Dataset Open Access

Global map of Martian fluvial systems

Giulia Alemanno; Vincenzo Orofino


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.1051038", 
  "language": "eng", 
  "title": "Global map of Martian fluvial systems", 
  "issued": {
    "date-parts": [
      [
        2017, 
        11, 
        16
      ]
    ]
  }, 
  "abstract": "<p>This dataset represents an update of previous global maps of Martian fluvial systems. We included all the valleys longer than 20 km and mapped them as vector-based polylines within the QGIS software, using the more recent and, to date, the best resolution THEMIS (Thermal Emission Imaging Spectrometer) daytime IR mosaic (100 m/pixel). In addition, we used, where necessary (for small-scale systems and valleys with high erosion), CTX (Contex Camera) data, with a resolution up to 6 m/pixel. The imagery data were coupled with the MOLA (Mars Orbiter Laser Altimeter Mosaic) mosaic which has a spatial resolution of 463 m/pixel.&nbsp;At low latitudes, we used an equidistant cylindrical projection, while at high latitudes, we used sinusoidal and polar stereographic projections to represent and analyze the data. Topographic information and data of higher image quality (new THEMIS mosaic plus CTX data) than those of previous manual maps, allowed us to identify new structures and more tributaries for a large number of systems. An attribute table is associated to our dataset including useful information such as coordinates, total length and an approximative maximum age indication for each system. The latter has been obtained coupling our map with the global geologic map of Tanaka et al. (2014)&nbsp;which represents, to date, the most accurate dating of the planet surface.</p>\n\n<p><strong>Attribution</strong>:</p>\n\n<p>If you use this data set in your own work, please cite this DOI:<br>\n10.5281/zenodo.1051038<br>\n<br>\nPlease also cite these&nbsp;works:&nbsp;</p>\n\n<p>Alemanno et al.:&nbsp;2018, Global Map of Martian Fluvial Systems: Age and Total Eroded Volume Estimations, Earth and Space Science Journal, 5, 560-577, doi:<a href=\"https://doi.org/10.1029/2018EA000362\">https://doi.org/10.1029/2018EA000362</a><br>\nOrofino et al.: 2018,&nbsp;Estimate of the water flow duration in large Martian fluvial systems. Planetary and Space Science Journal, 163, 83-96.&nbsp;doi:&nbsp;<a href=\"https://doi.org/10.1016/j.pss.2018.06.001\">10.1016/j.pss.2018.06.001</a><br>\nAlemanno G.: 2018,&nbsp;Study of the fluvial activity on Mars through mapping, sediment transport modelling and spectroscopic analyses.&nbsp;PhD dissertation thesis,&nbsp;<a href=\"https://arxiv.org/abs/1805.02208\">arXiv:1805.02208</a>&nbsp;[astro-ph.EP].</p>", 
  "author": [
    {
      "family": "Giulia Alemanno"
    }, 
    {
      "family": "Vincenzo Orofino"
    }
  ], 
  "type": "dataset", 
  "id": "1051038"
}
244
253
views
downloads
All versions This version
Views 244244
Downloads 253253
Data volume 1.4 GB1.4 GB
Unique views 221221
Unique downloads 5656

Share

Cite as