Dataset Open Access

Webis-TLDR-17 Corpus

Syed, Shahbaz; Voelske, Michael; Potthast, Martin; Stein, Benno


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>This corpus contains preprocessed posts from the Reddit dataset, suitable for abstractive summarization using deep learning. The format is a json file where each line is a JSON object representing a post. The schema of each post is shown below:</p>\n\n<ul>\n\t<li>author: string (nullable = true)</li>\n\t<li>body: string (nullable = true)</li>\n\t<li>normalizedBody: string (nullable = true)</li>\n\t<li>content: string (nullable = true)</li>\n\t<li>content_len: long (nullable = true)</li>\n\t<li>summary: string (nullable = true)</li>\n\t<li>summary_len: long (nullable = true)</li>\n\t<li>id: string (nullable = true)</li>\n\t<li>subreddit: string (nullable = true)</li>\n\t<li>subreddit_id: string (nullable = true)</li>\n\t<li>title: string (nullable = true)</li>\n</ul>\n\n<p>Specifically, the <strong>content</strong> and <strong>summary</strong> fields can be directly used as inputs to a deep learning model (e.g. Sequence to Sequence model ). The dataset consists of 3,848,330 posts with an average length of 270 words for content, and 28 words for the summary. The dataset is a combination of both the Submissions and Comments merged on the common schema. As a result, most of the comments which do not belong to any submission have <strong>null</strong> as their title.</p>\n\n<p><strong>Note :&nbsp;</strong>This corpus does not contain a separate test set. Thus it is up to the users to divide the corpus into appropriate training, validation and test sets.<br>\n<br>\n&nbsp;</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Bauhaus-Universit\u00e4t Weimar", 
      "@type": "Person", 
      "name": "Syed, Shahbaz"
    }, 
    {
      "affiliation": "Bauhaus-Universit\u00e4t Weimar", 
      "@type": "Person", 
      "name": "Voelske, Michael"
    }, 
    {
      "affiliation": "Bauhaus-Universit\u00e4t Weimar", 
      "@type": "Person", 
      "name": "Potthast, Martin"
    }, 
    {
      "affiliation": "Bauhaus-Universit\u00e4t Weimar", 
      "@type": "Person", 
      "name": "Stein, Benno"
    }
  ], 
  "url": "https://zenodo.org/record/1043504", 
  "datePublished": "2017-11-07", 
  "@type": "Dataset", 
  "keywords": [
    "tl;dr", 
    "Abstractive Summarization", 
    "Social Media Dataset"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/455929d0-2fba-4cea-bbd6-509ab200e8a5/corpus-webis-tldr-17.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.1043504", 
  "@id": "https://doi.org/10.5281/zenodo.1043504", 
  "workFeatured": {
    "alternateName": "EMNLP 2017", 
    "@type": "Event", 
    "name": "EMNLP 2017 Workshop on New Frontiers in Summarization"
  }, 
  "name": "Webis-TLDR-17 Corpus"
}
1,456
1,775
views
downloads
All versions This version
Views 1,4561,458
Downloads 1,7751,775
Data volume 5.6 TB5.6 TB
Unique views 1,3141,316
Unique downloads 1,4351,435

Share

Cite as