Thesis Open Access

Computational solutions for quality control of mass spectrometry-based proteomics

Bittremieux, Wout


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.1059123">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.1059123</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.1059123"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-3105-1359">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Bittremieux, Wout</foaf:name>
        <foaf:givenName>Wout</foaf:givenName>
        <foaf:familyName>Bittremieux</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Antwerp</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Computational solutions for quality control of mass spectrometry-based proteomics</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2017</dct:issued>
    <dct:contributor>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Laukens, Kris</foaf:name>
        <foaf:givenName>Kris</foaf:givenName>
        <foaf:familyName>Laukens</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Antwerp, Antwerp, Belgium</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:contributor>
    <dct:contributor>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Goethals, Bart</foaf:name>
        <foaf:givenName>Bart</foaf:givenName>
        <foaf:familyName>Goethals</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Antwerp, Antwerp, Belgium</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:contributor>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2017-02-24</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/1059123"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/1059123</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.1059122"/>
    <dct:description>&lt;p&gt;Mass spectrometry is an advanced analytical technique that can be used to identify and quantify the protein content of complex biological samples. Unfortunately mass spectrometry-based proteomics experiments can be subject to a large variability, which forms an obstacle to obtaining accurate and reproducible results. Therefore, to inspire confidence in the generated results a comprehensive and systematic approach to quality control is an essential requirement.&lt;/p&gt; &lt;p&gt;In this dissertation we present several computational solutions for quality control of mass spectrometry-based proteomics. In order to successfully employ comprehensive quality control procedures to assess the validity of&lt;br&gt; the experimental results three basic requirements need to be fulfilled: (i) descriptive quality control metrics that characterize the experimental performance should be defined; (ii) the basic technical infrastructure to unambiguously store and communicate quality control data has to be available; (iii) advanced analysis techniques are needed to derive actionable insights from the quality control data.&lt;/p&gt; &lt;p&gt;First, we show how secondary metrics that are not related to the spectral data, such as instrument metrics and environment variables, provide a complementary view on the experimental quality. We present the user-friendly Instrument MONitoring DataBase (iMonDB) toolset to manage and visualize these secondary metrics. Second, we introduce the Human Proteome Organization (HUPO) – Proteomics Standards Initiative (PSI) Quality Control&lt;br&gt; working group, whose aim it is to provide a unifying framework for quality control data. We show how the standard qcML file format for mass spectrometry quality control data can be used as the focal point of a strong community-driven ecosystem of quality control tools and methodologies. Third, we present an unsupervised outlier detection workflow to automatically discriminate low-quality mass spectrometry experiments from high-quality&lt;br&gt; mass spectrometry experiments. We show how this workflow can replicate expert knowledge in a data-driven fashion, enabling the substitution of time-consuming manual analyses by automated decision-making. Finally, we show how approximate nearest neighbor indexing can be used to speed up spectral library open modification searching by several orders of magnitude, leading to a record number of spectrum identifications in a minimal processing time.&lt;/p&gt; &lt;p&gt;We conclude with an overview of potential future steps that can be taken to further improve computational quality control methods for mass spectrometry-based proteomics, as well as discussing some of the opportunities to apply advanced machine learning techniques in this field with related challenges.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="http://creativecommons.org/licenses/by-sa/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.1059123"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
34
106
views
downloads
All versions This version
Views 3434
Downloads 106106
Data volume 511.3 MB511.3 MB
Unique views 3434
Unique downloads 103103

Share

Cite as