Journal article Open Access

Biological Effects of a Carbohydrate-Binding Protein from an Annelid, Perinereis nuntia Against Human and Phytopathogenic Microorganisms

Sarkar M. A. Kawsar; Sarkar M. A. Mamun; Md S. Rahman; Hidetaro Yasumitsu; Yasuhiro Ozeki

Lectins have a good scope in current clinical microbiology research. In the present study evaluated the antimicrobial activities of a D-galactose binding lectin (PnL) was purified from the annelid, Perinereis nuntia (polychaeta) by affinity chromatography. The molecular mass of the lectin was determined to be 32 kDa as a single polypeptide by SDS-PAGE under both reducing and non-reducing conditions. The hemagglutinating activity of the PnL showed against trypsinized and glutaraldehyde-fixed human erythrocytes was specifically inhibited by D-Gal, GalNAc, Galβ1-4Glc and Galα1-6Glc. PnL was evaluated for in vitro antibacterial screening studies against 11 gram-positive and gram-negative microorganisms. From the screening results, it was revealed that PnL exhibited significant antibacterial activity against gram-positive bacteria. Bacillus megaterium showed the highest growth inhibition by the lectin (250 μg/disc). However, PnL did not inhibit the growth of gram-negative bacteria such as Vibrio cholerae and Pseudomonas sp. PnL was also examined for in vitro antifungal activity against six fungal phytopathogens. PnL (100 μg/mL) inhibited the mycelial growth of Alternaria alternata (24.4%). These results indicate that future findings of lectin applications obtained from annelids may be of importance to life sciences.

Files (395.1 kB)
Name Size
2345.pdf
md5:21680f13f818fafdaebe899fe6eabea2
395.1 kB Download
  • Gabius, H. J., Unverzagt, C., and Kayser, K. (1998). Beyond plant lectin histochemistry: preparation and application of markers to visualize the cellular capacity for protein-carbohydrate recognition. Biotech Histochem 73, 263-277.

  • Garte, S. J., and Rissell, C. S. (1976). Isolation and characterization of a hemagglutinin from Amphitrite ornate, a polychaetous annelid. Biochem Biophys Acta, 439, 368-379.

  • Kilpatrick, D. C. (2002). Animal lectins: an historical introduction and over-view. Biochim Biophys Acta, 1572, 187-197.

  • Mikheyskaya, L. V., Evtushenko, E. V., Ovodova, R. G., Belogortseva, N. I., and Ovodov, Y. S. (1995). Isolation and characterization of a new β-galactoside-specific lectin from the sea worm Chaetopterus variopedatus. Carbohydr Res, 275, 193-200. [10] Hirabayashi, J., Dutta, S. K., and Kasai, K. (1998). Novel galactose-binding proteins in Annelida. Characterization of 29-kDa tandem repeat-type lectins from the earthworm Lumbricus terrestris. J Biol Chem, 273, 14450-14460. [11] Cole, R. N., and Zipser, B. (1994). Carbohydrate-binding proteins in the leech: I. Isolation and characterization of lactose-binding proteins. J Neurochem, 63, 66-74. [12] Wang, H. X., Liu, W. K., Ng, T. B., Ooi, V. E., and Chang, S. T. (1996). The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacol, 31, 205-211. [13] Yu, L. G., Milton, J. D., and Fernig, D. G. (2001). Opposite effects on human colon cancer cell proliferation of two dietary Thomsen-Friedenreich antigen-binding lectins. J Cell Physiol, 186, 282-287. [14] Singh, B. J., Sing, J., Kamboj, S. S., Nijar, K. K., Agrewale, J. N., Kumar, V., Kumar, A., and Saxena, A. K. (2005). Mitogenic and anti-proliferative activity of a lectin from the tubers of Voodoo lily (Sauromatum venosum). Biochim Biophys Acta, 1723, 163-174. [15] Ye, X. Y., Ng, T. B., Tsang, P. W., and Wang, J. (2001). Isolation and homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem, 20, 367-375. [16] Ooi, L. S., Ng, T. B., Geng, Y., and Ooi, V. E. (2000). Lectins from bulbs of the Chinese daffodil Narcissus tazetta (family Amaryllidaceae). Biochem Cell Biol, 78, 463-468. [17] Machuka, J. S., and Oladapo, G. (2000). The African yam bean seed lectin affects the development of the cowpea weevil but does not affect the development of larvae of the legume pod borer. Phytochem, 53, 667-674. [18] Cotuk, A., and Dales, R. P. (1984). Lysozyme activity in the coelomic fluid and coelomocytes of the earthworm Eisenia foetida Sav. In relation to bacterial infection. Comp Biochem Physiol, 78A, 469-474. [19] Ito, Y., Yoshikawa, A., Hotani, T., Fukuda, S., Sugimura, K., and Imoto, T. (1999). Amino acid sequences of lysozymes newly purified from invertebrates imply wide distribution of a novel class in the lysozyme family. Eur J Biochem, 259, 456-461. [20] Tunkijjanukij, S., and Olafsen, J. A. (1998). Sialic acid-binding lectin with antibacterial activity from the horse mussel: further characterization and immunolocalization. Dev Comp Immunol, 22, 139-150. [21] Olafsen, J.A. (1995). Role of lectins (C-reactive protein) in defense of marine bivalves against bacteria. Adv Exp Med Biol, 371: 343-348. [22] Gowda, N. M., Goswami, U., and Khan, M. I. (2008). T-antigen binding lectin with antibacterail activity from marine invertebrate, sea cucumber (Holothuria scabra): possible involvment in differential recognition of bacteria. J Invertebr Pathol, 99, 141-145. [23] Liu, Y. Q., Sun, Z. J., Wang, C., Li, S. J., and Liu, Y. Z. (2004). Purification of a novel antibacterial short peptide in earthworm Eisenia foetida. Acta Biochim Biophys Sinica. 36, 297-302. [24] Dhainaut, A., Raveillon, B., M-Beri, M., Hennere, P. E., and Demuynck, S. (1989). Purification of an antibacterial protein in the coelomic fluid of Nereis diversicolor (annelida, polychaeta). Similitude with a cadmium-binding protein. Comp Biochem Physiol. 1989; 94C: 555-560. [25] Tasiemski, A., Schikorski, D., Croq, F. L. M., Camp, C. P. V., Wichlacz, C. B., and Sautiere, P. E. (2007). Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev Comp Immunol, 31, 749-762. [26] Sato, Y., Okuyama, S., and Hori, K. (2007). Primary structure and carbohydrate binding specificity of a potent anti-HIV lectin isolated from the filamentous cyanobacterium Oscillatoria agardhii. J Biol Chem, 282, 11021-11029. [27] Kawsar,, S. M. A., Takeuchi, T., Kasai, K-I., Fujii, Y., Matsumoto, R., Yasumitsu, H., and Ozeki, Y. (2009). Glycan-binding profile of a D-galactose binding lectin purified from the annelid, Perinereis nuntia ver vallata. Comp Biochem Physiol, 152B, 382-389. [28] Matsui, T. (1984). D-galactoside specific lectins from coelomocytes of the echiuran, Urechis unicinctus. Biol Bull, 178-188. [29] Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature, 227, 680-685. [30] Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem, 150, 76-85. [31] Wiechelman, K. J., Braun, R. D., and Fitzpatrick, J. D. (1988). Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem. 175, 231-237. [32] Bauer, A. W., Kirby, M. M., Sherris, J. C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Path, 45, 493-496. [33] Grover, R. K., and Moore, J. D. (1962). Toximetric studies of fungicides against the brown rot organisms, Sclerotinia fructicola and S. laxa .Phytopathology, 52, 876-880. [34] Miah, M. A. T., Ahmed, H. U., Sharma, N. R., Ali, A., and Miah, S. A. (1990). Antifungal activity of some plant extracts. Bang J Bot, 19, 5-10. [35] Oliveira, M. D. L., Andrade, C. A. S., Magalhaes, N. S. S., Coelho, L. C. B. B., Teixeira, J. A., Cunha, M. G. C., and Correia, M. T. S. (2008). Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity. Appl Microbiol, 46, 371-376. [36] Naganuma, T., Ogawa, T., Hirabayashi, J., Kasai, K., Kamiya, H., and Muramoto, K. (2006). Isolation, characterization and molecular evolution of a novel pearl shell lectin from a marine bivalve, Pteria penguin. Mol Div, 10, 607-618. [37] Tateno, H., Ogawa, T., Muramoto, K., Kamiya, H., and Saneyoshi, M. (2002). Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci Biotechnol Biochem, 66, 604-612. [38] Calderon, A. M., Buck, G., and Doyle, R. J. (1997). Lectin-microorganism complexes. In Lectins, Biology, Biochemistry, Clinical Biochemistry Vol 12 ed. van Driessche, E., Beeckmans, S., B├©g-Hansen, T. C., and Lemchesvej, Hellerup, Denmark: TEXTOP. http://plab.ku.dk/tcbh/Lectins12/Calderon/paper.htm. [39] Munoz-Crego, A., Alvarez, O., Alonso, B., Rogers, D. J., and Lvovo, J. (1999). Lectin as diagnostic probes in clinical bacteriology-an overview. In Lectins, Biology, Biochemistry, Clinical Biochemistry Vol 13 ed. van Driessche, E., Beeckmans, S., B├©g-Hansen, T. C., and Lemchesvej, Hellerup, Denmark: TEXTOP. http://plab.ku.dk/tcbh/Lectins12/Calderon/paper.htm. [40] Doyle, R. J. (1994). Introduction to lectins and their interactions with microorganisms. In Lectin-microorganism Interactions ed. Doyle RJ, Slifkin MV, New York, Marcel Dekker, Inc. pp. 1-65. [41] Nagi, P. H. K., and Ng, T. B. (2007). A lectin with antifungal and mitogenic activities from red cluster pepper (Capsicum frutescens) seeds. Appl Microbiol Biotechnol, 74, 366-371. [42] Sitohy, M., Doheim, M., and Badr, H. (2007). Isolation and characterization of a lectin with antifungal activity from Egyptian Pisum sativum seeds. Food Chem, 104, 971-979. [43] Broekaert, W. F., Van, P. J., Leyn, F., Joos, H., and Peumans, W. (1998). A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science, 245, 1100-1102. [44] Dhainaut, A., and Scaps, P. (2001). Immune defense and biological responses induced by toxics in Annelida. Can J Zool, 79, 233-253. [45] Paul, V. J., and Puglisi, M. P. (2004). Chemical mediation of interactions among marine organisms. Nat Prod Rep, 21, 189-209. [46] Kelly, S. R., Garo, E., Jensen, P. R., Fenical, W., and Pawlik, J. R. (2005). Effects of Caribbean sponge secondary metabolites on bacterial surface colonization. Aquat Microb Ecol, 40, 191-203.

  • Molchanova, V., Chikalovets, I., Chernikov, O., Belogortseva, N., Li, W., Wang, J. H., Yang, D. Y. O., Zheng, Y. T., and Lukyanov, P. (2007). A new lectin from the sea worm Serpula vermiculasis: isolation, characterization and anti-HIV-1 activity. Comp Biochem Physiol, 145C, 184-193.

  • Ozeki, Y., Tazawa, E., and Matsui, T. (1997). D-Galactoside-specific lectins from the body wall of an echiuroid (Urechis unicinctus) and two annelids (Neanthes japonica and Marphysa sanguinea). Comp Biochem Physiol, 118B, 1-6.

  • Stabili, I., Pagliara, P., and Roch, P. (1996). Antibacterial activity in the coelomocytes of the sea urchin Paracentrotus lividus. Comp Biochem Physiol, 113B, 639-644.

  • Vazquez, L., Alpuche, J., Maldonado, G., Agundis, C., Morales, A. P., and Zenteno, E. (2009). Immunity mechanisms in crustaceans. Innate Immun, 15, 179-188.

  • Wang, J. H., Kong, J., Li, W., Molchanova, V., Chikalovets, I., Belogortseva, N., Lukyanov, P., and Zheng, Y. T. (2006). A β-galactose-specific lectin isolated from the marine worm Chaetopterus variopedatus possesses anti-HIV-1 activity. Comp Biochem Physiol, 142C, 111-117.

0
0
views
downloads
All versions This version
Views 00
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 00
Unique downloads 00

Share

Cite as