optimal load consumption and to ensure lower energy costs 627 

while maintaining the comfort levels of the consumers and suiting their preferences. The performance of the 628 

algorithm was verified by applying to a smart household and comparing the outputs with a rule-based approach. 629 

The smart household model used in this study had a rooftop PV with an ESS in addition to the controllable 630 

loads. The operation of the controllable appliances was controlled under RTP and TOU pricing programs. The 631 

incentive-based DR programs were also taken into account when the customer is buying electricity under TOU 632 

pricing scheme. 633 

The proposed optimization-based HEMS, which was applied to an individual smart household, was able to 634 

illustrate the impact of adopting an intelligent algorithm for consumption scheduling. The results verified that 635 

under TOU pricing scheme, which is common in most retail electricity markets, the implementation of 636 

incentive-based DR programs can be an alternative to RTP program. The household experienced lower energy 637 

costs under this pricing scheme. EVs’ controlled charging influenced the power purchase pattern from the grid. 638 

In the rule-based approach, the EVs are charged at the maximum charging rate after connection until being 639 

charged to the required amount, but with the intelligent algorithm charging power can vary during the 640 

scheduling horizon and the charging process can be scheduled for the whole connection period to minimize the 641 

total energy costs. Automated DR programs may influence the load diversity and potentially result in creating 642 

new peaks at least price intervals. This effect has been controlled in the proposed model by considering the 643 

network charge for peak demands. The inclusion of network tariffs in HEMS models is an element to avoid 644 

high peak demands in periods with lower energy costs. Despite the higher energy costs in the rule-based 645 

approach, the results show that the comfort levels were also not maintained. 646 

Load management in this paper is entirely dependent on the signals received from the retailers in order to 647 

decrease the energy costs. The proposed HEMS can be developed in the future works to incorporate the 648 

operators’ requests, which are to cope with power quality, power imbalance, and network congestion 649 

challenges. Future efforts will be mainly focused on developing the HEMS architecture by adding the dynamic 650 

models of other controllable household appliances into the current model. The model also requires being further 651 

improved by considering the uncertainty of the forecasted values used in the model. The effectiveness of the 652 

proposed framework will be more investigated by carrying out more tests on the various categories of residential 653 

consumers.  654 
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