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Thioredoxin (Trx) and thioredoxin reductase (TrxR) plus NADPH, comprising the thioredoxin system, has
a large number of functions in DNA synthesis, defense against oxidative stress and apoptosis or redox sig-
naling with reference to many diseases. All three isoenzymes of mammalian TrxR contain an essential
selenocysteine residue, which is the target of several drugs in cancer treatment or mercury intoxication.
The cytosolic Trx1 acting as the cells’ protein disulfide reductase is itself reversibly redox regulated via
three structural Cys residues. The evolution of mammalian Trx system compared to its prokaryotic coun-
terparts may be an adaptation to the use of hydrogen peroxide and nitric oxide in redox regulation and
signal transduction.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Thioredoxin (Trx), together with thioredoxin reductase (TrxR)
and NADPH comprising the thioredoxin system, was discovered
by Peter Reichard and coworkers in 1964 as a hydrogen donor
for enzymatic synthesis of cytidine deoxyribonucleoside diphos-
phate by ribonucleotide reductase from Escherichia coli [1]. Enzyme
purification also resulted in a highly pure TrxR as a flavoprotein
with specificity for reduction of the active site disulfide in oxidized
Trx [2]. The amino acid sequence of E. coli Trx1 with 108 residues
was determined in 1968 [3] demonstrating the universally con-
served active site -Cys-Gly-Pro-Cys-. The three-dimensional struc-
ture of oxidized Trx, crystallized as a cupric ion complex, was
discovered in 1975 [4] establishing the Trx fold, today a major pro-
tein structural element. By studies of the mechanism and kinetics
of the Trx, it became clear that it is the cells’ major protein disulfide
reductase potentially being the physiological equivalent of a reduc-
ing agent like dithiothreitol [5]. Characterization of an E. coli mu-
tant lacking Trx1 [5] resulted in the discovery of glutaredoxin as
a GSH-dependent hydrogen donor for ribonucleotide reductase
with overlapping functions to Trx in many systems [5,6].

Research on Trx and TrxR through efforts in many laboratories
worldwide today covers large areas of biomedicine. There are more
than 6100 references in PubMed and e.g. plant biochemistry dem-
onstrates that there are more than 20 genes encoding isoforms of
Trx regulating photosynthesis and other plant biochemical path-
ll rights reserved.

).
ways [6]. Today, a rapidly growing field is the role of Trx and TrxR
in mammalian cell physiology and relation to specific functions.
Recent reviews covering Trx [7] and mammalian TrxR [8] have
been published. In the present article we will give an account of
some aspects of Trx and TrxR with special reference to human
diseases.

2. Mammalian thioredoxin and thioredoxin reductase

Purification of rat liver Trx and TrxR to homogeneity [9] demon-
strated that mammalian TrxRs were larger and had a broader sub-
strate specificity than the prokaryotic forms and that cytosolic Trxs
contain three-structural SH-groups, which were sensitive to oxida-
tion. Today, we know that TrxR is a selenoenzyme with three iso-
forms TrxR1 in the cytosol, TrxR2 in mitochondria and TrxR3 or
TGR (thioredoxin glutathione reductase) present primarily in testis
[8]. Trx1 is a cytosolic and extracellular enzyme whereas Trx2 ex-
ists in mitochondria [7]. Compared to prokaryotic Trx systems the
most remarkable evolution is that TrxR is a large selenoenzyme,
which is radically different from the smaller specific enzyme pres-
ent in all bacteria, fungi, and plants. A lot of research has focused
on the structure and mechanism of TrxR and particularly its reac-
tion with drugs presently used in treating inflammation or cancer
[7,8].

3. Thioredoxin system as a general protein disulfide reductase

The most general description of the Trx system is its role as a
protein disulfide reductase (Fig. 1). The enzyme operates by taking
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Fig. 1. Redox reactions catalyzed by a mammalian Trx system comprising thioredoxin reductase (TrxR), thioredoxin (Trx) and NADPH. The electron source of the Trx system
is NADPH, which is largely produced from the pentose phosphate pathway. The oxidized thioredoxin (Trx-S2) is reduced by NADPH and the selenoenzyme TrxR. Electrons are
transferred from NADPH to FAD, then to the N-terminal redox active disulfide in one subunit of TrxR, and finally to the C-terminal active site Gly–Cys–Sec–Gly of the other
subunit [8]. Reduced thioredoxin (Trx-(SH)2) catalyzes disulfide bond reduction in many proteins. Upon oxidative stress Trx can be secreted into plasma or cleaved into Trx80
lacking the C-terminal 20 or 24 amino acid residues [10].
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electrons from NADPH and via TrxR these are transferred to the ac-
tive site of Trx, which is the general disulfide reductase. Mamma-
lian TrxR consists of two subunits in a head to tail arrangement
with a large number of splice forms [8] and the electrons from
NADPH reduce a redox active disulfide and transfer them to the
C-terminally located active site selenothiol located in the sequence
Gly-Cys-Sec-Gly, which is conserved in all isoforms of TrxR. From
there electrons move to Trx, which reduces protein disulfides or
other substrates.

As seen in Fig. 1, Trx is secreted to plasma and is also present in
a truncated form (Trx80), which has activity as a growth factor
from monocytes inducing at Th1 response in the presence of PBMC
cells via IL12 [10]. Plasma levels of Trx1 and also of TrxR1 have
been used as a marker of inflammation, cancer and HIV infection
[11,7].

The structures of Trx-S2 and Trx-(SH)2 are overall similar and a
localized conformational change occurs on reduction of Trx-S2 [12].
The catalytic mechanism of Trx [12] involved docking to a target
protein via a hydrophobic surface area and a nucleophilic attack
by the active site Cys32 thiolate to form a transition state mixed
disulfide [5]. Recently, the chemistry of Trx catalysis has been stud-
ied by single-molecule force-clamp spectroscopy [13]. The results,
following application of mechanical force in the range of 25–
600 pN, detected two alternative forms of the catalytic reaction,
the first requiring a reorientation of the substrate disulfide bond
and causing a shortening of the substrate polypeptide by about
0.8 Å [13]. The second form of catalysis involved elongating the
disulfide bond by about 0.2 Å [13]. The results suggest that the
Trx active site regulates the geometry of the substrate disulfide
atoms with sub-Ångström precision for efficient catalysis [13].
The conformation of the substrate disulfide under conditions of
oxidative stress or mechanical injury such as in cardiovascular dis-
ease, may thus impact on the efficiency of Trx system catalysis. The
Michaelis–Menten type of reaction in Trx catalysis involves a bind-
ing surface area or groove [13]. Interestingly, eukaryotic Trxs from
X-ray and NMR structures have binding grooves that are several
Ångströms deeper than those of bacterial origin and this is re-
flected in the mechanisms of disulfide reduction as revealed by sin-
gle-molecule force-clamp spectroscopy [14]. A shallow binding
groove as in human mitochondrial Trx2, a Trx of bacterial origin al-
lows the substrate to be mobile [14]. In contrast the deeper groove
found in human Trx1 in the cytosol or nucleus [14] tends to freeze
the substrate in a much smaller range of conformations. This evo-
lution of the chemistry of Trx catalysis by deepening the groove
may have occurred to improve the specificity of substrate–enzyme
interactions [14] at the same time as a much larger number of po-
tential new functions and targets evolved.

4. The large number of functions of Trx and TrxR related
ultimately to disease

Today, there are a large number of functions for Trx and TrxR in
surprisingly many biological systems [6,7]. This is a reflection of
the fact that Trx exists in all living cells and has a long evolutionary
history in parallel with DNA as a genetic material, in the develop-
ment of oxygen metabolism and defense against oxidative stress
and the emergence of complicated physiological functions includ-
ing the use of redox signaling with oxidants like hydrogen peroxide
and nitric oxide. As illustrated in Fig. 2 there are numerous systems
with thiol-dependent redox mechanisms, which are related to
important pathological states and human diseases. Below, we will
comment and discuss some recent results regarding functions of
Trx and TrxR with particular emphasis on understanding molecular
details, diagnostic opportunities, and drug mechanisms.

Ribonucleotide reductase (RNR) catalyzes the rate limiting step
in deoxyribonucleotide synthesis. This is essential for DNA replica-
tion and repair. In the S-phase the mammalian cell RNR comprises
a cytosolic complex of the two dimeric proteins: the R1-protein
containing redox active cysteine residues, substrate binding sites
as well as allosteric sites for regulation of overall activity and sub-
strate specificity [15] and the R2-protein harbouring a tyrosyl free
radical. Each enzyme turnover generates a disulfide in the active
site of R1, which has to be reduced by Trx or glutaredoxin [16].
However, the immediate substrate for Trx is a C-terminally located
shuttle disulfide/dithiol [17]. The results showed that Trx1 acts by
a classical disulfide reductase mechanism [17] in contrast to the
glutaredoxin system, which acts by a glutathionylation mechanism
[17,18]. The Vmax value for Trx was higher as well as the km than
those for glutaredoxin, resulting in an overall catalytic efficiency
(Kcat/km) that was similar [17]. Ongoing research tests the activity
of p53R2 and R1, which is the enzyme present in postmitotic cells
and required for dNTP synthesis for DNA repair and mitochondrial
DNA synthesis and turnover [19]. Most cancer cells have a high le-
vel of expression of Trx and TrxR, which has been assumed to be a
protection against apoptosis and promote cell growth [20–23].
TrxR is an important target for cancer therapy (Fig. 3). With some
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Fig. 2. Mammalian Trx system is a central player ultimately closely linked to many human diseases. TrxR1 and Trx1 in cytosol and nucleus, TrxR2 and Trx2 in mitochondria
play critical roles in biochemical mechanisms. Trx1 reduces ribonucleotide reductase (RNR), which is essential for DNA synthesis. Trx provides the electrons to methionine
sulfoxide reductase (MSR), and Trx-dependent peroxidases (peroxiredoxins, Prxs) to repair of methionine sulfoxide residues in proteins or to protect against oxidative stress
via removing hydrogen peroxide and peroxynitrite, respectively. The Trx system operates in cellular redox signaling by controlling the activity of many transcription factors
such as NF-jB, p53, Ref-1, HIFa, PTEN, AP-1, and glucocorticoid receptor, etc. [7]. Trx-(SH)2 can bind to and inactivate apoptosis signal-regulating kinase (ASK1) and regulate
ASK1 dependent apoptosis [32]. Thioredoxin interacting protein (TXNIP) binds to Trx-(SH)2 and regulates Trx activity [33]. TrxR can reduce protein disulfide isomerase (PDI),
a critical player for disulfide bond formation [7]. Trx-(SH)2 affects the activity of some key proteins such as caspases via control of protein S-nitrosylation and denitrosylation.
The expression of Trx system proteins has been found to be changed in many diseases including cancer, diabetes, cardiovascular and neurodegenerative diseases or
rheumatoid arthritis [7]. Under the conditions of aging, inflammation and virus infection Trx levels are also changed. A Trx-like protein, rod-derived cone viability factor
(RdCVFL) has been shown to be an essential factor to prevent cone loss, which induces retinitis pigmentosa [39].
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drugs the enzyme is converted to an NADPH oxidase promoting
cell death [7,8]. However, some malignant cells have low or unde-
tectable level of Trx and in these cells probably glutaredoxin or
potentially unknown electron donors are involved in ribonucleo-
tide reduction and DNA synthesis [24,25]. One important objective
in future research will be to determine the nature of the electron
donor (Trx or glutaredoxin) in order to use the right inhibitors of
either TrxR or the glutaredoxin system. We have recently estab-
lished sensitive fluorescent assays for Trx, TrxR, and glutaredoxin
using fluorescent substrates (S.J. Montano, J. Lu, A. Holmgren, man-
uscript in preparation) which should enable simple measurements
of the level of activity of the Trx or glutaredoxin systems.

The demand for turnover of the Trx system (Figs. 1 and 2) is
obviously very large for the RNR reaction, where it can be esti-
mated that an S-phase T-cell generates more than 100,000 disul-
fides per second from ribonucleotide reductase to satisfy the
requirement of deoxyribonucleotides for DNA replication [17]. This
is by orders the fastest potential turnover of the Trx system. Other
systems where substantial turnovers are required to protect cells
from oxidative damage is for peroxiredoxins (Prx), or Trx peroxi-
dases, which with six isoforms, occur both in the cytosol and the
mitochondria [26]. In particular, the Prx3 of mitochondria working
with TrxR2 and Trx2 removes peroxides from hydrogen peroxide
generated via SOD and the superoxide in the electron transport
chain [27]. Similarly, the methionine sulfoxide reductases operate
by a mechanism generating a disulfide after each methionine sulf-
oxide residue is repaired back to methionine [7]. The importance of
this system is shown by the shortened lifespan of mice with knock-
out of MsrA gene [28]. In line with this study transgenic mice over-
expressing human Trx1 are reported to have a longer lifespan [29]
and are protected against oxidative stress diseases [7].

A large number of transcription factors are regulated via redox
signaling by Trx, TrxR, and Ref-1 [7,30]. As illustrated in Fig 2,
NF-jB, p53, Ref-1, PTEN, AP-1 and a long list of other factors



Curcumin, arsenic trioxide, 
cisplatin, flavonoids, DNCB, 
and other inhibitors

SH
NADPH

SH

Ionizing 
radiation

Methione sufoxide  reductase

Peroxiredoxins 

Ribonucleotide reductase 

ASK1

P53

HIFα, Ape1/Ref-1, NF-
κB and other 
transcription factors

NO signaling

Fig. 3. TrxR as a novel target for cancer chemotherapy. TrxR and Trx are overexpressed in many aggressive tumors and participate in carcinogenesis, cancer progression and
drug resistance. Many clinically used drugs such as cisplatin [8] or arsenic trioxide [40], and cancer chemoprevention agents have been shown to be inhibitors of TrxR.
Inhibition of TrxR block Trx mediated activity in DNA synthesis and defense against oxidative stress via RNR, MSR, Prxs, p53 (see Fig. 2). TrxR by some inhibitor like curcumin
[41] and dinitrochlorobenzene (DNCB) [8] yields a modified TrxR* with a strongly induced NADPH oxidase activity, which will produce reactive oxygen species (ROS). The
conversion of TrxR into pro-oxidant and a ROS source contributes the radiosensitization of cucurmin for some malignant tumors [42].
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including estrogen receptors a and b [31] belonging to this cate-
gory. Trx operates mainly to keep the proteins active by reducing
critical Cys residues either for activity of the transcription factor
to bind to DNA or to control enzyme activity like for PTEN [7].
There are lots of details to be understood about the precise interac-
tion between Ref-1 and Trx1 and the movement of proteins from
the cytosol to the nucleus in response to signals and in different
cell types.

5. Binding of reduced thioredoxin to other proteins

The structure of reduced and oxidized Trx are similar as deter-
mined by structural biology methods like NMR and X-ray crystal-
lography [12]. However, the NMR measurements showed that
there are more structural isoforms and higher mobility around
the active site in the reduced form of Trx. A critical example of this
in mammalian cells is that only fully reduced Trx binds to apopto-
sis signal-regulating kinase 1 (ASK1) [32] and the same is true for
thioredoxin interacting protein (TXNIP) also called TBP2 or VDUP-1
[33]. Via ASK1, reduced Trx1 will control cell death, since the
downstream signaling of ASK1, a MAP kinase–kinase–kinase will
lead to induction of apoptosis [34]. TXNIP is a tumor suppressor,
which controls the activity of Trx system and is downregulated
in tumor cells. It is also upregulated by glucose and has been impli-
cated in e.g. b-cell death during diabetes [35].

Toxicity of mercury in cells involves binding of the metal to
both reduced Trx1 and TrxR1 with loss of activity [36]. Signaling
in mammalian cells by oxidants like hydrogen peroxide and nitric
oxide results in protein modification via the formation of sulphenic
acid residues or S-nitrosylated proteins [6,7]. Human Trx1 is itself
regulated by formation of an inactive monomeric 2-disulfide form
via hydrogen peroxide oxidation, which is reversible by autocata-
lytic reduction [37]. The major protein denitrosylating activity in
cells is by Trxs [38]. This opens up an universe of protein redox
modifications in a living cell with the Trx system as one player
and glutathione and the glutaredoxin systems as another [18]
and the potential use of the redoxins as drugs to combat oxidative
stress-related diseases.
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