Journal article Open Access

Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity

Maribel G. Guzmán; Jean Dille; Stephan Godet

Silver nanoparticles were prepared by chemical reduction method. Silver nitrate was taken as the metal precursor and hydrazine hydrate as a reducing agent. The formation of the silver nanoparticles was monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of silver nanopart├¡cles by exhibing the typical surface plasmon absorption maxima at 418-420 nm from the UV–Vis spectrum. Comparison of theoretical (Mie light scattering theory) and experimental results showed that diameter of silver nanoparticles in colloidal solution is about 60 nm. We have used energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and, UV–Vis spectroscopy to characterize the nanoparticles obtained. The energy-dispersive spectroscopy (EDX) of the nanoparticles dispersion confirmed the presence of elemental silver signal no peaks of other impurity were detected. The average size and morphology of silver nanoparticles were determined by transmission electron microscopy (TEM). TEM photographs indicate that the nanopowders consist of well dispersed agglomerates of grains with a narrow size distribution (40 and 60 nm), whereas the radius of the individual particles are between 10 and 20 nm. The synthesized nanoparticles have been structurally characterized by X-ray diffraction and transmission high-energy electron diffraction (HEED). The peaks in the XRD pattern are in good agreement with the standard values of the face-centered-cubic form of metallic silver (ICCD-JCPDS card no. 4-0787) and no peaks of other impurity crystalline phases were detected. Additionally, the antibacterial activity of the nanopart├¡culas dispersion was measured by Kirby-Bauer method. The nanoparticles of silver showed high antimicrobial and bactericidal activity against gram positive bacteria such as Escherichia Coli, Pseudimonas aureginosa and staphylococcus aureus which is a highly methicillin resistant strain.

Files (540.7 kB)
Name Size
540.7 kB Download
  • Mazur M. Electrochemistry Communications 6, (2004) 400-403.

  • Pal A., Shah S., Devi S. Colloids and Surfaces A 302, (2007) 483-487.

  • Rosemary M.J., Pradeep T. Colloids and Surfaces A 268, (2003) 81-84.

  • Xie Y., Ye R., Liu H. Colloids and Surfaces A 279, (2006) 175-178.

  • Maillard M., Giorgo S., Pileni M.P. Adv.Mater. (2002) 14(15), 1084- 1086.

  • Pillai Z.S., Kamat P.V. J.Phys.Chem.B. (2004) 108, 945-951.

  • Patel K., Kapoor S., Dave D.P., Murherjee T. J.Chem.Sci. (2005), 117(1), 53-60.

  • Salkar R.A., Jeevanandam P., Aruna S.T., Koltypin Y., Gedanken A. J.Mater.Chem. 9, (1999) 1333-1335.

  • Soroushian B., Lampre I., Belloni J., Mostafavi M. Radiation Physics and Chemistry (2005) 72, 111-118. [10] Ershov B.G., Janata E., Henglein A. Fojtlk A. (2007) unpubliseh report. [11] Starowicz M., Stypula B., Banaoe J. Electrochemistry Communications (2006) 8, 227-230. 2006. [12] Zhu J.J., Liao X.H., Zhao X.N., Hen H.Y. Materials Letters (2001) 49, 91-95. 2001. [13] Liu S., Chen S., Avivi S., Gendanken A., Journal of Non-crystalline Solids (2001) 283, 231-236. [14] Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian M.S. Nonomedicine (2007) 3, 168-171. [15] Pal S., Kyung Y., Myong Song J. Applied and Environmental Microbiology (2007) 73(6), 1712-1720. [16] Panacek,A., Kvitek L., Prucek R., Kolar M., Vecerova R., Pizurova N., Sharma V.K., Nevecna T., Zboril R. J.Phys.Chem.B. (2006) 110, 16248-16253. [17] Rold├ín M.V., Frattini A.L., Sanctis O.A., Pellegrini N.S. Anales AFA 17 (2005), 212-217. [18] Yin H., Yamamoto T., Wada Y., Yanagida S. Materials Chemistry and Physics 83 (2004) 66-70. [19] Zhu Z., Kai L., Wang Y. Materials Chemistry and Physics 96 (2006) 447-453. [20] A.S. Edelstein, R.C. Cammarata (Eds.) Nanomaterials, synthesis, properties and applications (1996), Bristol and Philadelphia Publishers, Bristol, [21] Mock J.J., Barbic M., Smith D.R., Schultz D.A., Schultz S. J.Chem.Phys. (2002) 16(15), 6755-6759. [22] Duran N., Marcato P.L., Alves O.L., De Souza G.I., J.Nanobiotechnology (2005) 3(8), 1-7. [23] Pacios R., Marcilla R., Pozo-Gonzalo C., Pomposo J.A., Grande H., Aizpurua J., Mecerreyes D. J.Nanosci.Nanotechnology (2007) 7, 2938- 2941. [24] Chou,W.L., Yu,D.G., Yang,M.C. Polym.AdV.Technol. (2005) 16:600- 608. [25] Z. Tang, S. Liu, S. Dong, E. Wang, Journal of Electroanalytical Chemistry (2001) 502 ,146. [26] M. Mazur, Electrochemistry Communications (2004) 6 400. [27] Zhu Jian, Zhu Xiang, Wang Yongchang, Mictoelectronic Engineering 77 (2005) 58. [28] Y.H. Kim, D.K. Lee, Y.S. Kang, Colloids and Surfaces A: Physicochemical and Engineering Aspects 257-258 (2005) 273. [29] C.H. Bae, S.H. Nam, S.M. Park, Applied Surface Science 197-198, (2002) 628. [30] Patel K., Kapoor S., Dave D.P., Ukherjee T. J.Chem.Sci. (2007) 117(4), 311-315. [31] J. Zhang, P. Chen, C. Sun, X. Hu, Applied Catalysis A: 266, (2004) 49. [32] Chaudhari V.R., Haram S.K., Kulshreshtha S.K. Colloids and Surfaces A 301 (2007) 475-480. [33] Pal A., Shah S., Devi S. Colloids and Surfaces A 302 (2007), 51-57. [34] Chen Z., Gao L. Materials Research Bulletin 42 (2007), 1657-1661. [35] Kumar A., Joshi H., Pasricha R., Mandale A.B., Sastry M., Journal of Colloid and Interface Science 264 (2003) 396. [36] Li D.G., Chen S.H., Zhao S.Y., Hou X.M., Ma H.Y., Yang X.G., Thin Solid Films 460 (2004) 78. [37] Wang G., Shi Ch., Zhao N., Du X. Materials Letters 61 (2007), 3795- 3797. [38] Wilson R., Lynn G., Milosavljevic B., Meisel D. (2007) unpublished repport. [39] Lawrence W., Barry A.L., O'toole R., Sherris J. Applied Microbiology 24(2) (1972), 240-247. [40] NCCLS. 2003. Performance standards for antimicrobial susceptibility testing.Twelfth informational supplement. Rep. No. NCCLS document M100-S12. Pennsylvania.

All versions This version
Views 260260
Downloads 115115
Data volume 62.2 MB62.2 MB
Unique views 238238
Unique downloads 106106


Cite as