
7/13/13 10:06 AMIPython Notebook

Page 1 of 6http://127.0.0.1:8888/17946673-ab13-4f33-aa23-e1546c50ad08/print

In [1]:

Initialization of a numerical experiment
Before running a drifter simulation, a number of parameters need to be specified. Previous examples of this are set in
init.py. Because these examples change over time, we'll go through a specific example here.

In [2]:

Model output
Model output from a high resolution model of the Texas-Louisiana shelf for the years 2004-2012 is stored on a thredds
served at the address in loc. This is freely accessible.

In [3]:

Time parameters
Model output is known to occur every four hours. The default test here will start at 00:00 on November 25, 2009 and run
for 5 days.

In [4]:

Turning on inline plots -- just for use in ipython notebooks.
%pylab inline

Welcome to pylab, a matplotlib-based Python environment [backend:
module://IPython.zmq.pylab.backend_inline].
For more information, type 'help(pylab)'.

Normal Python libraries
import numpy as np
from datetime import datetime, timedelta
import netCDF4 as netCDF

tracpy modules
import inout
import tools
import run
import plotting

Location of TXLA model output file and grid, on a thredds server.
loc = 'http://barataria.tamu.edu:8080/thredds/dodsC/NcML/txla_nesting6.nc'

Number of days to run the drifters.
ndays = 5

Start date in date time formatting
date = datetime(2009,11, 25, 0)

Time between outputs
tseas = 4*3600 # 4 hours between outputs, in seconds

7/13/13 10:06 AMIPython Notebook

Page 2 of 6http://127.0.0.1:8888/17946673-ab13-4f33-aa23-e1546c50ad08/print

In order to smooth results, it is typical to linearly interpolate model output in time before performing particle tracking. How
many interpolations steps to do between model outputs depends on the model output and how much time is between
data sets, but something between 5 and 10 interpolation steps is a good place to start. A sensitivity study using this
model output showed minimal overall difference in results between values of nsteps of 5, 10, and 15.

In [5]:

After initialization, drifters can be stepped forward or backward in time. Running backward in time essentially means that
we change the sign of the velocity fields and step backward in the model output files (in which case we set ff=-1). We'll
move forward in time (ff=1).

In [6]:

Subgrid parameterization parameters
An integer flag is used to control whether or not to use subgrid parameterization in the particle tracking, and if so, which
kind.

Options are:

doturb=0 uses no sub grid parameterization and thus the drifters are passively advected according strictly to
the output velocity fields
doturb=1 adds to the current velocity fluxes parameterized turbulent velocity fluxes of the order of the current
velocity fluxes
doturb=2 adds to the calculated new drifter location a slightly displaced drifter location that is randomly placed
based on a circle around the drifter location
doturb=3 adds to the calculated new drifter location a slightly displaced drifter location that is randomly placed
based on an ellipse of the bathymetry around the drifter location

The horizontal and vertical diffusivities are set by the user. These values may or may not be used in the experiment
depending on whether a subgrid parameterization is used, and, if so, which is used. The horizontal diffusivity value is used
by all of the horizontal subgrid parameterizations. The vertical diffusivity is not used in the two-dimensional case. Since
this experiment is not using either diffusivity values, they will be set to zero to avoid confusion.

Appropriate values to use for this are currently being investigated using sensitivity studies on the Texas-Louisiana shelf.
Some values have been used and compared in studies, and values can be calculated from physical drifters for a specific
domain. This is on-going work! In a sensitivity study, a smaller value, like ah=5, leads to somewhat diffused results that
are still very close to the non-diffusive case. A larger value of ah=20 led to more diffused results that were still quite
similar to the non-diffusive case.

In [7]:

Grid information

Number of interpolation steps between model outputs.
nsteps = 5

Use ff = 1 for forward in time and ff = -1 for backward in time.
ff = 1

ah = 0. # m^2/s
av = 0. # m^2/s

turbulence/diffusion flag
doturb = 0

7/13/13 10:06 AMIPython Notebook

Page 3 of 6http://127.0.0.1:8888/17946673-ab13-4f33-aa23-e1546c50ad08/print

Grid information has been stored in the loc array previously and the inout module will read necessary information from
the netCDF file and place it into a dictionary.

In [8]:

Drifter initialization

Horizontal
Drifters are seeded by the latitude and longitude. A simple way to do this is to set up a mesh of points within a lat/lon box.
In this case, we are looking at drifters starting throughout the TX-LA shelf domain. For the linspace function, we can
play around with the number of points to control approximately how far apart the drifters begin. For this example, the
number of points are about 20 km apart.

After initializing these points, we can run them through a check script to eliminate points outside the domain (without this
step, points outside the numerical domain will cause an error).

In [9]:

Vertical
There are a number of options for the initial vertical placement of the drifters. The behavior is controlled by the
combination of z0 and zpar, and do3d must be set accordingly as well.

The do3d flag controls whether or not drifters are allowed to move vertically or not:

do3d=0 for two-dimensional particle tracking
do3d=1 for three-dimensional particle tracking

For 3D tracking, set do3d=1 and z0 should be an array of initial drifter depths. The array should be the same size as lon0
and negative for under water. Currently, drifter depths need to be above the seabed for every (x, y) particle location for the
script to run.

To do 3D but start at surface, use z0 = zeros(lon0.shape) and have either zpar='fromMSL' so that z0 starting
depths represent that depth below the base, time-independent sea level (or mean sea level) or choose
zpar='fromZeta' to have z0 starting depths represent that depth below the time-dependent sea surface. Currently
only the zpar='fromZeta' case is coded up.

For 2D drifter movement, set do3d=0. Then there are the following options:

set z0 to 's' for 2D along a terrain-following slice and zpar to be the index of s level you want to use (0 to km-1)
set z0 to 'rho' for 2D along a density surface and zpar to be the density value you want to use. Can do the same
thing with salinity ('salt') or temperature ('temp'). The model output doesn't currently have density.
set z0 to 'z' for 2D along a depth slice and zpar to be the constant (negative) depth value you want to use
To simulate drifters at the surface, set z0 to 's' and zpar = grid['km']-1 (whatever that value is) to put them in the
upper s level. This is probably the most common option.

grid = inout.readgrid(loc)

Input starting locations as real space lon,lat locations
lon0, lat0 = np.meshgrid(np.linspace(-98.5,-87.5,55), \
 np.linspace(22.5,31,49)) # whole domain, 20 km

Eliminate points that are outside domain or in masked areas
lon0, lat0 = tools.check_points(lon0, lat0, grid)

7/13/13 10:06 AMIPython Notebook

Page 4 of 6http://127.0.0.1:8888/17946673-ab13-4f33-aa23-e1546c50ad08/print

In [10]:

File saving
The input name will be used for saving the particle tracks into a netCDF file and for the figures.

In [11]:

Run the numerical experiment

In [12]:

for 3d flag, do3d=0 makes the run 2d and do3d=1 makes the run 3d
do3d = 0

Choose method for vertical placement of drifters
z0 = 's' #'z' #'salt' #'s'
zpar = 29 #-10 #grid['km']-1 # 30 #grid['km']-1

simulation name, used for saving results into netcdf file
name = 'temp'

lonp, latp, zp, t, grid = run.run(loc, nsteps, ndays, ff, date, \
 tseas, ah, av, lon0, lat0, \
 z0, zpar, do3d, doturb, \
 name)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

7/13/13 10:06 AMIPython Notebook

Page 5 of 6http://127.0.0.1:8888/17946673-ab13-4f33-aa23-e1546c50ad08/print

Plotting the results

Plot tracks

In [13]:

26
27
28
29
run time: 58.9128530025

Time spent on:
 Initial stuff: 17.41 (29.55%)
 Reading in fields: 40.43 (68.62%)
 Z interpolation: 0.00 (0.00%)
 Tracmass: 0.14 (0.23%)

plotting.tracks(lonp, latp, name, grid=grid)

7/13/13 10:06 AMIPython Notebook

Page 6 of 6http://127.0.0.1:8888/17946673-ab13-4f33-aa23-e1546c50ad08/print

Terminal/origin histograms
A histogram can quickly show where particles end up (for forward time case) or where particles originated (for backward
time case).

In [14]: plotting.hist(lonp, latp, name, grid=grid, which='hexbin', bins=(50,50))

