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Abstract

This document provides an overview of literature concerning software smells
covering various dimensions of smells along with their corresponding refer-
ences.

Figure 1: A detailed overview of software smells along with their relevant references.

• Defining characteristics of software smells

– Indicator [60, 105, 93, 19]

– Poor solution [46, 42, 28, 7, 98, 15]

– Violates best practices [93, 82]



– Impacts quality [105, 46, 39, 61, 7, 32, 82, 93]

– Recurrence [55, 77, 46]

• Types of software smells

– Architecture smells [32, 12, 49]

– Design smells [93, 11]

– Implementation smells [29, 7, 12, 24, 1, 35]

– Energy smells [100]

– Configuration systems smells [82]

– Services smells [72, 48, 73]

– Aspect-oriented systems smells [5, 10]

– Performance smells [88, 85, 104]

– Test smells [34, 37, 21]

– Web smells [66]

– Reuse smells [52]

– Usability smells [4]

– Models smells [23, 20]

– Database smells [40]

• Classification of software smells

– Effect-based [57]

– Principle-based [31, 93]

– Granularity-based [12, 60]

– Artifact characteristics-based [40, 103]

• Detection methods of software smells

– Metrics [84, 102, 2, 65, 69, 54, 28, 99, 25, 26, 10, 101, 64, 81, 67,
71, 58, 68, 22]

– Machine learning [45, 13, 46, 56, 18, 55]

– History [74, 30]
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– Rules/Heuristics [60, 7, 72, 95, 83, 78, 23, 1, 27, 96, 97, 16, 6, 75,
51]

– Optimization [33, 41, 80, 70]

• Impact of software smells

– On software product — maintainability [8, 76, 63, 107, 106, 105,
89], effort/cost [87, 90, 79, 53], reliability [39, 36, 108, 9, 62, 44],
change proneness [108, 43, 68, 44], testability [79], performance
[38, 85, 14]

– On software development processes [86]

– On people [93, 94]

• Causes of software smells

– Lack of skill or awareness [93, 59, 17, 94]

– Frequently changing requirements [59, 50]

– Knowledge gap [59, 50]

– Language, platform, or framework constraints [59, 47, 50, 91, 17]

– Processes [94]

– Schedule pressure [50, 59, 93]

– Priority to features over quality [59]

– Politics [17, 50, 92]

– Team culture [3, 17, 94]

– Human resource planning [50]
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Numerical Signatures of Antipatterns: An Approach Based on B-
Splines. In: CSMR ’10: Proceedings of the 2010 14th European Con-
ference on Software Maintenance and Reengineering. IEEE Computer
Society, pp. 248–251.

[70] Ouni, A., Kula, R. G., Kessentini, M., Inoue, K., Jul. 2015. Web Ser-
vice Antipatterns Detection Using Genetic Programming. In: GECCO
’15: Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation. Osaka University, ACM, pp. 1351–1358.

[71] Padilha, J., Pereira, J., Figueiredo, E., Almeida, J., Garcia, A.,
Sant’Anna, C., Jan. 2014. On the effectiveness of concern metrics to
detect code smells: An empirical study. In: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Universidade Federal de
Minas Gerais, Belo Horizonte, Brazil, Springer International Publish-
ing, pp. 656–671.

[72] Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G., Jan. 2014. Detec-
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