
Detailed Overview of Software Smells

Tushar Sharma and Diomidis Spinellis

Department of Management Science and Technology
Athens University of Economics and Business

{tushar,dds}@aueb.gr

Abstract

This document provides an overview of literature concerning software smells
covering various dimensions of smells along with their corresponding refer-
ences.

Figure 1: A detailed overview of software smells along with their relevant references.

• Defining characteristics of software smells

– Indicator [60, 105, 93, 19]

– Poor solution [46, 42, 28, 7, 98, 15]

– Violates best practices [93, 82]



– Impacts quality [105, 46, 39, 61, 7, 32, 82, 93]

– Recurrence [55, 77, 46]

• Types of software smells

– Architecture smells [32, 12, 49]

– Design smells [93, 11]

– Implementation smells [29, 7, 12, 24, 1, 35]

– Energy smells [100]

– Configuration systems smells [82]

– Services smells [72, 48, 73]

– Aspect-oriented systems smells [5, 10]

– Performance smells [88, 85, 104]

– Test smells [34, 37, 21]

– Web smells [66]

– Reuse smells [52]

– Usability smells [4]

– Models smells [23, 20]

– Database smells [40]

• Classification of software smells

– Effect-based [57]

– Principle-based [31, 93]

– Granularity-based [12, 60]

– Artifact characteristics-based [40, 103]

• Detection methods of software smells

– Metrics [84, 102, 2, 65, 69, 54, 28, 99, 25, 26, 10, 101, 64, 81, 67,
71, 58, 68, 22]

– Machine learning [45, 13, 46, 56, 18, 55]

– History [74, 30]

2



– Rules/Heuristics [60, 7, 72, 95, 83, 78, 23, 1, 27, 96, 97, 16, 6, 75,
51]

– Optimization [33, 41, 80, 70]

• Impact of software smells

– On software product — maintainability [8, 76, 63, 107, 106, 105,
89], effort/cost [87, 90, 79, 53], reliability [39, 36, 108, 9, 62, 44],
change proneness [108, 43, 68, 44], testability [79], performance
[38, 85, 14]

– On software development processes [86]

– On people [93, 94]

• Causes of software smells

– Lack of skill or awareness [93, 59, 17, 94]

– Frequently changing requirements [59, 50]

– Knowledge gap [59, 50]

– Language, platform, or framework constraints [59, 47, 50, 91, 17]

– Processes [94]

– Schedule pressure [50, 59, 93]

– Priority to features over quality [59]

– Politics [17, 50, 92]

– Team culture [3, 17, 94]

– Human resource planning [50]

References

[1] Abebe, S. L., Haiduc, S., Tonella, P., Marcus, A., Nov. 2011. The effect
of lexicon bad smells on concept location in source code. In: Proceed-
ings - 11th IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2011. Fondazione Bruno Kessler,
Trento, Italy, IEEE, pp. 125–134.

3



[2] Ab́ılio, R., Padilha, J., Figueiredo, E., Costa, H., Apr. 2015. Detecting
Code Smells in Software Product Lines – An Exploratory Study. In:
ITNG ’15: Proceedings of the 2015 12th International Conference on
Information Technology - New Generations. IEEE Computer Society,
pp. 433–438.

[3] Acuña, S. T., Gómez, M., Juristo, N., Aug. 2008. Towards under-
standing the relationship between team climate and software quality–a
quasi-experimental study. Empirical Software Engineering 13 (4), 339–
342.

[4] Almeida, D., Campos, J. C., Saraiva, J., Silva, J. C., Apr. 2015. To-
wards a catalog of usability smells. In: SAC ’15: Proceedings of the
30th Annual ACM Symposium on Applied Computing. University of
Minho, ACM, pp. 175–181.

[5] Alves, P., Figueiredo, E., Ferrari, F., 2014. Avoiding Code Pitfalls
in Aspect-Oriented Programming. In: Computational Science and Its
Applications – ICCSA 2012. Springer International Publishing, pp. 31–
46.

[6] Arcelli, D., Berardinelli, L., Trubiani, C., Jan. 2015. Performance An-
tipattern Detection through fUML Model Library. In: WOSP ’15: Pro-
ceedings of the 2015 Workshop on Challenges in Performance Methods
for Software Development. University of L’Aquila, ACM, pp. 23–28.

[7] Arnaoudova, V., Di Penta, M., Antoniol, G., Guéhéneuc, Y.-G.,
Mar. 2013. A New Family of Software Anti-patterns: Linguistic Anti-
patterns. In: CSMR ’13: Proceedings of the 2013 17th European Con-
ference on Software Maintenance and Reengineering. IEEE Computer
Society, pp. 187–196.

[8] Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D., Dec. 2012.
An empirical analysis of the distribution of unit test smells and their
impact on software maintenance. In: IEEE International Conference
on Software Maintenance, ICSM. Universita di Salerno, Salerno, Italy,
IEEE, pp. 56–65.

[9] Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., Binkley, D., May
2014. Are test smells really harmful? An empirical study. Empirical
Software Engineering 20 (4), 1052–1094.

4



[10] Bertran, I. M., Garcia, A., von Staa, A., Mar. 2011. An exploratory
study of code smells in evolving aspect-oriented systems. In: AOSD ’11:
Proceedings of the tenth international conference on Aspect-oriented
software development. Pontifical Catholic University of Rio de Janeiro,
ACM, p. 203.

[11] Binkley, D., Gold, N., Harman, M., Li, Z., Mahdavi, K., Wegener,
J., Dec. 2008. Dependence Anti Patterns. In: Aramis 2008 - 1st In-
ternational Workshop on Automated engineeRing of Autonomous and
runtiMe evolvIng Systems, and ASE2008 the 23rd IEEE/ACM Int.
Conf. Automated Software Engineering. King’s College London, Lon-
don, United Kingdom, IEEE, pp. 25–34.

[12] Brown, W. H., Malveau, R. C., McCormick, H. W. S., Mowbray, T. J.,
1998. AntiPatterns: Refactoring Software, Architectures, and Projects
in Crisis, 1st Edition. John Wiley & Sons, Inc.

[13] Bryton, S., Brito E Abreu, F., Monteiro, M., Dec. 2010. Reducing
subjectivity in code smells detection: Experimenting with the Long
Method. In: Proceedings - 7th International Conference on the Quality
of Information and Communications Technology, QUATIC 2010. Fac-
uldade de Ciencias e Tecnologia, New University of Lisbon, Caparica,
Portugal, IEEE, pp. 337–342.

[14] Chen, T.-H., Shang, W., Jiang, Z. M., Hassan, A. E., Nasser, M., Flora,
P., May 2014. Detecting performance anti-patterns for applications de-
veloped using object-relational mapping. In: ICSE 2014: Proceedings
of the 36th International Conference on Software Engineering. Queen’s
University, Kingston, ACM, pp. 1001–1012.

[15] Cortellessa, V., Di Marco, A., Trubiani, C., Feb. 2014. An approach
for modeling and detecting software performance antipatterns based
on first-order logics. Software and Systems Modeling (SoSyM) 13 (1),
391–432.

[16] Cortellessa, V., Martens, A., Reussner, R., Trubiani, C., Apr. 2010.
A process to effectively identify ”guilty” performance antipatterns. In:
Lecture Notes in Computer Science (including subseries Lecture Notes

5



in Artificial Intelligence and Lecture Notes in Bioinformatics). Univer-
sita degli Studi dell’Aquila, L’Aquila, Italy, Springer Berlin Heidelberg,
pp. 368–382.

[17] Curcio, K., Malucelli, A., Reinehr, S., Paludo, M. A., Nov. 2016. An
analysis of the factors determining software product quality: A com-
parative study. Computer Standards & Interfaces 48, 10–18.

[18] Czibula, G., Marian, Z., Czibula, I. G., Mar. 2015. Detecting software
design defects using relational association rule mining. Knowledge and
Information Systems 42 (3), 545–577.

[19] da Silva Sousa, L., May 2016. Spotting design problems with smell
agglomerations. In: ICSE ’16: Proceedings of the 38th International
Conference on Software Engineering Companion. Pontifical Catholic
University of Rio de Janeiro, ACM, pp. 863–866.

[20] Das, T. K., Dingel, J., Jul. 2016. Model development guidelines for
UML-RT: conventions, patterns and antipatterns. Software & Systems
Modeling, 1–36.

[21] Deursen, A. V., Moonen, L., Bergh, A. V. D., Kok, G., 2001. Refac-
toring test code. In: Marchesi, M. (Ed.), Proceedings of the 2nd Inter-
national Conference on Extreme Programming and Flexible Processes
(XP2001). University of Cagliari, pp. 92–95.

[22] Dexun, J., Peijun, M., Xiaohong, S., Tiantian, W., Sep. 2013. Detection
and Refactoring of Bad Smell Caused by Large Scale. International
Journal of Software Engineering & Applications 4 (5), 1–13.

[23] El-Attar, M., Miller, J., Feb. 2009. Improving the quality of use case
models using antipatterns. Software & Systems Modeling 9 (2), 141–
160.

[24] Fard, A. M., Mesbah, A., Jan. 2013. JSNOSE: Detecting javascript
code smells. In: IEEE 13th International Working Conference on
Source Code Analysis and Manipulation, SCAM 2013. The University
of British Columbia, Vancouver, Canada, IEEE, pp. 116–125.

[25] Fard, A. M., Mesbah, A., Jan. 2013. JSNOSE: Detecting javascript
code smells. In: IEEE 13th International Working Conference on

6



Source Code Analysis and Manipulation, SCAM 2013. The University
of British Columbia, Vancouver, Canada, IEEE, pp. 116–125.

[26] Fenske, W., Schulze, S., Meyer, D., Saake, G., Nov. 2015. When
code smells twice as much: Metric-based detection of variability-aware
code smells. In: 2015 IEEE 15th International Working Conference on
Source Code Analysis and Manipulation, SCAM 2015 - Proceedings.
Otto von Guericke University of Magdeburg, Magdeburg, Germany,
IEEE, pp. 171–180.

[27] Fokaefs, M., Tsantalis, N., Chatzigeorgiou, A., 2007. JDeodorant: Iden-
tification and Removal of Feature Envy Bad Smells. In: 2007 IEEE In-
ternational Conference on Software Maintenance. Panepistimion Make-
donias, Thessaloniki, Greece, IEEE, pp. 519–520.

[28] Fourati, R., Bouassida, N., Abdallah, H. B., 2011. A Metric-Based
Approach for Anti-pattern Detection in UML Designs. In: Computer
and Information Science 2011. Springer Berlin Heidelberg, pp. 17–33.

[29] Fowler, M., 1999. Refactoring: Improving the Design of Existing Pro-
grams, 1st Edition. Addison-Wesley Professional.

[30] Fu, S., Shen, B., Nov. 2015. Code Bad Smell Detection through Evo-
lutionary Data Mining. In: International Symposium on Empirical
Software Engineering and Measurement. Shanghai Jiaotong University,
Shanghai, China, IEEE, pp. 41–49.

[31] Ganesh, S., Sharma, T., Suryanarayana, G., Jun. 2013. Towards a
principle-based classification of structural design smells. Journal of Ob-
ject Technology 12 (2), 1:1–29.

[32] Garcia, J., Popescu, D., Edwards, G., Medvidovic, N., 2009. Toward
a catalogue of architectural bad smells. In: Proceedings of the 5th In-
ternational Conference on the Quality of Software Architectures: Ar-
chitectures for Adaptive Software Systems. QoSA ’09. Springer-Verlag,
pp. 146–162.

[33] Ghannem, A., El Boussaidi, G., Kessentini, M., Mar. 2015. On the use
of design defect examples to detect model refactoring opportunities.
Software Quality Journal, 1–19.

7



[34] Greiler, M., van Deursen, A., Storey, M.-A., Jan. 2013. Automated
Detection of Test Fixture Strategies and Smells. In: 2013 IEEE Sixth
International Conference on Software Testing, Verification and Valida-
tion (ICST). IEEE, pp. 322–331.

[35] Guerrouj, L., Kermansaravi, Z., Arnaoudova, V., Fung, B. C. M.,
Khomh, F., Antoniol, G., Guéhéneuc, Y.-G., May 2016. Investigating
the relation between lexical smells and change- and fault-proneness: an
empirical study. Software Quality Journal, 1–30.

[36] Hall, T., Zhang, M., Bowes, D., Sun, Y., Sep. 2014. Some Code Smells
Have a Significant but Small Effect on Faults. ACM Transactions on
Software Engineering and Methodology (TOSEM) 23 (4), 33–39.

[37] Hauptmann, B., Junker, M., Eder, S., Heinemann, L., Vaas, R., Braun,
P., May 2013. Hunting for smells in natural language tests. In: ICSE
’13: Proceedings of the 2013 International Conference on Software En-
gineering. Technical University of Munich, IEEE Press, pp. 1217–1220.

[38] Hecht, G., Moha, N., Rouvoy, R., May 2016. An empirical study of
the performance impacts of Android code smells. In: MOBILESoft
’16: Proceedings of the International Workshop on Mobile Software
Engineering and Systems. Universite Lille 2 Droit et Sante, ACM.

[39] Jaafar, F., Guéhéneuc, Y.-G., Hamel, S., Khomh, F., 2013. Mining the
relationship between anti-patterns dependencies and fault-proneness.
In: Proceedings - Working Conference on Reverse Engineering, WCRE.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 351–
360.

[40] Karwin, B., 2010. SQL Antipatterns: Avoiding the Pitfalls of Database
Programming, 1st Edition. Pragmatic Bookshelf.

[41] Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., Ouni, A.,
2014. A Cooperative Parallel Search-Based Software Engineering Ap-
proach for Code-Smells Detection. IEEE Transactions on Software En-
gineering 40 (9), 841–861.

[42] Khan, Y. A., El-Attar, M., 2016. Using model transformation to refac-
tor use case models based on antipatterns. Information Systems Fron-
tiers 18 (1), 171–204.

8



[43] Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., Dec. 2009. An Ex-
ploratory Study of the Impact of Code Smells on Software Change-
proneness. In: 2009 16th Working Conference on Reverse Engineering.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 75–84.

[44] Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., Antoniol, G., Jun. 2012.
An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering 17 (3), 243–275.

[45] Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., Aug. 2009.
A Bayesian Approach for the Detection of Code and Design Smells. In:
QSIC ’09: Proceedings of the 2009 Ninth International Conference on
Quality Software. IEEE Computer Society, pp. 305–314.

[46] Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., Sahraoui, H., 2011. BD-
TEX: A GQM-based Bayesian approach for the detection of antipat-
terns. In: Journal of Systems and Software. Ecole Polytechnique de
Montreal, Montreal, Canada, pp. 559–572.

[47] Kleinschmager, S., Hanenberg, S., Robbes, R., Stefik, A., 2012. Do
static type systems improve the maintainability of software systems?
An empirical study. In: 2012 IEEE 20th International Conference on
Program Comprehension (ICPC). Universitat Duisburg-Essen, Essen,
Germany, IEEE, pp. 153–162.

[48] Král, J., Žemlička, M., Dec. 2007. The most important service-oriented
antipatterns. In: 2nd International Conference on Software Engineering
Advances - ICSEA 2007. Charles University in Prague, Prague, Czech
Republic, IEEE, pp. 29–29.

[49] Lauder, A., Kent, S., 2000. Legacy System Anti-Patterns and a
Pattern-Oriented Migration Response. In: Systems Engineering for
Business Process Change. Springer London, pp. 239–250.

[50] Lavallée, M., Robillard, P. N., Aug. 2015. Why good developers write
bad code: An observational case study of the impacts of organizational
factors on software quality. In: Proceedings - International Conference
on Software Engineering. Polytechnique Montréal, Montreal, Canada,
IEEE, pp. 677–687.

9



[51] Ligu, E., Chatzigeorgiou, A., Chaikalis, T., Ygeionomakis, N., Sept
2013. Identification of refused bequest code smells. In: 2013 IEEE In-
ternational Conference on Software Maintenance. pp. 392–395.

[52] Long, J., Jul. 2001. Software reuse antipatterns. ACM SIGSOFT Soft-
ware Engineering Notes 26 (4), 68–76.

[53] MacCormack, A., Sturtevant, D. J., 2016. Technical debt and system
architecture: The impact of coupling on defect-related activity. Journal
of Systems and Software 120, 170 – 182.

[54] Macia, I., Garcia, A., von Staa, A., Dec. 2010. Defining and applying
detection strategies for aspect-oriented code smells. In: Proceedings -
24th Brazilian Symposium on Software Engineering, SBES 2010. Pon-
tificia Universidade Catolica do Rio de Janeiro, Rio de Janeiro, Brazil,
IEEE, pp. 60–69.

[55] Maiga, A., Ali, N., Bhattacharya, N., Sabané, A., Guéhéneuc, Y.-G.,
Antoniol, G., Aı̈meur, E., Sep. 2012. Support vector machines for anti-
pattern detection. In: ASE 2012: Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. Poly-
technic School of Montreal, ACM, pp. 278–281.

[56] Mansoor, U., Kessentini, M., Maxim, B. R., Deb, K., Feb. 2016. Multi-
objective code-smells detection using good and bad design examples.
Software Quality Journal, 1–24.

[57] Mäntylä, M., Vanhanen, J., Lassenius, C., Sep. 2003. A Taxonomy
and an Initial Empirical Study of Bad Smells in Code. In: ICSM ’03:
Proceedings of the International Conference on Software Maintenance.
IEEE Computer Society.

[58] Marinescu, R., Dec. 2005. Measurement and quality in object-oriented
design. In: 21st IEEE International Conference on Software Mainte-
nance (ICSM’05). Universitatea Politehnica din Timisoara, Timisoara,
Romania, IEEE, pp. 701–704.

[59] Martini, A., Bosch, J., Chaudron, M., Aug 2014. Architecture techni-
cal debt: Understanding causes and a qualitative model. In: 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications. pp. 85–92.

10



[60] Moha, N., Guéhéneuc, Y., Duchien, L., Meur, A. L., 2010. DECOR: A
method for the specification and detection of code and design smells.
IEEE Trans. Software Eng. 36 (1), 20–36.

[61] Moha, N., Guéhéneuc, Y.-G., 2007. Decor: a tool for the detection
of design defects. In: ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing. University of Montreal, ACM, pp. 527–528.

[62] Monden, A., Nakae, D., Kamiya, T., Sato, S.-i., Matsumoto, K.-i., Jun.
2002. Software Quality Analysis by Code Clones in Industrial Legacy
Software. In: METRICS ’02: Proceedings of the 8th International Sym-
posium on Software Metrics. IEEE Computer Society, p. 87.

[63] Moonen, L., Yamashita, A., Sep. 2012. Do code smells reflect impor-
tant maintainability aspects? In: ICSM ’12: Proceedings of the 2012
IEEE International Conference on Software Maintenance (ICSM). Sim-
ula Research Laboratory, IEEE Computer Society.

[64] Munro, M. J., Sep. 2005. Product Metrics for Automatic Identification
of ”Bad Smell” Design Problems in Java Source-Code. In: METRICS
’05: Proceedings of the 11th IEEE International Software Metrics Sym-
posium (METRICS’05). University of Strathclyde, IEEE Computer So-
ciety, pp. 15–15.

[65] Murphy-Hill, E., Black, A. P., Oct. 2010. An interactive ambient visu-
alization for code smells. In: SOFTVIS ’10: Proceedings of the 5th in-
ternational symposium on Software visualization. North Carolina State
University, ACM.

[66] Nguyen, H. V., Nguyen, H. A., Nguyen, T. T., Nguyen, A. T., Nguyen,
T. N., Sep. 2012. Detection of embedded code smells in dynamic web
applications. In: ASE 2012: Proceedings of the 27th IEEE/ACM Inter-
national Conference on Automated Software Engineering. Iowa State
University, ACM, pp. 282–285.

[67] Nongpong, K., Jan. 2015. Feature envy factor: A metric for automatic
feature envy detection. In: Proceedings of the 2015-7th International
Conference on Knowledge and Smart Technology, KST 2015. Assump-
tion University, Bangkok, Bangkok, Thailand, IEEE, pp. 7–12.

11



[68] Olbrich, S., Cruzes, D. S., Basili, V., Zazworka, N., Aug. 2009. The
evolution and impact of code smells: A case study of two open source
systems. In: 2009 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, pp. 390–400.

[69] Oliveto, R., Khomh, F., Antoniol, G., Guéhéneuc, Y.-G., Mar. 2010.
Numerical Signatures of Antipatterns: An Approach Based on B-
Splines. In: CSMR ’10: Proceedings of the 2010 14th European Con-
ference on Software Maintenance and Reengineering. IEEE Computer
Society, pp. 248–251.

[70] Ouni, A., Kula, R. G., Kessentini, M., Inoue, K., Jul. 2015. Web Ser-
vice Antipatterns Detection Using Genetic Programming. In: GECCO
’15: Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation. Osaka University, ACM, pp. 1351–1358.

[71] Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A.,
Sant’Anna, C., Jan. 2014. On the effectiveness of concern metrics to
detect code smells: An empirical study. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil, Springer International Publish-
ing, pp. 656–671.

[72] Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G., Jan. 2014. Detec-
tion of REST patterns and antipatterns: A heuristics-based approach.
In: Franch, X., Ghose, A. K., Lewis, G. A., Bhiri, S. (Eds.), Lecture
Notes in Computer Science (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics). Universite du
Quebec a Montreal, Montreal, Canada, Springer Berlin Heidelberg, pp.
230–244.

[73] Palma, F., Mohay, N., Jan. 2015. A study on the taxonomy of service
antipatterns. In: 2015 IEEE 2nd International Workshop on Patterns
Promotion and Anti-Patterns Prevention, PPAP 2015 - Proceedings.
Ecole Polytechnique de Montreal, Montreal, Canada, IEEE, pp. 5–8.

[74] Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D.,
De Lucia, A., May 2015. Mining version histories for detecting code
smells. IEEE Transactions on Software Engineering 41 (5), 462–489.

12



[75] Palomba, F., Panichella, A., De Lucia, A., Oliveto, R., Zaidman, A.,
2016. A textual-based technique for Smell Detection. In: 2016 IEEE
24th International Conference on Program Comprehension (ICPC).
Universita di Salerno, Salerno, Italy, IEEE, pp. 1–10.

[76] Perepletchikov, M., Ryan, C., Aug. 2011. A controlled experiment for
evaluating the impact of coupling on the maintainability of service-
oriented software. IEEE Transactions on Software Engineering 37 (4),
449–465.

[77] Peters, R., Zaidman, A., 2012. Evaluating the lifespan of code smells us-
ing software repository mining. In: Proceedings of the 2012 16th Euro-
pean Conference on Software Maintenance and Reengineering. CSMR
’12. IEEE Computer Society, pp. 411–416.

[78] Rama, G. M., Feb. 2010. A desiderata for refactoring-based software
modularity improvement. In: ISEC ’10: Proceedings of the 3rd India
software engineering conference. Infosys Technologies Limited India,
ACM, pp. 93–102.

[79] Sabané, A., Di Penta, M., Antoniol, G., Guéhéneuc, Y.-G., Mar. 2013.
A Study on the Relation between Antipatterns and the Cost of Class
Unit Testing. In: CSMR ’13: Proceedings of the 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE Com-
puter Society, pp. 167–176.

[80] Sahin, D., Kessentini, M., Bechikh, S., Deb, K., Oct. 2014. Code-Smell
Detection as a Bilevel Problem. ACM Transactions on Software Engi-
neering and Methodology (TOSEM) 24 (1), 6–44.

[81] Salehie, M., Li, S., Tahvildari, L., Jun. 2006. A Metric-Based Heuristic
Framework to Detect Object-Oriented Design Flaws. In: ICPC ’06:
Proceedings of the 14th IEEE International Conference on Program
Comprehension (ICPC’06). University of Waterloo, IEEE Computer
Society, pp. 159–168.

[82] Sharma, T., Fragkoulis, M., Spinellis, D., 2016. Does your configuration
code smell? In: Proceedings of the 13th International Workshop on
Mining Software Repositories. MSR’16. pp. 189–200.

13



[83] Sharma, T., Mishra, P., Tiwari, R., 2016. Designite — A Software
Design Quality Assessment Tool. In: Proceedings of the First Interna-
tional Workshop on Bringing Architecture Design Thinking into De-
velopers’ Daily Activities. BRIDGE ’16. ACM.

[84] Sharma, V. S., Anwer, S., Dec. 2013. Detecting Performance Antipat-
terns before Migrating to the Cloud. In: CLOUDCOM ’13: Proceed-
ings of the 2013 IEEE International Conference on Cloud Computing
Technology and Science - Volume 01. IEEE Computer Society, pp. 148–
151.

[85] Sharma, V. S., Anwer, S., Jan. 2014. Performance antipatterns: De-
tection and evaluation of their effects in the cloud. In: Proceedings
- 2014 IEEE International Conference on Services Computing, SCC
2014. Accenture Services Pvt Ltd., India, Bangalore, India, IEEE, pp.
758–765.

[86] Silva, M. C. O., Valente, M. T., Terra, R., 2016. Does technical debt
lead to the rejection of pull requests? CoRR abs/1604.01450.

[87] Sjoberg, D. I. K., Yamashita, A., Anda, B., Mockus, A., Dyba, T., Aug.
2013. Quantifying the Effect of Code Smells on Maintenance Effort.
IEEE Transactions on Software Engineering 39 (8), 1144–1156.

[88] Smith, C., Dec. 2000. Software performance antipatterns. In: Pro-
ceedings Second International Workshop on Software and Performance
WOSP 2000. Performance Engineering Services, Santa Fe, United
States, pp. 127–136a.

[89] Soh, Z., Yamashita, A., Khomh, F., Guéhéneuc, Y.-G., 2016. Do Code
Smells Impact the Effort of Different Maintenance Programming Ac-
tivities? In: 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, pp. 393–402.

[90] Sṕınola, R. O., Zazworka, N., Vetrò, A., Seaman, C., Shull, F., 2013.
Investigating technical debt folklore: Shedding some light on technical
debt opinion. In: Proceedings of the 4th International Workshop on
Managing Technical Debt. MTD ’13. IEEE Press, pp. 1–7.

[91] Stella, L. F. F., Jarzabek, S., Wadhwa, B., Dec. 2008. A comparative
study of maintainability of web applications on J2EE, .NET and ruby

14



on rails. In: Proceedings - 10th IEEE International Symposium on Web
Site Evolution, WSE 2008. National University of Singapore, Singapore
City, Singapore, IEEE, pp. 93–99.

[92] Stribrny, S., Mackin, F. B., Sep. 2006. When politics overshadow soft-
ware quality. IEEE Software 23 (5), 72–73.

[93] Suryanarayana, G., Samarthyam, G., Sharma, T., 2014. Refactoring
for Software Design Smells: Managing Technical Debt, 1st Edition.
Morgan Kaufmann.

[94] Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical
debt. Journal of Systems and Software 86 (6), 1498 – 1516.

[95] Trubiani, C., Koziolek, A., Mar. 2011. Detection and solution of soft-
ware performance antipatterns in palladio architectural models. In:
ICPE ’11: Proceedings of the 2nd ACM/SPEC International Confer-
ence on Performance engineering. Karlsruhe Institute of Technology,
ACM, pp. 11–11.

[96] Tsantalis, N., Chaikalis, T., Chatzigeorgiou, A., Apr. 2008. JDeodor-
ant: Identification and Removal of Type-Checking Bad Smells. In:
CSMR ’08: Proceedings of the 2008 12th European Conference on Soft-
ware Maintenance and Reengineering. University of Macedonia, IEEE
Computer Society, pp. 329–331.

[97] Tsantalis, N., Chatzigeorgiou, A., Oct. 2011. Identification of extract
method refactoring opportunities for the decomposition of methods.
Journal of Systems & Software 84 (10), 1757–1782.

[98] Van Emden, E., Moonen, L., 2002. Java quality assurance by detecting
code smells. Ninth Working Conference on Reverse Engineering, 97–
106.

[99] Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M., Dec. 2007. On
The Detection of Test Smells: A Metrics-Based Approach for General
Fixture and Eager Test. IEEE Transactions on Software Engineering
33 (12), 800–817.

15



[100] Vetr, A., Ardito, L., Procaccianti, G., Morisio, M., 2013. Definition,
implementation and validation of energy code smells: an exploratory
study on an embedded system. ThinkMind, pp. 34–39.

[101] Vidal, S., Vazquez, H., Dı́az-Pace, J. A., Marcos, C., Garcia, A.,
Oizumi, W., Feb. 2016. JSpIRIT: A flexible tool for the analysis of
code smells. In: Proceedings - International Conference of the Chilean
Computer Science Society, SCCC. Universidad Nacional del Centro de
la Provincia de Buenos Aires, Tandil, Argentina, IEEE, pp. 1–6.

[102] Vidal, S. A., Marcos, C., Dı́az-Pace, J. A., 2014. An approach to pri-
oritize code smells for refactoring. Automated Software Engineering
23 (3), 501–532.

[103] Wake, W. C., 2003. Refactoring Workbook, 1st Edition. Addison-
Wesley Longman Publishing Co., Inc.

[104] Wang, C., Hirasawa, S., Takizawa, H., Kobayashi, H., May 2014. A
Platform-Specific Code Smell Alert System for High Performance Com-
puting Applications. In: IPDPSW ’14: Proceedings of the 2014 IEEE
International Parallel & Distributed Processing Symposium Work-
shops. IEEE Computer Society, pp. 652–661.

[105] Yamashita, A., 2014. Assessing the capability of code smells to explain
maintenance problems: an empirical study combining quantitative and
qualitative data. Empirical Software Engineering 19 (4), 1111–1143.

[106] Yamashita, A., Moonen, L., 2013. Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In: Pro-
ceedings of the 2013 International Conference on Software Engineering.
ICSE ’13. IEEE Press, pp. 682–691.

[107] Yamashita, A., Moonen, L., Dec. 2013. To what extent can mainte-
nance problems be predicted by code smell detection? - an empirical
study. Information and Software Technology 55 (12), 2223–2242.

[108] Zazworka, N., Shaw, M. A., Shull, F., Seaman, C., May 2011. Inves-
tigating the impact of design debt on software quality. In: MTD ’11:
Proceedings of the 2nd Workshop on Managing Technical Debt. Fraun-
hofer USA, Inc., ACM, pp. 17–23.

16


