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Abstract

A prominent point of contention among researchers regarding the interpretation of
probability-matching behavior is whether it represents a cognitively sophisticated,
adaptive response to the inherent uncertainty of the tasks or settings in which it is
observed, or whether instead it represents a fundamental shortcoming in the heuristics
that support and guide human decision making. Put crudely, researchers disagree on
whether probability matching is “smart” or “dumb.” Here, we consider evidence for both
“smart” and “dumb” variants of probability-matching behavior, as well as its alternative,
maximizing. We rely on the influential and often-cited distinction between two
“systems” of thinking to organize the research and competing interpretations of
probability-matching behavior as “smart” or “dumb.”

1. INTRODUCTION

Consider a simple computer game in which, on each trial, either a

green or a red light appears. Your task is to predict which color will appear,

and you will be paid a small amount of money for each correct prediction.

What should you do, assuming your goal is to earn as much money as pos-

sible?Much of the challenge in this task arises from uncertainty regarding the
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process that determines whether the green or the red light appears on each

trial (e.g., Green, Benson, Kersten, & Schrater, 2010). Does one light appear

more frequently than the other? Is there a predictable pattern in the sequence

of red and green outcomes? Does the probability of the green light illumi-

nating change over the course of the game? Is it affected by your own

actions, that is, the guesses that you have made on previous trials?

In the first experiments that investigated this type of task, one particular

regularity in people’s responses became the focus of researchers’ attention:

people tended to make their predictions in a manner that matched the rel-

evant outcome probabilities (Goodnow, 1955; Grant, Hake, & Hornseth,

1951). For instance, if the green light was illuminated on 70% of trials

and the red light on the remaining 30%, people tended to predict green

on 70% of the trials and red on the remaining 30%. This phenomenon is

referred to as probability matching, which can be defined more generally as

the tendency to match choice proportions to outcome proportions in a

binary prediction task.

In the experiments investigating probability matching that are of interest

here, the outcomes being predicted (e.g., green vs. red light) are determined

by a random process that is serially independent and stationary, which means

that the probability of, say, the green light illuminating is the same on every

trial, regardless of what occurred on the previous trial or how many trials

have elapsed. Under such circumstances, it is easy to show that, if one’s goal

is to maximize the number of correct predictions, probability matching is

inferior to an alternative strategy in which the higher probability outcome

is predicted on every trial. This superior strategy is referred to as maximizing.

For example, when the probability of a green outcome is 70%, maximizing

(predicting green on every trial) yields an average predictive accuracy

of 70%, while matching (predicting green on 70% of trials and red on

the other 30%) yields an average predictive accuracy of (0.70�0.70)+

(0.30�0.30)¼58%.

Probability matching has attracted interest because it represents a viola-

tion of a cornerstone principle of rational choice theory, referred to as sto-

chastic dominance. According to this principle, a gamble offering a

probability P of some desired outcome should always be preferred to an oth-

erwise equivalent gamble offering a lower probability P* of obtaining that

same outcome. Under conditions where payment is received for each cor-

rect prediction, a probability matcher violates the principle of stochastic

dominance every time he or she predicts the lower probability outcome
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(e.g., red in the example above in which red occurs on only 30% of trials). In

other words, he or she is choosing a gamble with a lower probability P* of

receiving a payment over one that offers a higher probability P of receiving

the same payment. Probability matching, in short, appears anomalous from

the perspective of rational choice models and for that reason demands

explanation.

What causes probability matching? Who does it, and under what cir-

cumstances is it more or less likely to occur? In this chapter, we review some

possible answers to these questions that have been offered in recent research

on the topic. Our intent is not to systematically and exhaustively review

every article that has been published on probability matching. Our review

is highly selective and focuses almost exclusively on what might be referred

as a “second wave” of research on probability matching that has taken place

over the past decade or so. The voluminous original work on the topic in the

1950s and 1960s is not reviewed here; instead, the reader is directed to a

helpful review by Vulkan (2000). It is worth noting, however, that several

features of that early work, rooted almost exclusively in the then-

predominant probability-learning paradigm, have proved unnecessary to

observe probability-matching behavior. For instance, as is elaborated later

in this chapter, probability matching is observed even in tasks in which

the relevant outcome probabilities are known to participants from the out-

set, rather than having to be learned via trial-by-trial outcome feedback (e.g.,

Gal & Baron, 1996). In other words, even when many of the questions a

person might have about the binary prediction task, such as those in our

opening paragraph, are circumvented, probability matching is still regularly

observed.

The most prominent point of contention among researchers regarding

the interpretation of probability-matching behavior is whether it represents

a cognitively sophisticated, adaptive response to the inherent uncertainty

of the tasks or settings in which it is observed, or whether instead it repre-

sents a fundamental shortcoming in the heuristics that support and guide

human decision making. Put bluntly, researchers disagree on whether prob-

ability matching is “smart” or “dumb.” Our use of these terms is not

intended to be entirely pejorative. Rather, they can be used to characterize,

for instance, a person’s own response—after having engaged in probability

matching—to the argument that maximizing is a superior strategy. The per-

son might explain, based on their understanding of the task, why it

might have been reasonable to engage in matching (i.e., that it was a
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“smart” response to the task); alternatively, the person might do a forehead

slap and acknowledge that they made a mistake (i.e., that matching was

a “dumb” response to the task). Researchers themselves have disagreed as

to whether or not probability matching should be viewed as a mistake.

One of our main goals in this chapter is to organize the theoretical depictions

of probability matching that have been offered around this admittedly crude

distinction between “smart matching” and “dumb matching” accounts.

We rely on the influential and often-cited distinction between two

“systems” of thinking (e.g., Kahneman & Frederick, 2002; Sloman, 1996;

Stanovich & West, 2000; for a review, see Evans, 2008) to organize the

research and competing interpretations of probability-matching behavior.

One category of cognitive and affective processes shares the characteristics

of being fast, effortless, unintentional, and unavailable to conscious aware-

ness; the other category is relatively slow, effortful, intentional, and available

to conscious awareness. We refer to the former as constituting the

“intuitive” system and the latter as the “deliberative” system. We also adopt

Kahneman’s (2011; Kahneman & Frederick, 2002) characterization of the

relation between the two systems as one in which the output of the intuitive

system is imperfectly monitored and sometimes corrected or overridden by

the deliberative system. In particular, Kahneman’s account identifies well-

known judgmental heuristics with the operations of the intuitive system

and attributes many biases of judgment to a substitution process in which

a person faced with a particular question receives from the intuitive system

the answer to a different question but fails to recognize the discrepancy, and

instead “endorses” that answer. This process of “attribute substitution” is

discussed further below as it pertains to probability matching.

From a dual-system perspective, then, probability matching is “dumb”

when it emerges from an intuitive response to the prediction task that goes

uncorrected by the deliberative system. Maximizing, by this account, is

“smart” when it results from the deliberative system correcting or overriding

the intuition that makes matching compelling. Conversely, there may be

circumstances under which maximizing represents the intuitive system’s ini-

tial response to the task, giving rise to “dumb” maximizing. By contrast,

probability matching under certain circumstances may emerge as the prod-

uct of effortful deliberation (e.g., in which maximizing is considered but

rejected as a possible strategy), which would be a case of “smart” matching.

The remainder of the chapter organizes the recent findings of studies on

probability matching in terms of evidence supporting smart and dumb var-

iants of probability-matching and -maximizing behavior.
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2. DUMB MATCHING

We will use a task, developed by Koehler and James (2010), as a run-

ning example of the characterization of probability matching as a “dumb” or

intuitive response. As shown in Fig. 3.1, participants were presented with

10 pairs of cups, placed upside down on a table. Each pair consisted of

one green and one red cup. Participants were told that, before they had

entered the room, a dollar coin had been hidden under one member of each

pair of cups. Which cup in the pair, green or red, the coin had been placed

under had been determined by the roll of a 10-sided die with seven green

faces and three red faces.1 Participants were instructed to guess, for each pair,

under which cup the coin was hidden by dropping a black ring over the cup.

Participants were informed that once all 10 guesses had been made, the cups

would be turned over and the participant could keep all the coins whose

location had been correctly predicted.

Probability matching in this task would entail making seven green and

three red predictions. Maximizing would entail making 10 green predic-

tions. Of course, participants did not limit themselves to these two strategies,

but matching and maximizing did represent the two modal responses to the

task, as is shown in Fig. 3.2. In this particular study, fewer participants

engaged in matching than in maximizing; in other studies, we have found

the opposite. For present purposes, the important observation is that

matching and maximizing emerged as two commonly used strategies in

the cups task.

Figure 3.1 Schematic illustration of the cups task developed by Koehler and James
(2010). In this example, the participant's predictions (indicated by black rings) follow
a probability-matching strategy.

1 For ease of discussion, we will refer to green as being the more probable color. In fact, this variable was

counterbalanced such that, for half of the participants, red was the more likely outcome.
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What evidence is there to suggest that, of the two strategies commonly

used in this task, matching is the more intuitive, “dumb” response? As

alluded to above, one benchmark involves asking the participants themselves

which strategy is superior.

After they had played the cups game, but before the cups were turned

over and they learned their payoff, participants were presented with two

alternative strategies that could have been used in the game, one ascribed

to a character named “Mike,” who had guessed green for all 10 pairs of cups,

and the other to “John,” who had guessed green for 7 pairs and red for the

remaining 3 pairs. Thus, Mike and John’s strategies corresponded to max-

imizing andmatching, respectively.When askedwhose strategymost closely

resembled their own, participants tended to answer in accord with the

choices they had just made during the cups task. But, when asked whose

strategy would be expected to earn more money, and whose strategy they

would use if they were to play again, a substantial proportion (over 40%) of

participants who had matched on the cups task nonetheless selected maxi-

mizing as the superior strategy. A substantially larger proportion of partici-

pants was able to identify maximizing as the superior strategy in a direct

comparison to matching than had actually engaged in strict maximizing

on the cups task itself. A similar finding was reported by Koehler and

James (2009). In effect, many participants who engaged in probability

matching in the binary prediction task later acknowledged that they would

have been better off using a maximizing strategy instead.

Figure 3.2 Number of times the more likely outcome was predicted, out of a possible
10, in Koehler and James (2010; collapsed across Study 1 and the no-hint condition of
Study 2) made by each participant; probability matching should result in 7 such predic-
tions and maximizing 10.
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We take this as evidence that many participants themselves would cate-

gorize probability matching as a “dumb” or inferior strategy. In fact, it is

possible that the results above underestimate the proportion of participants

who agreed with this categorization upon being presented with the direct

comparison of the matching and maximizing strategies, as some participants

who had engaged in matching on the cups task might have been reluctant to

acknowledge their mistake to the experimenter. On the other hand, it is also

possible that participants’ responses to the strategy questions, such as the one

asking which strategy they would use if they were to play again, do not accu-

rately reflect what they would actually do if given such an opportunity. In a

second study, Koehler and James (2010) provided a more direct test by pre-

senting a strategy comparison question to some participants before they

completed the binary prediction (cups) task. That is, these participants were

presented with the two strategies that could be used on the cups task (7 green

and 3 red, or 10 green and 0 red) and asked which would be expected to earn

moremoney, prior to completing the cups task for themselves. Compared to

a control group that did not first complete the strategy question, those who

had compared the two strategies directly in terms of expected earnings were

more likely to engage in strict maximizing and less likely to engage in strict

matching on the subsequent cups task.

The results of Koehler and James (2010) suggest that one reason why

people engage in probability matching rather than maximizing, at least on

the cups task, is that matching is a more highly available strategy than max-

imizing: When confronted with the prediction task, matching tends to

spring to mind more readily as a possible response than does maximizing.

When the two strategies are equated for availability, as in the strategy com-

parison questions that describe both strategies, the relative appeal of

matching diminishes. As researchers, many of us find probability matching

intriguing because we are puzzled by why people choose to match rather

than to maximize. From the participant’s perspective, however, it seems that

they are not really choosing between matching and maximizing strategies, as

maximizing may simply not have come to mind as an alternative strategy to

matching. Instead, perhaps, if matching is the only strategy that comes read-

ily to mind as a response to the prediction task, specific alternatives to

matching (such as maximizing) need to be effortfully “unpacked” from

the generic “do something other than matching” category of strategies.

For many people, apparently, matching springs to mind as a response and

it seems “good enough” that the effort that would have to be expended

to generate alternative strategies does not seem worthwhile. (The
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effortfulness of generating the maximizing strategy is discussed further in the

next section.)

We take the results above to suggest that the matching strategy comes to

mind more quickly and effortlessly than does the maximizing strategy as a

possible response to the binary prediction task. In other words, probability

matching may be characterized as an intuitive response. The idea that prob-

ability matching reflects an intuitive response, that may or may not be over-

ridden by effortful deliberation, has been suggested by other researchers as

well (Kogler & Kuhberger, 2007; West & Stanovich, 2003). But this char-

acterization begs the question of why probability matching might be gener-

ated by the intuitive system as a response to prediction tasks such as the cups

task described above. We recently conducted some studies to answer this

question, in which we attempted to connect probability matching to an

important function of the intuitive system: the generation of expectations.

To illustrate, imagine a 10-sided die with 7 green sides and 3 red sides.

The die is going to be rolled 10 times. For most people, we suggest, simply

providing this description is enough to trigger the expectation that the die

roll will come up green seven times and red three times.2 Much of our men-

tal machinery is dedicated to the generation of expectations and predictions

(e.g., Bar, 2007). For instance, most adults can readily translate outcome

probabilities (e.g., that there is a 70% chance of a green outcome on each

roll) into expected frequencies over a repeated sequence (e.g., that in 10 rolls

of the die, 7 green and 3 red outcomes are expected). In fact, previous

research has documented people’s tendency to expect, even for very short

sequences, outcome relative frequencies to correspond to the long-run

probabilities governing the random generation process (Kahneman &

Tversky, 1972; Tversky & Kahneman, 1971). We characterize this expec-

tation generation process as an operation of the intuitive system. As with

other such operations, its adaptive benefits are obvious. In the case of the

10-sided die, for example, if participants were asked to predict how many

greens and how many reds would be rolled, then this expectation is exactly

what is called for by the task. Precisely because of its usefulness in many pre-

dictive tasks, we suggest that expectation generation is the type of operation

one might assume would migrate, with practice or experience, to the

2 Here, we focus on the case of “described” prediction tasks in which participants are informed from the

outset of the relevant outcome probabilities. It seems plausible that people would generate similar

expectations in the case in which outcome probabilities are learned through observation, but it should

be noted that the research we review in the remainder of this section involved described prediction

tasks only.
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intuitive system, such that expectations of this sort can be generated quickly,

effortlessly, and without prompting from the deliberative system (e.g.,

Kahneman & Klein, 2009).

For the binary prediction task, however, expectation generation may not

be entirely helpful. In the 10-sided die example, for instance, if one’s task is

simply to predict, prior to each of the 10 rolls, whether it will come up green

or red, the best course of action is to maximize. Maximizing, in turn,

requires only that the more likely outcome be predicted on every roll. As

long as green is the more likely outcome, from the perspective of maximiz-

ing its precise probability does not matter, nor does the expected frequency

of its occurrence over the sequence (i.e., 7 out of 10 rolls). But suppose the

intuitive system nonetheless generates expected frequencies, quickly and

effortlessly, such that they come to mind whether or not they are needed

for the particular task at hand. Kahneman and Frederick (2002) describe a

process of attribute substitution in which a heuristic attribute is rapidly evalu-

ated via operations of the intuitive system and then—due to lax monitoring

of the deliberative system—is substituted for the evaluation of the target

attribute that is the intended focus of judgment. We use the notion of attri-

bute substitution to explain the intuitive appeal of probability matching:

expected frequencies generated by the intuitive system (e.g., expect seven

greens and three reds) are in turn used to guide selection of a congruent pre-

diction strategy (e.g., predict seven greens and three reds).

An important feature of this account, which we have referred to as expec-

tation matching, is its focus on expected outcome frequencies over a sequence

of events. In the 10-sided die example, the expectation that is evoked regards

the sequence of 10 rolls as a whole: Over that sequence, we expect to see

seven green rolls and three red rolls. A testable prediction of the expectation

matching account, then, is that manipulations that disrupt or block the gen-

eration of sequence-wide expectations should reduce the rate of probability-

matching behavior.

We conducted three experiments to test this prediction ( James &

Koehler, 2011). Each involved a sequence of 10 outcomes in a binary pre-

diction task, in which the probability of one outcome was always 70% and

the other was always 30%, as in the 10-sided die example we have been using

here.We reasoned that when a single event (or “game”) was played 10 times,

as in the example of repeatedly rolling the 10-sided die, people would readily

generate a sequence-wide expectation (e.g., 7 greens and 3 reds), which in

turn was expected to foster probability matching in the prediction task.

By contrast, if the 10 events or games were more individuated or distinct
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from one another, we reasoned, people would be less prone to generate (or

apply) a sequence-wide expectation over the diverse collection of events or

games, even if the outcome probabilities were the same, and therefore

would be less likely to engage in probability matching.

In our first experiment, a unique games condition was created by asking

participants to make binary predictions of the outcomes of 10 different

games, which involved such activities as drawing ping-pong balls from a

bingo cage, spinning a wheel of fortune and rolling a 10-sided die. In each

game, as participants were informed in advance of making their predictions,

one of the outcomes had a 70% probability of occurring and the other had a

30% probability. In the repeated games condition, 1 of the 10 games from

the unique games condition was randomly selected for each participant and

presented to him or her 10 times. Participants faced mathematically equiv-

alent prediction tasks in the two conditions, which differed only in the

superficial features that individuated the games in the unique-games but

not in the repeated-games condition. Nonetheless, the rates of matching

and maximizing in the two tasks differed significantly, as predicted: Partic-

ipants in the unique games condition were less likely than those in the

repeated games condition to engage in strict matching (3% vs. 38% of par-

ticipants), and more likely to engage in strict maximizing (70% vs. 44% of

participants).

A similar result was obtained in a second experiment ( James & Koehler,

2011, Experiment 2), in which a 10-roll die game either involved the same

die (with red and green sides) rolled 10 times or 10 different dice with

unique markings (triangles vs. squares, hearts vs. flowers, etc.) which were

each rolled once. In both experiments, apparently, individuating the

sequence of outcomes made it less likely that participants generated or

applied a sequence-wide expectation in making their predictions, reducing

the rate of probability matching as a consequence. A third experiment pres-

ented an identically described prediction sequence to all participants, but

preceded it by a priming manipulation designed to focus attention either

on the sequence as a whole or on the individual outcomes within the

sequence. This was accomplished by asking participants, after the prediction

task involving the 10-sided die had been described to them, either to indi-

cate in how many of the 10 rolls they expected each outcome (global focus

condition) or to indicate, on any individual roll of the die, which outcome

was more likely (local focus condition). We assumed that the global focus

condition encourages generation of a sequence-wide expectation and the

local focus condition does not. As hypothesized on this assumption,
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participants in the global focus condition were more likely to match and less

likely to maximize on the prediction task than were those in the local focus

condition.

In summary, the characterization of probability matching as “dumb”

depicts it as arising from a fast intuitive process that is not reliably overridden

by subsequent deliberation. Two lines of evidence support this characteri-

zation. First, matching occurs less frequently when the alternative maximiz-

ing strategy is brought explicitly to participants’ attention, consistent with

the claim that matching comes to mind quickly and spontaneously while

maximizing does not. Second, consistent with the idea that matching results

from an intuitive process that generates sequence-wide expectations, manip-

ulations that individuate the sequence or otherwise encourage a focus on

single outcomes decrease the rate of matching and increase the rate of

maximizing.

3. SMART MAXIMIZING

On an account that characterizes probability matching as “dumb” in

the sense of being a mistake rooted in the operations of the intuitive system,

maximizing must be characterized as “smart” in the sense of representing

avoidance or correction of that mistake through operations of the deliber-

ative system.What evidence is there that maximizing is “smart” in this sense?

One strand of evidence suggesting that maximizing requires effort-

ful deliberation comes from a study by Shanks, Tunney, and McCarthy

(2002). Their participants made binary predictions in a standard probability-

learning task and were paid for each correct prediction. After every 50-trial

block, participants received a summary of their proportion of correct

predictions on the block, and also the proportion correct that could have

been obtained using an “optimal strategy.” The number of participants who

engaged in strict maximizing, which was defined as predicting the higher

probabilityoutcomeonat least 50consecutive trials,wasexaminedas a function

of the number of prediction blocks completed. In their Experiment 1, which

consisted of 300 trials, only 6 of 16 participants were categorized as having

engaged in strict maximizing. In their Experiment 2, in which the number

of trials was increased to 1800 trials, 8 out of 12 participants eventually engaged

in strict maximizing. What is striking to us about this result is how difficult

it is, apparently, forparticipants togenerate and consistentlyuse themaximizing

strategy despite repeated suggestions that a better strategy than matching is

available and provision of hundreds of trials to identify it.
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A natural starting point for discussing “smart maximizing” is the obser-

vation that not everybody engages in probability matching in binary predic-

tion. As illustrated in Fig. 3.2, the typical finding is that some people match

while others maximize. What individual difference variables distinguish

these two groups? Broadly speaking, probability matching is more likely

to be overridden in favor of maximizing when the individual is willing to

engage in deliberation (i.e., has the appropriate motivation or thinking dis-

position) and has mastery of the basic normative principles (e.g., the calcu-

lation of expected value) needed to identify maximizing as the superior

strategy. The distinction between these two components of deliberation

has recently moved to the forefront of theoretical development of the idea

of distinct thinking systems (e.g., Evans & Stanovich, 2013; Stanovich,

2009), but for our purpose, we largely gloss over this distinction and focus

broadly on variables related to either facet of deliberative ability. On the

smart maximizing account, we would expect variables that measure the pro-

pensity to rely on deliberation, or the effectiveness of deliberation, to pos-

itively correlate with the use of maximizing in prediction.

West and Stanovich (2003) found, in three studies, that maximizers

tended to score higher than probability matchers on a measure of cognitive

ability (self-reported total scores on the SAT Reasoning Test). This result,

which was replicated in two subsequent studies by Stanovich and West

(2008), is consistent with the idea that maximizing is fostered by processes

of deliberation that are executed more reliably and efficiently by those of

greater cognitive ability. Interestingly, in their studies, West and Stanovich

did not find an association between the tendency to maximize (vs. match)

and the number of math or statistics courses the participants reported having

taken. This result could be taken to suggest that it is general deliberative abil-

ity, rather than specific mathematical knowledge, that promotes the use of

maximization over matching. West and Stanovich did find, however, that

matchers and maximizers differed in some important respects with regard

to their perceptions or beliefs about the probabilities governing the out-

comes in the prediction task. Specifically, matchers were significantly more

likely than maximizers to endorse the gambler’s fallacy that a long streak of

one outcome made the alternative outcome more likely, while maximizers

were more likely to endorse the notion of serial independence of outcomes

(see also Gal & Baron, 1996).

Cognitive ability, then, which might be thought of as a measure of a per-

son’s ability to engage in effective deliberation, is associated with the
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tendency to maximize rather than to match, supporting the notion of “smart

maximizing.” Another, possibly related measure concerns cognitive reflection,

or a person’s tendency to scrutinize rather than unreservedly accept their ini-

tial, intuitive response to a problem or decision. In a highly influential paper,

Frederick (2005) developed a brief cognitive reflection test (CRT) that can

be taken as a measure of individual differences in proneness toward cognitive

reflection (vs. reliance on intuition). The CRT consists of three mathemat-

ical problems, each of which has an “intuitive” but incorrect answer

that many people report comes readily to mind. Correct responding, there-

fore, requires the person to override or correct that initial intuitive

response. Toplak, West, and Stanovich (2011) report that CRT scores

are independently, and more strongly, predictive of scores on a battery of

“heuristics and biases” tasks (which included two probability-matching

tasks) than is a measure of cognitive ability. On an account in which prob-

ability matching is the intuitive response, which must be overridden via

deliberation to arrive at a maximizing strategy instead, higher CRT scores

would be expected to be associated with a tendency to maximize rather than

to match.

In the study involving the cups task described previously, we subse-

quently administered the CRT to all participants. Figure 3.3 relates perfor-

mance on the prediction task to CRT scores in Study 1 of Koehler and

Figure 3.3 Mean number of predictions of the more probable outcome, out of a pos-
sible 10, on the cups task of Koehler and James (2010, Study 1), by CRT score.
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James (2010). The mean number of times the dominant color (green in the

example we have been using) was chosen is compared for those scoring 0, 1,

2, and 3 correct answers on the CRT. The figure reflects the substantial pos-

itive correlation between the two variables (r¼0.40): Those scoring higher

on the CRT were more likely to maximize, and less likely to match, than

those scoring lower on the CRT. Indeed, the mean number of green guesses

for those scoring 3 out of 3 correct on the CRT is approaching that expected

under strict maximizing, while the mean number of green guesses among

those scoring 0 out of 3 on the CRT approaches that expected under strict

matching. The relation between CRT score and maximizing remained sta-

tistically significant even after controlling for mathematical ability, as mea-

sured either by self-reported proficiency or by the number of math

courses taken.

In one study involving the cups task (Koehler & James, 2010, Study 2),

we also subsequently administered another task designed to measure prone-

ness to reliance on intuition in decision making, namely, a variant of

Epstein’s jelly beans task (see, e.g., Denes-Raj & Epstein, 1994). Epstein

and colleagues have depicted the jelly beans task as putting the intuitive

and deliberative systems into conflict. Pacini and Epstein (1999) found that

performance on the jelly beans task related to scores on the rational thinking

component of the Rational–Experiential Inventory, a measure of individual

differences in thinking dispositions. In our version of the task, participants

were asked to consider two urns, one containing 1 gold ball and 9 white balls

and the other containing 9 gold balls and 91 white balls. Participants were

instructed to imagine that they are to make a single draw, at random, from

one of the urns and that if a gold ball is drawn, they would win a free vaca-

tion. Although the urn with only a single gold ball offers the higher prob-

ability of winning, many people experience and even express a preference

for the urn that offers the larger absolute number of gold balls (a phenom-

enon commonly referred to as “ratio bias”). Participants were asked to give

ratings on which urn (1) offered the higher probability of drawing a gold

ball, (2) they felt would be easier to win with when they drew from it,

(3) would be more exciting to draw from, (4) they would choose to draw

from, and (5) they would pay more to draw from. A composite sum of these

ratings correlated significantly with choices on the cups task, such that higher

ratings in favor of the inferior urn (greater absolute number but smaller pro-

portion of gold balls) were associated with a tendency to match rather than

maximize on the cups task. Along with the results from the CRT, these find-

ings support the idea that individual differences in the tendency to rely on
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(vs. override) an initial intuition are predictive of probability-matching

behavior, as would be expected on a “smart maximizing” (or “dumb

matching”) account.

The “smart maximizing” account further predicts that experimental

manipulations that foster deliberation ought to decrease the rate of proba-

bility matching in favor of maximizing. Surprisingly, few studies have tested

this prediction directly. As is discussed further below, manipulations of cog-

nitive load or working memory capacity could reasonably be expected to

reduce the activity or involvement of the deliberative system. Therefore,

on the smart maximizing account, they would be expected to increase

the rate of matching. Unfortunately, interpretation of such studies is

complicated—particularly when studied in the probability-learning

paradigm—because such manipulations may also have effects on other men-

tal operations such as those involved in detecting patterns or in monitoring

and responding on the basis of observed outcome frequencies, and not just

on the extent to which deliberation is used in selecting a prediction strategy.

Here, we focus instead on manipulations intended to increase the general

level of involvement of the deliberative system in overseeing and potentially

correcting the output of the intuitive system.

The most direct evidence we know of comes from a study by Kogler and

Kuhberger (2007), who studied probability matching in a task developed by

Rubinstein (2002) that involves selecting 5 cards at random from a deck with

known composition (36 green cards, 25 blue, 22 yellow, and 17 red), placing

them in 5 envelopes, and asking participants to guess the color of the card

contained in each envelope. Note that, even when selecting without

replacement from the deck, the green card is the most likely outcome for

each draw and therefore constitutes the maximizing response. Matching

involves a representative selection of guesses that more closely reproduces

the proportion of cards of each color in the deck. Previous work by the

authors, and by Rubinstein (2002), showed that many people failed to max-

imize on this task and instead engaged in something more closely resembling

a matching strategy. Kogler and Kuhberger (2007) compared responses from

a control group, in which the task was likened to a lottery, to those assigned

to a “corrective” condition in which the task was described as a statistical test

designed to assess their level of statistical competence. Participants in the

corrective condition were also advised to take their time in responding

and to “carefully reconsider” their initial predictions before making a final

response. The rate of maximizing was nearly three times higher among par-

ticipants in the corrective condition (43%) than among those in the control
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condition (15%). Matching, by contrast, was more prevalent in the control

(61%) than in the corrective (37%) condition. We take this result as support-

ive evidence for the claim that maximizing is a “smart” response that is fos-

tered by enhanced deliberation, though of course other interpretations are

also possible. In another strand of potentially supportive evidence, Fantino

and Esfandiari (2002) found that telling participants that they would be

asked, following the prediction task, to recommend a strategy to another

participant—which arguably would motivate participants to think harder

about the rationale for their predictions on the task—also increased the rate

of maximizing. More recently, Taylor, Landy, and Ross (2012) found that

providing a causal explanation for why one probabilistic outcome is more

likely than another reduced the rate of probability matching in favor of a

more optimal prediction strategy (though typically not strict maximizing),

which could have resulted from the causal explanation triggering more

extensive or rule-based deliberation.

In summary, the “smart maximizing” strategy depicts maximizing

behavior as the product of a deliberative process that overrides the initial,

intuitive tendency to engage in probability matching. Evidence supporting

this characterization comes from correlational studies showing a positive

association between maximizing and individual difference measures of cog-

nitive ability and thinking disposition, and from experiments demonstrating

increased maximizing as the result of manipulations designed to encourage

greater deliberation.

4. SMART MATCHING

In the dual-systems account we have provided thus far, maximizing

has been construed as resulting from deliberation and probability matching

the result of a fast effortless heuristic, which we have labeled expectation

matching. We have argued, therefore, that probability matching is essen-

tially “dumb,” but this view is not shared by all researchers who have studied

the phenomenon. Indeed, probability-matching behavior has also been

characterized as a sophisticated and adaptive response to an uncertainty

about the true random nature of the binary prediction task (e.g.,

Gaissmaier & Schooler, 2008; Green et al., 2010). Evidence provided for

this argument rests on two basic lines of research: (A) That probability

matching tends to occur less in situations that tax cognitive resources and

(B) that probability matching seems to be related to an effortful exploration

of the environment (in this case, the sequence of outcomes observed in the

binary prediction task). We will review both of these lines of evidence and
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evaluate how strongly they support the claim that probability matching

is smart.

Return for a minute to our earlier argument that probability matching is

intuitive. Typically, within a dual-systems framework, system 2 (delibera-

tive) responses are considered to bemore effortful or the result of more com-

plex cognition and more easily disrupted by conditions that tax cognitive

resources (e.g., Masicampo & Baumeister, 2008). By contrast, system 1

(intuitive) responses tend to be relatively effortless and less dependent on

availability of cognitive resources. Given this, we could reasonably predict

that probability matching should require less cognitive effort and resources.

But research, reviewed below, has reached the opposite conclusion. This

research suggests instead that probability matching is the result of effortful

cognition and that maximizing occurs when cognitive resources are taxed.

For example, a number of studies have demonstrated that probability

matching is associated with more effort or cognitive complexity than max-

imizing. Unturbe and Corominas (2007) and McMahon and Scheel (2010)

both asked participants to report any strategies they used during the binary

prediction task and found that the complexity of the patterns or rules

reported by participants were inversely correlated with their tendency to

choose the more probable option. In other words, probability matchers

reported using more complex rules or strategies than did maximizers, a find-

ing that appears to be at odds with the notion that probability matching is

“dumb” and maximizing is “smart.” Instead, it would seem to support

the notion of “smart matching.”

In addition, studies have also demonstrated that probability matching

decreases under conditions of increasing cognitive load. (Recall that if prob-

ability matching is intuitive we would predict the opposite.) Wolford,

Newman, Miller, and Wig (2004) demonstrated that giving participants a

dual task that competed for left-hemisphere resources resulted in a decrease

in probability matching. This result, however, was not replicated by Otto,

Taylor, andMarkman (2011) who failed to find any difference between rates

of probability matching and maximizing under conditions of load versus no

load. Nevertheless, even this result is potentially problematic for a dual-

system account of probability matching (in which probability matching is

“dumb”), because this account implies that probability matching ought to

increase under load, which was not observed inWolford et al. or in Otto et al.

As an alternative to manipulating working memory or cognitive load,

researchers have recently attempted to reduce the engagement of the delib-

erative system through manipulations that decrease the supply of glucose

available to the brain (e.g., Donohoe & Benton, 1999; Masicampo &
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Baumeister, 2008). If probability matching is “dumb,” we would predict

that a lower supply of glucose, on which deliberation is claimed to be depen-

dent, should lead to more matching, but in a study by McMahon and Scheel

(2010), it was found that depleting glucose led to more maximizing and less

probability matching. Again, this result could be taken to imply that prob-

ability matching is “smart” after all.

However, there are two ways to interpret the results of the studies pres-

ented above. One interpretation is that probability matching is not “dumb”

(the product of effortless intuition), but “smart” (the product of effortful

deliberation). While this is a viable interpretation, if adopted, we have to

reconcile it with the evidence provided earlier that suggests that matching

is “dumb.” Another possibility is that probability matching is intuitively

generated as a response strategy, but it is effortful to implement in the stan-

dard binary prediction task. That is, concluding that you should allocate out-

come predictions in proportion to their probability may be intuitive, but

actually implementing a matching strategy is relatively effortful (e.g.,

because it requires monitoring the relative frequencywith which predictions

are made over a series of trials). By contrast, once you have decided to max-

imize (even if arriving at that strategy was effortful), all you have to do to

implement it is to predict the same outcome over and over again. Currently,

we know of no research that directly tests these two possible interpretations

of why the prevalence of probability matching decreases under load, so we

cannot yet definitively answer whether or not the findings described above

challenge the notion that probability matching is “dumb.”

Some researchers do argue, however, for the “smart” interpretation of

probability matching, suggesting specifically that it represents misapplication

or overgeneralization of the usually adaptive tendency to seek patterns or

predictability in outcomes observed over time. This account rests on the

notion that people tend to have misconceptions and misperceptions of ran-

domness (see Falk & Konold, 1997 for review). Proponents of the “smart”

account of probability matching argue that participants do not believe that

the sequence they are exposed to in the binary prediction task is truly ran-

dom, and they attempt to outperform the optimal maximizing strategy by

finding a predictable outcome pattern that can be exploited to achieve better

predictive accuracy (Gaissmaier & Schooler, 2008; Peterson & Ulehla,

1965). By this account (henceforth called the pattern-search hypothesis),

probability matching is seen as a by-product of pattern search, in the sense

that, if there actually was a predictable outcome pattern, exploiting it would

produce predictions that are made in proportion to the relevant outcome
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probabilities. Because pattern search seems to require effortful deliberation,

any resulting probability matching could be viewed as “smart” in compar-

ison to the relatively “dumb” maximizing strategy of simply predicting the

more likely outcome on every trial.

In support of the pattern-search hypothesis, several researchers have

demonstrated that increasing the perceived randomness of the sequence,

either by emphasizing its randomness (Morse &Runquist, 1960) or by mak-

ing it appear more random3 by increasing the frequency of alternations

between different outcomes (Wolford et al., 2004), leads to more maximiz-

ing behavior. They argue that this is because the increase in apparent ran-

domness of the outcome sequence disrupts participants’ initial assumption

that the sequence is nonrandom, leading participants to abandon their pat-

tern search.

Further support for the pattern-search account comes from probability

matchers’ superior ability to detect patterns when they do exist.

Gaissmaier and Schooler (2008) divided a typical binary prediction task into

two halves. In the first half, participants were presented with a truly random

sequence. From these predictions, Gaissmaier and Schooler classified partic-

ipants as either probability matchers or maximizers. In the second half of the

experiment, participants continued the binary prediction task, but this time,

there was a nonrandom pattern in the outcome sequence. Probability

matchers were significantly more likely to detect and exploit this pattern

(as measured by increased prediction accuracy) than were maximizers.

Gaissmaier and Schooler’s work provides evidence that a probability-

matching strategy, hypothesized to be grounded in pattern search, can con-

vey an advantage in situations where patterns exist and is in this sense smart.

But their results do not provide evidence that pattern search necessarily cau-

ses probability matching.

In fact, we provide evidence in Koehler and James (2009) against such a

causal relationship. We asked participants to complete a computer-based

binary prediction task in which they were to guess the color of marbles

drawn from a bag. The bag consisted of a mix of 30 green marbles and

10 red marbles.4 Both groups participated in a learning phase in which they

3 Ironically, this actually makes it less random, but the important aspect is how it appears to participants.
4 For ease of discussion, we will always refer to green as being the more probable colour. In fact, this was

counterbalanced so that for half of the participants, the contingencies were reversed and there were

30 red marbles and 10 green marbles.
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were told that 40 marbles had been drawn randomly with replacement from

the bag. Participants learned about the results of this set of draws in one of

two ways: they were either told that result was 30 green marbles and 10 red

marbles (the aggregate learning phase), or each marble was displayed serially

as it was drawn (the serial learning phase). Note that those in the serial learn-

ing phase had the opportunity to search for patterns in the sequence of draw

outcomes, but those in the aggregate learning phase did not.

After completing the learning phase, participants advanced to the testing

phase in which they were asked to predict the colors of 20 more marbles that

would be drawn from the bag (again with replacement). For each correct

prediction participants could earn $0.50. Participants either made their

guesses one at a time with no feedback on their accuracy (the serial testing

phase), or they indicated in aggregate how many times they intended to

guess green and how many times they intended to guess red (the aggregate

testing phase). Again, those in the serial testing phase had the opportunity to

include pattern information in their response if they chose to, while those in

the aggregate condition did not.

If probability matching is the result of a pattern search, then we would

expect those given the opportunity to observe (serial learning) and exploit

(serial testing) pattern information to exhibit more probability matching. In

fact, we found no difference between those with access to pattern informa-

tion at learning or test and those without it in terms of their prediction

strategies. All conditions showed an equal and high degree of probability-

matching behavior.

The results of Koehler and James (2009) suggest that, while pattern sea-

rch may indeed be associated with probability matching as Gaissmaier and

Schooler demonstrated, it does not (at least explicitly) appear to cause par-

ticipants to probability match. More generally, it is not clear why searching

for patterns itself would lead participants to probability match, assuming that

they have not been successful in finding a pattern. Why couldn’t a partici-

pant implement a maximizing strategy (once the outcome with the higher

probability has been identified) while also keeping an eye out for patterns

that, if discovered, could be exploited for greater predictive accuracy? In

fact, as maximizing seems relatively effortless to implement, it would seem

like the ideal candidate strategy to use while devoting the bulk of one’s cog-

nitive resources to searching for patterns.

Given that pattern information is not necessary for probability matching,

and that searching for patterns does not actually require the use of a

probability-matching strategy, it seems premature to conclude that pattern
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search causes probability matching. Indeed, the alternative interpretation

(that probability matching leads to pattern search) seems equally plausible.

One could argue that, having decided to probability match (arising from

expectation matching by the intuitive system), participants realize that they

are only part way to perfectly predicting the outcome. The vital piece of

information they are missing is how to order their predictions. To fill the

gap, participants begin searching for patterns. This is, of course, an ad hoc

explanation that requires testing. But it does illustrate that we should be cau-

tious in concluding that pattern search causes probability matching.

Along similar lines, if we assume that probability matching causes pattern

search (instead of the other way around), we can also offer an alternative

explanation of the work investigating the role of perceived randomness in

dual choice tasks. Recall that when outcomes were constructed so that they

appeared more random (i.e., by introducing a higher rate of alternation), it

led to more maximizing behavior. Currently, this is the strongest evidence

for a pattern search account (even though it is not a direct test of it), largely

because it establishes causation. Assuming that pattern search does not cause

probability matching requires some alternative explanation of this data. For

illustrative purposes, imagine that you are engaged in a search for patterns

because you have decided to probability match. As it becomes obvious

through search that you will not find any pattern information, you may

revisit (deliberate on) your initial strategy choice, which may cause you

to switch to maximizing. Thus, if the sequence appears to have no patterns,

you abandon your pattern search sooner. This interpretation is not all that

different from that of the original researchers investigating perceived ran-

domness and matching, except that it assumes that abandoning pattern sea-

rch leads participants to deliberate. Indeed, in the original research, it is not

clear why or how participants are said to arrive at a maximizing strategy after

they abandon their matching approach. Apparently, it is assumed that max-

imizing is what participants would have done if they had not chosen to

match instead, but this assumption remains unelaborated in the

original work.

In summary, is there any conclusive evidence to suggest that probability

matching is smart? The short answer, we argue, is not yet. Manipulations

designed to tax cognitive resources have not been shown to increase

probability-matching behavior, which we would definitely expect on the

“dumb matching” account. But more work needs to be done to determine

whether the results from concurrent load and depletion manipulations come

about because probability matching is actually “smart,” or simply because it
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takes more effort to implement. Those arguing that probability matching

represents an overgeneralization of a usually intelligent search for patterns

in outcome sequences might have a good case, but they still need to establish

a solid causal relationship. However “smart” the mechanism that produces

it, probability matching that arises from a fruitless search for patterns in a

truly random sequence is at least “dumb” in the sense of being suboptimal

and costly in that particular setting.

5. DUMB MAXIMIZING

Arguments that probability matching is the result of a deliberative sea-

rch for patterns have largely neglected to discuss where maximizing comes

from. It remains unclear why a strategy that is the result of a calculated anal-

ysis, according to those who think maximizing is smart, is also the default

that people revert to when they are too taxed to search for patterns. In this

case, it seems that maximizing is taking on the role of the dumb strategy, but

this begs the question, is there a “dumb” mechanism by which maximizing

can be produced?

There is, in fact, substantial evidence, suggesting that maximizing can

arise from system 1 mechanisms. Although little work has investigated the

issue directly, many studies have demonstrated maximizing (rather than

matching) in populations that are not prone to, or efficient at carrying

out, extensive deliberation. For example, children have been found to max-

imize when they are very young and do so even when they cannot report

explicitly which event is more likely (Derks & Paclisanu, 1967). Further-

more, maximizing has been reported in a number of nonhuman species

(Parducci & Polt, 1958; Wilson, 1960), who presumably do not possess

the deliberative ability required to identify maximizing as the superior strat-

egy in terms of expected value. Aside from these findings, there is also the

work presented earlier demonstrating that when under cognitive load

(Wolford et al., 2004) or when deprived of glucose (McMahon & Scheel,

2010), maximizing behavior also increases. Under these situations, we

would expect intuitive responding, so this lends further support to the

notion that there may be a “dumb” variant of maximizing.

What is the mechanism behind this intuitive, dumb maximizing? As dis-

cussed earlier, it could arise from the relative simplicity of implementing the

maximizing strategy, but it could also be the result of basic operant condi-

tioning. In situations with outcome (or reward) feedback, predicting the

more probable outcome will be rewarded more frequently than will
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predicting the less likely outcome. Given this asymmetry of reward, operant

conditioning eventually should produce maximizing behavior. Indeed, it

was the assumption of the early animal literature investigating binary predic-

tion problems that maximizing should be the default (Parducci & Polt, 1958;

Wilson, 1960).

Despite the clear opportunity of a role for operant conditioning in pro-

ducing maximizing behavior, little attention has been paid to it in recent

work on human probability matching. McMahon and Scheel allude to it

in arguing that glucose depletion should lead to maximizing because

“predicting the most frequent outcome produces the highest rate of

reinforcement” (McMahon & Scheel, 2010, p. 450). The general assump-

tion in the recent literature, however, is that maximizing should prevail

because it is the (deliberatively) rational solution to the binary prediction

task. From a dual-system perspective, operant conditioning represents an

intuitive operation of system 1, as opposed to deliberative strategy genera-

tion and comparison processes arising from system 2. But operant condition-

ing is quite distinct from the intuitive process (expectation matching) we

argued gave rise to probability matching. Although they are both intuitive,

the processes differ in two key ways: (a) the effects of operant conditioning

are bottom-up (data driven) and potentially unavailable to awareness,

whereas expectation matching produces a top-down (theory driven) solu-

tion that is highly available to awareness; and (b) operant conditioning

can foster maximizing only in situations where outcome or reward feedback

is present, while this limitation does not pertain to expectation matching.

Each of these points has important ramifications for the predictions of a

“dumb maximizing” account and also for how we can understand dumb

maximizing within the context of dual systems, so we will discuss each of

these points in turn.

To our knowledge, little research currently exists on how or when oper-

ant conditioning might influence strategy in a binary prediction task. The

only available evidence that we know of comes in the form of response

times. Participants are generally slower to choose the less probable option

than they are to choose the more probable option in the binary prediction

task (Otto et al., 2011; Unturbe &Corominas, 2007).5 One interpretation of

this finding is that participants are slower when making a prediction of the

5 One initial problem with this finding is that we would expect participants to be faster if they are choos-

ing the same response twice in a row, which they would domore often with the more probable option.

More careful analysis is needed to ensure that reaction time is slower for low probability outcome pre-

dictions independent of whether it is a repeated choice or not.
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lower probability outcome because operant conditioning is pushing them to

choose the more probable option, and the conflict takes time to resolve.

This interpretation suggests the two strategies (top-down matching and

bottom-up maximizing) can jointly influence execution of participants’ pre-

dictions (Newell, Koehler, James, Rakow, & van Ravenzwaaij, 2013), but

this interaction has not been extensively studied. For instance, it is not clear

to what extent operant conditioning impacts strategy choice, or whether its

operations are available to conscious awareness. To illustrate, consider a par-

ticipant who has chosen, via a top-down strategy selection process (e.g.,

guided by expectation matching), to probability match. How will operant

conditioning impact this participant’s choices? It is possible that the impact

will be small or inconsequential in comparison to their explicitly adopted

strategy to probability match and will therefore have little effect. Alterna-

tively, if the effects of operant conditioning are available to awareness, it

might cause the participant to deliberate and thereby increase the incidence

of top-down maximizing. Finally, operant conditioning could have an

unconscious and subtle influence on choices leading the participant to blend

maximizing and matching without being explicitly aware of taking that

approach.6

Unfortunately, the current literature does not provide much basis for dif-

ferentiating between these alternative accounts. If operant conditioning is

having some effect on choices, we would expect to see more maximizing

over time, in tasks that involve many trials and outcome or reward feedback.

There is substantial evidence that the rate of maximizing increases over trials

(Bereby-Meyer & Erev, 1998; Edwards, 1961), but there has been little con-

trolled work done to investigate whether operant conditioning is the cause

of this trend. In addition, the data do not allow determination of whether the

effects of operant conditioning might be conscious or unconscious. If, for

example, this trending is the result of operant conditioning encouraging

deliberation, we might expect some individuals to switch abruptly from

another strategy (e.g., matching) to strict maximizing. But, if operant con-

ditioning is providing an unconscious nudge, the change may be more grad-

ual and incomplete; that is, it may never reach strict maximizing, but might

instead exhibit what has been referred to as overmatching (Friedman &

Massaro, 1998; see also Vulkan’s, 2000 review). When looking at group

6 This list of potential influences of operant conditioning is intended to be illustrative rather than

exhaustive.
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means, however, as is typically reported in the literature, it is difficult to dis-

tinguish these two possibilities.

It has not been established that overmatching is the result of operant con-

ditioning (let alone whether or not the effect of that conditioning is con-

scious, unconscious or both), but there are a variety of ways to test

whether effects of operant conditioning on binary prediction are (a) con-

scious and (b) contributing to overmatching. If operant conditioning fosters

overmatching, for example, we should see overmatching occurring more

frequently in situations with feedback and many trials. It should be a less

common finding in studies with few trials, no feedback, and “described”

contingencies (i.e., in which the relevant outcome probabilities are ex-

plicitly provided to participants rather than having to be estimated from

trial-by-trial observation of outcomes). If operant conditioning is leading

to probability matching unconsciously then, when queried, overmatchers

should still report that probability matching is the optimal strategy. Such

a finding would provide stronger evidence that a strategy approaching max-

imizing (such as overmatching) need not be coupled with explicit endorse-

ment of a maximizing strategy. In fact, it could coexist with the actual intent

to probability match! We hope to investigate this possibility in future

research.

The second important feature of “dumb maximizing” worth discussion

is that it can only operate in situations that include feedback (or, more spe-

cifically, administration of reward). This feature suggests some promising

ways to test, in future research, whether operant conditioning is at work

in dumb maximizing. For example, by varying whether or not participants

receive feedback, we can also vary whether or not it is possible for operant

conditioning to influence responses. Thus, manipulations that encourage

reliance on system 1 operations (such as the cognitive load and glucose

manipulations discussed earlier) should only lead to more maximizing

behavior in situations with feedback, as under those circumstances greater

reliance on processes of operant conditioning should foster maximizing.

If feedback is not provided, we would expect these manipulations to increase

probability matching (assuming that matching and maximizing are equated

on implementation effort), as the only remaining intuition, when operant

conditioning is not at work, is the expectation generation process that we

have argued produces “dumb” matching.

It is also worth noting that feedback is only useful for producing operant

conditioning that will influence binary prediction if it serves as a reward or

punishment that is contingent on predictions. For this to be the case, reward
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administration must follow a prediction of some sort. To use the die prob-

lem, we have referenced throughout this chapter as an example, if you

predicted green and the die comes up green, you receive a reward and that

response is reinforced. If the die comes up red, you fail to receive a reward

and that response is negatively reinforced. But if you made no guess, there is

no possibility of reward or of reinforcement. Indeed, research shows that

feedback improves performance on the binary prediction task, but only if

it follows a prediction made by the participant. Observation-only trials do

not improve performance (Newell & Rakow, 2007; Tversky & Edwards,

1966), consistent with the operant-conditioning account.

One final piece of evidence supporting the notion that operant condi-

tioning encourages maximizing behavior even when probability matching

is the explicitly selected strategy comes from work by Newell and Rakow

(2007). In their version of the binary prediction task, outcome probabilities

were fully described to participants before they made any guesses. Following

this description, participants made a series of predictions with or without

feedback. Newell and Rakow found that performance drifted toward max-

imizing over time to a significantly greater extent in the feedback condition

than in the no-feedback condition. This result can be seen as something of a

puzzle as the explicit system already had all the necessary information (i.e.,

the relevant outcome probabilities) to make an optimal choice before any

predictions were made or any outcomes observed. From a rational choice

perspective, the information provided by feedback was completely extrane-

ous. One way of making sense of these data is to argue that the trend toward

maximizing was brought on by operant conditioning, which is necessarily

inactive in conditions without feedback, but in conditions with feedback,

it is able to slowly push choices toward maximizing. While many inter-

pretations of this finding are possible, it is consistent with the notion that

feedback encourages optimal responding through operant conditioning.

In summary, it is highly plausible that maximizing may arise, over the

course of trial-by-trial experience, as the consequence of bottom-up pro-

cesses (e.g., through mechanisms of operant conditioning) that might be

characterized as relatively “dumb” (e.g., in comparison with “smart” delib-

erative processes that lead to top-down identification of maximizing as the

superior predictive strategy). Some supportive evidence for dumb maximiz-

ing comes from studies demonstrating (a) the importance of active predic-

tion in increasing maximizing rates over trials and (b) an increase in

maximizing rates over trials with feedback even in fully described prediction

tasks, as well as from response time data.
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6. CONCLUSION

An overarching theme of this chapter is that probability matching, and

maximizing, behavior should not necessarily be taken as the product of a

single process. Instead, there may be different processes, some relatively

“smart” and others relatively “dumb,” that give rise to either type of behav-

ior depending on the circumstances in which it is observed. We are not the

first to note that there might be different variants of probability matching

(see, e.g., Gaissmaier & Schooler, 2008; Otto et al., 2011). This chapter

highlights the possibility that there might be more than one variant of max-

imizing, as well.

We find the dual-system approach to be helpful in organizing discussion

of variants of probability matching and maximizing in terms of the mental

operations that produce them. The dual-system approach, as it has been

applied to date to the phenomenon of probability matching, has largely

drawn attention to the “dumb” (intuitive, fast, effortless) variant of matching

and to the “smart” (effortful, slow, deliberative) variant of maximizing, both

in our own work and in that of other researchers (Kogler & Kuhberger,

2007; West & Stanovich, 2003). Our goal in this chapter was to expand

the dual-system approach to encompass the complementary possibilities

of “smart” matching and “dumb” maximizing. Without a more complete

picture, we are left with the riddle of why children and nonhuman animals

sometimes conform more closely in their predictions and decisions than do

otherwise more sophisticated adult humans to the prevailing model of ratio-

nal choice.
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