Conference paper Open Access

Cognitive Content Recommendation in Digital Knowledge Repositories – a Survey of Recent Trends

Andrzej M.J. Skulimowski


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:contributor>Andrzej M.J. Skulimowski</dc:contributor>
  <dc:creator>Andrzej M.J. Skulimowski</dc:creator>
  <dc:date>2017-06-11</dc:date>
  <dc:description>This paper presents an overview of the cognitive aspects of content recommendation process in large heterogeneous knowledge repositories. It also covers applications to design algorithms of incremental learning of users’ prefe­rences, emotions, and satisfaction. This allows the recommendation procedures to align to the present and expected cognitive states of a user, increasing combi­ned recommendation and repository use efficiency. The learning algorithm takes into account the results of the cognitive and neural modelling of users’ decision behaviour. Inspirations from nature used in recommendation systems differ from the usual mimicking of biological neural processes. Specifically, a cognitive knowledge recommender may follow a strategy to discover emotio­nal patterns in user behaviour and then adjust the recommendation procedure accordingly. The knowledge of cognitive decision mechanisms helps to optimi­ze recommendation goals. Other cognitive recommendation procedures assist users in creating consistent learning or research groups. The anticipated primary application field of the above algorithms is a large knowledge repository coupled with an innovative training platform developed within the ongoing Horizon 2020 research project MOVING.</dc:description>
  <dc:description>This is an author's version of the paper. The original version typeset by Springer and included in LNCS Vol.10246 is available from https://link.springer.com/chapter/10.1007/978-3-319-59060-8_52</dc:description>
  <dc:identifier>https://zenodo.org/record/1059011</dc:identifier>
  <dc:identifier>10.1007/978-3-319-59060-8_52</dc:identifier>
  <dc:identifier>oai:zenodo.org:1059011</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/693092/</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/moving-h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:source>Lecture Notes in Computer Science / Lecture Notes in Artificial Intelligence 10246 574-588</dc:source>
  <dc:subject>Research recommenders, scientific big data, Personal Learning Environments, preference modelling, mobile and ubiquitous learning</dc:subject>
  <dc:title>Cognitive Content Recommendation in Digital Knowledge Repositories – a Survey of Recent Trends</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
43
79
views
downloads
Views 43
Downloads 79
Data volume 21.6 MB
Unique views 34
Unique downloads 76

Share

Cite as