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Abstract—This paper presents a semantic multimodal interac-
tion approach between humans and industrial robots enhancing
the dependability of the collaboration in real industrial scenarios.
This is a generic approach and it can be applied to different
industrial scenarios. We explain in detail how to apply it in a
specific example scenario and how the semantic technologies help
with accurate natural request interpretation leading to a more
efficient collaboration, as well as its benefits in terms of system
maintenance and scalability.

I. INTRODUCTION

In modern industrial robotics, the safe and flexible co-
operation between robots and human operators can be a
new way to achieve better productivity when performing
complex activities. Introducing robots within real industrial
settings makes the interaction between humans and robots
gain further relevance. The problem of robots performing tasks
in collaboration with humans poses three main challenges:
robots must be able to perform tasks in complex, unstructured
environments, and at the same time they must be able to
interact naturally with the humans they are collaborating with,
always guaranteeing the safety of the worker.

Let us imagine an industrial collaborative robot and an
operator in a deburring collaborative process. While the robot
is deburring a piece, the operator has started with another one.
The robot finishes the piece, and since the end of the operator
working day is close, he decides to ask the robot to finish
the piece he has started but not finished yet, while he finishes
another tasks. There are several ways to rise such a petition.
Following we list some of them:

• Manipulating the robot manually, positioning it just in
the position the operator wants it to start from in the
deburring task.

• Pointing at the area of the piece the operator wants the
robot to deburr from, assuming the robot knows which
operation it has to perform.

• Raising the petition via voice, indicating the task and
somehow the position to apply it from.

• Combining voice and gesture, the first for indicating the
action (i.e Remove the burrs from this area) and the latter
for determining the area

All of these communication possibilities are some of the
research areas the H2020 FourByThree[1] project focuses on.
The project aims at developing a new generation of modular
industrial robotic solutions that are suitable for efficient task
execution in collaboration with humans in a safe way, and
are easy to use and program by the factory worker. The
project will allow system integrators and end-users to develop
their own custom robot that best answers to their needs.
To achieve this, the project will provide a set of hardware
and software components, ranging from low level control
to interaction modules. The results will be validated in 4
industrial settings: Investment Casting, Aeronautical sector,
Machining and Metallic Part Manufacturing, in which rele-
vant applications will be implemented: assembly, deburring,
riveting and machine tending in a collaborative context.

The present work describes the natural communication
approach within the FourByThree European project. A re-
quirement for natural human-robot collaboration including
interaction is to endow the robot with the capability to capture,
process and understand accurately and robustly requests from a
person. Thus, a primary goal for this research is to analyze the
natural ways in which a person can interact and communicate
with a robot and go towards a natural, robust and reliable
communication framework.

Natural communication between humans and robots can
happen through several channels, the main of which are voice
and gestures. In this multimodal scenario, the information
can be complementary between channels, but also redundant.
However, redundancy can be beneficial [2] in real industrial
scenarios where noise and low lighting conditions are usual
environmental challenges that make it difficult for voice and
visual signals to be captured with clarity.

In this paper, we present a semantic approach that supports
multimodal interaction between humans and industrial robots
in real industrial settings that are being studied within the
FourByThree European project. As mentioned earlier, the
approach that we present is generic in the sense that it can
be applied to different industrial scenarios by modifying the
information about the environment in which communication
takes place.978-1-5090-1314-2/16/$31.00 c© 2016 IEEE



Fig. 1. FourByThree project architecture

II. CASE STUDY

In the context of the FourByThree project in which the
work presented here is inscribed, there are several industrial
scenarios that include human-robot collaboration via natural
communication. For an initial validation of the semantic
multimodal interpreter, we have selected a scenario that in-
volves two such collaborative tasks that are carried out via
interaction between a person and a robot. One task involves the
collaborative assembly/disassembly on the same dies, handling
different parts of the dies and (un)screwing bolts as required.
The other task involves a collaborative deburring operation of
wax patterns that requires managing different parts adequately
in order to build a mould.

In the case of the assembly task, the human and the robot
work independently (un)screwing bolts on different parts of the
die, and then they work together simultaneously (un)screwing
different bolts on the same die cover. For the deburring activity,
the human and the robot perform sequential tasks on the same
workpiece in a sychronized manner, where the person glues
and positions parts on the workbench while the robot deburrs
them.

III. RELATED WORK

Over the last two decades, a considerable number of
robotic systems have been developed showing Human-Robot
Interaction (HRI) capabilities [3], [4]. Although recent robot
platforms integrate advanced human-robot interfaces (incorpo-
rating body language, gestures, facial expressions and speech)
[5], [6] their capabilities to understand human speech seman-
tically remain quite limited. Endowing a robot with semantic
understanding capabilities is a very challenging task. Previous
experiences with tour-guide robots [7], [8] show the impor-
tance of improving human-robot interaction in order to ease
the acceptance of robots by visitors. In Jinny’s HRI system [8],
voice input is converted to text strings, which are decomposed
into several keyword patterns and a specialized algorithm finds
the most probable response for that input. For example, two
questions like ‘Where is the toilet?’ and ‘Where can I find

the toilet’ are interpretedin the same way, since the keyword
pattern of ‘where’ and ‘toilet’ are extracted from both cases.

Human-robot natural interactions have also been developed
in industrial scenarios. For instance, Bannat et al. [2] intro-
duced an interaction that consisted of different input channels
such as gaze, soft-buttons and voice in an industrial scenario.
Although voice constituted the main interaction channel in
that use scenario, it was solved by command-word-based
recognition.

SHRDLU is an early example of a system that was able to
process instructions in natural language and perform manipu-
lations in a virtual environment [9]. Researchers followed on
that work towards extending SHRDLU’s capabilities into real
world environments. Those efforts branched out into tackling
various sub-problems, including Natural Language Processing
(NLP) and Robotics Systems. Notably, MAc Mahon et al.
[10] and Kollar et al.[11] developed methods for following
route instructions given through natural language. Tenorth et
al. [12] developed robotic systems capable of inferring and
acting upon implicit commands using knowledge databases.
A similar knowledge representation was proposed by Wang
and Chen [13] using semantic representation standards such
as the W3C Web Ontology Language (OWL) for describing
an indoor environment.

A generic and extensible architecture was described in
[14]. The case study presented there included gesture and
voice recognition, and the evaluation showed that interaction
accuracy increased when combining both inputs (91%) instead
of using them individually (56% in the case of gestures and
83% for voice). Furthermore, the average time for processing
both channels was similar to the time needed for speech
processing.

Our work is based on this extensible architecture, combining
gesture and speech channels and adding semantic aspects to
the processing.

IV. MULTIMODAL INTERACTION SEMANTIC APPROACH

The approach proposed in this work aims at creating a safe
human-robot collaborative environment in which interactions
between both actors happen in a natural way (understanding
by ‘natural’ the communication based on voice and gestures).
We propose a semantic multimodal interpreter prototype that is
able to process voice and gesture-based natural requests from
a person, and combine both inputs to generate an understand-
able and reliable command for industrial robots, enhancing
safe collaboration. For such a semantic interpretation, we
have developed four main modules, as shown in Fig. 2: a
Knowledge-Manager module that describes and manages the
environment and the actions that are feasible for robots in
a given environment, using semantic representation technolo-
gies; a Voice Interpreter module that given a voice request,
it extracts the key elements on the text and translates them
into a robot-understandable representation, combining NLP
and semantic technologies; a Gesture Interpretation module
mainly for resolving pointing issues and some simple orders
like stopping an activity; and a Fusion Engine for combining



Fig. 2. Multimodal semantic approach architecture

the output of both text and gesture modules and construct a
complete and reliable order for the robot.

These main modules are described in detail in the following
subsections.

A. Knowledge Manager

The knowledge manager comprises ontologies that model
environmental information of the robot itself, including its
own capabilities. In addition, the knowledge manager allows
modeling the relationships between the concepts. These rela-
tionships are implicit rules that can be exploited by reasoners
in order to infer new information from the ontology. As a
result, reasoners can work as rule engines in which human
knowledge can be represented as rules or relations.

Ontologies have many practical benefits. They are very
reusable and flexible at adapting to dynamic changes, thus
avoiding to have to re-compile the application and its logic
whenever a change is needed. Being in the cloud makes
ontologies even more reusable, since different robots can
exploit them, as was the case with e.g., RoboEarth [15].

Through ontologies, we model the industrial scenarios in
which industrial robots collaborate with humans, in terms of
robot behaviors, task/programs they can accomplish and the
objects they can manipulate/handle from an interaction point
of view. We distinguish two kinds of actions: actions that
imply a status change on a robot operation, like start or stop,
and actions related the robot capabilities such as screw, carry,
deburring and so on.

Relations between all the concepts are also represented,
which adds the ability for disambiguation during execution.
This ability is very useful for text interpretation, since dif-
ferent actions can be asked from the robot using the same
expression. For instance, people can use the expression remove
to request the robot to remove a burr, but also to remove a
screw, depending on whether the desired action is deburring
or unscrewing respectively. If the relationships between the
actions and the objects over which the actions are performed

are known, the text interpretation will be more accurate, since
it will be possible to discern in each case to which of both
options the expression remove corresponds. Without this kind
of knowledge representation, this disambiguation problem is
far more difficult to solve.

For task/programs we make an automatic semantic exten-
sion exploiting WordNet [16] each time the robot is initialized.
In this way, we obtain different candidate terms referring to a
certain task, which is useful for text interpretation mainly, as
it is described bellow.

For the current implementation, we have considered the two
contexts described in the Case Study section. We have identi-
fied the possible tasks the robot can fulfill in both scenarios and
we have created a knowledge base starting from the knowledge
manager ontology. We have also included in the knowledge
base the elements that take part in both processes, together
with the relationships they have with respect to the tasks. This
knowledge base is published in StarDog 4.0.5 Community
version[17] and extended with WordNet as explained before.

B. Voice Interpreter

Given as input, a human request like Remove the burrs
from there in which a person indicates (partially) the desired
action via voice, the purpose of this module is to understand
exactly what the person wants and if it is feasible to generate
the necessary information for the robot. For instance, in the
example just mentioned, the voice interpreter should deliver
that the verb remove corresponds to the deburring action and
check if it is a feasible action for the current collaborative
robot. For such an interpretation, the module is divided into
three main steps:

• The first step concerns to speech recognition.
• The second step is based on superficial information, in

the sense that it does not take into account the meaning
of words in the context. Its only purpose is to extract the
key elements from the given order.

• The last step attempts to identify the action that is asked
for, considering the key elements in the given context.

For speech recognition, we use Google Speech API[18].
Specifically, after recording the request of the operator, we
send the audio file to Google Speech API obtaining the
corresponding text.

Upon this text, in the second step, we apply natural language
processing techniques using FreeLing, an open source suite
of language analysis tools [19]. In particular, we apply a
morphosyntactic analysis and dependency parsing to a set
of request examples from different people. In this way, we
obtain the morphosyntactic information of every element and
about the request itself. We revise the complete information
manually and identify the most frequent morphosyntactic
patterns. From them, we extract elements denoting actions,
objects/destinations (target onward) and explicit expressions
denoting gestures, such as there and that. Following, we
implement those patterns as rules, obtaining a set of rules that,
given a FreeLing-tagged sentence, is able to extract the key
elements on it.



Fig. 3. Voice interpreter execution sequence

The aim of the second step is to identify which one of the
tasks that the robot is able to perform suits the request best,
considering the key elements in it. We undertake this step
by making use of the knowledge base information described
above. First, we verify if the identified actions are among the
feasible tasks described in the knowledge base, and then we
apply a disambiguation step using the target information, as
explained before. This process results in the delivery of the
best fits for the given input, from among the potential tasks
obtained from the previous step.

The module output consists of frames, one for each potential
task candidate, including information denoting gestures, if any
exists.

Going back to the example about asking a robot to deburr
a piece from a certain point on, the execution sequence of
this module is detailed in Fig. 3 (Remove the burrs from here,
example request in English).

Although it is not the case in the current example, since
a single request can include different pointing gestures (e.g.,
Take the piece from here to there), the positions of the
corresponding voice/text elements within the whole request
are identified. These positions will be key in the fusion engine
for aligning both voice and gesture inputs.

C. Gesture Interpretation

Two kinds of gestures are addressed within the FourByThree
project: pointing gestures and gestures for simple commands
such as stop/start. The case presented in this paper deals with

Fig. 4. Pointing gesture functional demonstrator

pointing gestures that are recognized by means of point-cloud
processing. In this context, the system must be able to not
only recognize the pointing gesture, but also deliver within
a certain period time how many different pointing gestures
have occurred and which ones those are, in terms of x,y,z
coordinates.

The initial setup consists of a collaborative robot and a sen-
sor capable of providing dense point clouds, such as the ASUS
Xtion sensor, the Microsoft Kinect sensor, or the industrial-
grade Ensenso system by IDS. The sensor is placed above the
human operator and orientated towards the working area of
the robot, so that the point cloud obtained resembles what the
human operator in perceiving in the working environment (see
Fig. 4).

The point cloud is then initially divided into two regions
of interest (ROI), the first one corresponding to the gesture
detection area, and the second one defining the working area
of the robot where the pointing gesture will be applied.

With this setup, two main problems need to be solved for
the interaction between the person and the robot to succeed:

1) Robust estimation of the direction of the pointing ges-
ture.

2) Intersection of the pointing gesture with the working
area of the robot.

1) Robust estimation of the pointing gesture: The ROI for
the pointing gesture detection is initially defined by specifying
a cuboid in space with respect to the reference frame. In
this case, the reference frame is the sensor frame, but it
can also be defined using another working frame, provided
a tf transformation exists between the frame used and the
sensor frame. For robustness, the pointing gesture is defined
using the forearm of the human operator. To identify the arm
unequivocally, an euclidean cluster extraction is performed.

2) Intersection of the pointing gesture with the working area
of the robot: The main objective of a pointing gesture is to
determine the point on the working area that is being pointed
at. To identify this point, the points in the cloud corresponding
to the pointing line are selected, from the furthest one all
the way to the origin of the line that corresponds to the
pointing arm. For each one of the points, a small cuboid
is defined, and the ROI of the working area of the robot is
filtered with it. If more than N points of the working area are



present inside the small centered cuboid defined in the points
of the projection line, an intersection has been found. The
final intersection point that is published is the closest one to
the origin of the projection line. As a threshold, a minimum
euclidean distance value is defined in order to avoid detecting
intersections corresponding to the proper point cloud of the
arm that generates the pointing gesture.

When detecting gestures in a time frame, a spatial filtering
approach has been implemented to distinguish among real
stable pointing gestures and natural arm movements. The
system is monitoring the intersection points obtained by the
algorithm, and once a valid intersection point is obtained,
the spatial filtering monitoring is launched. To detect a stable
gesture, N consecutive intersection points must be contained
in a defined cube whose centroid is the first intersection point
obtained. The number of consecutive intersection points and
the edge of the filtering cube are defined as parameters. A
pointing gesture is considered stable and valid if it fulfills
the previous explained condition. If not, the points of the
last filtering operation are discarded. Valid points are queued
during the time frame, and dispatched at the end of the
acquisition time according to the format described below.

{”points”: [
{”x”: ”x1”,”y”: ”y1”,”z”: ”z1”},
... ,
{”x”: ”xN”,”y”: ”yN”, ”z”: ”zN”}

]}

D. Fusion Engine

The fusion engine aims to merge both the text and the
gesture outputs in order to deliver the most accurate request to
send to the executive manager. The engine considers different
situations regarding the complementary and/or contradictory
levels of both sources.

As a first approach, we have decided the text interpreter
output to prevail over the gesture information. In this way,
when a contradictory situation occurs, the final request will be
based on the text interpretation. When no contradiction exists
between both sources, the gesture information is used either to
confirm the text interpretation (redundant information), or to
complete it (complementary information). For instance, using
both voice and a gesture to stop a specific action provides
redundant information through both channels. In contrast,
using voice to determine an action and a gesture to indicate the
location of the object that should suffer that action provides
complementary information through both channels. In the
second case, the knowledge base is used to check if the
gesture information makes sense for a given task, discarding
incoherent frame generation.

As a result, the fusion engine will send to the executive
manager the potential, coherent and reliable requests that are
understandable for the robot. The executive manager will then
be in charge of task-planning issues considering those potential
requests.

Fig. 5. Multimodal Interaction process sequence

In the current implementation, only the pointing gesture
is included, and for that reason we have only tested the
complementary functionality of the fusion engine. For the
example we are affording, the output is the deburring program
with the coordinates of the given point as parameter, that is
sent to the execution manager who is in charge of managing
when the request can be accomplished.

{”program”: ”deburring”,
”from”: {”x”: ”x1”,”y”: ”y1”,”z”: ”z1”} ,
”to”:{}

}

V. SEMANTIC MULTIMODAL INTERPRETER IN ACTION

This section reports on a set of tests of the Semantic Multi-
modal Interpreter with different types of requests comprising
different voice and gestures inputs.

The initial setup consists of a button for triggering semantic
interpreter, a microphone for voice input, a sensor capable of
providing dense point clouds and a collaborative robot together
with a human operator within a room in the context of the
collaboration tasks introduced in the Case Study section.

Every time the operator wants to rise a requests for the
robot, he should click the button and just keep it until the
end of the request. When the system detects the click on the
button, it starts recording the voice through the microphone
and starts the time frame for the gesture module, who will be
recognizing potential points until the operator stops clicking
the button. Once it happens, voice interpreter is triggered with
the recorded audio, and in parallel the gesture module starts the
delivery of how many points have been pointed. When both
modules returns the potential candidates in terms of actions
and points, the fusion engine is triggered to estimate the full
command to be sent to the manager with the corresponding
information. The process sequence is shown in Fig. 5.

We have simulated the initialization process and the in-
terpretation of some sample requests in order to validate
the functionality. The initialization (mainly knowledge base
creation) that happens together with the robot initialization
takes around 15 seconds to complete.

Regarding the time required for gesture and voice interpreta-
tion, between 1 and 2 seconds are necessary for gesture recog-
nition, while for voice interpretation times vary depending on



TABLE I
VOICE INTERPRETER DISAGGREGATED TIMES(SECONDS)

Voice Request GSA Freeling Total

Quita ese tornillo
(Remove that screw) 2 1 3.836

Quita esa rebaba
(Remove that burr) 2 1 3.769

Empieza a atornillar la pieza
(Start to screw the piece) 2 1 4.384

Comienza el mecanizado
de la pieza redonda de allı́
(Begin with the machining of
the round piece that is there) 3 1 5.749

Desatornilla de aquı́ a allı́
(Unscrew from here to there) 2 1 4.031

Detén el mecanizado
(Stop the machining) 2 1 4.107

the complexity and length of the request (typically between
3.5 and 6 seconds). As it is shown in Table I, one of the most
critical steps within the voice interpreter module is the Google
Speech API (GSA in TableI) that takes around 2-3 seconds
to process each petition. For FreeLing, the response times
remain stable for all the examples, whilst the required time
for the identification of the key elements varies depending on
the amount of elements to manage and if the disambiguation
step is required.

We are aware of the current high execution time required for
interpreting a natural request when thinking in a human-robot
collaboration environment. The main reason for such a high
execution time is the sequential execution of different third-
party tools such as Google Speech API and FreeLing. We plan
to work on reducing it as much as possible once we conclude
the evaluation we are currently carrying out in a laboratory
environment.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a semantic-driven multimodal interpreter
for human-robot collaborative interaction focused on industrial
environments. The interpreter relies on text and gesture recog-
nition for request processing, dealing with the analysis of the
complementary/contradictory aspects of both input channels,
taking advantage of semantic technologies for a more accurate
interpretation due to the reasoning capabilities it provides.

This approach is generic and it can be applied in different
industrial scenarios. However, in order to evaluate this ap-
proach, we are working on a specific scenario that includes
the human-robot collaborative activities of assembling and
deburring. We intend to measure the whole system accuracy
as well as the benefit of a multimodal system against a mono-
modal one in industrial environments. In addition, we will
assess the usability and the benefits of such a system in
industrial scenarios, as part of the advancement towards natural
communication in human-robot collaborative work.
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