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Abstract

Identifying musical instruments in a polyphonic music recording is a difficult yet
crucial problem in music information retrieval. It helps in auto-tagging of a musical
piece by instrument, consequently enabling searching music databases by instru-
ment. Other useful applications of instrument recognition are source separation,
genre recognition, music transcription, and instrument specific equalizations. We
review the state of the art methods for the task, including the recent Convolutional
Neural Networks based approaches. These deep learning models require large quan-
tities of annotated data, a problem which can be partly solved by synthetic data
augmentation. We study different types of audio data transformations that can help
in various audio related tasks, publishing an augmentation library in the process.
We investigate the effect of using augmented data during the training process of
three state of the art CNN based models. We achieved a performance improvement
of 2% over the best performing model with almost half the number of trainable
model parameters. We attained 6% performance improvement for the single-layer
CNN architecture, and 4% for the multi-layer architecture . Also, we study the

influence of each type of audio augmentation on each instrument class individually.

Keywords: Automatic Instrument Recognition; Data augmentation; Convolutional

Neural Networks






Contents

1__Introductionl
(1.1 Objectives| . . . . . . . . . .
(1.2 Structure of the Report| . . . . . ... ... ... ... oL

[2° Background|

2.1  Review of instrument classificationl . . . . . ... ... ... ... ...
[2.2 Advent of deep learning approaches| . . . . . . . .. ...
[2.3 Data Augmentation|. . . . . . . . . .. ... oL
[2.4 Data augmentation in MIR} . . . . ... ... ... .. ... ......

[3 Methodology|

[3.1 Datasetl . . . . . . . . . .
(3.2 PFvaluation metricsl . . . . . . ..o o
[3.3 Data augmentation library| . . . . . . . .. ... ...
[3.3.1 Random Cropping| . . . . . . . ... .. ... .. ... ... ...
[3.3.2 Backeround noise| . . . . . ..o
(3.3.3  Convolution (smartphone and classroom microphone)| . . . . . . . . ..
[3.3.4 Simple gain| . . . . ...
[3.3.5 Pitch scalingl . . . . ... ... ... oo
[3.3.6  Time stretching| . . . . .. .. ... ... o000 o
[3.3.7 Dynamic range compression| . . . . . . . . . ...
[3.3.8 Equalization|. . . . . .. ... oo o
[3.4 Preliminary experiments| . . . . . . . . . ... ...




[3.5 Experiment set-up| . . . . . .. ...

4 Evaluationl

[4.1 Evaluation Strategyl. . . . . . . ... Lo

[List of Figures|

[Bibliography|

23
23
24

28

30

31



Chapter 1

Introduction

Humans can identify the instruments present in a musical piece with ease, provided
they have a concept of the sound of the instrument(s) being played. But for auto-
matic algorithms to recognize the instruments from a polyphonic audio signal is still
a challenging task. The variety of playing styles and timbres of the instruments in the
real world makes this task more complex. This task of instrument recognition forms
an important research problem for the music information retrieval community as it
can be useful to a host of other MIR problems like source separation, auto-tagging
by instrument, genre recognition, and music transcription. Research has been going
on in this field for almost 20 years now ([Kaminsky and Materka, 1995]). In recent
years, the trend is shifting from the earlier ‘feature-extraction in conjunction with a
simple classifier’ based approaches (|[Bosch et al., 2012]) to the more modern ‘deep

learning’ based approaches (|[Lostanlen and Cella, 2016|, [Han et al., 2017]).

Deep learning models need to be trained on large amounts of data to create a
more accurate statistical approximation of the real-world problem it is trying to
solve. Having more data makes the system more robust to the different variations
of the input, provided the data is varied and representative of the problem. Gath-
ering and annotating the data requires a lot of human time and effort. Therefore,
one of the most effective ways to tackle the problem of limited data is synthetic

data augmentation i.e. making algorithms to manipulate the data in a known way;,
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creating additional data relatively cheaply. Data augmentation has been quite suc-
cessfully implemented in object and speech recognition (|Krizhevsky et al., 2012],
[Jaitly and Hinton, 2013|). Different types of image data augmentation are affine
transforms like rotation, shear, flip and shifts, grayscale, blur, and noise. Audio
data augmentations are typically pitch scaling, time stretching, noise, and frequency
filters but these are in no way an exhaustive list. These transformations help in rep-
resenting the existing data from additional perspectives. For example, we can model
reverberation as a data augmentation technique, which is a common effect in the
music production pipeline, to make the data more symbolic of the real-world musical
data, similarly for noisy recordings, or recordings in different keys etc. This, addi-
tional varied data, in turn helps to prevent the overfitting of the model. In this work,
we attempt to study the different types of audio data augmentations (developing
an augmentation library in the process) and their effects on the Convolutional Neu-
ral Networks architectures ([Pons et al., 2017]) in the context of musical instrument

recognition.

1.1 Objectives

The main goals of this thesis are:

e To propose audio data augmentations for the task of instrument recognition

from polyphonic music.

e To study the effect of the proposed augmentations on the performance of state

of the art Convolutional Neural Networks based systems.

e To publish a flexible, generic, and efficient audio data augmentation library

which can be plugged into training or testing with minimum effort.

1.2 Structure of the Report

The remainder of the thesis is organized as follows. In chapter 2, we review the
different approaches for instrument classification, their shifting trend towards deep
learning approaches, the need and use of data augmentation in other disciplines

and then the use of data augmentation in the field of MIR. Chapter 3 details the
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dataset, evaluation metrics, and methodology decided for the experiments. Chap-
ter 4 includes the evaluation of the instrument classification models with different
configurations of data augmentation. It also includes our analysis of the results. In
Chapter 5, we summarize the contributions of the work done, the limitations and

some ideas for future work.



Chapter 2

Background

Researchers have been working on Instrument Classification since 1990s when the
research focused more on monophonic recordings (e.g. [Cemgil and Giirgen, 1997|;
|[Kaminsky and Materka, 1995]). Since the 2000s ([Martin, 1999] and [Eronen, 2001]),
the standard methodology has been to extract several features (mainly MFCCs
in combination with other spectral features) and applying different simple clas-
sifiers to get the instrument classes. But with the success of deep learning in
the field of image recognition and speech recognition ([Richardson et al., 2015] and
|[Krizhevsky et al., 2012] being a couple of examples), researchers in MIR are also
trying to move forward and utilize these technology advances. With this usher into
the era of deep learning, there has been an increasing need of huge amounts of la-
beled data which is crucial for the success of these models. Labeling this data is
a resource intensive task and must be labeled by humans who are trained in the
domain, which is not always possible and takes a lot of time. An alternative way
is to create synthetic data for which we already know the labels for, but this data
should be a good representative of the real-world problem we are trying to solve.
This is called data augmentation, which is the focus of my research problem. Data
augmentation is a common strategy adopted to increase the quantity of training
data, avoid overfitting and improve robustness of the models. The aim of this sec-
tion is to review the approaches for the task of instrument classification, the need

and the advantages of data augmentation for building better models for this task.



2.1. Review of instrument classification 5

2.1 Review of instrument classification

The first efforts in instrument classification were focused on monophonic recordings
recorded in lab conditions. Monophonic data helps us to study features that re-
main invariant for a considered class of instrument/timbre, both for a human mind
and for machines, and (perceptually) study these characteristic features for a cat-
egory. For monophonic audio, [Martin, 1999] and [Eronen, 2001] used MFCCs in
combination with different other spectral features, and concluded that MFCC are
the best performing features for the recognition task. [Essid et al., 2006] evaluated
SVM classifiers together with several feature selection algorithms and methods, plus
a set of proposed low-level audio features. Their results emphasized the impor-
tance of context in musical instrument recognition. |Joder et al., 2009] studied the
early integration of audio features and late integration of classifier decisions. Their
conclusions were that early integration helps in removal of features’ outlier values,
while late integration should roughly capture temporal aspects of the music. Fi-
nally, [Yu and Slotine, 2009] used spectrograms of audio files as texture images and
applied simple kNN to classify the different instruments. It gave 85.5% accuracy on
seven instruments and drums, suggesting it could be an alternate method for source

separation task.

|[Fuhrmann et al., 2012] divides the approaches for the instrument classification task

for polyphonic audio in the following three categories:

e Pure pattern recognition algorithms: Systems that try to apply the
knowledge directly from monophonic audio related approaches to the more
complex input mostly by releasing the constraints on either the data or the

categories itself.

e Enhanced pattern recognition algorithms: These types of algorithms
consider additional knowledge about the source signals in the recognition pro-

cess. Some authors even introduce some pre-processing in the form of source
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separation or multi-pitch estimation. Fight studies as shown in the compara-

tive table below lies in this broad category.

e Template matching algorithms: These systems derive class memberships
by evaluating distances to abstracted representations of the categories. Here,
global optimization methods are often applied to avoid erroneous pre-processing

resulting from, for instance, source separation.

Data & experimental settings Algorithmic specifications Evaluation
Author  Poly. Car. Type Coll. Genre Class. Apriori  PreP. PostP.  #Files Metric  Score
Simmermacher et al. (2006) 4 4 real pers. C SVM 10 Acc. 0.94
Essid et al. (2006a)* 4 12 real pers. ] SVM v n.s. Acc. 0.53
Little 8 Pardo (2008) 3 4 art. mix IOWA - SVM v 20 Acc. 0.78
Kobayashi (2009)*  n.s. 10 real pers. BR,JW LDA/RA 50 Ace. 0.88
Fuhrmann & Herrera (2010)* 10 12 real pers.  CPRJWE SVM v 66 F 0.66
Eggink & Brown (2003) 2 5 real pers. C GMM v 1 Acc 1.0
Eggink & Brown (2004) n.s. 5 real pers. C GMM v 90 Acc 0.86
Livshin & Rodet (2004) 2 7 real pers. C LDA/KNN v X 108 Acc n.s.
Kirahara et al. (2006) 3 4 syn. MIDI - RWC C HMM . v v n.s. Acc 0.83
Kirahara et al. (2007) 4 5 syn. MIDI  RWC n.s. Gauss. v v v 3 Acc. 0.71
Heirtola er al. (2009) 6 19 art. mix RWC - GMM v v v 100 E 0.59
Pei & Hsu (2009) 3 5 real pers. C SVM v v v 200 Acc. 0.85
Barbedo & Tzanerakis (2011)* 7 25 real pers. C,BR)] DS Vv « 100 F 0.73
Cont et al. (2007) 2 2 real mix pers. n.s. NMF 4 Acc. n.s.
Leveau et al. (2007) 4 7 real mix pers. n.s MP v 100 Acc. 0.17
Burred et al. (2010) 4 5 art. mix RWC - prob. dist. v 100 Ace. 0.56

Figure 1: Comparative view on the approaches for recognizing pitched instruments
from polytimbral data. Asterisks indicate works which include percussive instru-
ments in the recognition process. polyphonic density (Poly.), number of categories
(Cat.), type of data used (Type), the name of the data collection (Coll.), the clas-
sification method (Class.),imposed a priori knowledge (Apriori), any form of pre-
processing (PreP.) and post-processing (PostP.), and the number of entire tracks for
evaluation (Files). Abbreviations for the evaluation metric refer to Accuracy (Acc.)
and F-measure (F). Furthermore, the legend for musical genres include Classical
(C), Pop (P), Rock (R), Jazz (J), World (W), and Electronic (E). The three blocks
arepure, enhanced pattern recognition, and template matching with respect to the
recognition approach. [Table taken from |[Fuhrmann et al., 2012||

In this thesis, the model by |[Fuhrmann et al., 2012| is used as the basis for con-

ducting some preliminary data augmentation experiments. The model uses 92 low
level features - Local energies, spectral envelope, spectral distribution, pitch based
features extracted frame-wise. After extraction of these features, using framesize

of 46 ms and hopsize of 24 ms using a Blackman Harris windowing function, L2
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normalization and y? feature selection are performed. SVM is then used for classi-
fication task. The code used in this thesis for the experiments is the one extended
by [Slizovskaia et al., 2016|, usage of a simple classifier and the evaluation metrics

for this task.

2.2 Advent of deep learning approaches

With higher computation power, there has been a steady rise in deep learning ap-
proaches in wide variety of domains like vision, speech and language. Deep learning
approaches are getting increasingly more focus in the MIR community due to their
high performance and because of the reduction in need for feature engineering, which
consumes a lot of time and resources. [Humphrey et al., 2012] critiques the tradi-
tional approaches, which seemed to be adopting a two-stage architecture of feature
extraction and getting some higher level semantic information from them using clas-
sification, regression, clustering, similarity ranking, etc. They argue that this trend
has forced the researchers to look towards better model selection for optimizing the
results as they have converged towards a small set of features for their respective
tasks like MFCC’s or chroma. They claim deep signal processing architectures and
automatic feature learning is a good replacement to hand-crafted feature design in
audio-based MIR. [Pons et al., 2016] points that since deep learning architectures
are inherently hierarchical, owing to their depth, they can well represent the hi-
erarchy in music - notes, chords, onset, or rhythms (frequency and time). Deep
learning architectures like Recurrent Neural Networks (RNNs) and Convolutional
Neural Network (CNNs) enable us to model long time dependencies which maybe

long-term as in RNNs or local context as in CNNs.

Deep learning has already been successfully applied to many different MIR tasks.
Many researchers have hsuccessfully used deep learning for several tasks: onset
detection [[Schliiter and Bock, 2014]|, genre classification [[Dieleman et al., 2011]],
chord estimation [|Lerch, 2015]|, auto-tagging [[Dieleman and Schrauwen, 2014]| or

source separation [[Huang et al., 2015]].
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2.3 Data Augmentation

MIR researchers have always lacked well-annotated training data and this is an even
bigger limitation when training deep learning models. In the larger context of deep
learning, this problem has partly been solved by creating synthetic data, carefully
designing the transformations on the original annotated training data and augment-
ing it in the training pipeline. The ground truth labels may be preserved in some
transformations, or may change in a known way for some other kind of transforma-
tions. This idea is known as data augmentation. Synthetic data augmentation is
cheaper than manually annotating data both in terms of time and human resource.
For many years, dataset augmentation has been a standard regularization technique
used to reduce overfitting while training supervised learning models. One of the
earliest examples of data augmentations can be found in visual recognition tasks
where [LeCun et al., 1998] trained LeNet5, one of the most early and well-known
convolutional neural network architectures, and applied a series of transformations
to the input images to improve the robustness of the model. |[Krizhevsky et al., 2012]
was a breakthrough paper which introduced AlexNet, reviving the interest in deep
convolutional networks achieving a top 5 test error rate of 15.3% on the test data
in ILSVRC-2012 competition which was unarguably the best at the time and still
convolutional neural networks are the de-facto standard for image recognition task.
AlexNet used translation, horizontal reflection and PCA (altering the intensities
of RGB pixel values) as the data augmentation techniques. Nowadays, data aug-
mentation for computer vision tasks is a given while training CNNs as they make
the system more robust to the different cameras, angles, lighting, focus etc.. The
typical augmentations used for images are affine transforms like rotation, shear, flip
and shifts, grayscale, PCA, blur, and additive noise. Motivated by the positive re-
sults of augmenting training data in object recognition, [Jaitly and Hinton, 2013]
proposed audio augmentations for phoneme recognition task in speech signal pro-
cessing. They pioneered a data augmentation technique called Vocal Tract Length
Perturbation (VTLP), in which the frequency of each utterance by the speaker is

mapped to a random new frequency (with some reasonable warp factor), thereby
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warping the input frequencies. They further use this random warp factors during the
test time and finds that averaging over multiple VTLP warp factors for an utterance
leads to better results. This was possibly the first example of data augmentation
in the audio field. In the same year, [Kanda et al., 2013] also proposed vocal tract
length distortion along with speech rate distortion, and frequency-axis random dis-
tortion as their choice of data augmentation for speaker recognition. They found
the performance results of these augmentations to be nearly additive meaning the
individual accuracy improvements summed up equal to the approximate accuracy
improvements by combining all three transformations. VITLP Vocal Tract Length
Normalization(VTLN) was previously used to normalize the speaker variability in
the samples but these two researches established it as a data augmentation tech-
niques for speaker recognition. Other examples of successful implementations of
data augmentation are [Cui et al., 2014], [Ragni et al., 2014], and [Ko et al., 2015].
[DeVries and Taylor, 2017] proposes an interesting method for domain independent
dataset augmentations. They train a sequence autoencoder to build a learned feature
space in which they perform interpolation, extrapolation between samples adding
random noise to the samples. Their conclusion is that this type of augmentation
can be combined with domain-specific augmentations. They find that extrapolating
the samples in feature space is the most useful of the three types of transformations

tried.

2.4 Data augmentation in MIR

Encouraged by the positive results of deep learning with data augmentations in other
disciplines, researchers began to test the possibilities of these newer technologies in
Music Information Retrieval. [Li and Chan, 2011] proposed some musical augmenta-
tions for the genre classification task. They use Mel Frequency Cepstral Coefficients
(MFCCs) for the task (GMM as the classification model) and found that MFCCs are
responsive to key and tempo changes, so these are selected as the augmentations for
the experiments. Their hypothesis is that these transformations will help to make

the system invariant to key and tempo changes. But this is a problem for some
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genres as they are more sensitive to these changes. Using the augmented data only
in training phase did not give better results, which may be due to the response of the
GMM to the augmented or noisy data or recognizing a genre might be more sensitive
to pitch and key changes. [Humphrey et al., 2012] proposed a CNN based approach
for an established task of chord recognition. They use the time-frequency represen-
tation (filter bank applied) as the first layer of the CNN architecture instead of the
raw time-domain audio. They use pitch shifting as an augmentation technique but
instead of doing it on the audio signal itself, they perform this in the time-frequency
representation. Since it also affects the chord labels, they change the labels according
to the pitch shift. Though both these researches did not find improvement in the per-
formance results when trained with additional transformed data, they observed that
the system is more robust to augmented (degraded) audio files. [Han and Lee, 2016]
applied ConvNets to the task of acoustic scene classification and proposed a multiple-
width frequency-delta (MWFD) data augmentation method that used static mel-
spectrogram and frequency-delta features as individual input examples and achieved
a significant accuracy improvement. [Schliiter and Grill, 2015] investigated a variety
of data augmentation techniques for application to singing voice detection. They
use two data-independent augmentations: dropout i.e. setting zero values for a per-
centage of input points and additive Gaussian noise with a given standard deviation.
They apply these to the mel spectrograms directly which is then fed into the CNN.
They also performed pitch shifting and time stretching in the spectrogram phase,
scaling the spectrogram vertically for pitch and horizontally for time. They also in-
clude increasing the loudness level, and mixing two excerpts together. As in speech
recognition, they found pitch shift combined with time stretching and random fre-
quency filtering to be the most useful augmentation methods. Individually, pitch
shift was found to be the most successful method. Loudness alteration, Gaussian
noise and mixing excerpts did not give good results, but they might be helpful in
making the system more robust to these characteristics in the music. There has been
one recent attempt at making a musical data augmentation (MUDA) framework by
[Mcfee et al., 2015]. They present a framework to perform annotation aware data

augmentations on annotated musical data, changing data and labels accordingly.
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Their framework requires the song and its annotations, metadata to be in JAMS for-
mat ([Humphrey et al., 2014]). Getting the data in JAMS format might need some
additional pre-processing of the data. This framework is based on Audio Degra-
dation Toolbox ([Mauch and Ewert, 2013]), and has been implemented in Python.
It currently supports the following augmentations - pitch shift, time stretch, back-
ground noise, and dynamic range compression, which provides a good starting point
but is not an exhaustive list. [Salamon and Bello, 2017] used MUDA for data aug-
mentation in the context of Environment Sound classification and they found that
each sound class is influenced differently by each augmentation set, which emphasizes
that the augmentations should be done keeping in mind the perceptual changes in
the data. Upon reviewing all these sources, I feel the researchers are rapidly moving
towards more deep learning techniques which removes the need for hand-picked fea-
tures for giving as input to the model, which inevitably loses some information in the
process. Deep learning architectures just need labeled data to work on and directly
learn the weights and some high level understandable /non-understandable features
needed to perform the task. Gathering enough labeled data can be a bottleneck for
performance sometimes, so researchers started creating synthetic data which started
with the field of vision where the image was transformed in many ways like rotate,
scale, shift etc. so that the model is robust to these changes in data without the
change in label (or in some cases, a known change) and consequently, overfitting
of the model is prevented. There have been only a handful number of experiments
which focus on the study different types of audio augmentations and their effects on
timbre and other properties. There has been one attempt at making an audio data
augmentation framework which does not provide much flexibility and they also miss
some of the useful augmentations. This leaves an opportunity to develop another
library that can be plugged with any kind of models, does augmentation process-
ing in an efficient way, and provides most of the useful audio data transformations.
Also, there is a need to do an organized study studying these different types of

augmentations for the task of instrument classification.



Chapter 3

Methodology

In this chapter, we discuss the methodology applied in this work. We start with the
overview of the major datasets for instrument classification, proceeding to the main
evaluation metrics for the task, and then, detailing our augmentation library and

the methodology selected for our research.

3.1 Dataset

For creating human annotated datasets, the taxonomy of the instruments needs to
be decided first. A version of the instrument taxonomy, taken from Hornbostel
and Sachs (1961) is shown in figure 2. The datasets can have the instruments as the
annotated categories and the classification results can then be reported hierarchically
to see whether the confusion between the instruments classes is also propagating
between their parent classes like woodwind vs brass, or the confusion more internal

to a broader class which is more understandable.

The dataset used for the experiments is IRMAS dataset. It is a dataset from the
Music Technology Group(MTG), Barcelona and includes musical audio excerpts
with annotations of the predominant instrument(s) present. This dataset is divided
into training: 6705 audio files, and testing: 2874 audio files in 16-bit stereo wav

format sampled at 44.1kHz. Each file is a 3 second excerpt taken from more than

12
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Figure 2: The enhanced scheme of taxonomy as given by Hornbostel and Sachs
(1961)

2000 audio recordings under 11 instrument categories. All the categories are pitched
instruments. Overview of the main datasets for the task of instrument classification

have been included in table 1.

3.2 Evaluation metrics

The evaluation method is based on comparing the output labels against the man-
ually annotated ground-truth labels. The algorithms can be evaluated using preci-

sion,recall and F1-measure.

Precisi True Positives TP (% of selected it that )
recision of selected items that are correc
Predicted Positives . TP +rp " e recon
True Positi TP
Recall THE T OSTVES (% of correct items that are selected)

Actual Positives or TP + FN

where,
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Table 1: Datasets

Dataset

Description of Data

Limitations/Comments

Dataset for
Instrument
Recognition
in Musical
Audio Sig-
nals(IRMAS)

Training: 6705 audio files, and
Testing: 2874 audio files in 16
bit stereo format sampled at
44.1kHz. 11 pitched
instrument categories

Polyphonic audio with
predominant instrument
labeled. Limited number of
instrument categories.

University of
Iowa Musical

2182 samples of 20 instruments

Monophonic audio files

Instrument

Sam-

pled(UIOWA

MIS)

MedleyDB 122 multitrack recordings(mix | Limited data - 52 instrumental
+ processed stems + raw tracks and 70 containing
audio for music pieces and vocals.
excerpts) annotated by
instrument. Contains
instrument activations in
sections of songs.

Real World 3544 audio excerpts labeled in | The frequency distribution of

Computing 50 pitched and percussion the instrument categories is

(RWC) instruments, including human | not very uniform and a few

voice

categories is not very uniform
and a few categories have even
less than 20 samples

Good sounds

12 instrument categories. For
all the instruments the whole
set of playable semitones in
the instrument is recorded
several times with different
tonal characteristics.

Developed mainly for checking
quality of sounds.

TP: number of samples correctly classified in an instrument category (e.g. violin as violin)

FP: number of samples wrongly classified in that instrument category (e.g. cello as violin)

FN: number of samples of the instrument category which are predicted as some other
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category (e.g. violin classified as any other instrument)

F - Measure: It is a measure of a test’s accuracy. F1 measure is defined as the harmonic

mean of precision and recall.

Precision x Recall

Precision + Recall

3.3 Data augmentation library

One of the main contributions of this thesis is the audio data augmentation library, which is
written in python. There was a clear need for a general-purpose audio data augmentation
library which gives an option for large number of transformations to be applied on the
audio. These augmentations may be label-preserving (as in this case) for a certain range of
parameters, or may change the labels in a known way (for instance, pitch scaling for a chord
recognition task). The applications of this library include testing the system for robustness
on degraded test inputs. Another application is to create augmented data to include in
the training pipeline of a system. The transformations currently supported by the library
are explained in the following subsections. The library written is based on the work by
[Mauch and Ewert, 2013] who created an Audio Degradation Toolbox (ADT) in MATLAB.
It also takes inspiration from Musical Data Augmentation framework ([Mcfee et al., 2015])
and an Audio Degrader Library (|[Molina, 2016]), both of which are themselves based on
the ADT. The library currently takes audio file (16 bit .wav) as the input. All the sounds
used for augmentation are taken from the ADT toolbox and manipulated further as per
the requirement. The code has been published at https://github.com/sid0710/audio_

data_augmentation.

3.3.1 Random Cropping

This transformation takes the input audio and outputs a randomly cropped sample of the
same, where the user should specify the minimum duration of the output. This is done

using the slice function from the Essentia (|[Bogdanov et al., 2013]) library.


https://github.com/sid0710/audio_data_augmentation
https://github.com/sid0710/audio_data_augmentation
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3.3.2 Background noise

This perturbation adds noise to the input audio signal at a required signal to noise ratio
(SNR). Currently, only white-noise is present but the code can easily be modified to add
more types of noise. SNR is the ratio of root mean square(RMS) amplitude of the signal

to RMS amplitude of noise, squared, which formed the basis of the implementation.

3.3.3 Convolution (smartphone and classroom microphone)

This augmentation convolves the input audio signal with an impulse response recorded
from a smartphone microphone (Google Nexus One) and another from a classroom and
the user can specify the level of convolution. The smartphone impulse response adds a kind
of distortion to the sound while the classroom impulse response creates a reverberation.
This can be easily extended to more types of transformations by adding the desired(may

be different for each problem) impulse responses.

3.3.4 Simple gain

This augmentation increases the loudness of an input signal by a specified gain (in dB).
It may be helpful for data, where the object of interest (bass, rhythm etc.) are not loud
enough. It is implemented by reading the audio file and carrying out simple array manip-

ulations.

3.3.5 Pitch scaling

This transformation changes the pitch of the input audio without changing the duration.
This has been implemented using Rubberband (Jrub, 2012]), which is a command line
utility for pitch-shifting and time-stretching audio. The user can give the ratio by which
the pitch needs to be scaled. The code can be restricted to scale by only semitone(s)

differences, but in its current version, it scales to a ratio between -9.99 to +9.99.
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3.3.6 Time stretching

This augmentation changes the time duration of the input audio signal. Depending upon
the requirement, it can stretch or compress without changing the pitch of the audio. This
is also implemented using Rubberband ([rub, 2012]), and ratios to be inputted can vary

between -9.99 to +9.99.

3.3.7 Dynamic range compression

This applies a signal dependent normalization to the input audio signal, reducing the
energy difference between soft and loud parts of the signal. It has been implemented using
the compand function of sox ([sox, 2013]). Most of the produced music today have already
been through dynamic range compression but this is not necessarily the case for research
datasets, hence, it can be a useful augmentation to apply on the data before predicting
some label for it (on the test data) as a kind of a normalization. Three degrees of dynamic

range compression can be stated by the user.

3.3.8 Equalization

It applies an equalization to the input audio signal given a center frequency, bandwidth
and gain. With this transformation, the signal-level at and around a selected frequency
can be increased or decreased, whilst (unlike band-pass and band-reject filters) that at all
other frequencies is unchanged. This is implemented using the equalizer function of sox

([sox, 2013)).

3.4 Preliminary experiments

For the purposes of testing/debugging of the data augmentation library and to study the
conventional methods of instrument classification, the method proposed by [Fuhrmann et al., 2012]
is selected and the code used is as extended by [Slizovskaia et al., 2016]. In this experiment,
an audio file is taken as input, which are then split with a fixed framesize of 46 ms and
hopsize of 24 ms using a Blackman-Harris windowing function, a large number of spectral,
cepstral and tonal descriptors from the audio are extracted and statistical measures like

mean, variance and standard deviation are calculated. These are then used as features for
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the classifier. Then, normalization of the features is done. In the paper, feature selection
is performed using y?(chi square) but we use mutual information instead. Support Vector
Machine (SVM) is used as the classifier for this task. For evaluation, the dataset (IR-
MAS) is divided into 10 subsets for stratified 10-fold cross-validation. Multidimensional
grid search is performed (GridSearchCV from scikit-learn) to tune the parameters, the
predictions are made and evaluated for each subset, then for overall accuracy of the model,
the accuracies are averaged across all partitions. The model also reports the best param-
eters found for the current system. Reported in table 2 are precision, recall, f-score and
support for each instrument category, in two configurations: without augmentation and
with augmentation. Also, the confusion matrix is made for the eleven instrument labels -
‘cello’, ‘clarinet’; ‘flute’, ‘guitar (acoustic)’, ‘guitar (electric)’, ‘organ’, ‘piano’, ‘saxophone’,
‘trumpet’, ‘violin’, ‘voice’ as in the IRMAS dataset on which the system is trained and

evaluated.

The following six type of augmentations are used for the experiments

Adding Background noise (SNR value: between 10 and 20)

Convolving with the impulse response of smartphone mic (level: between 0.1 and

0.5)

Convolving with the impulse response of classroom mic (level: between 0.1 and 0.5)

e Pitch scaling (Ratio of pitch scaling: between 0.7 and 1.3)

Time stretching (Ratio of time stretching: between 0.7 and 1.3)

e Dynamic range compression (level: 1,2 or 3)

Random value generator is used between the above specified values for each type of trans-
formation applied. These parameter values have been arrived at by first creating a large set
of files for a range of values, then listening to the created files. Under these limits, the class
label does not change i.e. the perception of the predominant instrument remains the same.
There were two main challenges during augmentation, one was the time it took to create
the 33,361 augmented audio files, and the other was the space that these files would take.

The space constraint is handled in the augmentations script by creating the augmented



3.4. Preliminary experiments 19

files, extracting their features, and deleting them once their job is done. Feature extrac-
tion script is modified to append all the features from the augmented files and extract
their ground truth labels properly. The different transformations can be parallelized (using

multi-threading) while applying to the data making the library more time-efficient.

Table 2: Evaluation of the svm model without and with augmentation

Precision Recall fl-score support Precision Recall fl-score support

Cello 0.47 0.38 0.42 90 0.51 0.44 0.47 82

Clarinet (.46 0.56 0.50 108 0.62 0.54 0.58 124
Flute 0.66 0.38 0.48 87 0.73 0.51 0.60 8O

Guitar ac. 0.63 0.60 0.61 143 0.57 0.63 0.60 116
Guitar el. 0.51 0.58 0.54 145 0.64 0.62 0.63 158
Organ 0.50 0.69 0.58 127 0.60 0.75 0.67 148
Piano 0.48 0.69 0.57 167 0.55 0.68 0.61 157
Saxophone  0.56 0.26 0.36 140 0.55 0.47 0.50 122
Trumpet 0.73 0.58 0.64 116 0.76 0.74 0.75 126
Vialin 0.54 0.49 0.52 104 0.62 0.52 0.56 116
Voice 0.66 0.67 0.67 164 0.70 0.75 0.72 162
avg./total 0.56 0.55 0.54 1391 0.62 0.62 0.62 1391

For setting up the experiment with data augmentation, the training data is divided into
training and test folds during the feature preprocessing. The augmented files are created
for the training data, their features are extracted in the same way and stored along with
the original feature set of samples. This combined set of features (original training data
+ augmented data) is used for training the SVM. The performance of the model improves
significantly by using additional augmented data during the training process as seen in

table 2.

The average precision went from 0.56 to 0.62, average recall from 0.55 to 0.62 and fl-score

from 0.54 to 0.62 which is quite a significant improvement. The difference in confusion
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Cello- 2 - -1 8 -5 ] -2 = 1 -10 0
Clarinet 2 T -2 0 4 2 -9 9 5 1 1 20
Flute— 7 -2 8 -1 -1 -5 -1 0 -1 1 2
Guitar ac. 0 -4 0 -13 2 7 4 -2 3 0 -2 10
Guitar el.~ 1 -1 0 0 14 4 2 3 -1 2 -1
Organ 0 -2 1 1 2 - 6 0 0 2 0
Piano 4 -7 1 0 3 -10 3 1 0 3
Saxophone 0 -1 0 0 -1 -3 0 2 i} 10
Trumpet~ 2 -1 0 0 -4 -7 -1 2 4 1
Violin- 9 -3 1 -4 3 1 -4 0 1 9 1 -20
Voice- 0 2 0 1 - 2 1 0 2 2 12
Ce‘ 0 Clarlmel F\LL[E Guitar ac. Guitare Organ Piano Saxophone Tmn‘we: v‘wol n Voice

Figure 3: Difference of confusion matrices with and without augmentation, positive
values(blue) signifies a positive change in confusion and negative values(red) signifies
a negative change in confusion

matrices with and without augmentation is shown in figure 3. We can see that for most
of the classes, the confusion with themselves (the diagonal values) have increased indi-
cating an improvement in model performance. ’Acoustic guitar’ and ’'piano’ are the only
two worse performing instrument classes. Also, observed from the results, is a confusion
between cello and violin (bow instruments), clarinet, saxophone, trumpet, and flute (wind
instruments),electric guitar and voice, organ and voice, piano with a lot of other instru-
ments, violin with cello. These classes can be mislabeled even by humans sometimes, so

these mistakes are understandable.

3.5 Experiment set-up

This thesis builds upon the work on designing musically motivated Convolutional Neural

Networks(CNNs) by [Pons et al., 2017]. They discuss about the different strategies for de-

signing the CNN architecture incorporating the domain knowledge. They propose a design
strategy for efficiently learning timbre representations using different musically motivated
filter shapes in the first layer of the CNN. Fixed-length log-mel based spectrograms are
given as the input to the first layer. They design different CNN architecture based on their
proposed strategy for three timbre related tasks: singing voice phoneme classification, mu-
sical instrument recognition and music auto-tagging. We are specifically interested in the

task of musical instrument recognition and will study that in a little more detail.
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For instrument classification task, they use the IRMAS dataset, which have 11 instrument
categories as mentioned in section 3.1. Two state of the art approaches are used as baselines,
one deep CNN based ([Han et al., 2017]) and another feature extraction + SVM classifier

based approach. Then, they propose the following two architectures

Single-layer: It has single wide convolutional layer. The input is a log-mel spectrogram
of size 96 x 128. 128 filters of sizes 5 x 1 and 80 x 1, 64 filters of sizes 5 x 3 and 80 x 3,
and 32 filters of sizes 5 x 5 and 80 x 5 are used in accordance with the discussion that
different filter shapes should be used in the first layer to capture different characteristics of
timbre. Max pooling is done in the vertical direction (or the frequency axis) to learn pitch
invariant representations. A softmax output layer is used with a 50% dropout to finally

predict one of the 11 instrument classes.

Multi-layer: Its first layer is similar to single-layer but it is deepened by two convolutional
layers of 128 filters of size 3 x 3, one fully-connected layer of size 256 and a softmax output
layer with 11 output classes. 25% dropout is used for all convolutional layers and 50%
for dense layers. There is a max pooling layer after every convolutional layer. Each

convolutional layer is also followed by batch normalization.

These models were set up (code provided in |[Pons et al., 2017]) for evaluation without
and with data augmentation. Each network is trained optimizing the cross-entropy with
Standard Gradient Descent (SGD) from random initialization. The best model in the
validation set is kept for testing. For the data augmentation setup, first, the training data

of 6705 files was augmented using the below mentioned 12 transformations.

Adding Background noise (SNR value: between 10 and 20)

Convolving with the impulse response of smartphone mic (level: between 0.1 and

0.5)

Convolving with the impulse response of classroom mic (level: between 0.1 and 0.5)

e Pitch scaling (Ratios of pitch scaling: 0.7, 1.3 and 1.5)

Time stretching (Ratios of time stretching: 0.7, 1.3 and 1.5)

e Dynamic range compression (level: 1,2 and 3)
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This created quite a large dataset of original training + the augmented training data
(6705 x 12 data samples). Then, the log-mel spectrograms were computed for the required
model and fed to the training pipeline. These experiments are done for single-layer and
the multi-layer architecture models. The results for these experiments are analyzed in the

next section.

To further study how each type of transformation affects each instrument class, we carried
out a series of experiments using the single-layer architecture. We used only one type of
audio transformation for each experiment, making it five experiments (noise, convolution,
pitch scaling, time-stretching, and dynamic range compression). The results for these
experiments have been elaborated upon in the next section. For this set-up, we used
similar parameter values for all the augmentations except the pitch scaling, where we
scaled the audio pieces from -4 to +4 semitone difference, where in the earlier experiments,

we used simple ratio based scaling rather than the semitone difference.
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Evaluation

In this chapter, we present our evaluation strategy and the results for the experiments
conducted. The preliminary experiments on the feature extraction + SVM model gave
very encouraging results, enabling us to test the data augmentation on the spectrogram -+

CNN based classification.

4.1 Evaluation Strategy

The performance of the different models is evaluated using standard metrics like micro
and macro precision,recall and F1l-measure which are explained in section 3.2. The micro-
metrics are calculated globally by counting the total true positives, false negatives and false
positives while the macro-metrics are computed label-wise and their unweighted mean is

reported without taking label imbalance into account.

There is an option for two evaluation strategies sl and s2. The sl strategy computes a
mean activation through whole audio excerpt and apply identification threshold. The s2
strategy computes sum of activations, normalize it by dividing by maximum activation.
The weights file with the best results from validation set is used for the evaluation of the
test set, same as the original work. For this thesis, we use the strategy s1, unless otherwise

stated.

23
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4.2 Results

The experiments were conducted for both single-layer and multi-layer models, in accor-
dance with the experiment set-up detailed in section 3.5. The table 3 shows the comparison
of the performance for single-layer and multi-layer set-up without and with augmentation,

alongside the other baseline approaches.

As is clear from the results, data augmentation improves the performance of the model
significantly. The results for single-layer (with augmentation) were obtained with the
evaluation strategy sl and a threshold of 0.2, same as for the other three CNN architec-
tures. Single-layer architecture (with augmentation) not only improves upon itself, but
also outperforms other deeper architectures with just 79k parameters as opposed to 743k
parameters for multi-layer architecture and 1446k parameters for the [Han et al., 2017] ar-
chitecture. Multi-layer with augmentation is found to be the best performing architecture
with an overall classification accuracy improvement of around 2% over the previous best

performance.

Table 3: Performance results in comparison with other architectures

Bosch ct al. 0.504 0.501 0.503 0.41 0.455 0.432
Han et al. 0.655 0.557 0.602 0.541 0.508 0.503
Single-layer 0.611 0.516 0.559 0.523 0.480 0.484
(without aug.)
Multi-layer
: 0.650 0.538 0.589 0.550 0.525 0.516
(without aug.)
Single-layer 0.662 0.552 0.602 0.552 0.530 0.524
(with aug.)
Multi-layer
0.715 0.549 0.621 0.623 0.516 0.543

(with aug.)

The results in table 3 clearly demonstrates the advantage of using synthetic data aug-
mentation during the training process of a CNN for the task of instrument classification.
Further, we visualized the results as a heat map of the difference of confusion matrices with

and without augmentation. This gives us a clearer idea about the changes in predictions
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before and after augmentation. The plot for the single-layer architecture is shown in figure
4. From the plot, it is evident that most of the diagonal values i.e. the confusion of the
correct classes with themselves, are positive indicating better classification accuracy for
those classes. A few classes like 'cello’ and ’electric guitar’, and ’flute’ performed worse

than previously.

Cello- -9 6 0 0 0 2 0 0 0 -3 3
Plano*_ 0 = -15 -10 -5 2 - 1 14 40
Violin-| =13 2 14 -1 0 2 1 -1 1 -8 3
Clarinet -13 9 -7 1 0 0 3 2 5 0 0 20
Organ- =2l 1 0 0 24 6 -1 6 10 -18 17
Guitar ac. - =12 1 -2 -15 - 0 9 1" -18 1 0
Trumpet™ -3 0 -1 1 -1 1 3 0 -1 1 0
Flute- -9 4 1 2 5 1 1 5 1 1 2 -20
Saxophone- = 0 0 1 0 -1 -2 0 6 0 -1
Guitar el.- 4 -10 1 0 -7 -3 2 -1 0 ‘ _40
Vm(e’- 7 -8 -2 -10 10 -2 -7 13 -3
CeIHo Plal-m V\ol n C ar‘met Orglar. Gu :.Iar ac. Trm‘-pet Flute Saxoplhone Guit.lar al. VD‘ICE

Figure 4: Difference of confusion matrices with and without augmentation for the
single-layer architecture, positive values(blue) signifies a positive change in confusion
and negative values(red) signifies a negative change in confusion

Cello- -8 1 0 -1 0 -2 1 1 -3 1 0 40
Violin~ - 0 1 -2 -4 -2 2 -2 0 1 8
Clarinet=. =11 8 -6 2 0 -1 1 3 3 1 0 o
Organ- -7 3 2 9 -5 ] 2 -12 5 -1 20
Guitar ac.~ -5 10 -1 6 -4 8 3 2 7 -5 " 0
Trumpetr- -1 0 0 2 0 0 B 1 1 -2 0
Flute- 4 1 -2 6 -3 0 1 5 1 il 0
Saxophone- 0 0 0 0 0 -2 -2 0 4 0 -1 20
Guitar E|"- -5 -14 0 1 -12 -2 4 -3 12
Voicem 3 0 -16 2 -3 -1 0 7 -2 4 -40
Cé\lo P|a|n0 V\c;hn C\ar‘met Oréan Guit.lar ac. Trur;wel F\u‘te Saxop;hone Guit'ar el. Vo'ice

Figure 5: Difference of confusion matrices with and without augmentation for the
multi-layer architecture, positive values(blue) signifies a positive change in confusion
and negative values(red) signifies a negative change in confusion

The plot for the multi-layer architecture is shown in figure 5. With data augmentation, the
classes ’piano’, ’electric guitar’, and ’voice’ performed extremely well; most other classes
performed reasonably well. The classes ’cello’; 'organ’, and ’acoustic guitar’ performed

worse than previously.

From figure 4 and 5, it is seen that the sound samples from all the classes are being less
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confused with ’Cello’ and more with ’Saxophone’ and *Voice’. The confusion with the "voice’
class could be due to the random pitch scaling rather than shifting it in semitones which
is a more musical way of doing the augmentation. Therefore, while doing the experiment

with only pitch shifting, we chose to use the semitone based pitch shifting.
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Figure 6: Accuracy changes for each class-augmentation pair

There was a need to further investigate as in which type of augmentations help the model
most and which ones not so much or perhaps even degrade the performance. We therefore

studied how the effect of these different augmentations separately add up in the combined
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augmentations model i.e. linearly or non-linearly. For getting more insight, we visual-
ized the results to see how the class accuracies change as described in section 3.5. We
studied the changes in accuracies for each type of augmentation for each instrument class.
Overall accuracy increased for all augmentations, though only marginally for 'noise’ and
‘convolution’. Pitch scaling was found to be the best performing augmentation, while
time-stretching was the second best augmentation type. In figure 6, we plot the change in
classification accuracy for each class with each type of augmentation type, zero axis being
the original classification accuracy for the model without data augmentation. It is evident
that most classes react positively to the data augmentation, with the exceptions of 'cello’,
flute’ and electric guitar’. It remains an open question as to why these categories react
negatively to data augmentation. We put forth our idea of approaching this in the next

section.
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Conclusions and Future Work

Concluding this thesis, we would like to reiterate the contributions of the work. We re-
viewed the MIR literature and found scarce research exploiting the benefits of data aug-
mentation, a technique which had been successfully applied in other domains previously.
Thus, we started with the development of a general purpose audio data augmentation li-
brary. We tested our library on a simple classifier, applying data augmentation for the task
of instrument classification and got very promising results. We then replicated the results
of these preliminary experiments, using data augmentation with single layered and deeper
Convolutional Neural Networks based models for the same task of instrument classifica-
tion. We experimented with the current state of the art models, improving the performance
by almost 6% for the single-layer architecture and by 4% for the multi-layer architecture.
Using data augmentation with even the basic single layer model (explained in section 3.5)
achieved results comparable to the deeper state of the art models. Then, we also investi-
gated the effects of augmentation on the deeper model architectures, using the multi-layer
model explained in section 3.5. With this, we achieved even better results with a fl-score of
0.621 which is a 2% increase over the best performing model using approximately half the

number of parameters (1446k for Han et. al. model and 743k for the multi-layer model).

We further studied the influence of each type of augmentation separately on the perfor-
mance of the single-layer model, showing an improvement in overall accuracy for all the
augmentations. With these experiments, we also found that not all augmentations are

helpful for all instrument classes, so the augmentations should be designed keeping these

28
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conclusions in mind. For our task, we found pitch shifting to be the most useful aug-
mentation overall, followed by time-stretching. We would like to further study the class-
es/augmentation pairs for which the performance accuracies decreased, so as to develop
a better understanding of data augmentation and its effects on the deep learning models,
and how it is influenced by the domain and the problem it is being employed in. A more
detailed study could also be conducted on the changes in the spectrograms and the learned
filters of the CNN, before and after augmentation for each instrument class-augmentation
type pair. This could tell us precisely why the model is confusing a particular class with
another class, with the additional understanding of the influence of the augmentation on

the spectrogram or the learned filter.

We believe that with the advent of deep learning in MIR and the paucity of well-annotated
data, incorporating synthetic data augmentation during the training phase could be a really
helpful technique to achieve better results. It helps in making the model more robust,

ensuring that it learns the typical characteristics of the class rather than the data itself.

We would have liked to test the performance of our audio augmentation library against
other alternatives like the Audio Degradation Toolbox and the MUDA but could not do so
because of the time constraint. All the experiments were performed on the IRMAS dataset,
leaving room for the testing of our methodology on other datasets, which hopefully are
also more representative of the real world data. Trying out different combinations of

augmentations and their parameters might also be helpful.

We would like to test data augmentation for some other MIR tasks in the future. Keeping
in mind that each augmentation type influences each class differently, performance of the

models can be further improved by doing class specific augmentations.
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