Journal article Open Access

Circular Patch Microstrip Array Antenna for KU-band

T.F.Lai; Wan Nor Liza Mahadi; Norhayati Soin

This paper present a circular patch microstrip array antenna operate in KU-band (10.9GHz – 17.25GHz). The proposed circular patch array antenna will be in light weight, flexible, slim and compact unit compare with current antenna used in KU-band. The paper also presents the detail steps of designing the circular patch microstrip array antenna. An Advance Design System (ADS) software is used to compute the gain, power, radiation pattern, and S11 of the antenna. The proposed Circular patch microstrip array antenna basically is a phased array consisting of 'n' elements (circular patch antennas) arranged in a rectangular grid. The size of each element is determined by the operating frequency. The incident wave from satellite arrives at the plane of the antenna with equal phase across the surface of the array. Each 'n' element receives a small amount of power in phase with the others. There are feed network connects each element to the microstrip lines with an equal length, thus the signals reaching the circular patches are all combined in phase and the voltages add up. The significant difference of the circular patch array antenna is not come in the phase across the surface but in the magnitude distribution.

Files (182.1 kB)
Name Size
182.1 kB Download
  • B. Smith, "An approach to graphs of linear forms (Unpublished work style)," unpublished.

  • C. J. Kaufman, Rocky Mountain Research Lab., Boulder, CO, private communication, May 1995.

  • E. H. Miller, "A note on reflector arrays (Periodical styleÔÇöAccepted for publication)," IEEE Trans. Antennas Propagat., to be published.

  • G. O. Young, "Synthetic structure of industrial plastics (Book style with paper title and editor)," in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-Hill, 1964, pp. 15-64.

  • H. Poor, An Introduction to Signal Detection and Estimation. New York: Springer-Verlag, 1985, ch. 4.

  • J. Wang, "Fundamentals of erbium-doped fiber amplifiers arrays (Periodical styleÔÇöSubmitted for publication)," IEEE J. Quantum Electron., submitted for publication.

  • M. Young, The Techincal Writers Handbook. Mill Valley, CA: University Science, 1989. [10] J. U. Duncombe, "Infrared navigationÔÇöPart I: An assessment of feasibility (Periodical style)," IEEE Trans. Electron Devices, vol. ED- 11, pp. 34-39, Jan. 1959. [11] S. Chen, B. Mulgrew, and P. M. Grant, "A clustering technique for digital communications channel equalization using radial basis function networks," IEEE Trans. Neural Networks, vol. 4, pp. 570-578, July 1993. [12] R. W. Lucky, "Automatic equalization for digital communication," Bell Syst. Tech. J., vol. 44, no. 4, pp. 547-588, Apr. 1965. [13] S. P. Bingulac, "On the compatibility of adaptive controllers (Published Conference Proceedings style)," in Proc. 4th Annu. Allerton Conf. Circuits and Systems Theory, New York, 1994, pp. 8-16. [14] G. R. Faulhaber, "Design of service systems with priority reservation," in Conf. Rec. 1995 IEEE Int. Conf. Communications, pp. 3-8. [15] W. D. Doyle, "Magnetization reversal in films with biaxial anisotropy," in 1987 Proc. INTERMAG Conf., pp. 2.2-1-2.2-6. [16] G. W. Juette and L. E. Zeffanella, "Radio noise currents n short sections on bundle conductors (Presented Conference Paper style)," presented at the IEEE Summer power Meeting, Dallas, TX, June 22-27, 1990, Paper 90 SM 690-0 PWRS. [17] J. G. Kreifeldt, "An analysis of surface-detected EMG as an amplitudemodulated noise," presented at the 1989 Int. Conf. Medicine and Biological Engineering, Chicago, IL. [18] J. Williams, "Narrow-band analyzer (Thesis or Dissertation style)," Ph.D. dissertation, Dept. Elect. Eng., Harvard Univ., Cambridge, MA, 1993. [19] N. Kawasaki, "Parametric study of thermal and chemical nonequilibrium nozzle flow," M.S. thesis, Dept. Electron. Eng., Osaka Univ., Osaka, Japan, 1993. [20] J. P. Wilkinson, "Nonlinear resonant circuit devices (Patent style)," U.S. Patent 3 624 12, July 16, 1990. [21] IEEE Criteria for Class IE Electric Systems (Standards style), IEEE Standard 308, 1969. [22] Letter Symbols for Quantities, ANSI Standard Y10.5-1968. [23] R. E. Haskell and C. T. Case, "Transient signal propagation in lossless isotropic plasmas (Report style)," USAF Cambridge Res. Lab., Cambridge, MA Rep. ARCRL-66-234 (II), 1994, vol. 2. [24] E. E. Reber, R. L. Michell, and C. J. Carter, "Oxygen absorption in the Earth-s atmosphere," Aerospace Corp., Los Angeles, CA, Tech. Rep. TR-0200 (420-46)-3, Nov. 1988. [25] (Handbook style) Transmission Systems for Communications, 3rd ed., Western Electric Co., Winston-Salem, NC, 1985, pp. 44-60. [26] Motorola Semiconductor Data Manual, Motorola Semiconductor Products Inc., Phoenix, AZ, 1989. [27] (Basic Book/Monograph Online Sources) J. K. Author. (year, month, day). Title (edition) [Type of medium]. Volume(issue). Available: http://www.(URL) [28] J. Jones. (1991, May 10). Networks (2nd ed.) (Online). Available:

  • W.-K. Chen, Linear Networks and Systems (Book style). Belmont, CA: Wadsworth, 1993, pp. 123-135.

  • Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interfaces(Translation Journals style)," IEEE Transl. J. Magn.Jpn., vol. 2, Aug. 1987, pp. 740-741 [Dig. 9th Annu. Conf. Magnetics Japan, 1982, p. 301].

All versions This version
Views 22
Downloads 22
Data volume 364.3 kB364.3 kB
Unique views 22
Unique downloads 22


Cite as