

EXOP ANETS

AT UNSW.

SEARCHING FOR BINARY Y DWARFS WITH THE GEMINI MULTI-CONJUGATE ADAPTIVE OPTICS SYSTEM (GeMS)

Daniela Opitz(daniela.opitz@student.unsw.edu.au)^{1,2}, Chris Tinney ^{1,2} ¹ Exoplanetary Science at UNSW, UNSW Australia ² Australian Centre for Astrobiology, UNSW Australia

ABSTRACT

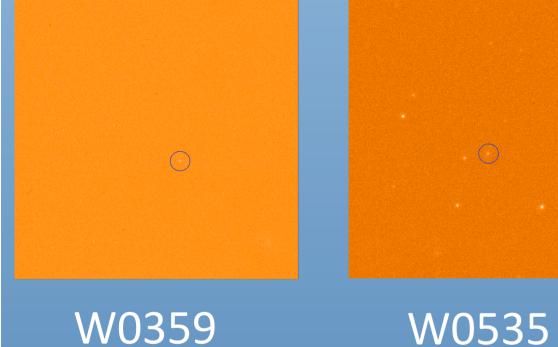
The NASA Wide-field Infrared Survey Explorer (WISE) has delivered an exceptional harvest of new ultra-cool Y-type brown dwarfs. We present results from a diffraction-limited study of the binary status of a sample of Y dwarfs observed with the Gemini GeMS Multi-Conjugate Adaptive Optics system. We report no evidence of equal mass/luminosity binaries at separations larger than ~ 0.5 -2.0 AU for six Y dwarfs.

OBSERVATIONS GEMS + GSAOI

Our images were recorded with the Gemini South Adaptive Optics Imager (GSAOI) and corrected for atmospheric aberrations by the Gemini Multiconjugate Adaptive Optics System (GeMS).

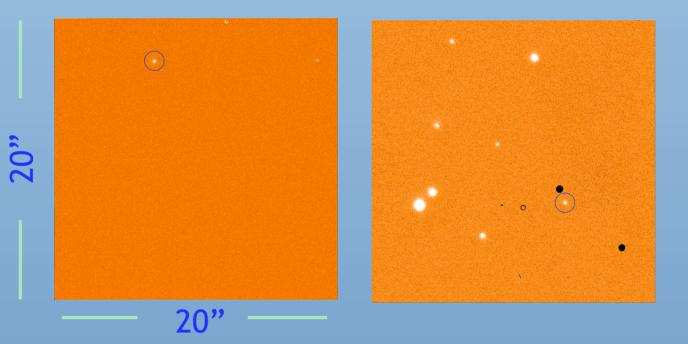
TARGETS

Target	Magnitude (J)	Spectral Type
W0359	20.0	YO
W0535	22.0	Y1
W0647	22.4	Y1
W0713	20.0	YO
W1541	21.0	Y0.5
W1639	20.6	YO


UPPER LIMITS ON BINARITY

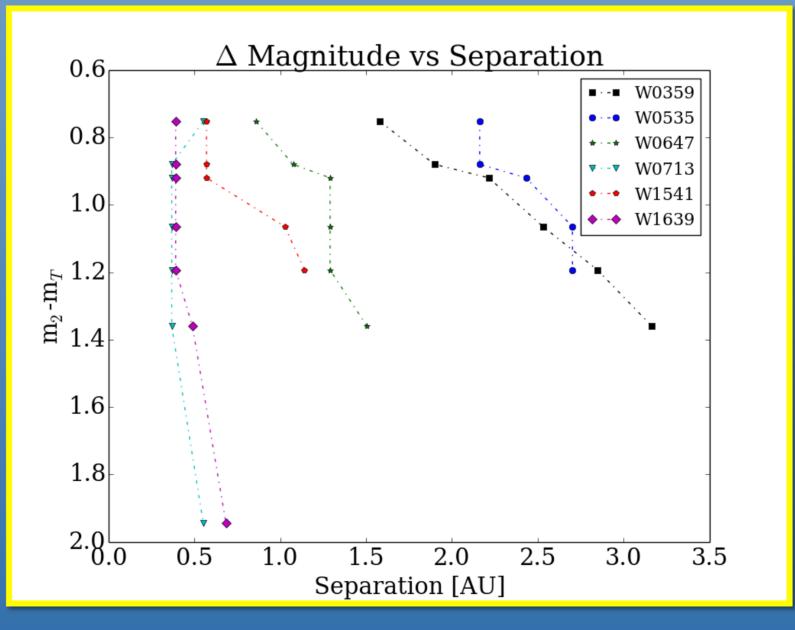
• Photometry was performed using the DAOPHOT II package implemented within the Starlink environment.

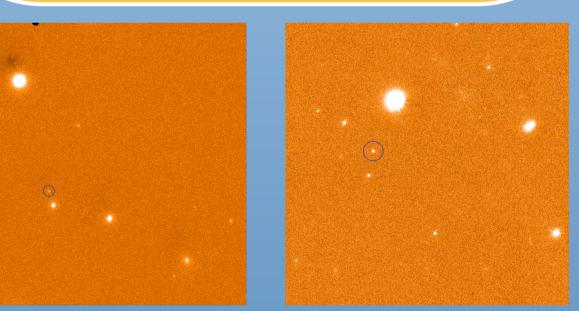
GSAOI has an image scale of 0.02"/pix and offers access to a field of view of 85"x 85".


The observations were obtained between March 2013 to January 2014 and delivered a typical FWHM of 85 mas in the CH₄S passband (1.486-1.628 µm)

SIMULATIONS

Simulations were performed to determine the magnitude and separation limits for the non-detection of companions.

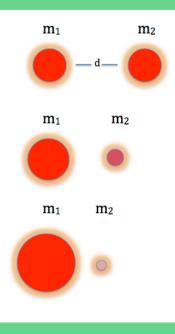

We injected synthetic binaries with a variety of separations and component magnitudes spanning 0.02-0.2" and a flux ratio of 0.2-1.0 into the observations to reproduce each object, where m₁ is the


W0647

RESULTS

W0713

- Unsaturated stars were selected and used to determine the Point Spread Function (PSF).
- This PSF was used to fit and subtract all identified stars within the image.
- This did not reveal any companions within the halos of the Y dwarf targets.



W1541

W1639

CONCLUSION

• None of these Y dwarfs are equal mass/luminosity binaries at separations larger than ~ 0.5-2.0 AU.

magnitude of the primary, m_2 is the magnitude of the secondary and m_T refers to the magnitude of the system in total.

The magnitude and separation limits established by visual confirmation are displayed in Fig. I. Fig. I Magnitude limit versus separation for our 6 objects.

REFERENCES

- Beichman et al. 2014, ApJ, 783, 68
- Cushing et al. 2011, ApJ, 743, 50
- Kirkpatrick et al. 2012 ApJ, 753, 156
- Kirkpatrick et al. 2013 ApJ, 776, 128
- Tinney et al. 2012 ApJ, 759, 60

• Our best data is for W1639 and W0713 and shows no evidence for binarity to limits ~ $\Delta m = 2.0$ mag in CH₄S at separations beyond 0.5 AU.

DOWNLOAD THIS POSTER HERE:

