

Abstract—The software system goes through a number of stages

during its life and a software process model gives a standard format
for planning, organizing and running a project. The article presents a
new software development process model named as “Divide and
Conquer Process Model”, based on the idea first it divides the things
to make them simple and then gathered them to get the whole work
done. The article begins with the backgrounds of different software
process models and problems in these models. This is followed by a
new divide and conquer process model, explanation of its different
stages and at the end edge over other models is shown.

Keywords—Process Model, Waterfall, divide and conquer,
Requirements.

I. INTRODUCTION

OFTWARE Development Lifecycle is the structure
imposed on the development of Software product”[1].

Software system goes through a number of stages during its
life, from requirements elicitation to deployment and
maintenance. A software process model gives a standard
format for planning, organizing and running a project. There
are number of models for software processes to work in order,
describing different flows and approaches for activities which
are the part of that process. A process model is chosen by
keeping in view the nature of the project, tools to be used, and
deliverable that is required [2].

II. TRADITIONAL PROCESS MODELS:

Below is the brief introduction of several process models:

A. Build and Fix Model:

The software process models history begins with the
introduction of a model called “Build and Fix”. The model has
only two steps:
� Write the Code
� Fix problems in the code.
Thus, the main theme of the model was to write some code

first and then think about different phases of development [3].
The model suffers from the following flaws:

F. A. Author is with the College of Electrical and Mechanical Engineering,

National University of Science and Technology Rawalpindi Pakistan (phone:
092-343-5203608; e-mail: hina.gull03@gmail.com)

S. B. Author, is with the College of Electrical and Mechanical
Engineering, National University of Science and Technology Rawalpindi
Pakistan (phone: 092-51-9278056; e-mail: farooq@ceme.nust.edu.pk)

T. C. Author is with the College of Electrical and Mechanical Engineering,
National University of Science and Technology Rawalpindi, Pakistan (phone:
092-333-5782107 email: butt.wasi@gmail.com)

F. D. Author is with the Department of Computer Sciences, Iqra University
of Science and Technology Islamabad Pakistan (phone: 092-343-5267319;
e-mail: zafar.iqbal38@gmail.com)

� Due to a number of fixes, the resulting code had a poor
structure and these fixes were highly expensive. This
was due to the absence of a detailed design phase
before the coding phase [8].

� Does not follow any proven method. Its working
included, first coding then moving towards other stages
like Requirements, Design, Test & Maintenance. Due
to which the resulting product had a structure which
often did not meet the requirements of the user
consequently ending up in either project termination or
redevelopment which was highly expensive. [10]

� Not suitable for environment where changes are
dynamic in nature [4] .

� There was no specific stage for testing. Coding phase
included a small module for testing. Due to which
code was poorly tested.[3]

Above mentioned reasons stressed upon the introduction
of phases like Requirement, Designing, Coding, Testing,
Maintenance etc.

B. Waterfall Process Model:

First, a stepwise sequential model was presented in 1956,
but that was not a formal model for development. The first
ever formal description of Waterfall model was given in 1970
by Winston W. Royce. The model formed the basis for most
software development standards and consists of the following
phases: Requirements specification, Design, Construction,
Integration, Testing and Debugging, Installation and
Maintenance.

To follow this model, developer has to move in sequential
manner i.e. one has to complete a phase fully and then have to
move in sequential fashion [4]. The main disadvantages in this
model were:
� Rigid design and inflexible procedure [4].
� Restricts Development of software by blocking

movement back to a prior stage, that is, it restricts
looping back to prior stages even if new changes
surface which need to be accommodated. [8]

� The requirement stage constituted gathering concrete
specifications including both vague and some critical
requirements collected together. As the requirements
were frozen before moving to the design phase, using
the incomplete set of requirement, a complete design
was worked on. So, was the case with the code phase.
Such an approach worked normally well for a small
project requiring average amendments. In case of a
large project, completing a phase and then moving back
to reconstruct the same phase, incurred a large

A New Divide & Conquer Software Process
Model

First A. Hina Gull, Second B. Farooque Azam Third C. Wasi Haider Butt, Fourth D. Sardar Zafar Iqbal

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009

2795International Scholarly and Scientific Research & Innovation 3(12) 2009 scholar.waset.org/1307-6892/6039

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
12

, 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

60
39

http://waset.org/publication/A-New-Divide-and-Conquer-Software-Process-Model/6039
http://scholar.waset.org/1307-6892/6039

overhead. Use of frozen requirements was a worst
approach as compared to the prototype approach giving
the user immediate “look and feel” of the system in
development. It could not be used for the interactive
end user applications. Analysis & Design are the kind
of Phases whose completion from different dimensions
is not possible; hence we can never really say when we
are done with these phases. [4]

� It emphasizes on the use of fully elaborated documents
for completion criteria of requirements and design
phases. It is unnecessary to write elaborated
specification for a product before implementation.[3]

� Waterfall Model faced “inflexible point solutions”
which meant that even small amendments in the design
were difficult to incorporate late in design phase.

� Once a phase is done, it is not repeated again that is
movement is from one phase to the next and the
opposite is not supported. Deadlines are difficult to
meet in case of large projects. [10]

C. Prototype Model:

In this model, the prototype for the system to be developed
in built, tested and reworked as necessary. With this approach
the development begins with the most visible aspect of the
software system, for which the prototype is developed. Then
the development continues when the feedback from this
prototype is received. The process is found to be useful for the
systems where the requirements are changing rapidly. The
process begins with the requirements gathering phase, a quick
design then occurs which then leads to the development of
prototype. The prototype is then evaluated by users and
customers and is reworked until the customer and users are
satisfied. The prototype can be problematic at the following
points:
� The main disadvantage is that it is not known at the

start of the project that how long it will take to create a
product which is acceptable to the users. Also how
much iterations it will take to make an acceptable
product [6].

� The premature prototypes lack key consideration like
security, fault tolerance, distributed processing and
other such key issues. Such requirements jeopardize the
project as these initial incomplete prototypes having
weak architecture cannot be enhanced to achieve the
key consideration [10].

� Developers are in such a rush that they hardly consider
all the functionalities of the prototype. In order to
release the product as soon as possible, the prototype
with some additions is released on or before the target
release date. This happens due to lack of user analysis
activities; the end product contains features the user is
hardly aware how to use. [3]

� Often the developers make implementation
compromises in order to make the prototype work
quickly, which will lead to the use of inappropriate
operating system or programming language [7].

D. Incremental Development Model:

The model develops the system in small increments. In first
step all the requirements are gathered and then the subsets of
the requirements are assigned to each increment or release.
The increments are developed in sequence leading to the end
product at the end of the last increment. It reduces the overall
effort and also provides system earlier to the user. The main
feature of this model is that we have less effort on coding
while more emphasis is on requirements gathering and
analysis [8]. The disadvantages of the model are:
� It is difficult to map requirements directly to different

increments. Include excessive user involvement. Poorly
defined scope as scope of the product may vary
increment to increment.[6]

� After every iteration, the user gets a “look & feel “of
the system. An overhead in the model is rapid context
switching between various activities. Evaluation after
each iteration involving user involvement consumes a
lot of time. [9]

� Identify key issues starting from the early iterations,
not waiting for later iterations. Focus appropriately
starting from the first iteration to the upcoming ones.
Use results of the early iterations to manage the risks of
the project. [9]

E. Spiral Model:

Spiral model is an evolutionary model that combines some
aspects of prototype model and some aspects of linear
sequential model. The model is divided into some task
regions, which are as follows: Customer communication,
Planning, Risk Analysis, and Engineering, Construction and
release and Customer evaluation.

Major distinction of this model with others is having the
risk criteria at every stage. This model is also known as risk
driven model because it identifies the risk areas and sources.
The model is divided into cycles and each cycle ends up with
the end of an activity in which the risk analysis is the major
factor. The model is used mainly for large projects. It uses a
organized stepwise procedure, like the classic life cycle
model, but adds it into an iterative development framework
that more mirrors the real world [11].

The following disadvantages are identified in this model:
� The Spiral Model performance depends on the risk

assessment expertise of the involved software team. If
risk analysis is poor the end product will surely suffer.

� Great care is taken by software developers to identify
and manage resources of the project identifying aptly
all possible risks making the spiral model people
dependent. Another difficulty of the spiral model is
adjustment of contract deadlines using the spiral model.

� A number of risks, constraints, alternatives, models
etc. need to be analyzed but never are these risks or
objectives listed and no specific risk analysis technique
is mentioned. Software developers begin with the
vague idea of risk analysis according to their expertise.

� For large projects expert software developers can

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009

2796International Scholarly and Scientific Research & Innovation 3(12) 2009 scholar.waset.org/1307-6892/6039

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
12

, 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

60
39

http://waset.org/publication/A-New-Divide-and-Conquer-Software-Process-Model/6039
http://scholar.waset.org/1307-6892/6039

produce efficient software products but in case of a
complex large project absence of specific risk analysis
techniques and presence of varying expertise can create
a chaos. The model also demands considerable risk
expertise. [11]

F. Win Win Spiral Model:

The original spiral had four sectors, beginning with
“Establish next-level objectives, constraints, alternatives.” The
two additional sectors in each spiral cycle, “Identify Next-
Level Stakeholders” and “Identify Stakeholders’ Win
Conditions,” and the “Reconcile Win Conditions” portion of
the third sector, provide the collaborative foundation for the
model [11].
� The main drawback of the model is that each

successive cycle begins after a detailed risk analysis
imposing many different constraints, objectives &
alternatives. But never are these risks specifically
mentioned and vary project to project [3].

G. Rapid Application Development Model:

The model is considered to be incremental development
model and that have emphasis on short development cycle.
This model is called rapid application development because in
it rapid application development is achieved by using
component based development. The model has the following
phases: Business Modeling, Data Modeling, Process
Modeling, Application Generation and Testing and Turnover.
Like all other process models, the Rapid Application
Development has the drawbacks:
� Reduction in scalability is because an application

developed by following RAD begins as a prototype and
evolves into a finished application.

� Reduction in features occurs due to time boxing, where
features are given to later versions to finish a release in
a small amount of time.

� For large projects, RAD requires a sufficient number of
human resources to create a right team. Also RAD is
not suitable for all types of application development. If
the system cannot be modularized properly building the
components for RAD will be problematic [12].

H. Rational Unified Process:

“RUP provides a disciplined approach to assigning tasks
and responsibilities within a development organization. Its
goal is to ensure the production of high-quality software that
meets the needs of its end-users, within a predictable schedule
and budget. The Rational Unified Process activities create and
maintain models. Rather than focusing on the production of
large amount of paper documents, the Unified Process
emphasizes the development and maintenance of models—
semantically rich representations of the software system under
development. The Rational Unified Process provides each
team member with the guidelines, templates and tool mentors
necessary for the entire team to take full advantage of among
others the following best practices: Develop software
iteratively, Manage requirements, use component-based
architectures, visually model software, Verify software

quality, Control changes to software. The process can be
described in two dimensions, or along two axis:

� The horizontal axis represents time and shows the
dynamic aspect of the process as it is enacted, and it
is expressed in terms of cycles, phases, iterations, and
milestones.

� The vertical axis represents the static aspect of the
process: how it is described in terms of activities,
artifacts, workers and workflows.

The software lifecycle is broken into cycles, each cycle
working on a new generation of the product. The Rational
Unified Process divides one development cycle in four
consecutive phases”[13].

� Inception phase
� Elaboration phase
� Construction phase
� Transition phase

Each phase is concluded with a well-defined milestone—a
point in time at which certain critical decisions must be made
and therefore key goals must have been achieved. Each phase
has a specific purpose”. The identified drawbacks of the
process are:
� Each phase has a milestone which needs to be satisfied

for the next particular phase to start.
� If the respective milestone of the particular phase is not

satisfied the entire project might get cancelled or re-
engineered before proceeding further.

� The satisfaction criteria of a particular milestone has its
own constraints and are not listed specifically [13].

İ. The V-Model:

It is assume to be the extension of Waterfall Model. The
difference is that it doesn’t move in linear way, instead the
process steps are bent upwards after the coding phase to form
V-shape. Each phase has an associated tasting phase. It
consists of following phase:
Verification phases:

1. Requirement analysis
2. Architecture design
3. Module design

Validation phase:
1. Unit testing
2. Integration testing
3. System testing
4. User acceptance testing

It has the following drawbacks;
� It addresses software development within a project

rather than a whole organization.
� The V-Model is not complete as it argues to be, as it

covers all activities at too abstracts level.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009

2797International Scholarly and Scientific Research & Innovation 3(12) 2009 scholar.waset.org/1307-6892/6039

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
12

, 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

60
39

http://waset.org/publication/A-New-Divide-and-Conquer-Software-Process-Model/6039
http://scholar.waset.org/1307-6892/6039

III. DIVIDE & CONQUER MODEL

The main divide and conquer model is as follows:

Fig. 1 Divide & Conquer Model

The model has mainly three phases, Operational

Requirements, Operational Design and Coding and
Implementation. Each phase is further elaborated and parts of
each phase are shown in more details in the coming sections.
The model suggests that the movement starts with operational
requirements and then can go to operational design. But
meanwhile if some of the requirements changes or new
requirements are there in this phase, then one can move to
requirement phase to cope with it. Similarly, if there are some
problems with requirements in the coding and implementation
phase then one can move to the requirement phase from it.
The same fashion is followed for the remaining phases. One
can move from any phase to any other phase, i.e. from
operational requirements to operational design and vice versa,
from operational design to coding and implementation phase
and vice versa, also from coding and implementation to
operational requirements. This property makes it different
from other models. The detail of each phase is as under:

A. Operational Requirements:

The requirements are divided into two main categories,
functional requirements, and non-functional requirements. The
functional requirements describe the core functionality which
the system should provide. The non-functional requirements
are other requirements like reliability, usability, scalability etc.
But the point of focusing is functional requirements because
the software is more concerned with the functional
requirements. The main methodology of this model is dividing
the things and conquering them. Now the functional
requirements are further divided in two categories dependent
and independent requirements. The requirements at this stage
are completely divided and are easy to understand and there
are very less chance of being missed. Another important
aspect of this model is that the customer is involved in this
phase i.e. customer has to verify the requirements to make it
sure that developers are going in the right direction. Next step
is to analyze the risk for dependent and independent
requirements as well as for non-functional requirements. Also

risk resolution and management is the parallel activity in this
part. In this step we have to find the areas of uncertainty that
are the source of risk, and developing a cost effective strategy
to resolve that risk.

Then all the requirements i.e. dependent, independent and
non-functional requirements are tested separately and in
parallel. Here, testing is not a separate phase in this model but
testing is involved in each and every phase, which allows
finding the bugs earlier that reduces the cost. After testing and
risk analysis the divided requirements are integrated and
integration testing is done to check whether the requirements
are integrated correctly or not. Now the integrated
requirements are validated by the customers to cope with the
incorrect requirements anomalies. The output of this phase is
complete, correct and under-stable objective driven
requirements. They are called as objective driven
requirements, because they gives us the overall goal and
objectives of the product to be developed.

Fig. 2 Operational Requirements

B. Operational Design:

 In this phase requirements are divided in the same manner
as in the previous phase i.e. in independent and dependent
requirements. Here once the requirements are divided now its
time to make the initial design from the divided requirements.
The design will be much easier and simple because we have

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009

2798International Scholarly and Scientific Research & Innovation 3(12) 2009 scholar.waset.org/1307-6892/6039

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
12

, 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

60
39

http://waset.org/publication/A-New-Divide-and-Conquer-Software-Process-Model/6039
http://scholar.waset.org/1307-6892/6039

divided the requirements and it will be very easy to carry out.
Then the design is validated by the user to reduce the risk of
getting into incorrect and bad design. After all these activities
initial designs are combined to create single overall design
also the prototype is produced to get it validated. If, this
prototype is operationally useful and robust enough to serve as
a low risk for future product evolution, then this prototype is
given to the user for validation. Testing the different designs at
this stage is very important to find out the bugs as many as
possible. Risk analysis is also very important to find out the
future problems, so there should be some plan to manage the
risk.

Now the overall design of the system should be validate by
the customer. Customer involvement is very important, it will
refine the design correctly, doesn’t matter whether the
customer is technical or not. Customer can understand the
design at abstract level. The output of the phase is objective
driven design which is passed as an input to the next phase.

C. Coding & Implementation:

The dependent and independent design components are then
extracted by splitting the objective driven design. The
important advantage of this phase is that the design
components are separated which makes it easy to implement
them as well as individual designs are easy to handle.
Different designs are now easy to test here the unit testing is
involved. Unit testing is type of testing in which individual
components of the system are tested. After this code
integration is done to get the overall product. The integration
testing is involved at this part to test the integrated code. Then
overall risk analysis and management activities take place
which is followed by overall system testing to check the
functionality of the system and needs of the customer. Here
some other types of testing like usability testing is also done to
cope with all needs. Then system is verified and validated.
The out put of this phase is complete tested product for
deployment.

IV. EDGE OVER OTHER MODELS:

Waterfall assumes that the requirement can be frozen before
the design begins. It is not possible for new system. In divide
and conquer model, we haven’t frozen requirement phase, one
can jump easily from design phase to requirement phase as
there is any change in requirement or there is any
circumstance in which there is any need to change
requirement. Also there is no problem if technology changes.
It can be easily handled by going to the requirement phase.
We can easily incorporate small to large changes in any phase.

Evolutionary Development divides the development life
cycle into increments, and at the end of life cycle user will be
able to access the product. The model includes the excessive
user involvement, this drawback is coped with the idea in the
model that user is not involved at every step, only there is user
involvement whenever required.

Fig. 3 Operational Design

In prototype model, the prototype is developed. It is based
on the idea, that the development continues with the feedback
from the prototype is received, and the prototype is evaluated
by user and is reworked until customers is satisfied which
leads to the disadvantage that it is not known in advance how
long it will take to complete a project. In divide and conquer
model, prototype is created only in the design phase when
design is integrated to give the feel and the look to the user. In
prototype model, premature prototype lack key considerations
like security, fault tolerance, reliability etc. We have separated
non functional requirement from functional requirements to
give them special emphasis and considerations so to have
strong architecture later on.

V.CONCLUSION

By clearly analyzing the Divide and conquer process
model, we have concluded that model is very good for large
software projects. It has clear edge over the models like
waterfall, prototype and evolutionary development. The model
emphasizes on looping back to any phase, to cope the changes.
So that we can have a required product, in required time and
budget. Most of the process models have increased cost factor
due to the fact, that they froze the phase and can’t go back to
that phase, which lead to incorrect software functionality and
high cost. We have proposed the solution which doesn’t froze
any phase and we can jump to any phase whenever required.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009

2799International Scholarly and Scientific Research & Innovation 3(12) 2009 scholar.waset.org/1307-6892/6039

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
12

, 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

60
39

http://waset.org/publication/A-New-Divide-and-Conquer-Software-Process-Model/6039
http://scholar.waset.org/1307-6892/6039

Fig. 4 Coding and Implementation

REFERENCES

[1] Software_Development_Life_Cycle (2009), Software Development Life
Cycle. http://en.wikipedia.org/wiki/Software_Development_Life_Cycle,
Accessed, September 30, 2009.

[2] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”, 5th
ed. New York: McGraw-Hill, 2001, pp. 26.

[3] B.W. Boehm, “A Spiral Model for Software Development and
Enhancement”, IEEE, IEEE Computer Society, vol. 21, issue 5, May
1988, pp. 61 - 72

[4] W.W. Royce, “Managing the Development of Large Software Systems:
Concepts and Techniques”, IEEE, IEEE Computer Society, August
1970, pp. 1-9.

[5] R.J. Madachy, “Software Process Dynamics”, New Jersey: Willey
Interscience, 2007, pp. 32.

[6] R.J. Madachy, “Software Process Dynamics”, New Jersey: Willey
Interscience, 2007, pp. 31.

[7] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”, 5th
ed. New York: McGraw-Hill, 2001, pp. 32.

[8] E. Carmel, S. Becker, “A Process Model for Packaged Software
Development”, IEEE, IEEE Transaction on Engineering Management,
vol. 42, Feb 1995, pp. 50-58.

[9] E.I. May, B. A. Zimmer, “The Evolutionary Development Model for
Software”, Hewlett-Packard Journal, Article 4, August 1996, pp. 1-8.

[10] B.W. Boehm, “Anchoring the Software Process”, IEEE, IEEE Software,
vol. 13, issue 4, July 1996, pp. 73-83

[11] R.J. Madachy, “Software Process Dynamics”, New Jersey: Willey
Interscience, 2007, pp. 33.

[12] R.S. Pressman, “Software Engineering, A Practitioner’s Approach”, 5th
ed. New York: McGraw-Hill, 2001, pp. 34.

[13] P. Kruchten, “Rational Unified Process Best Practices for Software
Development Teams”, Canada: rational Software, 2001.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:12, 2009

2800International Scholarly and Scientific Research & Innovation 3(12) 2009 scholar.waset.org/1307-6892/6039

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:3
, N

o:
12

, 2
00

9
w

as
et

.o
rg

/P
ub

lic
at

io
n/

60
39

http://waset.org/publication/A-New-Divide-and-Conquer-Software-Process-Model/6039
http://scholar.waset.org/1307-6892/6039

