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Abstract
It is debated whether close-in giants planets can form in-situ and if not, which mechanisms are responsible for their migration.
One of the observable tests for migration theories is the current value of the orbital obliquity, i.e. the angle between stellar
equatorial plane and orbital plane. But after the main migration mechanism has ended, the combined e�ects of tidal dissipation
and the magnetic braking of the star lead to the evolution of both the obliquity and the semi-major axis. The observed correlation
between e�ective temperature and measured projected obliquity has been taken as evidence of such mechanisms being at play.
Here I present an improved model for the tidal evolution of the obliquity. It includes all the components of the dynamical tide for
circular misaligned systems. It uses an analytical formulation for the frequency-averaged dissipation for each mode, depending
only on global stellar parameters, giving a measure of the dissipative properties of the convective zone of the host as it evolves
in time. The model also includes the e�ect of magnetic braking in the framework of the double zone model. This results in
the estimation of di�erent tidal evolution timescales for the evolution of the planet’s semi-major axis and obliquity depending
on the properties of the stellar host. This model can be used to test migration theories, provided that a good determination of
stellar radii, masses and ages can be obtained.

1 Introduction
Hot Jupiters, planets with masses comparable to that of

Jupiter and orbital periods shorter than 10 days, challenge
our understanding of planet formation and evolution. After
the �rst detection of an exoplanet orbiting a solar-like star,
which was a hot Jupiter, it was soon conjectured that those
planets cannot form in situ in the protoplanetary disk. They
would rather nucleate at several astronomical units from the
star, beyond the snow line, where the formation of a solid
core would allow the rapid gas accretion required to form a
giant planet. This formation scenario compelled deeper stud-
ies of the processes involved in planetary migration, to bring
the planet from its formation site to where it is observed, at
a few tenths of an AU from the star.

Di�erent scenarios have been put forward to explain plan-
etary migration, they can be broadly divided in two cate-
gories. The �rst involves smooth interactions with a proto-
planetary disk (Goldreich & Tremaine, 1980; Lin et al., 1996).
The second involves gravitational interactions with other
massive bodies (Rasio & Ford, 1996; Nagasawa et al., 2008)
which would put the proto-hot Jupiter on a very eccentric
orbit, eventually circularized by tidal interactions with the
host. The former class of scenarios would in general result
in short-period orbits that are well aligned with the spin axis
of the host, while the latter naturally explains why a number
of hot-Jupiters’ orbits have non-null measured obliquities.

Observations seem to indicate that the value of the obliq-
uity of hot-Jupiters is correlated with the e�ective tempera-
ture of the host. Most stars cooler than about 6250 K host
mostly well-aligned planets, whereas there is a broad disper-
sion in the value of obliquity for hotter stars (Winn et al.,
2010; Albrecht et al., 2012). This has been interpreted as evi-
dence of tidal evolution, because tidal dissipation is expected
to be more e�cient in stars having important convective en-

veloppes, and cooler star’s spin would realign with the orbit
more rapidly. Because the mass of the outer convection zone
on the main sequence decreases rapidly with increasing stel-
lar mass after 1.2 M�, which corresponds to an e�ective tem-
perature of Teff ≈ 6250 K, this would naturally explain the
sharp increase in observed projected obliquities that occurs
around this e�ective temperature. This interpretation would
favor a single migration mechanism, capable of producing
randomly distributed obliquities.

However there is a major �aw in this reasoning: if tides are
e�cient at damping the obliquity of hot-Jupiters, they would
also lead to signi�cant orbital decay, and the planet would be
destroyed before re-alignment. To overcome the problem, Lai
(2012) proposed that tidal dissipation e�ciency can be dif-
ferent for di�erent processes, e.g. spin-orbit alignment and
orbital decay. This would be a natural outcome of the dy-
namical tide theory, where di�erent components of the tidal
potential, projected onto spherical harmonics, would excite
di�erent modes of oscillations of the star, and have di�erent
dissipation e�ciencies.

Using the tidal prescription proposed by Lai (2012), Valsec-
chi & Rasio (2014) have computed the coupled evolution of
the orbital elements and stellar spin of �ve representative
systems, taking into account the combined e�ects of tides,
stellar wind mass loss, magnetic braking and stellar evolu-
tion. Their results show that, accounting for all the relevant
physical mechanisms, the current properties of the systems
they consider can indeed be naturally explained. However,
an important limitation of this study is the absence of a re-
liable estimation for the tidal quality factor of the obliquity
tide. The principles of wave excitation and damping con-
stitute an intricate problem, and there is no agreement to
date on the estimation of the tidal quality factor associated
with di�erent components of the tides from �rst principles
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(Ogilvie, 2013). Consequently, Valsecchi & Rasio (2014) con-
sider the tidal dissipation quality factor as an ajustable pa-
rameter. For similar reasons, they consider that the rate of
angular momentum loss due to magnetic braking can also be
simply scaled di�erently for di�erent host. Thus in Valsecchi
& Rasio (2014), both parameters are allowed to vary within
a broad range of values (instead of being imposed by stel-
lar properties) to reproduce the observations. While this ap-
proach validates Lai’s basic idea, it is not enough to accu-
rately constrain the distribution of the obliquity of the pop-
ulation of known hot Jupiters before tidal evolution.

In this paper, we compute the tidal dissipation e�ciency
associated with di�erent components of the tidal potential
using the frequency-averaged formulation for dissipation in
convective zones obtained by Ogilvie (2013). In a series of pa-
per (Mathis, 2015; Lanza & Mathis, 2016; Bolmont & Mathis,
2016; Gallet et al., 2017; Bolmont et al., 2017), this approach
has already shown the importance of the evolution of stellar
structure and evolution, for the frequency-averaged dissipa-
tion e�ciency. This compels the use of a double-zone model,
one zone representing the radiative core and the other the
convective envelope, and also account for the evolution of
stellar structure in time. We also use a double-zone semi-
empirical model for magnetic braking, (Spada et al., 2011), to
account for the evolution of stellar rotation.

The paper is organized in the following way : in Section 2,
we compute the frequency averaged-dissipation for di�erent
modes involved in the evolution of the semi-major axis and
inclinaison, and we discuss its dependance with mass and
rotation. In Section 4, we present discuss the main results
and perspectives of this work.

2 The double-zone weak friction model for
tidal evolution

We consider a star of mass M?, which we model as a de-
formable core of homogenous density ρc and mean radiusRc

in uniform rotation, surrounded by an enveloppe of homoge-
nous lesser density ρe and mean radius R? also rotating uni-
formly at the angular frequency Ωe, but not necessarily at the
same as that of the core Ωc. We consider here the tides raised
by a close-in planet orbiting the star, and we neglect the tides
raised in the planet. We consider that the tide-generating po-
tential of the planet is that of a mass-point. The planet gen-
erates a time-varying tidal potential Ψ which changes the
shape and as a result, the exterior potential of the star. In po-
lar coordinates, the time-varying tidal potential produced by
the point-like planet can be expanded in terms of spherical
harmonics Y m

l of degree l and order m. For an eccentric or-
bit, Ψ must be expanded for an in�nite number of terms. But
for a circular orbit, not necessarily aligned in the equatorial
plane of the reference frame, there is a �nite number of tidal
components for any given value of l. Here we are interested
in the evolution of the inclination of the orbit resulting from
the dissipation of the tides in the star, so we limit our study
to the case of circular orbits.

When the amplitude of the tidal disturbance is small, as
is generally the case for close-in exoplanetary systems, and
for axisymmetric bodies, the tidal response of the perturbed
body can be determined by treating each component of the
tidal potential independently, and considering that the total
response is simply the sum of each component. Each tidal

component rotates with the angular velocity ω given by

ω = (l − 2p)Ω0, (1)

where p is an integer with 0 ≤ p ≤ l that arises from the
inclination of the orbital plane. This de�nes the tidal fre-
quency in the inertial frame. We associate to each component
of the tidal potential a Love number kml (ω), that quantify the
frequency-dependent response of the star to tidal forcing.

2.1 Tidal dissipation
In the presence of dissipation, the perturbed external grav-

itational potential of the star involves complex Love num-
bers and the imaginary part of the Love numbers Im[kml (ω)]
quanti�es the part of the response that is out of phase with
the tidal forcing, and is associated with transfers of energy
and angular momentum.

The rates of transfer of energy and of the axial component
of angular momentum from the orbit to the body, measured
in an inertial frame, de�ne the tidal power P , and the tidal
torque Tz, respectively. So for each component of the tidal
potential, averaged over azimuth in the case m = 0, it can
be shown (Ogilvie, 2013) that P = ωT and Tz = mT , where
T depends on the amplitude of the tidal component and on
Im[kml (ω)]. For m = 0, there can be transfer of energy from
the orbit to the star, but no associated change in the axial
component of angular momentum of the star. In fact, even in
the absence of a torque, the m = 0 mode is excited because
the axisymmetric tidal deformation modulates the moment
of inertia of the body.

Here, we use an approximation similar to the one made in
the equilibrium theory tides. We consider that the tidal re-
sponse resembles the hydrostatic one in the absence of dis-
sipation, and that dissipation introduces a small frequency-
dependent phase lag in the response of the body. However,
contrary to the usual equilibrium theory of tides, we do not
impose that all components have the same phase-lag. So for
each component of the tidal potential, we assume that dissi-
pation introduces separate frequency-dependent phase-lags
∆m

l (ω) which can be related to the imaginary part of the
Love numbers (Efroimsky & Makarov, 2013; Ogilvie, 2013)
with

Im[kml (ω)] = |kml (ω)| sin ∆m
l (ω) (2)

where Im[kml (ω)] has the same sign as ω̂. As detailed in
Ogilvie (2014), typically Re[kml (ω)] is a quantity of order
unity, only weakly dependent on m and ω, and can be well
approximated by its hydrostatic value. The hydrostatic Love
number kl is a real quantity and does not depend on m. Its
evaluation for a �uid body is a classical problem involving
the Clairaut’s equation. In the weak friction approximation,
we thus consider that |∆m

l (ω)| << 1 so that

|kml (ω)| ≈ kl (3)

and
Im[kml (ω)] ≈ kl∆m

l (ω). (4)

In general, the tidal response involves resonances with
stellar oscillations when the tidal frequency matches that
of an appropriate mode. Tidal dissipation has consequently
a complex dependence on the tidal frequency, and thus on
both the rotational and orbital period. Here, we use a simpli-
�ed model for tidal dissipation, which does not involve the
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complicated details of the frequency-dependance of the re-
sponse functions, and neglect the enhancement of dissipa-
tion due to resonances. Indeed, as shown by Ogilvie (2013),
the typical level of dissipation can be approximated using
a simple analytical formulation of the frequency-averaged
dissipation

∫∞
−∞ Im[kml (ω)]dω/ω, obtained by means of an

impulse calculation. Taking-up on their work, we use here∫∞
−∞ Im[kml (ω)]dω/ω as a measure of the tidal response in

the low-frequency part of the spectrum, where inertial waves
are found. Their solution depends on the internal structure of
the body, either homogeneous or double-layered, but makes
no assumption on the details of dissipation mechanism, so it
is smooth and free from boundary-layers. Their derivations
are done for arbitrary degree and order of the tidal compo-
nents. In Ogilvie (2013), the computation of the frequency-
averaged dissipation

∫∞
−∞ Im[kml (ω)]dω/ω corresponding to

inertial waves for a piece-wise homogeneous body is given
in Appendix B for the l = m = 2 mode. Here we need
to compute this value for arbitrary values of m. The de-
termination of this quantity requires the formulation of the
non-wavelike tide associated to the inhomogeneous Helmotz
equation (Eq. 49, ibid.), expressed under the form of Eq. 117
(ibid.) for the two-layered �uid. The non-wavelike part is
an instantaneous hydrostatic response to the tidal potential,
parametrised in Ogilvie (2013) through coe�cients B1 and
B2, associated to a tidal potential of the form A(r/R?)lY m

l ,
whereR? is the mean radius of the free surface the star. They
are found by solving the matching conditions (Eq. 119, ibid.)
and (Eq. 120, ibid.).

In this way, the computation of
∫∞
−∞ Im[kml (ω)]dω/ω only

requires the knowledge of M?, Mc, R?, Rc and Ωe. We then
de�ne an average phase-shift ∆̄m

l for the tidal component of
degree l and orderm obtained using the frequency-averaged
formulation of Ogilvie (2013)∫ ∞

−∞
Im[kml (ω)]

dω

ω
≈ kl

∫ ∞
−∞

∆m
l (ω)

dω

ω
≡ kl∆̄m

l . (5)

Up to this point, all our derivations are valid for arbitrary
value of l and m, and in principle, they allow the computa-
tion of the tidal response for any spherical harmonic of the
multipole expansion of the tidal potential. The contribution
of the spherical harmonic of degree l is proportional to rl, so
usually only the quadrupolar terms are retained in the formu-
lation of the temporal evolution of orbital elements. While
the tidal frequency can be positive or negative, the physi-
cal forcing frequency is positive so that the (m, p) compo-
nent is physically identical to the (−m, l − p) component.
Moreover, since we use a frequency-averaged estimation of
the tidal dissipation e�ciency, we assume that dissipation is
independent of the value of p, there are three components
for which the dissipation can be computed corresponding to
m = 0, 1 and 2.

2.2 Stellar angular momentum modelling

The angular momentum of the starL? = L?L̂? is modelled
with core-envelope decoupling under the assumptions of the
double-zone model (MacGregor & Brenner, 1991),

L? = Lc + Le = IcΩc + IeΩe (6)

where Ic and Ie are the moment of inertia for the core and
the enveloppe respectively. The core and the enveloppe are
assumed to rotate as solid bodies with di�erent angular ve-
locities. We simply parametrise the transfer of angular mo-
mentum between the zones by a quantity ∆L de�ned as

∆L =
IcIe
Ic + Ie

(Ωc − Ωe) (7)

at a rate determined by a coupling time-scale τc. We follow
the evolution of the star from its formation at until the end
of its main sequence, i.e. before the core starts contracting.
Initially the star is fully convective and is assumed to rotate
rigidly. We consider a phase of disk-locking, where the net
e�ect of interactions with the disk is that of keeping the sur-
face angular velocity of the star constant for the disk lifetime,
i.e.

dΩe

dt
= 0, while t ≤ τdisk (8)

The disk lifetime τdisk may vary, but it is in general shorter
than the Pre-Main-Sequence (PMS) phase, as observations
show that most primordial disks have disappeared by the �rst
10 Myr (Ribas et al., 2014). As the radiative core develops, a
quantity of material contained in a thin shell at the base of
the convective zone, with a velocity of Ωe, becomes radiative,
producing an angular momentum transfer towards the core

dL

dt

∣∣∣∣
growth

=

(
2

3
R2

c

dMc

dt

)
Ωe (9)

From the moment the disk disappears, the star experiences
angular momentum loss through its magnetized wind. We
assume that because of wind braking, the enveloppe loses an-
gular momentum at a rate given by the following parametric
formula

dLe

dt

∣∣∣∣
wind

= Kw

(
R?

R�

) 1
2
(
M?

M�

)− 1
2

min
(
Ω3

e ,Ω
2
satΩe

)
,

(10)
whereKw determine the braking intensity and Ωsat is the an-
gular frequency threshold de�ning a saturated (when Ωe ≥
Ωsat) regime of angular momentum loss.

In �ne, the evolution of the stellar angular momentum is
modelled with the following di�erential equations

dLc

dt
= −∆L

τc
+

dL

dt

∣∣∣∣
growth

(11)

dLe

dt
= +

∆L

τc
− dL

t

∣∣∣∣
growth

− dLe

dt

∣∣∣∣
wind

(12)

This neglects the e�ect of the tidal torque on the stellar rota-
tion, but we are interested here in quantifying the di�erent
dissipation e�ciencies of distinct tidal component, a study of
the joined evolution of semi-major and obliquity will be pre-
sented in a forthcoming paper. We use the prescription given
in Spada et al. (2011) for the values of Kw, Ωsat and τdisk

for a solar-mass star and simply divide Kw by ten (Barker &
Ogilvie, 2009) to re�ect the less e�cient loss of hotter stars.
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m=0 m=1 m=2 m=0 m=1 m=2

Figure 1: Left: Frequency-averaged modi�ed tidal quality factor corresponding to the sectoral harmonics component of the
tidal potential <Q

′m
2 > for a solar-like star (left) and for an F-type star (right). The colors correspond to di�erent values of m as

indicated on the �gure. The constantQ′ value of the equilibrium tide calibrated on hot-Jupiters is also shown with dotted-lines

3 Results
In Figure 1, we show the resulting frequency-averaged

modi�ed tidal quality factor

< Q
′m
l >=

3

2kl∆̄m
l

(13)

for the l = m = 2 sectoral harmonics, the l = 2,m =
0 zonal harmonic, and the l = 2,m = 1 tesseral har-
monic. The e�ect of stellar structure and evolution on
the frequency-averaged dissipation of the sectoral harmonic
have already been computed in other studies (Mathis, 2015;
Lanza & Mathis, 2016; Bolmont & Mathis, 2016; Gallet et al.,
2017; Bolmont et al., 2017). Here we present it also for the
zonal and tesseral harmonic. In the impulsive forcing prob-
lem, the value of m a�ects the energy dissipated by inertial
waves through the coupling of the spheroidal and toroidal
wavelike velocity components due to the Coriolis force. The
only di�erence between the energy transfer from the sec-
toral harmonic and the zonal and tesseral ones stems from
the contribution of the toroidal part, related to the coupling
coe�cient q̃l,

q̃l =
1

l

(
l2 −m2

4l2 − 1

)1/2

(14)

Thus them = 1 andm = 0 components are almost identical
due to similar coupling coe�cient values.

When the obliquity is large, all the components of the tidal
potential participate to tidal dissipation. The dominant term
is then the <Q

′1
2 > component, which correspond to a tidal

dissipation that is more e�cient by three orders of magnitude
than in the classical equilibrium tide. This results in charac-
teristic timescales of evolution much shorter than the main-
sequence of the star, but could still allow the re-alignement of
the orbit before the engulfment of the planet, depending on
the ratio of orbital to spin angular momentum. Even though

the value of <Q
′1
2 > for an F-type star is most of the time

smaller than that of a solar-like star, it is possible that the
resulting temporal evolution of the obliquity may be compar-
atively smaller, since in depends on the moment of inertia in
the convective enveloppe, which is signi�cantly smaller for
hotter stars. When the obliquity is small, the <Q

′2
2 > compo-

nent becomes dominant, and the survival of the planet is ac-
tually favoured around G-type stars, especially after the �rst
Gyr, when the spin-down of the star brings <Q

′2
2 > to values

higher than 106. Qualitatively, our computations show that
tidal evolution could indeed explain the observed correlation
between obliquity and e�ective temperature.

4 Conclusions
We have computed the frequency-averaged tidal dissipa-

tion associated to inertial waves in the frame of the dynam-
ical tide, for all the components of the tide. We use an ana-
lytical formulation which only depends on global stellar pa-
rameters, and gives a measure of the dissipative properties
of the convective zone of the host as it evolves in time, also
accounting for the e�ect of magnetic braking. A prelimi-
nary study show that di�erent tidal evolution timescales for
the evolution of the planet’s semi-major axis and obliquity
are expected depending on the properties of the host. How-
ever, simple timescales estimates such as discussed here can
be di�erent by orders of the magnitude to the actual values
obtained by computing the coupled evolution of the orbital
parameters (Barker & Ogilvie, 2009). Moreover, dissipation
e�ciency may still be less important if the tidal frequency
does not fall within the range of inertial waves. Thus, the
phase of enhanced dissipation through the dynamical tide is
likely to occur during the PMS if it is ever to occur. Further
development will be given in a forthcoming paper. Eventu-
ally, the complete dynamical model will be used to test mi-
gration theories. This requires also a good determination of
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stellar radii, masses and ages. Major advances are thus ex-
pected with the results of the PLATO 2.0 mission, selected as
the next M-class mission of ESA’s Cosmic Vision plan, that
will allow the complete characterisation of host stars using
asteroseismology.
Acknowledgments : This work was supported by the

German Space Agency under PLATO grant 50OO1501.

References
Albrecht, S., Winn, J. N., Butler, R. P., Crane, J. D., Shectman,

S. A., et al. 2012, ApJ, 744, 189.
Barker, A. J. & Ogilvie, G. I. 2009, MNRAS, 395, 2268. ISSN

00358711.
Bolmont, E., Gallet, F., Mathis, S., Charbonnel, C., Amard, L.,

et al. 2017, A&A, 604, A113.
Bolmont, E. & Mathis, S. 2016, Celestial Mechanics and Dy-

namical Astronomy, 126, 275.
Efroimsky, M. & Makarov, V. V. 2013, ApJ, 764, 26.
Gallet, F., Bolmont, E., Mathis, S., Charbonnel, C., & Amard,

L. 2017, A&A, 604, A112.
Goldreich, P. & Tremaine, S. 1980, ApJ, 241, 425.
Lai, D. 2012, MNRAS, 423, 486.
Lanza, A. F. & Mathis, S. 2016, Celestial Mechanics and Dy-

namical Astronomy, 126, 249.
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. 1996, Na-

ture, 380, 606.
MacGregor, K. B. & Brenner, M. 1991, ApJ, 376, 204.
Mathis, S. 2015, A&A, 580, L3.
Nagasawa, M., Ida, S., & Bessho, T. 2008, ApJ, 678, 498.
Ogilvie, G. I. 2013, MNRAS, 429, 613.
Ogilvie, G. I. 2014, ARA&A, 52, 171.
Rasio, F. A. & Ford, E. B. 1996, Science, 274, 954.
Ribas, Á., Merín, B., Bouy, H., & Maud, L. T. 2014, A&A, 561,

A54.
Spada, F., Lanzafame, A. C., Lanza, A. F., Messina, S., & Col-

lier Cameron, A. 2011, MNRAS, 416, 447.
Valsecchi, F. & Rasio, F. A. 2014, ApJ, 786, 102.
Winn, J. N., Fabrycky, D., Albrecht, S., & Johnson, J. A. 2010,

ApJL, 718, L145.

Zenodo, 2017 5


