Description and phylogenetic position of a new species of Nematanthus (Gesneriaceae) from Bahia, Brazil

Alain Chautems & Mathieu Perret

Abstract

CHAUTEMS, A. & M. PERRET (2017). Description and phylogenetic position of a new species of Nematanthus (Gesneriaceae) from Bahia, Brazil. Candollea 72: 351-359. In English, English abstract. DOI: http://dx.doi.org/10.15553/c2017v722a13

Nematanthus exsertus Chautems, a new species of Gesneriaceae from the state of Bahia in Brazil, is described. It is easily distinguished from other Nematanthus Schrad. species by its pendent resupinate flowers with funnel-shaped and laterally compressed corolla combined with striking exserted stamens and style. According to the phylogenetic analyses based on nuclear and plastid DNA sequences, this species belongs to a clade including the morphologically distinct Nematanthus monanthos (Vell.) Chautems and four other species with a similar flower morphology but lacking exserted stamen and style. Field photographs accompany the description. The new species is known from one locality in the municipality of Wenceslau Guimarães in the southern part of Bahia state within the "região cacaueira" [cocoa producing area]. The new species is assigned a preliminary assessment of "Vulnerable" using the IUCN Red List Categories and Criteria.

Keywords

GESNERLACEAE - Nematanthus - Brazil - Atlantic Forest - Endemism - Taxonomy - Phylogeny

Addresses of the authors:

AC, MP: Conservatoire et Jardin botaniques de la Ville de Genève, C.P. 60, 1292 Chambésy, Switzerland. E-mail: alain.chautems@ville-ge.ch Submitted on May 31, 2017. Accepted on August 17, 2017. First published online on Septembre 27, 2017.

Introduction

The genus Nematanthus Schrader includes 31 species, all endemic to the Brazilian Atlantic Forest (CHAUTEMS et al., 2005; FERREIRA et al., 2016). Nematanthus species are epiphytic perennial herbs or subshrubs, less frequently growing on rocky substrates in humus pockets. Blossoms display a large range of morphologies among species, including short or long pedicelate, brightly colored flowers, with resupinate, or non-resupinate flowers. Flowers that are non-resupinate are pouched. Flowers that are resupinate are funnel-shaped and laterally compressed, but in some taxa, flowers are white and bell-shaped. Hummingbird pollination has been documented in the field for several species and is likely the dominant pollination mode in the genus, according to flower morphology (SERRANO-SERRANO et al., 2017). However, flowers matching the bee-pollination have also evolved in a clade of three Nematanthus species (SERRANO-SERRANO et al., 2015). Despite this large morphological variation, the monophyly of Nematanthus has been confirmed by phylogenetic data and traits such as flower resupination and bee syndrome have been identified as synapomorphies of specific clades (FERREIRA et al., 2016; SERRANO-SERRANO et al., 2015).

The Brazilian Atlantic Forest is recognized as a global biodiversity hotspot and studies focused on forest remnants in the State of Bahia in eastern Brazil have revealed a higher species richness in trees, herbs, vines and epiphytes than in other areas from southeastern Brazil (AMORIM et al., 2005, 2009; THOMAS, 2008). During fieldwork in the county of Wenceslau Guimarães in southern Bahia state, plants with resupinate red flowers and exserted anthers and style were fortuitously discovered by the first author while walking in a fragment of well-preserved rain forest. Here we recognize and describe this new species and used two nuclear loci and seven plastid DNA regions to investigate its phylogenetic placement within the genus. Morphology of the new species is discussed and compared with other closely related and sympatric species. Field photographs and distribution map are provided as well as a preliminary risk of extinction assessment using the IUCN Red List Categories and Criteria (IUCN, 2012).

Material and methods

Specimens of the newly identified species were collected during fieldwork carried out in May 2007 in the county of Wenceslau Guimarães, southern Bahia state, Brazil. All pressed material is deposited in the CEPEC and NY herbaria (acronyms according to INDEX HERBARIORUM, 2017). New collections were later registered from the same area in 2012 and material was deposited in the RB herbarium. The description and analysis of the new species were based on fresh and dried specimens. Data for comparisons with other species were taken from previous studies (CHAUTEMS, 1988, CHAUTEMS & MATSUOKA, 2003); directly from herbarium specimens mostly at G, NY, RB; from fresh specimens kept in cultivation at the *Conservatoire et Jardin botaniques de la Ville de Genève*; or at Mauro Peixoto's private collection in sitio Primavera, Mogi das Cruzes, São Paulo, Brazil. The map was created using ArcGIS 10 (ESRI Inc.).

To assess the phylogenetic position of the new taxon, we performed a phylogenetic analysis based on DNA nucleotide sequence data. A DNA sample of the type collection was analyzed with sequences data obtained from other representative species of the genera Nematanthus Schrad. (26 of 31 species), Codonanthe (Mart.) Hanst. (8 of 8 species), Codonanthopsis Mansf. (7 of 13 species), Lesia J.L. Clark & J.F. Sm. (1 of 2 species). Two outgroups, Drymonia serrulata (Jacq.) Mart. and Chrysothemis pulchella (Donn ex Sims) Decne., were selected according to previous phylogenetic analyses (PERRET et al., 2013). Phylogenetic relationsips among these taxa were reconstructed using seven plastid DNA regions (atpB-rbcL, matK, rps16, rpl16, trnT-trnL, trnL-trnF and trnS-trnG) and two nuclear regions, the ribosomal internal transcribed spacer (ITS) and a portion of the plastid-expressed glutamine synthetase gene (ncpGS). New DNA sequences were generated for trnT-trnL, trnS-trnG and for the new species, N. exsertus, following the procedure described in PERRET et al. (2003) and FERREIRA et al. (2016). All other sequences were obtained from previous works by SERRANO-SERRANO et al. (2015) and FERREIRA et al. (2016). Newly acquired sequences have been deposited in GenBank. Voucher information and GenBank numbers for each sequence used in this study are provided in Appendix 1.

Newly acquired sequences were manually added to available alignments in Mesquite 3.03 (MADDISON & MAD-DISON, 2015). Phylogenetic analyses were performed on the CIPRES portal in San-Diego, USA [http://www.phylo.org] using maximum likelihood (ML) and Bayesian Inference (BI). Maximum likelihood analyses were conducted using the software RAxML v.8.2.10 (STAMATAKIS, 2014) with a rapid bootstrap analysis followed by the search of the best-scoring ML tree in one single run. Bootstrap analysis stopped after 456 replicates, which were sufficient for getting stable support values according to the bootstrap convergence test using the extended majority-rule consensus tree criterion (autoMRE). The default model, GTRCAT, was used to perform the ML analyses. Bayesian inference analyses were performed using MrBayes 3.2.3 (RONQUIST et al., 2012) following the procedure described in SERRANO-SERRANO et al. (2015). For each DNA region, the optimal substitution models were assessed using jModelTest2 (DARRIBA et al., 2012) according to the Akaike information criterion (AIC). The best-fit model was HKY + G for ncpGS, and GTR + G for all other genes. All the parameters values were unlinked across gene partitions and estimated during the Markov chain Monte Carlo (MCMC)

runs. Two independent analyses were run from different random trees. The chains were run for 20,000,000 generations, with trees sampled every 1000th generation. We determined chain convergence and burn-in length (20% of the sampled generations) by examining trace plots of each parameter in Tracer v.1.6 (RAMBAUT et al. 2014). A consensus tree was calculated by removing the burn-in period and combining the two runs.

Results and discussion

The topology of the phylogenetic trees resulting from the ML and BI analyses are identical and are summarized in Fig. 1. The result is also congruent with the maximum clade credibility tree described in SERRANO-SERRANO et al. (2015) showing that *Nematanthus* species are clustered in five main clades exhibiting contrasting flower morphologies. Species with resupinate flowers and hummingbird syndrome belong to clades I and III, whereas the three species with white non-resupinate flowers and bee pollination syndrome belong to clade II (Fig. 1). The *Nematanthus* species with non-resupinate flowers

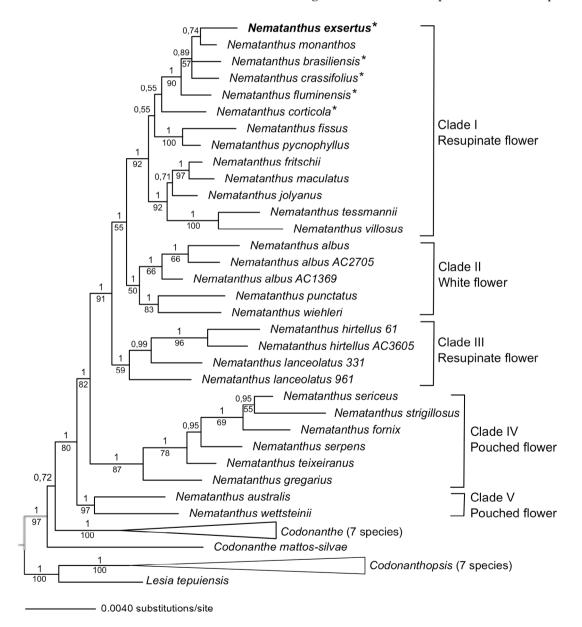


Fig. 1. – Bayesian 50% majority rule consensus tree of Nematanthus resulting from the combined analysis of plastid loci *atpB-rbcL*, *matK*, *rps16*, *rpl16*, *trnT-trnL*, *trnL-trnF*, *trnS-trnG*, and the nuclear regions *ncpGS* and *ITS*. Numbers above branches are Bayesian posterior probabilities. Numbers below branches are maximum likelihood bootstrap when ≥50%. Asterisks indicate species with funnel-shaped and laterally compressed corollas.

Fig. 2. – Nematanthus exsertus Chautems. A. Habit with pendent pedicels in native habitat; B. Flowering shoots; C. Close-up of shoot showing stem and petiole indumentum; D. Close-up of corolla showing exserted stamens and style. [Jardim et al. 5000]

and hypocyrtoid (or pouched) corolla are found in clades IV and V (Fig. 1). Our analysis support that the new species, N. exsertus, nests in a well-supported clade (bootstrap support, BS = 90%, Bayesian posterior probability, PP = 1) with four other resupinate species (N. brasiliensis, N. crassifolia, N. fluminensis and N. monanthos, Fig. 1). Nematanthus exsertus is sister to N. monanthos, but interspecific relationships within this clade are not supported (BS < 50%). Although the new species can be readily distinguished from N. monanthos, it presents morphological affinities with N. brasiliensis, N. corticola, N. crassifolia and N. fluminensis. All five species in this group are characterized by the presence of pendent flowers with elongate pedicels with funnel-shaped corolla tubes that appear laterally compressed in the throat. However, all of the other species have inserted stamens and pistil. In contrast, N. exsertus (Fig. 2) is unique by the presence of exserted stamens and pistil. Scarlet-red corollas are found in N. exsertus, N. corticola and N. crassifolius, whereas N. brasiliensis displays a yellow corolla with red stripes and N. fluminensis a plain yellow corolla. However, none of these species have stamens and pistil as exserted as in N. exsertus (Fig. 2). Scarlet-red corolla is found in N. exsertus, N. corticola and N. crassifolius, whereas N. brasiliensis displays a yellow corolla with red stripes and N. fluminensis a plain yellow corolla.

The only closely related species that is sympatric with *N. exsertus* is *N. corticola* (Fig. 3). These two species are easily differentiated when fertile or sterile. When sterile, they can be differentiated by the presence of villous indumentum on the stem in *N. exsertus* in contrast to the glabrous stems in *N. corticola*. In flower, *N. exsertus* is differentiated by the presence of exserted stamens and style and shorter corolla tube with narrower gibbosity (Table 1).

Taxonomic treatment

Nematanthus exsertus Chautems, spec. nova (Fig. 2).

Typus : BRAZIL. Bahia : Município de Wenceslau Guimarães, Estação Ecológica Estadual Nova Esperança, trilha para o Rio Agua Vermelha, 415-450 m, 13°35'43"S 39°43'10"W, 3.V.2007, *Jardim et al. 5000* (holo-: CEPEC-117040!; iso-: NY!).

Nematanthus exsertus Chautems resembles N. corticola Schrad. with similar elongate pedicels, short and narrow calyx lobes and funnel-shaped, laterally compressed red corollas, but differs by a villous indumentum on stem and petioles, as well as shorter and more ventricose corollas and presence of exserted stamens and style.

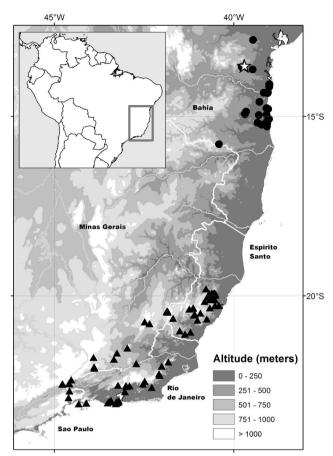
Subshrub 0.5-1.2 m, epiphytic; stem ascending, sparingly branched, 3-6 mm diam., villose, especially in young parts; internodes 1.5-5 cm. Leaves strongly anisophyllous; petioles 0.5-4 cm, dark vinaceous, pubescent-hirsute; blades 2.5-5 \times 0.8-2 cm (smaller ones) to $6-14 \times 1.8-3$ cm (larger ones), elliptic, adaxially green, pubescent, abaxially paler green, glabrescent, apex acute to acuminate, base cuneate, margin entire, 3-6 lateral veins each side of the midrib, vinaceous, pubescent. *Flowers* solitary, 1-3 per stem, pendent-resupinate, in leaf axils, bracts minute or early caducous; pedicels 10-18 cm long, vinaceous, pubescent. Calyx fused for 3-4 mm at base, sepals 7-8 \times 2-3 mm, linear lanceolate, pubescent, vinaceous, apex acute, greenish, margin entire or remotely toothed. Corolla 3-3.5 cm long, scarlet-red, obliquely inserted in calyx, funnel-shaped, laterally compressed on ventral side before mouth, pubescent, base shortly cylindric, 4-5 mm diam., gradually enlarged to 2-2.2 cm at the opening, lobes revolute at anthesis; stamens and style exserted for about 2.5-2.8 cm beyond the corolla opening, filaments 4.5-5 cm, not coiling at the end of anthesis,

Table 1. – Key morphological differences between *Nematanthus exsertus* Chautems, *N. corticola* Schrad. and *N. crassifolius* (Schott) Wiehler; abbreviations in capital letters stands for the Brazilian states of Bahia (BA), Espírito Santo (ES), Minas Gerais (MG), Rio de Janeiro (RJ), and São Paulo (SP).

	N. corticola	N. crassifolius	N. exsertus	
Stem indument	glabrous	glabrous	villose	
Petiole indument	Sparsely pubescent	glabrous	villose	
Pedicel length [cm]	10-20	3-10(-16)	10-18	
Calyx lobes length [mm]	7-12	15-30	8-10	
Calyx lobes width [mm]	2-4	4-8	2-3	
Corolla length [cm]	3.8-5	4-5	3-3.5	
Corolla width at max. gibbosity [cm]	1.4-2	1.8-2.4	2-2.2	
Stamens position	included	included	strongly exserted	
Distribution	BA in most of the southern	Montane rain forest in ES,	Restricted to one locality in	
	hylea rain forest	RJ, southeastern MG and	southern BA	
		marginally in SP		

white, glabrous, pollen cream; nectary gland bilobed, $3-4 \times 2-3$ mm, cream, ovary 4-6 mm long, vinaceous, pubescent, style 4.8-5.2 mm, white, glabrous. *Fruit* unknown.

Etymology. – The epithet "exsertus" refers to the exserted stamens and style that extend beyond the corolla opening for at least 2.5 cm.


Distribution, ecology and phenology. – Nematanthus exsertus is currently known by two collections made in the "Estação Ecológica Estadual Nova Esperança" in the municipality of Wenceslau Guimarães in the state of Bahia (Fig. 3). The individuals were observed growing epiphytically on small trees at 1-2 m above the ground in the understory of a fragment of wet and dense forest on flat grounds. Specimens were collected with flowers in January and May. According to flower morphology, the species is likely pollinated by hummingbirds. Pollination by hermit hummingbirds has been documented for the related species *N. crassifolia* and *N. brasiliensis* presenting similar pendent and resupinate flowers with laterally compressed corolla (SANMARTIN-GAJARDO & VIANNA, 2010; WOLOWSKI et al., 2013).

Conservation status. – Nematanthus exsertus is known only from a single location of a dozen individuals in an area of preservation created in 1997 and extended in 2,000, covering 2,418 ha. of Atlantic Rain Forest ("Estação Ecológica Estadual Nova Esperança"). This area is nevertheless subject to local preservation conflicts, like deforestation, illegal hunting and illegal occupation [http://www.inema.ba.gov.br/gestao-2/ unidades-de-conservacao/estacao-ecologica/estacao-ecologicade-wenceslau-guimaraes]. Therefore, with a restricted AOO, plausible threats that could rapidly push the species to "Critically Endangered", *N. exsertus* is assigned a preliminary assessment of "Vulnerable" [VU D2] using the IUCN Red List Categories and Criteria (IUCN, 2012).

Notes. – Our first thought, at the time of discovering this species, was that we had found an individual of *Nematanthus corticola* with ill-formed stamens and style, because this taxon occurs frequently in the southern Bahian rain forest (Fig. 3). After having observed few individuals, each bearing several flowers, it was readily apparent that we had discovered a new species.

The striking exserted position of stamens and style are a unique feature in the genus *Nematanthus*. *Nematanthus exsertus* resembles *N. corticola* with similar pedicel, calyx lobes, corollas, but differs by a villous indumentum on stem and petioles, as well as shorter and more ventricose corollas with strikingly exserted stamens and style (see Table 1).

The total number of known species for the genus *Nematanthus* is now 32. The new species should be added to the recent checklist that established a high endemism rate of epiphytic plants within the eastern Brazilian Atlantic rain forest

Fig. 3. – Distribution map of *Nematanthus* exsertus Chautems (star) showing also the occurrences of morphologically related species *N. corticola* Schrad. (circles) and *N. crassifolius* (Schott) Wiehler (triangles).

(FREITAS et al., 2016). It is also an addition to the number of *Gesneriaceae* species that have been registered so far for the state of Bahia, the total number of registered species reaches now 29 (CHAUTEMS, 1991; ARAUJO et al., 2017).

Paratypus. – **BRAZIL. Bahia :** Município de Wenceslau Guimarães, Reserva Estadual de Wenceslau Guimarães, Trilha da Petioba, 13°34'49"S 39°42'17"W, 411 m, 19.01.2012, *Monteiro et al. 545* (RB-536512).

Acknowledgements

We are grateful to André Amorim and Jomar Jardim for inviting the first author to join a field excursion in 2007, Cristiane I. Aguiar for facilitating access to the collection and providing an image of the type material at CEPEC herbarium, Mauro Peixoto for providing access of flowering material cultivated in his collection (sitio Primavera, Mogi das Cruzes, SP, Brazil). We thank Régine Niba for the lab work and Nicolas Wyler for the preparation of the distribution map.

References

- AMORIM, A.M., P. FIASCHI, J.G. JARDIM, W.W. THOMAS, B.C. CLIFTON & A.M.V. CARVALHO (2005). The vascular plants of a forest fragment in southern Bahia, Brazil. Sida 21: 1727-1752.
- AMORIM, A.M., J.G. JARDIM., M.M.M.LOPES, P. FIASCHI,, R.A.X. BORGES, R.O. PERDIZ & W.W. THOMAS (2009). Angiospermas em remanescentes de floresta montana no sul da Bahia, Brasil. *Biota Neotropica* 9: 313-348. DOI: https://dx.doi.org/10.1590/ S1676-06032009000300028.
- ARAUJO, A.O., A. CHAUTEMS & G.E.F. FERREIRA (2017). Gesneriaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro [http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/ FB119].
- CHAUTEMS, A. (1988). Révision taxonomique et possibilités d'hybridations de *Nematanthus* Schrader (Gesneriaceae), genre endémique de la forêt côtière brésilienne. *Dissertationes Botanicae* 112.
- CHAUTEMS, A. (1991). A familia Gesneriaceae na região cacaueira do Brasil. *Rev. Bras. Bot.* 14: 51-59.
- CHAUTEMS, A. & C.Y.K. MATSUOKA (2003). Gesneriaceae. In: WAN-DERLEY, M.G.L. et al. (ed.), *Flora Fanerogâmica do Estado de São Paulo* 3: 75-103. FAPESP, Rima Editora, São Paulo.
- CHAUTEMS, A., T.C.C. LOPES, M. PEIXOTO & J. ROSSINI (2005). Five new species of Nematanthus Schrad. (Gesneriaceae) from eastern Brazil and a revised key to the genus. *Selbyana* 25: 210-224.
- DARRIBA, D., G.L. TABOADA, R. DOALLO & D. POSADA (2012). jModelTest 2: more models, new heuristics and parallel computing. *Nat Methods* 9:772
- FERREIRA, G.F., A. CHAUTEMS, M.J.G. HOPKINS & M. PERRET (2016). Independent evolution of pouched flowers in the Amazon is supported by the discovery of a new species of *Lesia* (Gesneriaceae) from Serra do Aracá tepui in Brazil. *Plant Syst. Evol.* 302: 1109-1119.
- FREITAS, L., A. SALINO, L.M. NETO, T.E. ALMEIDA, S.R. MORTARA, J.R. STEHMANN, A.M. AMORIM, E.F. GUIMARÃE, M.N. COELHO, A. ZANIN & R.C. FORZZA (2016). A comprehensive checklist of vascular epiphytes of the Atlantic Forest reveals outstanding endemic rates. *PhytoKeys* 58: 65-79.
- INDEX HERBARIORUM (2017). Index herbariorum, a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium [http://sweetgum.nybg.org/science/ih].

- IUCN (2012). IUCN Red List Categories and Criteria: Version 3.1 ed. 2. IUCN Species Survival Commission, Gland & Cambridge.
- MADDISON, W.P & D.R. MADDISON (2015). Mesquite: a modular system for evolutionary analysis. Version 3.03 [http:// mesquiteproject.org].
- PERRET, M., A. CHAUTEMS, R. SPICHIGER, G. KITE, & V. SAVOLAINEN (2003). Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. *American Journal* of Botany 90: 445-460.
- PERRET, M., A. CHAUTEMS, A.O. ARAUJO & N. SALAMIN (2013). Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences. *Bot. J. Linn. Soc.* 171: 61-79.
- RAMBAUT, A., M.A. SUCHARD, D. XIE & A.J. DRUMMOND (2014). Tracer v.1.6. [http://beast.bio.ed.ac.uk/tracer].
- RONQUIST, F., M. TESLENKO, P. VAN DER MARK, D. AYRES, A. DAR-LING, S. HÖHNA, B. LARGET, L. LIU, M.A. SUCHARD & J.P. HUELSENBECK (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 61: 539-542.
- SANMARTIN-GAJARDO, I. & J. VIANNA (2010). Pollination of Nematanthus brasiliensis: An epiphytic Gesneriaceae endemic to the southeastern Atlantic Forests of Brazil. Selbyana 30: 216-220.
- SERRANO-SERRANO, M.L., J. ROLLAND, J.L. CLARK, N. SALAMIN & M. PERRET (2017). Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae. *Proc. R. Soc. B* 284: 20162816.
- SERRANO-SERRANO, M.L., M. PERRET, M. GUIGNARD, A. CHAU-TEMS, D. SILVESTRO & N. SALAMIN (2015). Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae. *BMC Evolutionary Biology* 15: 247.
- STAMATAKIS, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30: 1312-1313.
- THOMAS, W.W. (2008). *The Atlantic Coastal Forest of Northeastern Brazil* vol. 1. New York Botanical Garden Press.
- WOLOWSKI, M., C.F. SAAD, T.L. ASHMAN & L. FREITAS (2013). Predominance of self-compatibility in hummingbird-pollinated plants in the Neotropics. *Naturwissenschaften* 100: 69-79.

Appendix 1. - List of sequences used in the phylogenetic analyses. Taxa, voucher information, origin and Genbank accession numbers for the nine DNA regions (new sequences in bold).

Taxon	Voucher	ITS	ncpGS	matK	trnL-F	rps16	atpB-rbcL	r
Chrysothemis pulchella	Araujo et al. 602 (G)	KT958331	KT958276	JX195977	GQ383544	GQ383582	KT958447	K
Codonanthe carnosa	Chautems & Perret 08-001 (G)	KT958316	KT958261	JX195956	JX195728	JX195812	KT958433	K
Codonanthe cordifolia	Chautems & Perret 10-103 (G)	KT958317	KT958262	JX195958	JX195730	JX195814	KT958434	K
Codonanthe devosiana	Chautems & Perret 99-010 (G)	KT958320	KT958265	JX195962	JX195734	JX195817	KT958437	K
Codonanthe gibbosa	Kollmann et al. 4784 (MBML)	KT958323	KT958268	JX195965	JX195737	JX195820	KT958439	K
Codonanthe gracilis	Chautems & Perret 99-003 (G)	KT958324	KT958269	JX195968	JX195740	JX195823	KT958440	K
Codonanthe mattos-silvae	Chautems & Perret 99-033 (G)	KT958327	KT958272	JX195971	JX195743	JX195826	KT958443	k
Codonanthe serrulata	Chautems & Perret 99-045 (G)	KT958328	KT958273	JX195972	AJ439826	GQ383583	KT958444	K
Codonanthe venosa	Chautems & Perret 99-006 (G)	KT958330	KT958275	JX195974	JX195745	JX195827	KT958446	K
Codonanthopsis calcarata	Cultivated at CJBG AC-3305	KT958314	KT958259	JX195954	JX195726	JX195810	KT958432	K
Codonanthopsis corniculata	Chautems & Perret 99-043 (G)	KT958318	KT958263	JX195959	JX195731	JX195815	KT958435	K
Codonanthopsis crassifolia	Chautems & Perret 06-102 (G)	KT958319	KT958264	JX195960	JX195732	-	KT958436	K
Codonanthopsis dissimulata	Perret & Chautems 79 (G)	KT958335	KT958280	JX195984	JX195753	JX195835	KT958451	-
Codonanthopsis macradenia	Chautems & Perret 10-107 (G)	KT958326	KT958271	JX195970	JX195742	JX195825	KT958442	K
Codonanthopsis uleana	Chautems & Perret 02-105 (G)	KT958329	KT958274	JX195973	JX195744	-	KT958445	k
Codonanthopsis ulei	Chautems & Perret 07-002 (G)	KT958336	KT958281	JX195985	JX195754	JX195836	KT958452	K
Drymonia serrulata	Araujo et al. 601 (G)	KT958337	KT958282	JX195992	GQ383548	GQ383587	KT958453	K
Lesia tepuiensis	Ferreira 262 (INPA)	KX011577	KX011561	KX011545	KX011539	KX011542	KX011551	K
Nematanthus albus	Chautems & Perret 99-012 (G)	KT958341	KT958286	JX196015	JX195765	JX195848	KT958457	K
Nematanthus albus	Carnauba et al. 20.11.2013	MF787816	-	MF787931	MF787802	MF787909	MF787924	N
Nematanthus albus	Cultivated at CJBG AC-2705	MF787817	MF787810	MF787932	MF787803	MF787910	MF787925	N
Nematanthus australis	Chautems & Perret 99-011 (G)	KT958342	KT958287	JX196016	JX195766	JX195849	KT958458	K
Nematanthus brasiliensis	Chautems & Perret 07-303 (G)	KT958344	KT958288	JX196017	JX195767	JX195850	KT958459	K
Nematanthus corticola	Chautems & Perret 99-013 (G)	KT958345	KT958289	JX196018	JX195768	JX195851	KT958460	K
Nematanthus crassifolius	Chautems & Perret 07-403 (G)	KT958346	KT958290	JX196019	JX195769	JX195852	KT958461	K
Nematanthus exsertus	Jardim et al. 5000 (CEPEC)	MF787818	MF787809	MF787936	MF787808	MF787916	MF787926	N
Nematanthus fissus	Ferreira 269 (INPA)	MF787819	MF787811	-	MF787804	MF787911	-	-
Nematanthus fluminensis	Chautems & Perret 99-020 (G)	KT958348	-	JX196020	JX195770	JX195853	KT958462	K
Nematanthus fornix	Chautems & Perret 10-101 (G)	KT958349	KT958292	JX196021	JX195771	JX195854	KT958463	K
Nematanthus fritschii	Chautems & Perret 07-404 (G)	KT958350	KT958293	JX196022	JX195772	JX195855	KT958464	K
Nematanthus gregarius	Chautems & Perret 99-019 (G)	KT958351	KT958294	JX196023	JX195773	JX195856	KT958465	K
Nematanthus hirtellus	Perret, Chautems et al. 61 (G)	MF787820	MF787812	MF787933	MF787805	MF787912	MF787927	N
Nematanthus hirtellus	Cultivated at CJBG AC-3605	MF787821	MF787813	-	MF787806	MF787913	MF787928	N
Nematanthus jolyanus	Chautems & Perret 99-028 (G)	KT958353	KT958296	JX196025	JX195775	JX195858	KT958467	K
Nematanthus lanceolatus	Chautems & Perret 12-102 (G)	KY858387	MF787815	MF787935	KY858634	MF787915	MF787930	N
Nematanthus lanceolatus	Chautems & Perret 99-023 (G)	MF787822	MF787814	MF787934	MF787807	MF787914	MF787929	N
Nematanthus maculatus	Chautems & Perret 07-405 (G)	KT958356	-	JX196027	JX195777	JX195860	KT958469	K
Nematanthus monanthos	Chautems & Perret 08-601 (G)	KT958357	KT958299	JX196028	JX195778	JX195861	KT958470	K
Nematanthus punctatus	Chautems & Perret 99-046 (G)	KT958358	KT958300	JX196029	JX195779	JX195862	KT958471	K
Nematanthus pycnophyllus	Chautems & Perret 02-010 (G)	KT958359	KT958301	JX196030	JX195780	JX195863	KT958472	K
Nematanthus sericeus	Chautems & Perret 99-018 (G)	KT958360	KT958302	JX196031	JX195781	JX195864	KT958473	K
Nematanthus strigillosus	Chautems & Perret 11-101 (G)	KT958362	KT958304	JX196033	JX195783	JX195866	KT958475	K
Nematanthus teixeiranus	Chautems & Perret 07-407 (G)	KT958363	KT958305	JX196035	JX195785	JX195868	KT958476	K
Nematanthus tessmannii	Chautems & Perret 07-408 (G)	KT958364	KT958306	JX196036	JX195786	JX195869	KT958477	K
Nematanthus villosus	Chautems & Perret 99-041 (G)	KT958365	KT958307	JX196037	AJ439825	GQ383608	KT958478	K
Nematanthus wettsteinii	Chautems & Perret 10-102 (G)	KT958366	KT958308	JX196038	JX195787	JX195870	KT958479	K
Nematanthus wiehleri	Chautems & Perret 12-101 (G)	KT958367	KT958309	JX196039	JX195788	JX195871	KT958480	k

rpl16	trnT-L	trnS-G
KT958388	MF787865	MF787823
KT958373	MF787867	MF787825
KT958374	MF787868	MF787826
KT958377	MF787871	MF787829
KT958380	MF787872	WII 707023
KT958380	MF787873	- MF787830
	MF787875	MF787832
KT958384	MF787876	MF787833
KT958385 KT958387	MF787878	MF787835
	MF787866	MF787824
KT958371		
KT958375	MF787869	MF787827
KT958376	MF787870	MF787828
-	MF787879	MF787836
KT958383	MF787874	MF787831
KT958386	MF787877	MF787834
KT958392	MF787880	MF787837
KT958393	MF787881	MF787838
KX011569	MF787882	-
KT958397	MF787883	MF787839
MF787917	MF787884	MF787840
MF787918	MF787885	MF787841
KT958398	MF787886	MF787842
KT958399	MF787887	MF787843
KT958400	MF787888	MF787844
KT958401	MF787889	MF787845
MF787919	MF787890	MF787846
-	MF787891	-
KT958402	MF787892	MF787847
KT958403	MF787893	MF787848
KT958404	MF787894	MF787849
KT958405	MF787895	MF787850
MF787920	-	MF787851
MF787921	MF787896	-
KT958407	MF787897	MF787852
MF787923	-	MF787854
MF787922	MF787898	MF787853
KT958409	MF787899	MF787855
KT958410	MF787900	MF787856
KT958411	MF787901	MF787857
KT958412	MF787902	MF787858
KT958413	-	-
KT958415	MF787903	MF787859
KT958416	MF787904	MF787860
KT958417	MF787905	MF787861
KT958418	MF787906	MF787862
KT958419	MF787907	MF787863
KT958420	MF787908	MF787864