
Advanced bash scripting
(block course)

Michael F. Herbst
michael.herbst@iwr.uni-heidelberg.de

http://blog.mfhs.eu

Interdisziplinäres Zentrum für wissenschaftliches Rechnen

Ruprecht-Karls-Universität Heidelberg

24th – 28th August 2015

michael.herbst@iwr.uni-heidelberg.de
http://blog.mfhs.eu

Contents

Contents i

List of Tables iv

Course description v
Learning targets and objectives . v
Prerequisites . vi
Compatibility of the exercises . vi

Errors and feedback vi

Licensing and redistribution vi

1 Introduction to Unix-like operating systems 1
1.1 The Unix philosophy . 1

1.1.1 Impact for scripting . 2
1.2 The Unix utilities . 2

1.2.1 Accessing files or directories 3
1.2.2 Modifying files or directories 3
1.2.3 Getting or filtering file content 3
1.2.4 Other . 5
1.2.5 Exercises . 6

1.3 The Unix file and permission system 7
1.3.1 What are files? . 7
1.3.2 Unix paths . 8
1.3.3 Unix permissions . 8

2 A first look at the bash shell 10
2.1 Historic overview . 10

2.1.1 What is a shell? . 10
2.1.2 The Bourne-again shell 10

2.2 Handy features of the bash . 11
2.2.1 Tab completion . 11
2.2.2 Accessing the command history 11
2.2.3 Running multiple commands on a single line 13

2.3 Redirecting command input/output 13
2.4 The exit status of a command . 16

2.4.1 Logic based on exit codes: The operators &&, ||, ! 17
2.5 Tips on getting help . 19

i

CONTENTS ii

3 Simple shell scripts 21
3.1 What makes a shell script a shell script? 21

3.1.1 Executing scripts . 21
3.1.2 Scripts and stdin . 22

3.2 Shell variables . 22
3.2.1 Special parameters . 24
3.2.2 Command substitution . 25

3.3 Escaping strings . 27
3.4 Word splitting and quoting . 28

4 Control structures and Input/Output 32
4.1 Printing output with echo . 32
4.2 The test program . 32
4.3 Conditionals: if . 34
4.4 Loops: while . 37
4.5 Loops: for . 41

4.5.1 Common “types” of for loops 42
4.6 Conditionals: case . 45
4.7 Parsing input using shell scripts 47

4.7.1 The read command . 47
4.7.2 Scripts have shared stdin, stdout and stderr 48
4.7.3 The while read line paradigm 50

4.8 Influencing word splitting: The variable IFS 53
4.9 Conventions when scripting . 55

4.9.1 Script structure . 56
4.9.2 Input and output . 56
4.9.3 Parsing arguments . 56

5 Arithmetic expressions and advanced parameter expansions 57
5.1 Arithmetic expansion . 57
5.2 Non-integer arithmetic . 62
5.3 A second look at parameter expansion 64

6 Subshells and functions 67
6.1 Explicit and implicit subshells . 67

6.1.1 Grouping commands . 67
6.1.2 Making use of subshells 69
6.1.3 Implicit subshells . 71

6.2 bash functions . 74
6.2.1 Overwriting commands 82

6.3 Cleanup routines . 83
6.4 Making script code more reusable 85

7 Regular expressions 89
7.1 Regular expression syntax . 89

7.1.1 Matching regular expressions in plain bash 89
7.1.2 Regular expression operators 89
7.1.3 A shorthand syntax for bracket expansions 91
7.1.4 POSIX character classes 92
7.1.5 Getting help with regexes 93

CONTENTS iii

7.2 Using regexes with grep . 93
7.3 Using regexes with sed . 95

7.3.1 Alternative matching syntax 98

8 A concise introduction to awk programming 99
8.1 Structure of an awk program . 99
8.2 Running awk programs . 100
8.3 awk programs have an implicit loop 101
8.4 awk statements and line breaks 103
8.5 Strings in awk . 104
8.6 Variables and arithmetic in awk 104

8.6.1 Some special variables . 107
8.6.2 Variables in the awk code vs. variables in the shell script . 108
8.6.3 Setting awk variables from the shell 110

8.7 awk conditions . 110
8.8 Important awk action commands 114

8.8.1 Conditions inside action blocks: if 116
8.9 Further examples . 116
8.10 awk features not covered . 118

9 A word about performance 119
9.1 Collection of bad style examples 120

9.1.1 Useless use of cat . 120
9.1.2 Useless use of ls * . 120
9.1.3 Ignoring the exit code . 120
9.1.4 Underestimating the powers of grep 121
9.1.5 When grep is not enough 121
9.1.6 testing for the exit code 121

A Obtaining the files 122

B Other bash features worth mentioning 123
B.1 bash customisation . 123

B.1.1 The .bashrc and related configuration files 123
B.1.2 Tab completion for script arguments 123

B.2 Making scripts locale-aware . 123
B.3 bash command-line parsing in detail 123

B.3.1 Overview of the parsing process 123
B.4 Notable bash features not covered 124

C Supplementary information 125
C.1 The mtx file format . 125

Bibliography 126

List of Commands 127

List of Tables

2.1 List of noteworthy shells. 11
2.2 Summary of the output redirectors 15
2.3 Summary of the types of pipes 15
2.4 Summary of available commands to get help 19

3.1 Important predefined variables. 23

4.1 A few special escape sequences for echo -e 33
4.2 Overview of the most important test operators 34
4.3 The most important options of find 52

iv

Course description

The bash shell is the default shell in almost all major Unix and LinuX distri-
butions, which makes learning about the bash scripting language pretty much
unavoidable if one is working on a Unix-like operating system. On the other
hand this also means that writing bash scripts is conceptually very simple —
essentially like typing commands. When it comes to more involved tasks and
more powerful scripts, however, some knowledge of the underlying operating
system is certainly required. After all bash scripting is all about properly com-
bining the available programs in a clever way.

This idea structures the whole course: In the first part we will revisit some
basic concepts of a Unix-like operating system and review the set of Unix core-
utils one needs for everyday scripting. Afterwards we will talk about the bash

shell and its core language features, including

• control statements (if, for, while, . . .)

• file or user input/output

• bash functions

• features simplifying code reuse and script structure

The final part will be concerned with the extraction of information (e.g. from
files) using so-called regular expressions and programs like awk, sed or grep.

Learning targets and objectives

After the course you will be able to

• apply and utilise the Unix philosophy in the context of scripting

• identify the structure of a bash script

• enumerate the core concepts of the bash scripting language

• structure a script in a way such that code is reusable in other scripts

• extract information from a file using regular expressions and the standard
Unix tools

• name advantages and disadvantages of tools like awk, sed or grep, cut
. . . , and give examples for situations in which one is more suitable than
the others.

v

Prerequisites

This course assumes some familiarity with a Unix-like operating system like
GNU/Linux and the bash shell. I.e. you should be able to

• navigate through your files from the terminal.

• create or delete files or folders from the terminal.

• run programs from the terminal (like some “one-liners”).

• edit files using a common graphical (or command-line) text editor like
gedit, leafpad, vim, nano, . . .

Whilst it is not assumed that you have any knowledge of programming or any
experience in bash scripting, it is, however, highly recommended that at least
either is the case.

Compatibility of the exercises

All exercises and script samples have been tested on Debian 7 “Jessie” with the
GNU bash 4.3 and GNU awk 4.1.1. Everything should work on other Unix-
like operating systems as well, but I cannot guarantee it. Especially in Mac
OS X the syntax of the commands differs in some cases, which is why some
examples/exercises might not work properly.

Errors and feedback

If you spot an error or have any suggestions for the further improvement of
the material, please do not hesitate to contact me under michael.herbst@iwr.
uni-heidelberg.de.

Licensing and redistribution

Course Notes

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0
International License. To view a copy of this license, visit http://creativecommons.
org/licenses/by-sa/4.0/.

An electronic version of this document is available from http://blog.mfhs.eu/

teaching/advanced-bash-scripting-2015/. If you use any part of my work,
please include a reference to this URL along with my name and email address.

Script examples

All example scripts in the repository are published under the CC0 1.0 Universal
Licence. See the file LICENCE in the root of the repository for more details.

vi

michael.herbst@iwr.uni-heidelberg.de
michael.herbst@iwr.uni-heidelberg.de
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/
http://blog.mfhs.eu/teaching/advanced-bash-scripting-2015/

Chapter 1

Introduction to Unix-like
operating systems

Before we dive into scripting itself, we will take a brief look at the family of
operating systems on which the use of scripting is extremely prominent: The
Unix-like operating systems.

1.1 The Unix philosophy

UNIX itself is quite an old operating system (OS) dating back to the 1970s. It
was developed by Dennis Ritchie1, Ken Thompson and others at the Bell Labs
research centre and was distributed by AT&T — initially in open source form.
It included important new concepts, now known as the Unix philosophy, which
made the OS very flexible and powerful. As a result it became widely used in
both business and academia. Nowadays, where AT&T UNIX is pretty much
dead, the Unix philosophy still plays a key role in operating system design. One
can identify a whole family of OSes — the so-called Unix-like OS es or X-like
OSes, which derive from the traditional AT&T UNIX. Two of the most impor-
tant modern OSes, Mac OS X and GNU/Linux, are included in this family. In
other words: Unix’ importance in academia and business has not changed very
much over the years.

Many formulations of the Unix philosophy exist. The most well-known is
the one given by Doug McIlroy, the inventor of the Unix pipe and head at Bell
Labs in the 1970s[1]

Write programs that do one thing and do it well.

For the Unix-like OSes this means that in theory

• The OS is a collection of

– small helper programs or “utilities“, that only do a simple thing
(think about ls, mkdir . . .)

1Also the creator of the “C” programming language

1

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS2

– programs (”shell scripts“) that combine the utilities to achieve a big-
ger task

• The OS is extremely modular:

– All programs have a well-defined interface

– It is easy to swap one program for a modified/enhanced version with-
out breaking the rest of the OS

• The OS is standardised:

– The functionality of the programs is (almost) identical for all OSes
of the Unix-family.

1.1.1 Impact for scripting

On such a platform scripting becomes very helpful since

• all important functionality is available in the OS-provided utilities. So
very little actual code has to be written to glue the utilities together.

• the utilities are not too specific for a particular job and can therefore be
used flexibly throughout the script.

• documentation of their interfaces (commandline arguments) is available.

⇒ If one changes from one Unix-like OS to another or from one version of
the OS to the next, no change in the functionality of the derived script is
to be expected.

⇒ Scripts become reusable and portable.

1.2 The Unix utilities

Now let us briefly review some of the most important utility programs on a
modern Unix-like OS. This list is not at all complete and in fact we will add
more and more utilities to our toolbox during the course. See page 127 for a
full list of commands introduced in this course.

This section is just to remind you about these commands. If more detailed
information is required you should consult the manpage (by typing man command)
or try the tips in section 2.5 on page 19.

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS3

1.2.1 Accessing files or directories

cd Change the current working directory of the shell

ls List the content of the current working directory. Important op-
tions:

-l long form: More details

-a all: Also include hidden files

-h human-readable: Output sizes in more readable way

-t time: Sort output by time

pwd Print the current working directory of the shell

1.2.2 Modifying files or directories

touch Change the modification time if the file exists, else create an empty
file, options:

-t Change modification time to the one provided

mkdir Create a directory

rm Delete files. Important options:

-r recursive: Delete all files and directories in a directory

-i Ask before each file deleted

-I Ask only in certain circumstances and only once (mass-delete)

rmdir Delete empty folders

chown Change ownership for a file (see section 1.3 on page 7)

1.2.3 Getting or filtering file content

cat Concatenate one or many files together

tac Concatenate files and print lines in reverse order

tee Write input to a file and to output as well

cut Extract columns from input, options

-d delimiter: Character to use for the split

-f fields: Which fields(columns) to output

grep Filter input/ by a pattern

-i ignore case

-v invert: only non-matching lines are given

-o only-matching: print only matching content

-C context: print n lines of context as well

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS4

-q only the return code is determined

sort sort input according to some parameters, Options:

-n numeric sort

-u unique sort: each identical line is only print once

uniq Take a sorted input and discard double lines

-c count the number of occurrences

Example 1.1. In this example we will assume that the current working direc-
tory is the top level of the git repository 2. If we run

1 cat resources/matrices /3. mtx

we get the content of the file resources/matrices/3.mtx (Check with a text
editor) If we do the same thing with tac, we get the file again, but reversed line
by line.

Now, many of you probably know the < character can be used to get the
input for a command from a file. I.e. the command

1 < resources/matrices /3. mtx cut -f 1

takes its input from the file we just looked at and passes it onto cut. Naively
we expect cut to print only the first column of this file. This does, however,
not occur, because cut per default only considers the tabulator character when
splitting the data into columns. We can change this behaviour by passing the
arguments -d " ". This tells cut that the space character should be used as
the field separator instead. So running

1 < resources/matrices /3. mtx cut -f 1 -d " "

gives the first column as desired.

Example 1.2. In this example we want to find all lines of the Project Guten-
berg3 books pg74 and pg76 that contain the word “hunger”. One could run
those two commands one after another

1 < resources/gutenberg/pg74.txt grep hunger

2 < resources/gutenberg/pg76.txt grep hunger

or we can use the pipe “|” to connect the cat and grep commands together
like

1 cat resources/gutenberg/pg74.txt \

2 resources/gutenberg/pg76.txt | grep hunger

Reminder: The pipe connects the output of the first with the input of the second
command

2The top level is the directory in which this pdf is contained
3https://www.gutenberg.org/

https://www.gutenberg.org/

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS5

Example 1.3. There exists a counterpart to “<”, which writes to a file, the
“>”. In principle it just takes the output from the last command and writes it
to the file specified afterwards. In other words the effect of the two commands

1 < infile cat > outfile

2 cp infile outfile

is absolutely equivalent.

Note that there are many cases where the precise place where one puts the <

and > is not important. For example the commands

1 < infile > outfile cat

2 cat <infile > outfile

all work equally well. The space after the “arrows” is also optional.

Example 1.4. Since uniq can only operate on sorted data, it is very common
to see e.g.

1 < resources/testfile sort | uniq

This can of cause be replaced by the shorter (and quicker)

1 < resources/testfile sort -u

One really might wonder at first sight why the sort command has the -u flag,
since somewhat violates the Unix philosophy. Most Unix-like OS have this flag
nevertheless, since sorting algorithms become more efficient if we already know
that we only want to keep a single occurrence of each line.

Note, that in many cases a construct like < file command can actually be
replaced by command file. Most commands are built to do the “right thing”
in such a case and will still read the file. For example for sort this is equivalent
to the above:

1 sort -u resources/testfile

In some cases the latter command tends to perform somewhat better. Never-
theless I personally prefer the version < resources/testfile sort -u since
this has a very suggestive syntax: The data flows from the producers (< file)
on the RHS to the consumers on the LHS and on the way passes through all
commands.

1.2.4 Other

less View input or a file in a convenient way

wc Count characters, lines or words on input

-l count number of lines

-w count number of words

echo Print something to output

man Open manual page for a command

whatis Print a short summary describing a command

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS6

Example 1.5. If we want to find out how the commands tail and head work
we could use the manpage

1 man tail

2 man head

The same works with man itself, try e.g.

1 man man

Problems arise with so-called shell builtins. We will talk about this in the next
chapter (see section 2.5 on page 19).

1.2.5 Exercises

Exercise 1.6. Exploring the man program:

• Run the commands man -Lde tail and man -LC tail. What does the
-L flag do to man?

• Find out about the different sections about the Unix manual (read line 21
till 41 of man man).

• Which section number is the most important for us?

• Find out how one can enforce an article to be from an appropriate section.

Exercise 1.7. A first look at Project Gutenberg books in resources/gutenberg

• Find out how many lines of the book pg74.txt actually contain “hunger”.
Do this in two possible ways, both times using grep at least once.

– Once use at least one pipe

– Once use no pipe at all.

• Find out what the grep options -A -B -n -H -w do

• optional pg74.txt contains two lines that directly follow another in which
the first line contains the word “hunger” and the second line contains the
word “soon”. Find out the line numbers of these two lines.

Exercise 1.8. Looking at some matrices:

• Read the manpages of head and tail. Rebuild the effect of the tail

command using head. I.e. give a commandline that achieves the same
effect as < resources/testfile tail, but that does not contain tail at
all.

• Find out (using the manpage) how one could print all lines but the first
of a file. You can either use the commands from your answer to 1. or
use tail, both is possible. Try your suggested command sequence on
resources/matrices/3.mtx to see that it works.

• You might have noticed that the mtx files contain a few lines in the begin-
ning that start with the special comment character “%”. Suggest another
way to suppress comment lines in the file 3.mtx.

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS7

• Provide a sequence of commands using cut and sort which prints how
many distinct values there are in the third column. I.e. if this column
contains 3 fours, 2 threes and 1 zero, the answer should be 3. Note that
the columns are not separated by tabs, so you will need to play with the
flag -d of cut. Again use your idea from the previous answer to ignore
the comment line. Once you get an answer look at the file yourself and
compare the values.

• Provide a sequence of commands that prints the smallest value in the third
column of 3.mtx. Again make your commands ignore the first comment
line.

• Do the same thing with resources/matrices/bcsstm01.mtx. Be very
careful and check the result properly. Here you will need the right options
for sort for this to give the correct answer.

• Run the same sequence of commands as in the previous part on resources

/matrices/lund_b.mtx. The result should surprise you. What goes
wrong here?

• Another tool that can be used to print certain columns in files is awk. The
syntax is awk '{print $n}' to print the nth column. Use it instead of
cut for the file lund_b.mtx. How does it perform?

1.3 The Unix file and permission system

To conclude this chapter we want to spend some time discussing the way Unix-
like operating systems organise files.

1.3.1 What are files?

• Convenience feature for programmers or users of the computer

• File: Virtual chunk of data.

• File path: Virtual location where user expects the file.

• File System: Provides lookup feature to translate file path to hard drive
location

• Lookup mechanism incorporates extra information about the file:

– Owner (Person who created the file)

– Group (Group of people file is attributed to)

– Permissions for file access

– Time when time was created/accessed/modified

• All this information can be obtained using the ls -l command

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS8

• Some files are “special”, e.g.

– soft links: Files that point to a different file path

⇒ OS performs look-up at the other file path

– hard links: Duplicated entries in the lookup mechanism

⇒ Two paths point to the same hard drive location

1.3.2 Unix paths

Paths are a structured syntax that allow the user to tell the operating system
which file he or she is referring to. In Unix these paths are characterised as
follows:

• Entities on the path are separated by “/”

• The last entity may be a file or directory, all the others are directories4

• Absolute path: Path starting at the root directory, i.e. who has “/” as the
first character

• Relative path: Gives a location relative to the current directory. May
contain “..” to denote the parent directory relative or “.” to denote the
identical directory to the entity on the left. E.g. the paths

1 foo/bar/baz

2 foo /./ bar /../ bar /./ baz

are all relative paths to exactly the same location.

1.3.3 Unix permissions

Consider the following output of the command ls -l

1 drwxr -xr -x 4 mfh agdreuw 4096 Aug 15 19:07 resources

2 -rw-r--r-- 1 mfh agdreuw 4115 Aug 15 20:18 file

3 -r-------- 1 mfh agdreuw 4096 Aug 15 00:00 secret

The output means from left to right:

• Permissions (10 chars)

– 1 char (here d or -): Indicates the file type

– 3 chars: Access rights for the owner

– 3 chars: Access rights for the group

– 3 chars: Access rights for the world (anyone else on the machine)

– r means read, w means write, x means execute

• Number of hard links to this hard drive location

• Owner

• Group

4Which are actually just some special kind of files

CHAPTER 1. INTRODUCTION TO UNIX-LIKE OPERATING SYSTEMS9

• Size (in bytes)

• Last modification time

• File name

A file is (readable/writeable/executable) for a specific user if at least one of the
following is true

• He is the owner and the (r/w/x)-bit set (i.e. ls shows the respective letter
in the listing)

• He is in the group the file belongs to and the group has the (r/w/x)-bit
set

• The (r/w/x)-bit is set for the world

The permissions can be changed using the command chmod and the owner and
group information can be changed using chown.

Example 1.9. After a run of chmod +x secret the ls -l would show

1 drwxr -xr -x 4 mfh agdreuw 4096 Aug 15 19:07 resources

2 -rw-r--r-- 1 mfh agdreuw 4115 Aug 15 20:18 file

3 -r-x--x--x 1 mfh agdreuw 4096 Aug 15 00:00 secret

Further running chmod g-r gave the result

1 drwxr -xr -x 4 mfh agdreuw 4096 Aug 15 19:07 resources

2 -rw----r-- 1 mfh agdreuw 4115 Aug 15 20:18 file

3 -r-x--x--x 1 mfh agdreuw 4096 Aug 15 00:00 secret

Chapter 2

A first look at the bash shell

In this chapter we will take a first look at the bash shell itself. We will discuss
some very handy features to save oneself from typing too much and we will have
a closer look at elementary features of the shell like pipes and redirects.

2.1 Historic overview

2.1.1 What is a shell?

Back in the days:

• Terminal: Place where commands can be keyed in in order to do work on
a computer

• Shell: Interface the OS provides to the user on a terminal

In this definition a graphical user interface is a shell as well!

Nowadays:

• Hardly any work done inside terminals any more

• Programs to start a virtual terminal: “Terminal emulator”

• Shell: Default program started by the terminal emulator

2.1.2 The Bourne-again shell

• bash is short for Bourne-again shell

• derived and improved version of the Bourne shell sh

• Pretty much the default shell on all Unix-like OS

• Other important shells see table 2.1 on the next page

10

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 11

sh Bourne shell 1977 first Unix shell
csh C shell 1978 syntax more like C
ash Almquist shell 1980s lightweight shell
ksh Korn shell 1983 sh improved by user requests at Bell Labs
bash Bourne-again shell 1987 the default shell
zsh Z shell 1990 massive and feature-rich, compatible to bash

Table 2.1: List of noteworthy shells. For more information see https://en.

wikipedia.org/wiki/Comparison_of_command_shells

2.2 Handy features of the bash

2.2.1 Tab completion

• Can save you from a lot of typing

• Needs to be loaded by running

1 . /etc/bash_completion

• Press −−→−−→ once to complete a command

• Press −−→−−→ −−→−−→ to get list of possible completions

• Works on files and options

2.2.2 Accessing the command history

Consider a sequence of commands

1 ls resources/

2 cd resources/

3 ls -al

4 ls matrices

5 cd matrices

6 ls -al

7 ls -al

• It would be nice to do as little typing as possible

• Fortunately the bash remembers what was most recently typed

• Navigation through history using ↑ and ↓

• The last line can also be executed by ↑ Enter

Another way of accessing the history is given by the so-called history expansion,
e.g.

!! run the most recent command again
!$ the last argument of the previous command line
!^ the first argument of the previous command line
!:n the n-th word of the previous command line
!:n-m words n till m of the previous command line

https://en.wikipedia.org/wiki/Comparison_of_command_shells
https://en.wikipedia.org/wiki/Comparison_of_command_shells

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 12

So if we assume the working directory is the top level directory of the git repos-
itory, we could just type

ls r −−→−−→ Enter

cd !$ Enter

ls -al Enter

ls m −−→−−→ Enter

cd !$ Enter

↑ ↑ ↑ Enter

↑ Enter

to achieve the same thing as above.

Another thing worth mentioning here is reverse-i-search. In order to trans-
form the shell in this mode type Ctrl + R .

• Now start typing

• The shell will automatically display the most recent command matching
command line

• type Enter to execute

• type more chars to continue searching

• use ← , → , Home , End , . . . to edit the current match, then Enter

to run the edited version

• type Ctrl + R to go to the next match further back in the history

• type Ctrl + C to abort

Note that both tab completion as well as the bashs history features do only
work in an interactive environment and not when writing scripts.

Exercise 2.1. What is the smallest number of keystrokes you need to achieve
the execution of the following command sequences.

1 cd resources

2 ls images | grep blue #no file blue exists

3 ls|grep blue

4 mkdir grep_red grep_blue

Assume as usually that the current working is the top level of the repository.
Assume further that the command history is filled exactly with these entries
(from oldest to newest):

1 ls images | grep red

2 ls tables

3 ls resources

Note: Count special symbols like “ ” or “|” or combined strokes like Ctrl + R

as one keystroke. Also count all Enter s or −−→−−→ s required.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 13

2.2.3 Running multiple commands on a single line

The bash offers quite a few ways to separate subsequent commands from one
another. The simplest one, which everyone has used already multiple times just
for this course, is the newline character (as produced by the Enter key). The
character ; is entirely synonymous to Enter . So typing

cd -; ls Enter

or

cd - Enter

ls Enter

is equivalent.

In contrast the character & tells the bash to send the program on its left to
background and immediately proceed with the execution of the next command.
This is extremely helpful for running long jobs without blocking the shell, e.g.

1 cp BigFile /media/usbstick/ & ls resources

would start copying the big file BigFile to the usbstick and immediately display
the content of resources, not waiting for the copying to be finished. During
the execution of the background job cp BigFile /media/usbstick/, output
from both jobs will be displayed on the terminal.

If more than one command is specified on a single commandline, the com-
pound is also called a “command list”, so cd -; ls and cp BigFile /media/

usbstick/ & ls resources are examples of command lists.

2.3 Redirecting command input/output

Each command which is run on the terminal per default opens 3 connections to
the shell environment:

• stdin or file descriptor (fd) 0: The command reads all input from here

• stdout or fd 1: All normal output is printed here

• stderr or fd 2: All output concerning errors is printed here

Especially the distinction what is printed to stdout and what is printed to stderr
is not clear and programs can sometimes give rise to rather unexpected be-
haviour. Usually one can expect error messages on stderr, everything else on
stdout. There are a few good reasons to distinguish stdout and stderr :

1. In many cases one is only interested in part of the output of a program

⇒ One pipes the program into grep

⇒ Only a small portion of the output produced reaches the eye of the
user

• But: We still want to see all the errors

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 14

2. Scripts often capture the output of a program for later use.

⇒ Programmer only expects normal output in the capture, no error
messages

⇒ Can capture stdout but not stderr

3. Usually one can safely discard the output on stdout whereas stderr is
usually important.

⇒ Output implicitly split into two categories for logging.

By default stdin is connected to the keyboard and both stdout and stderr are
connected to the terminal. Running a comm in the shell hence gives a “redirection
diagram” like

keyboard comm
0

terminal

1

2

As we already know the characters < and > can be used to read/write from/to
a file, so the commandline

1 < input comm >output

can be visualised as

input comm
0

terminal

output1

2

If we want to prevent the content of the file output to be overwritten, we can
use the syntax

1 < input comm >>output

This does exactly the same thing as above, just it appends stdout to the file
output instead of deleting the previous content and replacing it by the output
of comm.

If one wants to redirect the output on stderr to a file called error as well, we
can use the commandline

1 comm >output 2>error

or pictorially

keyboard comm
0

error

output1

2

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 15

syntax Comment
> print stdout to file
>> append stdout to file
2> print stderr to file
2>> append stderr to file
&> print stdout and stderr to file
&>> append stdout and stderr to file

Table 2.2: Summary of the output redirectors of the bash shell. The versions
with a single > always substitute the content of the file entirely, whereas the >>

redirectors append to a file.

syntax Comment
| connect stdout → stdin
|& connect stdout and stderr → stdin

Table 2.3: Summary of the types of pipes

Many more output redirectors exist. They all differ only slightly depending on
what file descriptor is redirected and whether the data is appended or not. See
table 2.2 for an overview.

Similar to output redirection >, a pipe between commands foo | bar only
connects stdout to the next command and not stderr, i.e.

keyboard foo
0

bar

1 → 0

terminal2

1
2

Again there is also a version that pipes both stdout and stderr to the next
command, see table 2.3.

One very common paradigm in scripting is output redirection to the special
device files /dev/null or /dev/zero. These devices have the property, that they
discard everything which gets written to them. Therefore all unwanted output
may be discarded by writing it to e.g. /dev/null. For example, consider the
script 2_intro_bash/stdout_stderr.sh and say we really wanted to get
all errors but we are not very much interested in stdout, then running

1 2_intro_bash/stdout_stderr.sh > /dev/null

achieves exactly this task. If we want it to be entirely quiet, we could execute

1 2_intro_bash/stdout_stderr.sh &> /dev/null

Exercise 2.2. Visualise the following command line as a redirection diagram

1 ls |& grep test | grep blub | awk '{print $2}' &> outfile

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 16

Exercise 2.3. tee is a very handy tool if one wants to log the output of a
long-running command. We will explore it a little in this exercise.

• Imagine you run a program called some_program which does a lengthy
calculation. You want to log all the output the program produces (on
either stdout or stderr) to a file log.full and all output that contains
the keyword “error” to log.summary. Someone proposes the commandline

1 some_program | tee log.full |& grep error &> log.↙
↪→summary

Draw the redirection diagram. Does it work as intended? If not propose
a commandline that does achieve the desired goal making sure that only
output from some_program actually reaches the log files.

• What happens if you run the command multiple times regarding the log
files? Take a look at the manpage of tee and propose an alternative com-
mand line that makes sure that no logging data is lost between subsequent
runs of some_program.

Exercise 2.4. • Create a file called in and write some random text to it.

• Run < in cat > out. What happens?

• Run < in cat > in. What happens here?

• Draw a redirection diagram for running plain cat. How can you explain
that the terminal seems to “hang” if just cat is executed on the comman-
dline.
(Hint: Run cat, type something to the terminal and press Enter)

2.4 The exit status of a command

Apart from writing messages to stdout or stderr, there is yet another channel
to inform the user how the execution of a program went:

• Each command running on the shell returns an integer value between 0
and 255 on termination, the so-called “exit status” or “return code”.

• By convention 0 means “no errors”, anything else implies that something
went wrong.

• The meaning of a specific can be checked from the program’s documenta-
tion (at least in theory)

• The return code is usually not printed to the user, just implicitly stored
by the shell.

• In order to get the exit code of the most recently terminated command
one may execute echo $?

• Note that this is in turn a command and hence alters the value printed
by the next execution of echo $?.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 17

2.4.1 Logic based on exit codes: The operators &&, ||, !

We already looked at the & and ; operators to separate commands in a command
list, e.g.

1 foo ; bar

2 foo & bar

In both syntax there is no control about the execution of bar: Irrespective
whether foo is successful or not, bar is executed. If we want execution of the
bar command only if foo succeeds or fails, we need the operators && or ||,
respectively:

1 foo || bar # bar only executed if foo fails

2 foo && bar # bar only executed if foo successful

• Conditional cd:

1 cd blub || cd matrices

Goes into directory matrices if blub does not exist.

• If the annoying error message should be filtered in case blub does not
exist, one could run

1 cd blub &> /dev/null || cd matrices

• Very common when developing code:

1 make && ./a.out

The compiled program ./a.out is only executed if compiling it using make

succeeds.

• A list of commands connected by && is called an “AND list” and a list
connected by || an “OR list”.

• AND lists or OR lists may consist of more than one command

1 ./ configure && make && make install && echo Successful

• This works as expected since the return code of such an AND/OR lists is
given by the last command in the sequence

• One can also intermix && and ||

1 cd blub &> /dev/null || cd matrices && vim 3.mtx

although this can lead to very hard-to-read code (see exercise below) and
is therefore discouraged.

Finally there also exist the operator ! that inverts the return code of the fol-
lowing program. So running

1 ! ls

returns the exit code 1 if ls has been successful and 0 on error.

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 18

Exercise 2.5. Go to the directory resources/directories. Explain the out-
put of the following commands

• Run

1 cd 3/3 || cd 4/2 && cd ../4 || cd ../3 && cat file

Note, that this changes the working directory on the shell, so in order to
run it again, you need to cd back to resources/directories beforehand.

• Suggest the places at which we need to insert a 2>/dev/null in order
to suppress the error messages from cd. Try to insert as little code as
possible

• Go back to the directory resources/directories. Now run

1 mkdir -p 3/3; cd 3/3 || cd 4/2 && cd ../4 || cd ../3 ↙
↪→&& pwd

Exercise 2.6. Find out what the programs true and false do. Look at the
following expressions and try to determine the exit code without executing them.
Then check yourself by running them on the shell. Remember that you can
access the exit code of the most recent command via echo $?

1 false || true

2 true && false || true

3 false && false && true

4 false || true || false

Run the following commands on the shell

1 false | true

2 true | true

3 true | false

4 false | false

5 false |& true

What does the pipe do wrt. to the return code?

Exercise 2.7. We already talked about the grep command in order to search
for strings. One extremely handy feature of grep is that it returns 0 if it
found a match and 1 otherwise. Change to the directory resources/gutenberg.
Propose bash one-liners for each of the following problems.

• Print “success” if the file pg1661.txt contains the word “the” (there is a
special grep flag for word matching), else it should print “error”.

• Do the same thing, but use a special flag of grep in order to suppress all
output except the “success” or “error” in the end. Apart from there being
less amount of output, what is different?

• Now print “no matches” if pg1661.txt does not contain the word “Hei-
delberg”, else print the number of times the word is contained in the file.

• Try a few other words like “Holmes”, “a”, “Baker”, “it”, “room” as well.

• Count the number of words in the file pg1661.txt

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 19

program description
man Accessing the manual pages
info Accessing the Texinfo manual
whatis Print a short summary describing a command
apropos Search in manpage summaries for keyword
help Access help for bash builtin commands

Table 2.4: Summary of available commands to get help

Exercise 2.8. Code echo is a command which just prints all of its arguments
to stdout As usually we can use output redirection to write this to a file or use
a pipe to pipe it to a different program.

Keeping this in mind take a look at the following commands, which are all
valid bash shell syntax. What do the commandlines mean? How are stdin,stdout
and stderr of grep connected? What is the exit code?

• echo test | grep test

• echo test & grep test

• echo test |& grep test

• echo test && grep test

• echo test || grep test

2.5 Tips on getting help

It is not always clear how to get help when writing a script or using the com-
mandline. Many commands exist that should provide one with this answers.
Table 2.4 gives an overview.

If one knows the name of a command usually a good procedure is:

1. Try to execute command --help or command -h. Many commands provide
a good summary of their features when executed with these arguments.

2. Try to find help in the manpage man command

3. If the manpage did not answer your problem or says something about a
Texinfo manual, try accessing the latter using info command

4. If both is unsuccessful the command is probably not provided by the
system, but by the bash shell instead – a so-called shell builtin. In this
case try finding help via help command

If the precise command name, however is not known, try to find it first using
apropos keyword.

A word of warning about shell builtin commands:

• It is intentional that shell builtin commands act extremely alike external
commands

CHAPTER 2. A FIRST LOOK AT THE BASH SHELL 20

• Examples for perhaps surprising shell builtins are cd, test or echo

• Some of these commands — like test or echo — are provided by the OS
as well.

• The builtins get preference by the bash for performance reasons

⇒ The manpage for some commands (describing the OS version of it) do not
always agree with the functionality provided by the bash builtin.

• Usually the bash has more features

⇒ Bottom line: Sometimes you should check help command even though you
found something in the manpages.

Exercise 2.9. By crawling through the help provided by the help and the man

commands, find out which of these commands are shell builtins:

man kill time fg touch info history rm pwd ls exit

Chapter 3

Simple shell scripts

In this chapter we will dive into proper scripting and discuss the basic bash

scripting syntax.

3.1 What makes a shell script a shell script?

The simplest script one can think of just consists of the so-called shebang

1 #!/bin/bash

This line, starting with a hash(#) and a bang(!) — hence the name — tells the
OS which program should be used to interpret the following commands. If a
file with executable rights is encountered that begins with a shebang, the OS
starts up the specified program (in this case /bin/bash). Then the remaining
content of the file is fed into this program’s stdin1. In order to compose a shell
script we hence need two steps

• Create a file containing a shebang like #!/bin/bash

• Give the file executable rights by calling chmod +x on it.

3.1.1 Executing scripts

Once script files are made executable using chmod +x we can execute it on the
shell like any other command. Consider the simple script

1 #!/bin/bash

2 echo Hello world!

3 simple scripts/hello.sh

which just issues a “Hello world.” If the current working directory of the shell
is exactly the directory in which hello.sh has been created, we can just run it
by executing

1 ./hello.sh

1Strictly speaking the shebang is not required, since a missing shebang causes the default
shell to be used — which works well for many cases. It is nevertheless good practice to include
the shebang as it makes the scripts more portable

21

CHAPTER 3. SIMPLE SHELL SCRIPTS 22

Otherwise we need to call it by either the full or the relative path of the script
file2. E.g. if we are in the top directory of the course git repository, we need to
execute

1 3_simple_scripts/hello.sh

instead.

3.1.2 Scripts and stdin

Similar to other commands, scripts can also process data provided on their stdin.
E.g. consider the script

1 #!/bin/bash

2 cat

3 simple scripts/cat.sh

which just contains a cat. On call we can redirect input to it

1 < resources/testfile 3_simple_scripts/cat.sh

or pipe to it

1 echo "data" | 3_simple_scripts/cat.sh

both is valid syntax. As you probably noticed in both cases the effect is exactly
identical to

1 < resources/testfile cat

or

1 echo "data" | cat

This is because everything that is input on the script’s stdin is available for the
programs inside the script to process. In other words the stdin of the programs
inside the script is fed by the stdin of the whole script. We will discuss this in
more detail in section 4.7.2 on page 48.

3.2 Shell variables

Shell variables are defined using the syntax

1 VAR=value

and are accessed by invoking the so-called parameter expansion, e.g.

1 echo $VAR

• The name of the variable, i.e. VAR has to start with a letter and can only
consist of alphanumeric characters and underscores.

• The convention is to use all-upper-case names in shell scripts.

1 123=4 #wrong

2 VA3=a #ok

3 V_F=2 #ok

2This can be changed by altering the PATH variable. See section 6.4 on page 85

CHAPTER 3. SIMPLE SHELL SCRIPTS 23

name value
USER name of the user running the shell
HOSTNAME name of the host on which the shell runs
PWD The current working directory
RANDOM Random value between 0 and 32767
HOME The user’s home directory
PATH Search path for commands
SHELL Full path of the shell currently running

Table 3.1: Important predefined variables in the bash shell. See [2] for details.

• The value does not need to be a plain string but may contain requests
to expand other variables, command substitutions (see section 3.2.2 on
page 25), arithmetic expansion(see section 5.1 on page 57 and many more
(see manual [2])

1 VAR=a${OTHER }34

• value may be empty

1 VAR=

• When expanding a parameter the braces {} are only required if the char-
acter which follows can be misinterpreted as part of the variable name

1 VAR =123

2 VAR2=$VAR23 #fails

3 VAR2=${VAR}23 #correct

• Undefined variables expand to an empty string

• All bash variables are stored as plain strings3, but they can be interpreted
as integers if a builtin command requires this (e.g. test — see section 4.2
on page 32)

• Variables can also be deleted4 using

1 unset VAR

• A wide range of predefined variables exist (see table 3.1)

3This can be changed, however, see the declare command in the manual [2]
4Note: Not the same thing as setting the variable to the empty string.

CHAPTER 3. SIMPLE SHELL SCRIPTS 24

3.2.1 Special parameters

Apart from the variables we mentioned above, the shell also has a few special
parameters. Their expansion works exactly like for other variables, but unlike
their counterparts above, their values cannot be changed.

• positional parameters 1, 2, . . . ; expand to the respective argument passed
to the shell script. E.g. if the simple script

1 #!/bin/bash

2

3 echo The first: $1
4 echo The second: $2

3 simple scripts/first script.sh

is executed like

1 3_simple_scripts/first_script.sh first second

we get

1 The first: first

2 The second: second

• parameter @, which expands to the list of all positional parameters

• parameter #, expands to the number of positional parameters, that are
non-zero

• parameter ?, expands to the return code of the most recently executed list
of commands

• parameter 0, expands to name of the shell or the shell script

Example 3.1. If the script

1 #!/bin/bash

2 echo 0: $0
3 echo 1: $1
4 echo 2: $2
5 echo 3: $3
6 echo 4: $4
7 echo @: $@
8 echo ?: $?
9 echo "#: $#"

3 simple scripts/special parameters.sh

is executed like

1 3_simple_scripts/special_parameters.sh 1 2 3 4 5 6 7 8 9

we get

1 0: 3_simple_scripts/special_parameters.sh

2 1: 1

3 2: 2

4 3: 3

CHAPTER 3. SIMPLE SHELL SCRIPTS 25

5 4: 4

6 @: 1 2 3 4 5 6 7 8 9

7 ?: 0

8 #: 9

For more details about the parameter expansion see chapter 5 on page 57.

3.2.2 Command substitution

In order to store the output of a command in a variable, we need a feature called
command substitution. The basic syntax is

1 VAR=$(command_list)

• Command substitution only catches output produced on stdout, e.g. run-
ning the code

1 VAR=$(ls /nonexistent)

would still result in the “File not found” error message being printed on
the terminal, since ls prints this message to stderr.

• Inside the $() we have a so-called subshell (see also section 6.1 on page 67),
where output redirection is possible. We could hence suppress the error
message by running

1 VAR=$(ls /nonexistent 2> /dev/null)

• Another consequence of the subshell is, that output of all commands within
the $() is combined:

1 VAR=$(echo one;echo two)

2 echo "$VAR"

gives

1 one

2 two

• The return code of a command substitution is the return code of the
command list provided, i.e. the code of the last command executed. So
we could use

1 VAR=$(ls /nonexistent 2> /dev/null) || echo something ↙
↪→wrong here

in order to inform the user that something went wrong with the ls com-
mand.

• Command substitution may be used as an argument for another command:

1 ls $(echo chem_output)

CHAPTER 3. SIMPLE SHELL SCRIPTS 26

• Command substitutions may be nested:

1 VAR=$(echo $(echo $(echo value)))

2 # VAR now contains "value"

Exercise 3.2. optional Write a bash quine5, i.e. a script that produces its
source code as output when executed. Hint: The solution has less then 20
characters.

Exercise 3.3. This exercise is again considered with the matrices in resources

/matrices.

• Write a script that copies all data from resources/matrices/3.mtx to
output.mtx with the exception that the first (comment) line should ap-
pear at the very end of the file output.mtx

• In other words the net effect should be that the script moves the comment
line to the end of output.mtx

Now generalise the script: Make use of the positional parameters in order to:

• Write a script that takes two arguments: The first should be a matrix file,
the second should be an output file, to which the script will write all data.

• The script should again copy all data over from the matrix file to the
output file, with the exception that the comment line appears at the end
of the output file.

Exercise 3.4. Write a script that parses input on stdin and takes a pattern as
first arg.

• The input should be cached in a variable.
Hint: For shell scripts the stdin of individual commands is connected to
the stdin of the whole script. You also know a way to transfer data from
stdin to stdout without doing anything with it.

• grep for the pattern in the cached input and count the number of matches.

• Then print the number of words in the data.

Input on stdin is very volatile, once you used it in a script it is gone forever (see
section 4.7.2 on page 48 for more details on this). If we need to use it multiple
times, we therefore need a temporary cache, like in this example.

5https://en.wikipedia.org/wiki/Quine_%28computing%29

https://en.wikipedia.org/wiki/Quine_%28computing%29

CHAPTER 3. SIMPLE SHELL SCRIPTS 27

3.3 Escaping strings

Some characters are special to the bash shell:

• “$”: Initiates parameter substitution

• “#”: Starts a comment

• “;”, “&”, “&&”, “||”: Separate commands in a command list

• “\”: Starts an escape (see below)

• A few more [2]

It happens many times that one needs to use these characters not by their
special, but by their literal meaning. Examples are:

• Printing data with echo

• Defining variables

In such a case we need to escape them, i.e. precede them by a \ character, e.g.

1 blubber=foo

2 echo \$blubber \#\;\\

produces

1 $blubber #;\

whereas

1 blubber=foo

2 echo $blubber #;\

gives rise to

1 foo

We can even escape a line break by using a \ as the very last character on a
commandline

1 echo some very \

2 long line of code \

3 | grep line

1 some very long line of code

As a rule of thumb the escape \ causes the next character to loose its special
meaning and be interpreted like any other character.

CHAPTER 3. SIMPLE SHELL SCRIPTS 28

3.4 Word splitting and quoting

Right before the execution of a commandline6, i.e. after all variables, parameters
and commands have been substituted, the shell performs an operation called
word splitting :

• The whole commandline is expected and split into smaller strings at each
<newline>, <tab> or <space> character. These smaller strings are called
words.

• Each word is now considered a separate entity: The first word is the
program to be executed and all following words are considered to be ar-
guments to this command7.

Example 3.5. When the shell encounters the command line

1 grep ${KEYWORD} $4 $(echo test blubber blub)

it first substitutes the commands and parameters:

1 # assume KEYWORD=search and 4=3:

2 grep search 3 test blubber blub

So the command executed is grep and it will be passed the five arguments
search, 3, test, blubber, blub.

If we want to prevent word splitting at certain parts of the commandline we
need to quote. This means that we surround these respective parts by either
the single quote “'” or the double quote “"”, e.g.

1 echo "This whole thing is a single word"

2 echo 'This guy as well '

Similar to escaping, quoting also causes some special characters to loose their
meaning inside the quotation:

• single quote “'”: No special characters, but “'” survive

⇒ “"”, “$”, “#” are all non-special

⇒ No parameter expansion or command substitution

⇒ No word splitting

• double quote “"”: Only “"”, “$” and “\” remain special

⇒ We can use parameter expansion, command substitution and escap-
ing

⇒ No word splitting

6See appendix B.3.1 on page 123 for more details how a commandline is parsed
7With command lists the shell obviously interprets the first word of each “instruction” as

the command to be executed an the remaining ones as corresponding arguments.

CHAPTER 3. SIMPLE SHELL SCRIPTS 29

Example 3.6. We consider the output of the script

1 #!/bin/bash

2

3 ABC=abcdef

4 NUM =123

5 EXAMPLE="ABCNUM$(date) next"
6 EXAMPLE2='ABCNUM$(data)'
7 echo "$EXAMPLE"
8 echo "\"some other example: " $EXAMPLE2
9

10 CODE="echo"

11 CODE="$CODE 'test '"
12 $CODE
13

14 # we can quote inside command substitutions:

15 TEST="$(echo "some words")"

16 echo "$TEST"

3 simple scripts/quoting example.sh

which is

1 abcdef123Mo 24. Aug 21:07:23 CEST 2015 next

2 "some other example: ABCNUM$(data)
3 'test '
4 some words

Example 3.7. The only way to represent an empty string or pass an empty
argument to a function is by quoting it, e.g. calling

1 VAR=

2 3_simple_scripts/first_script.sh $VAR -h

gives

1 The first: -h

2 The second:

Whilst

1 3_simple_scripts/first_script.sh "$VAR" -h

gives

1 The first:

2 The second: -h

Forgotten quoting or escaping is a very common source of error — some hints:

• When passing arguments to commands always quote them using double
quotes (unless you have a reason not to)

⇒ This avoids problems when variables are empty

⇒ It does not hurt anything

CHAPTER 3. SIMPLE SHELL SCRIPTS 30

• When initialising variables always quote the values using double quotes

⇒ Same reason as above

• When a variable contains a path be extra careful that you use double
quotes everywhere you use it

⇒ Paths or filenames may contain spaces

• Use syntax highlighting in your editor8

⇒ You will discover missing escapes or closing quotes much more quickly

Exercise 3.8. The following script is supposed to extract some information
from a few files in different directories. Identify possible problems.

1 #!/bin/bash

2 # script to extract some information from directories

3 # $1: additional keyword to search for

4 #

5 cd Top Dir

6 ADDITIONAL=$(<output grep $1)
7 IMPORTANT=$(<output grep -i important)

8 cd Lower

9 FILE=$(<out1 grep -H $1; <out2 grep -H $2)
10 COUNT=$(echo '$FILE ' | wc -l)

11

12 echo results:

13 echo " important messages :" $IMPORTANT
14 echo ' other messages: $ADDITIONAL '
15 echo we found $COUNT more findings in

16 echo $FILE

3 simple scripts/ex quoting.sh

Exercise 3.9. It is very common to see the paradigm

1 echo "$VAR" | wc -l

in order to count the number of lines in the variable VAR. Try this for the
following values of VAR:

• VAR=$(echo line1; echo line2), i.e. two lines of data

• VAR=$(echo line1), i.e. one line of data

• VAR="", i.e. no data at all

Can you describe the problem? There exists an alternative method to count the
number of lines, which is more reliable

1 echo -n "$VAR" | grep -c ^

8vi: syntax on, Emacs: font-lock-mode

CHAPTER 3. SIMPLE SHELL SCRIPTS 31

You will learn in the next chapter that the -n flag prevents echo from printing
an extra trailing <newline> character after the content of VAR has been printed.
The parameter ^ which is passed to grep is a so-called regular expression, which
we will discuss in more detail in chapter 7 on page 89. For now it is sufficient
to know that ^ is a “special” kind of keyword that matches all beginnings of all
lines.

• Try this command on the three examples above to verify that it works.

Exercise 3.10. optional Write a script that

• takes a pattern (which may contain spaces) as an argument.

• uses recursive ls (manpage) to find all directories below the current work-
ing directory, which have a relative path, that matches the pattern.

• prints the relative paths of these matching directories.

For example: If the current working directory contains the directory resources

/matrices as well as the directory resources/gutenberg, and the pattern is
“gut”, the script should print resources/gutenberg but not the other path.
A few hints:

• First run ls --recursive once and try to understand the output

• What distinguishing feature do directory paths have compared to the other
output printed?

• Everything can be achieved in a single line of bash using only 3 different
programs (ls, grep and one more).

• You might need to make the assumption that none of the files or directories
below the working directory contains a “:” character in their name in order
to achieve the functionality.

Exercise 3.11. Write a script that takes a filename and 3 keywords. It should
grep in the file for all 3 keywords and display for each keyword the number of
matches followed by the line numbers where the matches did occur.

• No other output on stdout should be produced by the script

• If the file cannot be read the script should exit with a return code 1, else
with code 0 (see help exit if you do not know the exit command)

• Count the number of characters excluding comments (use the script resources
/charcount.sh for this task). The shortest shell script (using only what
we have covered so far) wins :)

Chapter 4

Control structures and
Input/Output

This chapter we will jump from simple scripts where instructions are just exe-
cuted line-by-line to more complicated scripts that contain conditions or loops.
We will also discuss some of the available options to read or write data from
scripts.

4.1 Printing output with echo

The most basic output mechanism in shell scripts is the echo command. It
just takes all its arguments and prints them to stdout separated by a <space>

character. A few notes:

• For printing to stderr one can use a special kind of redirector, namely
>&21

1 echo "This goes to stdout"

2 echo "This goes to stderr" >&2

This is needed for error messages, which should by convention be printed
on stderr.

• The argument -n suppresses the final newline (see exercise 3.9 on page 30)

• The argument -e enables the interpretation of a few special escapes (see
help echo and table 4.1 on the next page)

4.2 The test program

test is a very important program that is used all the time in scripting. Its
main purpose is to compare numbers or strings or to check certain properties
about files. test is extremely feature-rich and this section can only cover the

1This redirector is general: It works also in command substitution expressions or anywhere
else on the shell

32

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 33

escape meaning
\t <tab> char
\\ literal \
\n <newline> char

Table 4.1: A few special escape sequences for echo -e

most important options. For more detailed information about test, consider
help test and the bash manual [2].

Most checks the test program can perform follow the syntax

1 test <operator > <argument >

or

1 test <argument1 > <operator > <argument2 >

e.g.

1 test -z "$VAR" # Test if a string is empty

2 test "a" == "b" # Test if two strings are equal

3 test 9 -lt 3 # Test if the first number is less than the↙
↪→ second

4 test -f "file" # Test if a file exists and is a regular ↙
↪→file

An overview of important test operators gives table 4.2 on the following page.
In fact test is so important that a second shorthand notation using rectangular
brackets exists. In this equivalent form the above commands may be written as

1 [-z "$VAR"]

2 ["a" == "b"]

3 [9 -lt 3]

4 [-f "file"]

There are a few things to note

• The space before the closing “]” is important, else the command fails.

• bash can only deal with integer comparison and arithmetic. D Floating
point values cannot be compared on the shell (but there are other tools
like bc to do this, see 5.2 on page 62)

• The test command does not produce any output, it only returns 0 for
successful tests or 1 for failing tests.

• Therefore we can use the test command and the && or || operators to
guard other commands. E.g.

1 [-f "file"] && < "file" grep "key"

makes sure that grep is only executed if the file “file” does exist.

• There also exists the command [[in the bash shell, which is more pow-
erful. We will talk about this command briefly when we introduce regular
expressions in section 7.1.1 on page 89.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 34

operator description
-e FILE True if file exists.
-f FILE True if file exists and is a regular file.
-d FILE True if file exists and is a directory.
-x FILE True if file exists and is executable.
-z STRING True if string is empty
-n STRING True if string is not empty
STRING = STRING True if strings are identical
STRING != STRING True if strings are different
! EXPR True if EXPR is false
EXPR1 -o EXPR2 True if EXPR1 or EXPR2 are true
EXPR1 -a EXPR2 True if EXPR1 and EXPR2 are true
() grouping expressions
NUM1 -eq NUM2 True if number NUM1 equals NUM2
NUM1 -ne NUM2 True if NUM1 is not equal to NUM2
NUM1 -lt NUM2 True if NUM1 is less than NUM2
NUM1 -le NUM2 True if NUM1 is less or equal NUM2
NUM1 -gt NUM2 True if NUM1 is greater NUM2
NUM1 -ge NUM2 True if NUM1 is greater or equal NUM2

Table 4.2: Overview of the most important test operators

Exercise 4.1. Write a shell script that takes 3 arguments and prints them in
reverse order If -h is entered anywhere a short description should be printed as
well.

Exercise 4.2. optional Write a shell script that does the following when given
a path as first arg:

• If the path is a file, print whether it is executable and print the file size

• If the path is a directory cd to it

4.3 Conditionals: if

The simplest syntax of the if command is

1 if list; then list; fi

It has the effect:

• All the commands in the list are executed.

• If the return code of the list is 0, the then-list is also executed.

for example

1 #!/bin/bash

2 if [1 -gt 2]; then echo "Cannot happen"; fi

3 if [1 -gt 2]; VAR =4; then echo "VAR=$VAR"; fi

4 if ! cd ..; then echo "Could not change directory" >&2 ; fi

5 echo $PWD

4 control io/ifexamples.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 35

gives output

1 VAR=4

2 /export/home/abs/abs001/bash -course

An extended syntax with optional else and elif (else-if) blocks is also avail-
able:

1 if list; then

2 list

3 elif list; then

4 list

5 ...

6 else list

7 fi

• Again first the if-list is executed

• If the return code is 0 (the condition is true) the first then-list is executed

• Otherwise the elif-lists are executed in turn. Once such an elif-list

has exit code zero, the corresponding then-list is executed and the whole
if-command completes.

• Otherwise, the else-list is executed.

• The exit status of the whole if-command is the exit status of the last
command executed, or zero if no condition tested true.

Example 4.3. The script

1 #!/bin/bash

2 USERARG =0 # bash does not know bolean

3 # convention is to use 0/1

4 # or y/n for this purpose

5

6 # ["$1"] is the same as ! [-z "$1"]

7 if ["$1"]; then

8 USERARG =1

9 echo "Dear user: Thanks for feeding me input"

10 fi

11

12 if [$USERARG -ne 1];then

13 echo "Nothing to do"

14 exit 0

15 fi

16

17 if ["$1" == "status"]; then

18 echo "I am very happy"

19 elif ["$1" == "weather"]; then

20 echo "No clue"

21 elif ["$1" == "date"]; then

22 date

23 elif [-f "$1"];then

24 if ! < "$1" grep "robot"; then

25 echo "Could not find keyword" >&2

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 36

26 exit 1

27 fi

28 else

29 echo "Unknown command: $1" >&2

30 exit 1

31 fi

4 control io/more ifexamples.sh

when run with arg "date" produces the output

1 Dear user: Thanks for feeding me input

2 Di 18. Aug 16:38:47 CEST 2015

when run with arg "4_control_io/more_ifexamples.sh"

1 Dear user: Thanks for feeding me input

2 if ! < "$1" grep "robot "; then

when run with arg "/nonexistent"

1 Dear user: Thanks for feeding me input

2 Unknown command: /nonexistent

A general convention is to have tests in the if-list and actions in the then-list

for clarity. Compare

1 if [-f "file"] && [-d "dir"] ; then

2 mv "$file" "dir" || exit 1

3 echo "Moved file successfully"

4 fi

and

1 if [-f "file"] && [-d "dir"] && mv "$file" "dir" || ↙
↪→exit 1; then

2 echo "Moved file successfully"

3 fi

It is easy to overlook the mv or the exit commands in such scripts.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 37

4.4 Loops: while

while syntax:

1 while list1; do list2; done

• list1 and list2 are executed in turn as long as the last command in list1

gives a zero return code.

1 #!/bin/bash

2

3 C=0

4 while echo "while: $C"; [$C -lt 3]; do

5 ((C++)) #increase C by 1

6 echo $C
7 done

8

9 # a nested loop

10 N=5

11 while [$N -gt 2]; do

12 ((N--)) #decrease N by 1

13 echo "N is now $N"
14 M=2

15 while [$M -lt 4]; do

16 echo " M is now $M"
17 ((M++))

18 done

19 done

20

21 # more generally the statement

22 # ((I++))

23 # increases the value of the variable I

24 # by one. Analoguously

25 # ((I--))

26 # decreases it by one.

4 control io/whileloop.sh

produces the output

1 while: 0

2 1

3 while: 1

4 2

5 while: 2

6 3

7 while: 3

8 N is now 4

9 M is now 2

10 M is now 3

11 N is now 3

12 M is now 2

13 M is now 3

14 N is now 2

15 M is now 2

16 M is now 3

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 38

We can stop the execution of a loop using the break command. This will only
exit the innermost loop.

1 #!/bin/bash

2

3 C=0

4 while echo "while: $C"; [$C -lt 3]; do

5 ((C++)) #increase C by 1

6 echo $C
7 [$C -eq 2] && break

8 done

9

10 # a nested loop

11 N=5

12 while [$N -gt 2]; do

13 ((N--)) #decrease N by 1

14 echo "N is now $N"
15 M=2

16 while [$M -lt 4]; do

17 echo " M is now $M"
18 ((M++))

19 [$M -eq 3 -a $N -eq 3] && break

20 done

21 done

4 control io/whilebreak.sh

produces the output

1 while: 0

2 1

3 while: 1

4 2

5 N is now 4

6 M is now 2

7 M is now 3

8 N is now 3

9 M is now 2

10 N is now 2

11 M is now 2

12 M is now 3

There also exists the command continue which jumps straight to the beginning
of the next iteration, i.e. list1 is evaluated once again and if it is true, list2
and so fourth. The continue command allows to skip some instructions in a
loop.

1 #!/bin/bash

2

3 C=0

4 while echo "while: $C"; [$C -lt 3]; do

5 ((C++)) #increase C by 1

6 [$C -eq 2] && continue

7 echo $C
8 done

9

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 39

10 # a nested loop

11 N=5

12 while [$N -gt 2]; do

13 ((N--)) #decrease N by 1

14 echo "N is now $N"
15 M=2

16 while [$M -lt 4]; do

17 ((M++))

18 [$M -eq 3 -a $N -eq 3] && continue

19 echo " M is now $M"
20 done

21 done

4 control io/whilecontinue.sh

produces the output

1 while: 0

2 1

3 while: 1

4 while: 2

5 3

6 while: 3

7 N is now 4

8 M is now 3

9 M is now 4

10 N is now 3

11 M is now 4

12 N is now 2

13 M is now 3

14 M is now 4

Exercise 4.4. optional Write a script that takes two integer values as args, I
and J. The script should:

• create directories named 1, 2, . . . , I

• Use touch to put empty files named 1 till J in each of these directories

• Print an error if a negative value is provided for I or J

• If any of the files exist, the script should exit with an error.

• Provide help if one of the args is -h, then exit the script.

• If the third argument is a file, the script should copy this file to all locations
instead of creating empty files with touch.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 40

Exercise 4.5. Implement the seq command in bash:

• If called with a single argument, print all integers from 1 to this value, i.e.

1 seq 5

should give

1 1

2 2

3 3

4 4

5 5

• If called with two arguments, print from the first arg to the second arg,
e.g. seq 3 5:

1 3

2 4

3 5

Assume that the first number is always going to be smaller or equal to the
second number.

• optional If called with three arguments, print from the first arg to the
third in steps of the second, in other words

1 seq 1 4 13

gives

1 1

2 5

3 9

4 13

Again assume that the first number is smaller or equal to the third one.

• Your script should print help if the first arguments is -h, and then exit.

• optional Your script should print an error if any of the assumptions is
violated and exit.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 41

4.5 Loops: for

Basic syntax:

1 for name in word ...; do list; done

• The variable name is subsequently set to all words following in and the list

executed:

1 #!/bin/bash

2

3 for word in 1 2 dadongs blubber; do

4 echo $word
5 done

6

7 for row in 1 2 3 4 5; do

8 for col in 1 2 3 4 5; do

9 echo -n "$row.$col "
10 done

11 echo

12 done

4 control io/forbasic.sh

which gives the output

1 1

2 2

3 dadongs

4 blubber

5 1.1 1.2 1.3 1.4 1.5

6 2.1 2.2 2.3 2.4 2.5

7 3.1 3.2 3.3 3.4 3.5

8 4.1 4.2 4.3 4.4 4.5

9 5.1 5.2 5.3 5.4 5.5

• We can again use break or continue in order to skip some executions of
the loops:

1 #!/bin/bash

2

3 for word in 1 2 dadongs blubber; do

4 echo "$word" | grep -q da && continue

5 echo $word
6 done

7

8 for row in 1 2 3 4 5; do

9 for col in 1 2 3 4 5; do

10 [$col -gt $row] && break

11 echo -n "$row.$col "
12 done

13 echo

14 done

4 control io/forbreakcontinue.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 42

with output

1 1

2 2

3 blubber

4 1.1

5 2.1 2.2

6 3.1 3.2 3.3

7 4.1 4.2 4.3 4.4

8 5.1 5.2 5.3 5.4 5.5

4.5.1 Common “types” of for loops

As we said in the previous chapter, word splitting occurs right before the execu-
tion, i.e. basically after everything else. Therefore there is quite a large variety
of expressions one could use after the in in for loops. This section gives an
overview.

• Explicitly provided words: What we did in the examples above

• Parameter expansion

1 #!/bin/bash

2 VAR="a b c d"

3 VAR2=$(< resources/matrices /3.mtx grep 1)

4 for i in $VAR $VAR2; do

5 echo $i #note: all spaces become line breaks

6 done | head

4 control io/forparameter.sh

1 a

2 b

3 c

4 d

5 1

6 1

7 1

8 1

9 2

10 1

• Command substitution

1 #!/bin/bash

2 N=10

3 for i in $(seq $N); do

4 echo $i
5 done

4 control io/forcommandsubst.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 43

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

• The characters * and ? are the special pattern characters. If replacement
of * by zero or more arbitrary characters gives the name of an existing file,
this replacement is done before execution. Similarly for ?: This character
is replaced by exactly one arbitrary character if this leads to the name of
a file2. In the context of for loops this is usually encountered like this

1 #!/bin/bash

2 cd resources/matrices/

3 for i in *.mtx; do

4 echo $i
5 done

6

7 # there is no need for a file to be in pwd

8 for i in ../ matrices /?a.mtx; do

9 echo $i
10 done

11

12 #NOTE: Non -matching strings still contain * or ?

13 for i in /non?exist*ant; do

14 echo $i
15 done

4 control io/forwildcard.sh

1 3a.mtx

2 3 b.mtx

3 3.mtx

4 bcsstm01.mtx

5 lund_b.mtx

6 ../ matrices /3a.mtx

7 /non?exist*ant

• Combinations of all of these

A word of warning: The paradigm

1 for file in $(ls); do

2 # some stuff with $file
3 done

2This process is called pathname expansion and a few other patterns exist as well. See [2]
for details.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 44

is extremely problematic, since files with spaces are not properly accounted for3

Compare the following results with the last example we had above

1 #!/bin/bash

2 for i in $(ls resources/matrices /*.mtx); do

3 echo $i
4 done

4 control io/forlscommandsubst.sh

1 resources/matrices /3a.mtx

2 resources/matrices /3

3 b.mtx

4 resources/matrices /3.mtx

5 resources/matrices/bcsstm01.mtx

6 resources/matrices/lund_b.mtx

Exercise 4.6. With this exercise we start a small project trying to recommend
a book from Project Gutenberg based on keywords the user provides.

• Write a script that greps for a pattern (provided as an argument) in all
books of resources/gutenberg

– Make sure that your script keeps working properly if spaces in the
pattern or in the files are encountered

– Ignore case when grepping in the files

– You may assume all books of Project Gutenberg to be .txt files

– optional Provide help if the argument is -h

– optional Use proper error statements if something goes wrong or is
not sensible.

• Change your script such that it prints the number of matches and the
number of actual lines next to the script name. The fields of the table
should be separated by tabs (use echo -e). A possible output could be

1 pg74.txt 45 1045

2 pg345.txt 60 965

• optional Suppress the output of books without any match

Exercise 4.7. optional With your current knowledge of bash, propose two one
liners that

• substitute all <tab> or <space> of a string in a variable VAR by <newline>

characters

• substitute all <newline> or <tab> characters by <space> characters

Hint: Both expressions have less than 30 characters.

3The reason is that command substitution happens earlier than pathname expansion: The
results of the command substitution $(ls) go through word splitting before being executed,
whereas the results of *- and ?-expressions are still seen as single words at the execution stage.
See appendix B.3.1 on page 123 for more details.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 45

4.6 Conditionals: case

The case command has the following basic syntax:

1 case word in

2 pattern) list ;;

3 [pattern) list ;;]

4 ...

5 esac

• The command tries to match word against one of the patterns provided

• If a match occurs the respective list block is executed

• Both the word as well as the inspected patterns are subject to param-
eter expansion, command substitution, arithmetic expansion and a few
others [2]

⇒ We may have variables and commands in both word and pattern.

Usually in case statements we have a string containing a variable and we want
to distinguish a few cases, e.g.

1 #!/bin/bash

2 VAR=$@ # VAR assigned to all arguments

3 case $VAR in

4 a) echo "VAR is \"a\""

5 ;; #<- do not omit these

6 l*) echo "VAR starts with l"

7 ;;

8 l?) echo "VAR is l and something"

9 echo "Never matched"

10 # because it is more speciffic

11 # than pattern l* above

12 ;;

13 $1) echo "VAR is \$1"
14 ;;

15 *) echo "VAR is something else"

16 ;;

17 esac

4 control io/caseexample.sh

The output is

• 4_control_io/caseexample.sh lo

1 VAR starts with l

• 4_control_io/caseexample.sh

1 VAR is $1

• 4_control_io/caseexample.sh "bash is"so cool

1 VAR is something else

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 46

• 4_control_io/caseexample.sh unihd

1 VAR is $1

The case command is extremely well-suited in the context of parsing comman-
dline arguments. A very common paradigm is while-case-shift4

1 #!/bin/bash

2 # assume we allow the arguments -h, -f and --show

3 # assume further that after -f there needs to be a

4 # filename following

5 #

6 FILE=default_file # default if -f is not given

7 while ["$1"]; do # are there commandline arguments left?

8 case "$1" in # deal with current argument

9 -h|--help) echo "-h encountered"

10 ;;

11 # it is common to have "long" and "short" options

12 -f|--file) shift # access filename on $1
13 echo "-f encountered , file: $1"
14 FILE=$1
15 ;;

16 --show) echo "--show encountered"

17 ;;

18 *) echo "Unknown argument: $1" >&2

19 exit 1

20 esac

21 shift # discard current argument

22 done

4 control io/argparsing.sh

• The shift command shifts the positional parameters one place forward.
After the execution: $1 contains the value $2 had beforehand, equally
3→2, 4→3, . . .

• The while loop runs over all arguments in turn, $1 always contains the
argument we currently deal with.

• case checks the current argument and takes appropriate action.

• If a flag (like -f in this case) requires a value afterwards, we can access
this value by issuing another shift in the code executed for -f in case.

Example output

• 4_control_io/argparsing.sh -h --show

1 -h encountered

2 --show encountered

4no official name, but my own creation :)

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 47

• 4_control_io/argparsing.sh -f file --sho

1 -f encountered , file: file

2 Unknown argument: --sho

Exercise 4.8. Write a script that takes the following arguments:

• -h, -q

• --help, --quiet

• -f followed by a filename

• anything else should cause an error message

Once the arguments are parsed the script should do the following

• Print help if -h or --help are present, then exit

• Check that the filename provided is a valid file, else throw an error and
exit

• Print a nice welcome message, unless --quiet or -q are given

4.7 Parsing input using shell scripts

4.7.1 The read command

The syntax to call read is

1 read <Options > NAME1 NAME2 NAME3 ... NAME_LAST

• read reads a single line from stdin and performs word splitting on it. The
first word is assigned to the variable NAME1, the second to NAME2, the third
to NAME3 and so on. All remaining words are assigned to the last variable
as a single unchanged word.

Example 4.9. The first line of resources/matrices/3.mtx is

1 %% MatrixMarket matrix coordinate real symmetric

So if we execute

1 #!/bin/bash

2 < resources/matrices /3. mtx read COMMENT MTX FLAGS

3 echo "com: $COMMENT"
4 echo "mtx: $MTX"
5 echo "flags: $FLAGS"

4 control io/readexample.sh

we obtain

1 com: %% MatrixMarket

2 mtx: matrix

3 flags: coordinate real symmetric

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 48

• Two options worth mentioning:

– -p STRING: Print STRING before waiting for input — like a command
prompt.

– -e: Enable support for navigation through the input terminal and
some other very comfortable things.

• The return code of read is 0 unless it encounters an EOF (end of file), i.e.
unless the stream contains no more data.

By means of the return code of read we can check easily whether we were able
to obtain any data from the user or not. We cannot check with the return code,
however, whether all fields are filled or not.

1 #!/bin/bash

2 while true; do #infinite loop

3 # the next command breaks the loop if it was successful

4 read -p "Please type 3 numbers >" N1 N2 N3 && break

5 # if we get here read was not successful

6 echo "Did not understand your results , please try again"

7 done

8 echo "You entered \"$N1\", \"$N2\", \"$N3\""

4 control io/readerror.sh

• Running echo 1 2 3 | 4_control_io/readerror.sh

1 You entered "1", "2", "3"

• echo | 4_control_io/readerror.sh, i.e. send only a <newline>.

1 You entered "", "", ""

• echo -n | 4_control_io/readerror.sh, i.e. send absolutely nothing

1 Did not understand your results , please try again

2 Did not understand your results , please try again

3 ...

4 Did not understand your results , please try again

4.7.2 Scripts have shared stdin, stdout and stderr

Compared to writing simple one-liners there is a fundamental difference when
writing a script: All commands of the script share the same stdin, stdout and
stderr (if their input/output is not redirected). Especially when it comes to
parsing stdin, this has a few consequences, which are best described by examples.

Example 4.10. Consider the script

1 #!/bin/bash

2 cat

3 cat

4 control io/cat script.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 49

If we run it like so

1 < resources/matrices /3. mtx 4_control_io/cat_script.sh

we might expect the output to show the content of the input file twice. This
is not what happens. We only get the content of resources/matrices/3.mtx
once, i.e. exactly what would have happened if only a single cat was be con-
tained in 4_control_io/cat_script.sh. This is due to the fact that cat reads
stdin until nothing is left (i.e. until EOF is reached). So when the next cat

starts its execution, it encounters the EOF character straight away and stops
reading. Hence no extra output is produced.

The same thing occurs if we use two other commands that keep reading until
the EOF, like two consecutive greps:

1 grep match

2 grep "i will never match anything"

the second grep is pointless. If subsequent greps on stdin are desired, one usu-
ally employs a temporary caching variable in order to circumvent these prob-
lems:

1 CACHE=$(cat)
2 echo "$CACHE" | grep match

3 echo "$CACHE" | grep "i have a chance to match sth."

Example 4.11. In contrast to cat the read only reads a single line. Therefore
a script may swap the first two lines of stdin like this

1 #!/bin/bash

2 read OLINE # read the first line

3 read LINE # read the second line

4 echo "$OLINE" # print second line

5 echo "$LINE" # print first line

6 cat

4 control io/swaplines.sh

where the last cat just print whatever is left of the file.

Exercise 4.12. Write a simple script read_third.sh that outputs the third
line provided on stdin to stdout and the fourth line to stderr. When you call it
like

1 < resources/testfile ./ read_third.sh

it should provide the output

1 some

2 other

and when called like

1 < resources/testfile ./ read_third.sh >/dev/null

it should only print

1 other

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 50

Exercise 4.13. Extend the script from the previous exercise:

• Use read to ask the user for two line numbers, N and M.

• Print the Nth line of the script’s stdin to stdout and the Mth line to stderr

• Call your script from the shell and use input redirection < in order to pass
some data from a file to the script’s stdin.

• Does the script work as expected? Why not?

4.7.3 The while read line paradigm

Probably the most important application of the read command is the while

read line paradigm5. It can be used to read data from stdin line by line:

1 #!/bin/bash

2 while read line; do

3 echo $line
4 done

4 control io/whilereadline.sh

This works because

• read tries to read the current line from stdin and stores it in the variable
line.

• The line variable is then available for the loop body to do something with
it.

• If all data has been read, read will exit with an return code 1, causing
the loop to be exited.

Since a loop is considered as a single command by the bash shell it has its own
stdin (and stdout), meaning that

• we can redirect its stdin to read from a file

1 #!/bin/bash

2

3 if ["$1" == "-h"];then

4 echo "Scipt adds line numbers to a file on \$1"
5 exit 1

6 fi

7

8 if [! -f "$1"]; then

9 echo "File $1 not found" >&2

10 exit 1

11 fi

12

13 C=0

14 while read line; do

15 echo "$C: $line"
16 ((C++))

17 done < "$1"

4 control io/addlinenumbers.sh

5Again not an official name

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 51

Note: The < input arrow has to be added after the done — otherwise an
error results.

• we can pipe the output of a command to it

1 #!/bin/bash

2 if ["$1" == "-h"];then

3 echo "Scipt sorts lines of file \$1 and adds ↙
↪→indention"

4 echo "Sorted file is written to \$1.sorted"
5 exit 1

6 fi

7

8 if [! -f "$1"]; then

9 echo "File $1 not found" >&2

10 exit 1

11 fi

12

13 echo "Writing sorted data to \"$1.sorted\""
14 < "$1" sort | while read line; do

15 echo " $line"
16 done > "$1.sorted"

4 control io/sort and indent.sh

• we can dump the loop’s output in a file by adding > file after the done

(see previous example)

Exercise 4.14. optional We want to write a more general version of exercise 3.3
on page 26.

• Write a script takes the arguments --help, --from (followed by a line
number) and parses them. Deal with --help and detect unknown argu-
ments.

• The default for --from should be the first line.

• Move the line of stdin given by --from to the last line on stdout, copy all
other lines.

• You may assume that the users of your script are nice and only pass integer
values after --to or --from.

• If an error occurs, e.g. if the --to line number is larger than the number
of lines on stdin, inform the user.

• Now add an argument --to, which is followed by a number. It should
have the default setting of "end"(symbolising the last line on stdin)

• Assume (and check the input accordingly) that the value given to --to is
larger that the value to --from

• Change your code such that the line --from is moved to the line --to.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 52

option description
-name "STRING" The name of the file is string
-name "*STRING*" The name of the file contains string
-iname "*STRING*" Same as above, but ignore case
-type f file is a normal file
-type d file is actually a directory

Table 4.3: The most important options of find

• Be careful when comparing line numbers to variables that may contain a
string:

1 ["end" -eq 4]

gives an error. This can be circumvented by guarding the [with another
[, e.g.

1 VAR="end"

2 ["$VAR" != "end"] && [$VAR -eq 4]

Exercise 4.15. Recall that command substitution expressions combine the
output of all internal commands. Therefore we can accumulate lines in a variable
using the syntax

1 CACHE=$(echo "$CACHE"; echo "next line")

Use this fact and the while read line paradigm to build a simple version of
the tac command, where all input on stdin is printed to stdout in reverse line
order

Exercise 4.16. Recall that read can take more than one argument.

• Assume you will get some data on stdin, which consists of a few columns
separated by one ore more <space> or <tab> characters. Write a script
mtx_third.sh that prints the third column of everything you get on stdin.

• Try your script on some of the files in resources/matrices. E.g.

1 < resources/matrices/lund_b.mtx ./ mtx_third.sh

• How does it perform compared to cut?

Exercise 4.17. optional find is a really handy program to search for files
and directories with uncountable options (see man find). You can find the
most important options in table 4.3. find per default searches through all
directories and subdirectories and prints the relative paths of all files satisfying
the conditions to stdout. All options you provide are connected using a logical
and. This can of cause all be changed (see documentation). If you have never
used find before, try the following:

• find -name "*.sh"

• find -type f -name "*.sh"

• find $HOME -type d -name "*bash*"

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 53

In this exercise you should build a grep_all script:

• The script should search for all files in or below the working directory
(using find)

• In all files found, the script should grep for the pattern provided on $1
and it should print to stdout in which files and on which line the match
occurred.

• The simplest way to achieve this is to pipe the output of find to while

read line

4.8 Influencing word splitting: The variable IFS

In table 3.1 on page 23 we already mentioned the variable IFS.

• IFS is short for “internal field separator”

• This variable is considered in the word splitting step after parameter and
command substitution

• Its value gives exactly the characters at which commandline is split into
individual words

• Default value: <space><tab><newline>

Two important use cases, which alter the IFS variable temporarily:

• Manipulation of the way for loops iterate:

1 #!/bin/bash

2 OIFS=$IFS
3 IFS="+"

4 VAR="4+5+6+7"

5

6 # before the for loop runs the value after the "in"

7 # is subject to word splitting

8 echo first loop

9 for number in $VAR; do

10 echo $number
11 done

12 echo

13

14 # it is good practice to change IFS back to the

15 # original after you used the trick , otherwise

16 # all sorts of crazy errors can occur

17 IFS=$OIFS
18

19 echo second loop

20 for i in 1 2 3 4; do

21 # this works now as intuitively expected:

22 echo $i
23 done

4 control io/IFS for.sh

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 54

1 first loop

2 4

3 5

4 6

5 7

6

7 second loop

8 1

9 2

10 3

11 4

• Influencing read:

1 #!/bin/bash

2

3 ARG="foo"

4 VAL="bar"

5 COMMENT="Some crazy comment"

6

7 # here we run code to determine the values of

8 # ARG , VAL , COMMENT

9

10 # store it for later usage in a more compact form

11 STORAGE="$ARG+$VAL+$COMMENT"
12

13 # ...

14

15 # unpack it again

16 OIFS=$IFS
17 IFS="+"

18 echo "$STORAGE" | {

19 read ARG VAL COMMENT

20 echo "The argument was $ARG"
21 echo "The value was $VAL"
22 echo "The comment was $COMMENT"
23

24 } # see next chapter why we need the { ... }

25 # ignore it for now

26 IFS=$OIFS

4 control io/IFSread.sh

1 The argument was foo

2 The value was bar

3 The comment was Some crazy comment

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 55

Exercise 4.18. The shell uses the following procedure to lookup the path of
the commands to be executed6:

• In a commandline the first word is always considered to be the command.

• If this word is a path (contains a “/”) execute this very file.

• Else go through all existing directories in the variable PATH. The directo-
ries are separated using the character “:”. If there exists a file named like
the command in a directory, which is executable as well, execute this file.

• Else keep searching in the next directory in PATH

Example: The commandline

1 vim testfile

has the first word/command vim. Consider

1 PATH="/usr/local/bin:/usr/bin:/bin"

a lookup reveals that the file /usr/bin/vim exists and is executable. So this
file is executed.

There exists a tool, called which, that does exactly this lookup when pro-
vided with a command as its first argument. See man which for more details.
We want to rebuild the which command as a script.

• Take the name of a command on $1

• Go through all existing directories in PATH and try to find an executable
file called $1 in these.

• If it exists print the full path and return 0

• Else return 1

Hints:

• Try to go through all directories in PATH first. There is an easy way to do
this with one of the loops we discussed and IFS-manipulation

• Read the documentation of test in order to find ouf how to test if a file
is executable.

4.9 Conventions when scripting

To conclude this chapter I have collected a few notes about conventions that I
use when writing shell scripts. Some rules are loosely based on the Unix phi-
losophy [1], but most of it comes from my personal experience. Some things I
mention here seem tedious, but I can assure you these things pay back at some
point. Either because you need less time to look stuff up or because you spot
errors more quickly or because they make it easier to reuse scripts at a later
point in time.

There are as usually many exceptions to each of the guidelines below. In
practice try to follow each guideline, unless you have a good reason not to.

6This is a slight simplification since e.g. commandlines can be far more complex.

CHAPTER 4. CONTROL STRUCTURES AND INPUT/OUTPUT 56

4.9.1 Script structure

• Have a shebang. Dot.

• A block of code doing a task should have a comment explaining what
happens, what goes in and what comes out. This is especially true for
functions (see section 6.2 on page 74).

• Whenever funny bashisms are used that could make code unclear, explain
what happens.

• One script should only do one job only. Split complicated tasks into many
scripts. This makes it easier to code and easier to reuse.

• Use shell functions (see section 6.2 on page 74) to structure your script.
Have a comment what each function does.

4.9.2 Input and output

• Reserve stdin for data: Do not use the read command to ask the user
for data or parameters, much rather use argument parsing for this. This
makes the scripts more flexible.

• Use helpful error messages with as much info as possible. Print them to
stderr

• Reserve stderr for errors, stdout for regular output. If you need to output
two separate things, have the more important one printed to stdout, the
other into a file. Even better: Allow the user to choose what goes into the
file and what to stdout.

⇒ Can be summarised as “Design each script as a filter”

• Use mktemp for temporary files and clean the mess up afterwards (see
section 6.3 on page 83)

4.9.3 Parsing arguments

• Each script should support the arguments -h or --help. If these argu-
ments are provided, explain what the script does and explain at least the
most important commandline arguments it supports.

• For each argument there should be a descriptive “long option” preceded
by two “--”. There may be short options (preceded by one “-”).

• Do not worry about the long argument names. You can code tab comple-
tion (see section B.1.2 on page 123) for your script.

Chapter 5

Arithmetic expressions and
advanced parameter
expansions

In this chapter we will expand on two topics we already briefly touched: Arith-
metic expansion and parameter expansion (in section 3.2 on page 22).

5.1 Arithmetic expansion

The arithmetic expansion is a simple, yet extremely convenient way to perform
calculations directly in the bash. Arithmetic expressions have the syntax

1 ((expression))

Everything within the brackets is subject to arithmetic evaluation1:

• The expression may be split into subexpressions using the comma ,

1 ((1+2 ,4 -4))

• The full range of parameter expansion expressions is available (see sec-
tion 5.3 on page 64). One may, however, also access or assign variables
without the leading $

1 VAR=4

2 OTHER =3

3 LAST=2

4 ((LAST=VAR+$OTHER))

5 echo $LAST

1 7

• Note: Positional parameters are not available

1The precise rules are more or less identical to the rules of the C programming language

57

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS58

• All common operators are available:

– + - addition, subtraction

– * / % multiplication, (integer) division, remainder

– ** exponentiation

– name++ ++name name-- --name increment and decrement operators

– += -= *= /= %= Infix assignment

1 #!/bin/bash

2 ((

3 C=1,

4 D=2,

5

6 SUM=C+D,

7 DIV=C/D,

8 MOD=C%D,

9 EXP=D**4

10))

11 echo "C: $C"
12 echo "D: $D"
13 echo

14 echo "SUM=C+D: $SUM"
15 echo "DIV=C/D: $DIV"
16 echo "MOD=C%D: $MOD"
17 echo "EXP=D**4: $EXP"
18

19 ((

20 CAFTER=C++,

21 DAFTER=--D

22))

23 echo "C: $C"
24 echo "D: $D"
25 echo "CAFTER: $CAFTER"
26 echo "DAFTER: $DAFTER"

5 variables/arith operator ex.sh

1 C: 1

2 D: 2

3

4 SUM=C+D: 3

5 DIV=C/D: 0

6 MOD=C%D: 1

7 EXP=D**4: 16

8 C: 2

9 D: 1

10 CAFTER: 1

11 DAFTER: 1

• Brackets (and) can be used with their usual meaning

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS59

• Comparison and logic operators are available as well:

– == != equality, inequality

– <= >= < > se, ge, smaller, greater

– && || logical AND and logical OR

Internally “true” is represented by 1 and “false” by 0 (like in C)

1 #!/bin/bash

2 ((4==4)); echo $?
3 ((4!=4)); echo $?
4 ((3<4 && 4!=4)); echo $?
5 ((A= 4==4+4)); echo $A

5 variables/arith logic ex.sh

1 0

2 1

3 1

4 0

• Expressions evaluating to 0 are considered to be false, i.e. their return
code is 1.

1 ((0)) ; echo $?

1 1

• Expressions evaluating to another value are true, i.e. return with 0.

1 ((-15)) ; echo $?

1 0

Especially the last two point seem a little strange at first, but they assure that
arithmetic expressions can be used as a replacement for test in while or if

constructs

1 #!/bin/bash

2

3 C=1

4 while ((++C<40)); do

5 if ((C%3 == 0));then

6 echo "I can be divided by 3: $C"
7 fi

8 done

5 variables/arith replacement.sh

1 I can be divided by 3: 3

2 I can be divided by 3: 6

3 I can be divided by 3: 9

4 I can be divided by 3: 12

5 I can be divided by 3: 15

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS60

6 I can be divided by 3: 18

7 I can be divided by 3: 21

8 I can be divided by 3: 24

9 I can be divided by 3: 27

10 I can be divided by 3: 30

11 I can be divided by 3: 33

12 I can be divided by 3: 36

13 I can be divided by 3: 39

By the means of the arithmetic evaluation the bash also supports a C-like for

loop with the syntax

1 for ((expr1 ; expr2 ; expr3)) ; do list ; done

• expr1, expr2 and expr3 all have to be arithmetic expressions.

• First expr1 is evaluated

• Then expr2 is repeatedly evaluated until it gives zero (“C-false”)

• For each successful evaluation both the list is executed as well as expr3.

1 #!/bin/bash

2 MAX=4

3 for((I=0; I<MAX; ++I)); do

4 echo $I
5 done

6 echo

7 for((I=MAX -1; I>=0; --I));do

8 echo $I
9 done

5 variables/arith for cloop.sh

1 0

2 1

3 2

4 3

5

6 3

7 2

8 1

9 0

Finally arithmetic expansion is invoked by a syntax like

1 $((expression))

• expression is subject to arithmetic evaluation as described above

• The whole construct is replaced by the final value the expression results
in.

• The return code of (()) is not available.

• The expression may be used just like an parameter expansion ${VAR}

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS61

1 #!/bin/bash

2 N=$1
3 echo "You kindly supplied: $N"
4 echo "The square is: $((N*N))"
5 echo "I can add some stuff: $((1+1 ,2+N,N+3))"

5 variables/arith expansion.sh

1 You kindly supplied: 5

2 The square is: 25

3 I can add some stuff: 8

A big drawback on all these paradigms is that the bash only supports integer
arithmetic. Even for intermediates there is only integer precision available, e.g.

1 #!/bin/bash

2 echo $((100*13/50))
3 echo $((13/50*100))

5 variables/arith intermediate floats.sh

1 26

2 0

Hence the order in which expressions are entered can sometimes become very
important.

Whenever floating point arithmetic is needed one needs to use one of the tricks
discussed in section 5.2 on the next page.

Exercise 5.1. What is the return code of the following expressions and why?

1 %TODO have a few easier ones like ((3-4)), ((0*4, 3))

2 ((B=0))

3 echo $((B=0))
4 echo $((B=0)) | grep 0

5 for((C=100,A=99 ; C%A-3 ; C++,A--)); do ((B=(B+1) %2)) ;↙
↪→done; ((B))

6 ((B=1001%10)) | grep 4 || ((C=$(echo "0"|grep 2)+4, 2%3))↙
↪→ && echo $((4-5 && C-3+B)) | grep 2

Last two are optional.

Exercise 5.2. For the arithmetic expansion an empty variable or a string that
cannot be converted to an integer counts as zero(“C-false”)

• Try this in a shell or in a script, e.g. execute the following:

1 A="string"

2 echo $((A+0))
3 A="4"

4 echo $((A+0))

contrast this with

1 A="string"

2 echo $A
3 A="4"

4 echo $A

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS62

• How could this behaviour (together with the [program) be exploited to
test whether an input parameter can be properly converted to an integer?

• Write a script that calculates the cube of N, where N is an integer supplied
as the first argument to your script. Of cause you should check that N is
a sensible integer before entering the routine.

Exercise 5.3. optional Use bash arithmetic expressions to calculate all primes
between 1 and N, where N is a number supplied as the first argument to your
script.

5.2 Non-integer arithmetic

Non-integer arithmetic, i.e floating point computations, cannot be done in plain
bash. The most common method is to use the bc terminal calculator, like so

1 # echo expression | bc -l

2 echo "13/50*100" | bc -l

1 26.00000000000000000000

The syntax is more or less identical to the arithmetic expansion, including the
C-like interpretation of true and false

1 echo "3<4" | bc -l # gives true

2 echo "1 == 42" | bc -l # gives false

1 1

2 0

A minor difference is that ^ is used instead of ** in order to denote exponenti-
ation.

1 echo "3^3" | bc -l

1 27

The format of the output can be changed using a few flags (see manpage of bc).

• For example one can influence the base (2,8,10 and 16 are supported)

1 echo "obase =2; 2+4" | bc -l

1 110

• or the number of decimal figures

1 echo "scale =4; 5/6" | bc -l

1 .8333

Next to bc one can in principle also use any other floating-point aware program
like awk (see chapter 8 on page 99) or python. Most of the time it is, however,
still sensible to use bc, since it is extremely, i.e. quick to start up.

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS63

Exercise 5.4. Now we want to extend our project to recommend books from
Project Gutenberg. Recall that your script from exercise 4.6 on page 44 gives
output of the form

1 pg74.txt 45 1045

2 pg345.txt 60 965

where the columns were separated by tabs. The second column was the number
of matches and the third column was the number of actual lines in the file.
Write a script that

• takes one pattern as an argument, which is then used to call the script
from exercise 4.6 on page 44

• parses the respective script output

• calculates for each book the relative importance given as

ξ =
Number of matching lines

Number of actual lines

and writes this ξ-value and the book name to a temporary file. To make
the next steps easier you should separate the value and the book name by
a <tab> and have the ξ-value in the first and the book name in the second
column.

• optional sorts the temporary file according to the relative importance

• optional suggests the 3 best-scoring books for the user and gives their
score.

• optional One can entirely omit writing to a temporary file. Try this in
your script.

Try a few patterns, e.g. “Baker”, “wonder”, “the”, “virgin”, “Missouri, Ken-
tucky”. Any observations?

Exercise 5.5. Write a script that takes either the argument -m or -s, followed
by as many numbers as the user wishes. The script should

• Calculate the sum of all numbers if -s is provided

• optional The mean if -m is provided

• optional Give an error if neither -m nor -s are given.

Some ideas:

• In both cases you will need to calculate the sum, so try to get that working
first.

• As you know bc evaluates expressions given to it on stdin, so try to built
an appropriate sum expression from all commandline arguments using a
loop. This you echo to bc in order to get the sum.

• You may assume that users are nice and will only provide valid strings as
the number arguments to your script.

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS64

Exercise 5.6. optional Read about the mtx format in appendix C.1 on page 125.

• Write a script that takes a mtx file on stdin and a number on $1.

• The output should be again a valid mtx file where all entries are multiplied
with said number.

• The comment in the first line (but not necessarily any other) should be
preserved

• You can assume that both the data you get on stdin as well as the number
on $1 are sensible.

Try your script on resources/matrices/3.mtx and resources/matrices/3

b.mtx, since unfortunately not all mtx files will work with this method.

5.3 A second look at parameter expansion

Parameter expansion is much more powerful than just returning the value of a
parameter. An overview:

• assign-default

1 ${parameter :=word}

If parameter is unset or null, set parameter to word. Then substitute the
value of parameter. Does not work with positional parameters

• use-default

1 ${parameter:-word}

If parameter is unset or null, substitute word, else the value of parameter

• use-alternate

1 ${parameter :+word}

If parameter is unset or null, nothing is substituted, else word is substituted.

1 #!/bin/bash

2

3 A=

4 B=3

5

6 echo ${B:+"B works"}
7 echo ${A:+"A works"}
8 echo ${A:-"notA: "$B}
9

10 echo ${A:="defined"}
11 echo ${A:+"A works"}
12 echo ${A:-"notA: "$B}

5 variables/pexp use.sh

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS65

1 B works

2

3 notA: 3

4 defined

5 A works

6 defined

• substring expansion

1 ${parameter:offset}
2 ${parameter:offset:length}

Expands into up to length characters from parameter, starting from char-
acter number offset (0-based). If length is omitted, all characters starting
from offset are printed. Both length and offset are arithmetic expres-
sions

• parameter length

1 ${# parameter}

Expands into the number of characters parameter currently has.

1 #!/bin/bash

2

3 VAR="some super long string"

4 LEN=${#VAR}
5 echo $LEN
6

7 # remove first and last word:

8 echo ${VAR:4:LEN -10}
9

10 # since parameter expansion is allowed

11 # in arithmetic expressions

12 echo ${VAR :2+2:${#VAR}-10}

5 variables/pexp length.sh

1 22

2 super long

3 super long

• pattern substitution

1 ${parameter/pattern/string} # one occurrence

2 ${parameter // pattern/string} # global

parameter is expanded and the longest match of pattern is replaced by
string. Normally only the first match is replaced. If the second — global
— version is used, however, all occurrences of pattern are replaced by
string.

CHAPTER 5. ARITHMETIC EXPRESSIONS ANDADVANCED PARAMETER EXPANSIONS66

1 #!/bin/bash

2 VAR="some super long string"

3 PATTERN="s*e"

4 PATTERN2="?r"

5 REPLACEMENT="FOOOO"

6

7 # the longest match is replaced:

8 echo ${VAR/$PATTERN/$REPLACEMENT}
9 echo ${VAR/$PATTERN2/$REPLACEMENT}

10

11 # all matches are replaced

12 echo ${VAR// $PATTERN2/$REPLACEMENT}

5 variables/pexp subst.sh

1 FOOOOr long string

2 some supFOOOO long string

3 some supFOOOO long sFOOOOing

Exercise 5.7. Implement the rev command in bash:

• Read input provided on stdin line by line.

• For each line reverse the characters, i.e.

test → tset abcdef → fedcba

• Print the reversed string to stdout

Hints:

• The string reversal can be easily achieved using the substring expansion:
By using a length of 1 we can design an inner loop to extract one character
after another from the string.

• The new reverted string can than be built from these characters.

Chapter 6

Subshells and functions

This chapter is concerned with useful features the bash provides in order to give
scripts a better structure and make code more reusable.

6.1 Explicit and implicit subshells

6.1.1 Grouping commands

Multiple commands can be grouped using the syntax

1 { list; }

• A line break or ; in the end is crucial

• All commands in the list share the same stdin, stdout and stderr.

• The return code is the return code of the last command in list.

The syntax is e.g. useful for

• Unpacking data

1 #!/bin/bash

2 < resources/matrices /3. mtx grep -v "%" | {

3 read ROW COL ENTRIES

4 echo "Number of rows: $ROW"
5 echo "Number of cols: $COL"
6 echo "Number of entries: $ENTRIES"
7 echo "List of all entries:"

8 while read ROW COL VAL; do

9 echo " M($ROW ,$COL) = $VAL"
10 done

11 }

6 functions subshells/group unpack.sh

67

CHAPTER 6. SUBSHELLS AND FUNCTIONS 68

1 Number of rows: 3

2 Number of cols: 3

3 Number of entries: 9

4 List of all entries:

5 M(1,1) = 1

6 M(1,2) = 1

7 M(1,3) = 1

8 M(2,1) = 2

9 M(2,2) = 2

10 M(2,3) = 2

11 M(3,1) = 3

12 M(3,2) = 3

13 M(3,3) = 3

• Sending data to a file

1 #!/bin/bash

2

3 {

4 echo "Crazy header"

5 echo

6 echo "A first message to stderr" >&2

7 echo "I want fish" | grep -w fish

8 echo "lorem ipsum dolor sit amet"

9 echo "This goes to the stderr" >&2

10 } > /tmp/some -file -here 2> /tmp/file -stderr

11

12 # print content

13 echo Everything on the first file:

14 echo -----------

15 cat /tmp/some -file -here

16 echo -----------

17 echo

18 echo "Everything on the second file:"

19 echo -----------

20 cat /tmp/file -stderr

21 echo -----------

22

23 # cleanup

24 rm /tmp/some -file -here /tmp/file -stderr

6 functions subshells/group write file.sh

CHAPTER 6. SUBSHELLS AND FUNCTIONS 69

1 Everything on the first file:

2 -----------

3 Crazy header

4

5 I want fish

6 lorem ipsum dolor sit amet

7 -----------

8

9 Everything on the second file:

10 -----------

11 A first message to stderr

12 This goes to the stderr

13 -----------

• There surely exist alternatives we could use in order to write many lines
of data to a file, e.g. instead of

1 {

2 echo line1

3 echo line2

4 echo line3

5 } > /tmp/file

we could also use

1 echo line1 > /tmp/file

2 echo line2 >> /tmp/file

3 echo line3 >> /tmp/file

The latter method has a few disadvantages, however:

– One easily forgets one of the >> or > operators at the end

– One easily mixes up > and >> when typing the code. So some of the
stuff gets overwritten.

– If we want to rearrange the order in which the data gets written at
a later point we need to be careful to change the > and >> as well in
the appropriate lines.

6.1.2 Making use of subshells

Subshells are special environments within the current executing shell, which
work very similar to command grouping. Their special property is that all
changes to the so-called execution environment are only temporary. The execu-
tion environment includes

• The current working directory

• The list of defined variables and their values

Once the subshell exits all these changes are undone, i.e. the main shell’s exe-
cution environment is restored. Invocation syntax:

1 (list)

CHAPTER 6. SUBSHELLS AND FUNCTIONS 70

• All commands in the list share the same stdin, stdout and stderr.

• The return code is the return code of the last command in list.

• All changes the subshell makes to the execution environment are only
temporary and are discarded once the subshell exits.

An example

1 #!/bin/bash

2 A=3

3 B=6

4 pwd

5 (

6 A=5 #locally change varible

7 echo "Hello from subshell: A: $A B: $B"
8 cd .. #locally change directory

9 pwd

10)

11 echo "Hello from main shell: A: $A B: $B"
12 pwd

6 functions subshells/subshell example.sh

1 /export/home/abs/abs001/bash -course

2 Hello from subshell: A: 5 B: 6

3 /export/home/abs/abs001

4 Hello from main shell: A: 3 B: 6

5 /export/home/abs/abs001/bash -course

Subshells are particularly useful whenever one wants to change the environment
and knows per se that this change is only intended to last for a small part of a
script. This way a cleanup cannot be forgotten.

1 #!/bin/bash

2

3 #Here want to do some stuff in the PWD

4 echo "The list of files in the PWD:"

5 ls | head -n 4

6 (

7 # do stuff in a different directory

8 cd resources/matrices

9

10 # and using a different IFS

11 IFS=":"

12

13 echo

14 echo "The list of files in resources/matrices"

15 ls | head -n4

16

17 echo

18 echo "Some paths:"

19 for path in $PATH; do

20 echo $path
21 done | head -n4

22)

CHAPTER 6. SUBSHELLS AND FUNCTIONS 71

23

24 # and we are back to the original

25 echo

26 for i in word1:word2; do

27 echo $i
28 done

6 functions subshells/subshell cdifs.sh

1 The list of files in the PWD:

2 1_intro_Unix

3 2_intro_bash

4 3_simple_scripts

5 4_control_io

6

7 The list of files in resources/matrices

8 3a.mtx

9 3 b.mtx

10 3.mtx

11 bcsstm01.mtx

12

13 Some paths:

14 /usr/local/bin

15 /usr/bin

16 /bin

17 /usr/local/games

18

19 word1:word2

6.1.3 Implicit subshells

Apart from the explicit syntax discussed above, the following commands also
start a subshell implicitly

• Pipes: This is done for performance reasons by the bash. Forgetting about
this is a very common mistake:

1 #!/bin/bash

2 C=0 # initialise counter

3 < resources/testfile grep "e" | while read line; do

4 # subshell here!

5 ((C++))

6 done

7 #not in subshell any more:

8 echo "We found $C matches for \"e\"."

6 functions subshells/subshell pipes.sh

1 We found 0 matches for "e".

A workaround for this problem is to run everything that needs to access the
variable C as a group and cache the output using a command substitution:

CHAPTER 6. SUBSHELLS AND FUNCTIONS 72

1 #!/bin/bash

2 COUNT=$(< resources/testfile grep "e" | {

3 C=0

4 while read line; do

5 ((C++))

6 done

7 echo $C
8 })

9 echo "We found $COUNT matches for \"e\"."

6 functions subshells/subshell pipes correct.sh

1 We found 4 matches for "e".

• Command substitutions: Usually less of a problem

1 #!/bin/bash

2 A=-1

3 # everything between $(and) in the next

4 # line is a subshell. The increment is lost.

5 echo $(((A++)); echo $A)

6 echo $A

6 functions subshells/subshell commandsubst.sh

1 0

2 -1

• If command substitutions start a subshell one might wonder how we could
extract multiple results calculated in a single command substitution. Un-
fortunately there is no simple way to do this, since all changes we make
to variables inside the $(\ldots) are lost. We only have stdout, which
we can cache in another variable in order to pass data back to the main
shell. The solution to this problem is to pack the data inside the subshell
and to unpack it later, e.g.

1 #!/bin/bash

2

3 # some input from the main shell

4 N=15

5

6 RES=$(
7 # do calculations in the subshell

8 SUM=$((N+13))
9 SQUARE=$((N*N))

10

11 # pack the results with a :

12 # i.e. echo them separated by a :

13 echo "$SUM:$SQUARE"
14)

15

16 # now use cut to unpack them and recover

17 # the individual values

18 SUM=$(echo "$RES" | cut -d: -f1)

CHAPTER 6. SUBSHELLS AND FUNCTIONS 73

19 SQUARE=$(echo "$RES" | cut -d: -f2)

20

21

22 # echo them:

23 echo "$SUM"
24 echo "$SQUARE"

6 functions subshells/subshell pack.sh

1 28

2 225

Exercise 6.1. This script does not produce the results the author expected.
Spot the errors and correct them.

1 #!/bin/bash

2

3 # initial note:

4 # this script is deliberately made cumbersome

5 # this script is bad style. DO NOT COPY

6

7 # keyword

8 KEYWORD=${1: -0000}
9

10 ERROR=0

11 [! -f "bash_course.pdf"] && (

12 echo "Please run at the top of the bash_course repository↙
↪→" >&2

13 ERROR =1

14)

15

16 # change to the resources directory

17 if ! cd resources /; then

18 echo "Could not change to resources directory" >&2

19 echo "Are we in the right directory?"

20 ERROR =1

21 fi

22

23 [$ERROR -eq 1] && (

24 echo "A fatal error occurred"

25 exit 1

26)

27

28 # list of all matching files

29 MATCHING=

30

31 # add files to list

32 ls matrices /*. mtx gutenberg /*. txt | while read line; do

33 if < "$line" grep -q "$KEYWORD"; then

34 MATCHING=$(
35 echo "$MATCHING"
36 echo $line
37)

38 fi

CHAPTER 6. SUBSHELLS AND FUNCTIONS 74

39 done

40

41 # count the number of matches:

42 COUNT=$(echo "$MATCHING" | wc -l)

43

44 if [$COUNT -gt 0]; then

45 echo "We found $COUNT matches!"
46 exit 0

47 else

48 echo "No match" >&2

49 exit 1

50 fi

6 functions subshells/subshell exercise.sh

1 We found 1 matches!

Exercise 6.2. Rewrite your PATH-lookup script from exercise 4.18 on page 55
using the features from this section wherever it is sensible.

6.2 bash functions

The best way to structure shell code by far are bash functions. Functions are
defined1 like

1 name() { list; } # list executed in the current shell ↙
↪→environment

or

1 name() (list) # list executed in subshell

and essentially define an alias to execute list by the name of name. Basic facts:

• Functions work like user-defined commands. We can redirect and/or pipe
stuff from/to them. As with scripts or grouped commands, the whole list

shares stdin, stdout and stderr.

1 #!/bin/bash

2 testfct () {

3 echo blub #write to stdout

4 read test #read from stdin

5 read test2 #also read from stdin

6 echo $test >&2 #write to stderr

7 echo $test2 #write to stout

8 }

9

10

11 {

12 echo line1

13 echo line 2

14 } | testfct | grep 2

6 functions subshells/fun pipe.sh

1There are more ways to define functions. See the bash manual [2] for the others

CHAPTER 6. SUBSHELLS AND FUNCTIONS 75

1 line1

2 line 2

• We can pass arguments to functions, which are available by the positional
parameters

1 #!/bin/bash

2

3 argument_analysis () {

4 echo $1
5 echo $2
6 echo $@
7 echo $#
8 }

9

10 # call function

11 argument_analysis 1 "2 3" 4 5

6 functions subshells/fun arguments.sh

1 1

2 2 3

3 1 2 3 4 5

4 4

• Inside a function the special return command exists, which allows to exit
a function prematurely and provide an exit code to the caller.

• If no return is called, the last command in list determines the exit code.

1 #!/bin/bash

2

3 return_test () {

4 if ["$1" == "a"]; then

5 echo "No thanks"

6 return 1

7 fi

8

9 echo "Thank you"

10 }

11

12 other_test () {

13 ["$1" == "b"]

14 }

15

16 VAR=b

17 if other_test "$VAR"; then

18 return_test "$VAR"
19 echo $?
20 fi

21

22 return_test "a"

23 echo $?

6 functions subshells/fun return.sh

CHAPTER 6. SUBSHELLS AND FUNCTIONS 76

1 Thank you

2 0

3 1

• All variables of the calling shell are available and may be modified

• Variables inside a function may be defined with the prefix local. In
this case they are forgotten once the function returns from the list. In
other words this variable is only available for the function itself and all its
children2.

1 #!/bin/bash

2 # Global variables:

3 VAR1=vvv

4 VAR3=lll

5

6 variable_test () {

7 local FOO=bar

8 echo $VAR1
9 VAR3=$FOO

10 }

11

12 echo "--$VAR1 --$FOO --$VAR3 --"
13 variable_test

14 echo "--$VAR1 --$FOO --$VAR3 --"

6 functions subshells/fun vars.sh

1 --vvv ----lll --

2 vvv

3 --vvv ----bar --

⇒ One can think of functions as small scripts within scripts.

2Functions directly or indirectly called by the function, i.e. called functions, functions
called from called functions, . . .

CHAPTER 6. SUBSHELLS AND FUNCTIONS 77

Good practice when using functions:

• Give functions a sensible and descriptive name.

• Put a comment right at the top of the function definition, describing:

– what the function does

– what the expected argument are

– what the return code is

• Do not trust the caller: Check similar to a script that the parameters have
the expected values

• Do not modify global variables unless you absolutely have to. This greatly
improves the readability of your code.

• Use local variables by default inside functions.

• Have functions first, then “global code”

• Try to define functions in an abstract way. This makes is easier to reuse
and expand them later.

• It usually is a good idea to have functions only return error codes and
print error messages somewhere else depending on the context.

Compare the two code snippets and decide for yourself what is more readable3

1 #!/bin/bash

2 # a bad example

3

4 if ["$1" == "-h" -o "$1" == "--help"];then

5 echo "Script to display basic information in an mtx file"

6 exit 0

7 fi

8

9 foo() {

10 echo $NONZERO
11 }

12

13 DATA=""

14

15 check2 () {

16 if [-z "$DATA"]; then

17 echo "Can 't read file" >&2

18 return 1

19 fi

20 return 0

21 }

22

23 blubb() {

24 echo $ROW
25 }

3By the way: 6_functions_subshells/fun_bad.sh contains an error. Good luck finding
it.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 78

26

27 check1 () {

28 if [! -r "$1"]; then

29 echo "Can 't read file" >&2

30 return 1

31 fi

32 return 0

33 }

34

35 check1 "$1" || exit 1

36

37 fun1() {

38 DATA=$(< "$1" grep -v "%" | head -n1)

39 }

40

41 fun1 "$1"
42 check2 || exit 1

43

44 reader () {

45 echo $DATA | {

46 read COL ROW NONZERO

47 }

48 }

49

50 reader

51 echo -n "No rows: "; blubb

52

53 tester () {

54 echo $COL
55 }

56 echo -n "No cols: "; tester

57 echo -n "No nonzero: "; foo

58

59 exit 0

6 functions subshells/fun bad.sh

1 #!/bin/bash

2 # a good example

3

4 mtr_read_head () {

5 #$1: file name of mtx file

6 # echos the first content line (including the matrix size↙
↪→) to stdout

7 # returns 0 if all is well

8 # returns 1 if an error occurred (file could not be read)

9

10 # check we can read the file

11 [! -r "$1"] && return 1

12

13 # get the data

14 local DATA=$(< "$1" grep -v "%" | head -n1)

15

CHAPTER 6. SUBSHELLS AND FUNCTIONS 79

16 # did we get any data?

17 if ["$DATA"]; then

18 echo "$DATA"
19 return 0

20 else

21 return 1

22 fi

23 }

24

25 gcut() {

26 # this a more general version of cut

27 # that can be tuned using the IFS

28 #

29 # $1: n -- the field to get from stdin

30 # return 1 on any error

31

32 local n=$1
33 if ((n<1)); then

34 return 1

35 elif ((n==1)); then

36 local FIELD BIN

37

38 # read two fields and return

39 # the first we care about

40 read FIELD BIN

41 echo "$FIELD"
42 else

43 local FIELD REST

44

45 # discard the first field

46 read FIELD REST

47

48 # and call myself

49 echo "$REST" | gcut $((n-1))
50 fi

51 }

52

53 mtx_get_rows () {

54 # get the number of rows in the matrix from an mtx file

55 # echo the result to stdout

56 # return 1 if there is an error

57

58 local DATA

59

60 # read the data and return when error

61 DATA=$(mtr_read_head "$1") #|| return $?
62 # parse the data -> row is the first field

63 echo "$DATA" | gcut 1

64

65 # implicit return of return code of gcut

66 }

67

68 mtx_get_cols () {

69 # get the number of columns in the matrix file

CHAPTER 6. SUBSHELLS AND FUNCTIONS 80

70 # return 1 on any error

71

72 local DATA

73 DATA=$(mtr_read_head "$1") || return $?
74 echo "$DATA" | gcut 2 #cols on field 2

75 }

76

77 mtx_get_nonzero () {

78 # get the number of nonzero entries in the matrix file

79 # return 1 on any error

80

81 local DATA

82 DATA=$(mtr_read_head "$1") || return $?
83 echo "$DATA" | gcut 3 #cols on field 2

84 }

85

86 mtx_get_comment () {

87 mtx_fill_cache "$1" && echo "$__MTX_INFO_CACHE_COMMENT"
88 }

89

90 ####################################

91 # the main script

92

93 if ["$1" == "-h" -o "$1" == "--help"];then

94 echo "Script to display basic information in an mtx file"

95 exit 0

96 fi

97

98 if [! -r "$1"]; then

99 echo "Please specify mtx file as first arg." >&2

100 exit 1

101 fi

102

103 echo "No rows: $(mtx_get_rows "$1")"
104 echo "No cols: $(mtx_get_cols "$1")"
105 echo "No nonzero: $(mtx_get_nonzero "$1")"
106

107 exit 0

6 functions subshells/fun good.sh

Exercise 6.3. optional Rebuild the find -type f command (see exercise 4.17
on page 52) using the features of the bash shell. I.e. your script should list the
relative path to all files in all subdirectories of the current working directory.
Some hints:

• It is a good idea to define a function that deals with the directories recur-
sively

• Use subshells to keep track of the current directory level you are in.

• The for file in *; do-loop is your friend here.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 81

Exercise 6.4. optional Take another look at your script from the second
Project Gutenberg exercise (exercise 5.4 on page 63). Split the script up into
sensible functions. A few ideas:

• One function to parse all output from the ex.-4.6-script and prepare a list
of the book names and ξ-numbers on stdout

• One function to read this list and print three recommended books to stdout

• The main body should just call the ex.-4.6-script and the functions defined
above and print the final messages to the user.

Exercise 6.5. In this exercise we will try some abstract bash programming
using functions. First take a look at the following function:

1 map() {

2 COMMAND=$1 # read the command

3 shift # shift $1 away

4

5 # now for all remaining arguments execute

6 # the command with the argument:

7 for val in $@; do

8 $COMMAND $val
9 done

10 }

6 functions subshells/map.lib.sh

It is a so-called mapping function that applies a command or a function name
to all arguments provided in turn. Copy the code to a fresh file and add the
following lines in order to understand map more closely:

1 map echo "some" "variables on the" "commandline"

2

3 cd ~/bash -course #replace by dir where you downloaded ↙
↪→the git into

4 map head "resources/testfile" "resources/matrices /3. mtx↙
↪→"

What happens in each case?

Now try to write the following functions:

• A function add that expects 2 arguments. It adds them and echos the
result.

• A function multiply that also expects 2 arguments. It multiplies them
and echos the result.

• A function operation that reads a global variable SEL and depending on
its value calls add or multiply. It should pass all arguments supplied to
operation further on to either add or multiply.

• A function calculate3 that takes a single argument and calls operation
passing on this single argument and also the number “3” as the second
argument to operation.

CHAPTER 6. SUBSHELLS AND FUNCTIONS 82

optional Write an encapsulating script that

• uses map to apply calculate3 all arguments on the commandline but the
first.

• examines the first argument in order to set the variable SEL (e.g. the
argument --add3 selects addition, the argument --multiply3 multiplica-
tion)

How much effort does it take to add a third option that allows to subtracts 3
from all input parameters?

6.2.1 Overwriting commands

At the stage of execution the bash gives preference to user-defined functions
over builtin commands or commands from the operating system. As a result
care must be taken when naming your functions, since these can “overwrite”
commands4:

1 #!/bin/bash

2

3 test() {

4 echo "Hi from the test function"

5 }

6

7 VAR="blubber"

8 test -z "$VAR" && echo "VAR is zero"

6 functions subshells/overwrite fail.sh

1 Hi from the test function

2 VAR is zero

This is of cause also true for commands within the function itself, which can
lead to very subtle infinite loops:

1 #!/bin/bash

2

3 C=0 # count to break at some point

4

5 [() { # overwrite the [builtin

6

7 # use test to end at some point

8 if test $((C++)) -gt 100; then

9 echo "$C"
10 exit 0

11 fi

12

13 # this gives an infinite loop:

14 if [$C -gt 100] ; then

15 echo "never printed"

16 exit 1

17 fi

4Overwriting is a concept from object-oriented programming where functions of the same
name are called depending on the context of the call

CHAPTER 6. SUBSHELLS AND FUNCTIONS 83

18 }

19

20 if ["$VAR"]; then

21 echo "VAR is not empty" #never reached

22 fi

6 functions subshells/overwrite loop.sh

1 102

In scripts it is best to avoid this feature since it can make code very counterintu-
itive and hard to understand. For customising your interactive bash, however,
this can become very handy (see appendix B.1.1 on page 123).

Also note, that the bash only remembers the most recently defined body for
a function name. So we could alter a function dynamically during a script.

1 #!/bin/bash

2

3 printer () { echo "1"; }

4

5 for((I=0;I <10;++I)); do

6 printer

7 printer () { echo "$I"; }

8 done

6 functions subshells/overwrite mostrecent.sh

1 1

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

Again this feature should be used with care.

6.3 Cleanup routines

Using subshells it becomes easy to temporarily alter variables and have them
“automatically” change back to their original value — no matter how the sub-
shell exited. For some use cases this is not enough, however. Consider for
example the following program

1 #!/bin/bash

2 TMP=$(mktemp) # create temporary file

3

4 # add some stuff to it

5 echo "data" >> "$TMP"
6

CHAPTER 6. SUBSHELLS AND FUNCTIONS 84

7 ##

8 # many lines of code

9 ##

10

11 # and now we forgot about the teporary file

12 if ["$CONDITION" != "true"]; then

13 exit 0

14 fi

15

16 ##

17 # many more lines of code

18 ##

19

20 #cleanup

21 rm $TMP

6 functions subshells/cleanup notrap.sh

Especially when programs get very long (and there are many exit conditions)
one easily forgets about a proper cleanup in all cases. For such purposes we can
define a routine that gets executed whenever the shell exits, e.g.

1 #!/bin/bash

2 TMP=$(mktemp) # create temporary file

3

4 # define the cleanup routine

5 cleanup () {

6 echo cleanup called

7 rm $TMP
8 }

9 # make cleanup be called WHENEVER the shell exits

10 trap cleanup EXIT

11

12 # add some stuff to it

13 echo "data" >> "$TMP"
14

15 ##

16 # many lines of code

17 ##

18

19 # and now we forgot about the teporary file

20 if ["$CONDITION" != "true"]; then

21 exit 0

22 fi

23

24 ##

25 # many more lines of code

26 ##

27

28 #no need to do explicit cleanup

6 functions subshells/cleanup trap.sh

1 cleanup called

CHAPTER 6. SUBSHELLS AND FUNCTIONS 85

6.4 Making script code more reusable

Ideally one wants to write code once and reuse it as much as possible. This way
when new features or a better algorithm is implemented, one needs to change
the code at only a single place (see ex. 6.5 on page 81). For this purpose the
bash provides a feature called “sourcing”. Using the syntax

1 . otherscript

a file otherscript can be executed in the environment of the current shell. This
means that all variables and functions defined in otherscript are also available
to the shell afterwards:

1 testfunction () {

2 echo "Hey I exist"

3 }

4 VAR=foo

6 functions subshells/sourcing.lib.sh

1 #!/bin/bash

2

3 PATH="$PATH :6 _functions_subshells"
4 . sourcing.lib.sh #lookup performed in PATH

5

6 echo $VAR
7 testfunction

6 functions subshells/sourcing.script.sh

1 foo

2 Hey I exist

Note: In order to find otherscript the bash honours the environment variable
PATH. As the example suggests this way libraries defining common or important
functionality may be stored in a central directory and used from many other
scripts located in very different places.
There exists a dirty trick to make each script become sourcable by default. It
relies on the fact that the return statement is not allowed in scripts, which are
executed normally, but is a well-allowed command if this file is sourced instead.
Therefore one can realise a break between function definitions and “global code”
that is only considered when a script is actually executed:

1 #!/bin/bash

2

3 mtr_read_head () {

4 #$1: file name of mtx file

5 # echos the first content line (including the matrix size↙
↪→) to stdout

6 # returns 0 if all is well

7 # returns 1 if an error occurred (file could not be read)

8

9 # check we can read the file

10 [! -r "$1"] && return 1

11

12 # get the data

CHAPTER 6. SUBSHELLS AND FUNCTIONS 86

13 local DATA=$(< "$1" grep -v "%" | head -n1)

14

15 # did we get any data?

16 if ["$DATA"]; then

17 echo "$DATA"
18 return 0

19 else

20 return 1

21 fi

22 }

23

24 gcut() {

25 # this a more general version of cut

26 # that can be tuned using the IFS

27 #

28 # $1: n -- the field to get from stdin

29 # return 1 on any error

30

31 local n=$1
32 if ((n<1)); then

33 return 1

34 elif ((n==1)); then

35 local FIELD BIN

36

37 # read two fields and return

38 # the first we care about

39 read FIELD BIN

40 echo "$FIELD"
41 else

42 local FIELD REST

43

44 # discard the first field

45 read FIELD REST

46

47 # and call myself

48 echo "$REST" | gcut $((n-1))
49 fi

50 }

51

52 mtx_get_rows () {

53 # get the number of rows in the matrix from an mtx file

54 # echo the result to stdout

55 # return 1 if there is an error

56

57 local DATA

58

59 # read the data and return when error

60 DATA=$(mtr_read_head "$1") #|| return $?
61 # parse the data -> row is the first field

62 echo "$DATA" | gcut 1

63

64 # implicit return of return code of gcut

65 }

66

CHAPTER 6. SUBSHELLS AND FUNCTIONS 87

67 mtx_get_cols () {

68 # get the number of columns in the matrix file

69 # return 1 on any error

70

71 local DATA

72 DATA=$(mtr_read_head "$1") || return $?
73 echo "$DATA" | gcut 2 #cols on field 2

74 }

75

76 mtx_get_nonzero () {

77 # get the number of nonzero entries in the matrix file

78 # return 1 on any error

79

80 local DATA

81 DATA=$(mtr_read_head "$1") || return $?
82 echo "$DATA" | gcut 3 #cols on field 2

83 }

84

85 mtx_get_comment () {

86 mtx_fill_cache "$1" && echo "$__MTX_INFO_CACHE_COMMENT"
87 }

88

89 #if we have been sourced this exits execution here:

90 # so by sourcing we can use gcut , mtx_get_rows , ...

91 return 0 &> /dev/null

92

93 ####################################

94

95 if ["$1" == "-h" -o "$1" == "--help"];then

96 echo "Script to display basic information in an mtx file"

97 exit 0

98 fi

99

100 if [! -r "$1"]; then

101 echo "Please specify mtx file as first arg." >&2

102 exit 1

103 fi

104

105 echo "No rows: $(mtx_get_rows "$1")"
106 echo "No cols: $(mtx_get_cols "$1")"
107 echo "No nonzero: $(mtx_get_nonzero "$1")"
108

109 exit 0

6 functions subshells/source sourcability.sh

CHAPTER 6. SUBSHELLS AND FUNCTIONS 88

Exercise 6.6. Make your script from exercise 6.5 on page 81 sourcable and
amend the following script in order to get the functionality described in the
comments:

1 #!/bin/bash

2

3 # do something in order to get the functions

4 # add and multiply from the exercise we had before

5

6 # add 4 and 5 and print result to stdout:

7 add 4 5

8

9 # multiply 6 and 7 and print result to stdout:

10 multiply 6 7

6 functions subshells/source exercise.sh

Chapter 7

Regular expressions

In the previous chapters we have introduced the most important features of the
bash shell1. We will now discuss regular expressions, a syntax that is used by
many Unix tools in order to search for or describe textual data.

7.1 Regular expression syntax

7.1.1 Matching regular expressions in plain bash

We will introduce regular expressions in a second, but beforehand we need a
tool with which we can try them out with. The bash already provides us with
a syntax which understands regular expressions or regexes:

1 [[string =~ regex]]

• This command returns with exit code 0 when there exists a substring in
string which can be described by the regular expression regex. Else it
returns 1.

• If such a substring exists one calls string a match for regex and says that
regex matches string.

Actually the [[command can do a lot more things than just matching regular
expressions, which we will not discuss here. Just note that it is an extended ver-
sion of [, so in fact everything you know for [can also be done using [[...]]

in exactly the same syntax.

7.1.2 Regular expression operators

It is best to think of regular expressions as a “search” string where some charac-
ters have a special meaning. All non-special characters just stand for themselves,
e.g. the regex “a” just matches the string “a”2.

Without further ado a non-exhaustive list of regular expression operators3:

1A list of things we left out can be found in appendix B.4 on page 124
2This is why for grep — which in fact also uses substrings by default — we could just grep

for a word not even knowing anything about regexes
3More can be found e.g. in the awk manual [3]

89

CHAPTER 7. REGULAR EXPRESSIONS 90

\ The escape character: Disables the special meaning of a character
that follows

^ matches the beginning of a string, ie. “^word” matches “wordblub
” but not “blubword”. Note that ^ does not match the beginning
of a line:

1 [[$(echo -e "test\nword") =~ ^test]]; echo $? ↙
↪→ #0=true

2 [[$(echo -e "word\ntest") =~ ^test]]; echo $? ↙
↪→ #1= false

7 regular expressions/regex anchor.sh

$ matches the end of a string in a similar way

1 [[$(echo -e "word\ntest") =~ test$]]; echo $? ↙
↪→ #0=true

2 [[$(echo -e "test\nword") =~ test$]]; echo $? ↙
↪→ #1= false

7 regular expressions/regex anchorend.sh

. matches any single character, including <newline>, e.g. P.P matches
PAP or PLP but not PLLP

[...] bracket expansion: Matches one of the characters enclosed in square
brackets.

1 [["o" =~ ^[oale]$]]; echo $? #true

2 [["a" =~ ^[oale]$]]; echo $? #true

3 [["oo" =~ ^[oale]$]]; echo $? #false

4 [["\$" =~ ^[$]$]]; echo $? #true

7 regular expressions/regex bracket.sh

Note: Inside bracket expansion only the characters], - and ^ are
not interpreted as literals.

[^...] complemented bracket expansion: Matches all characters except
the ones in square brackets

1 [["o" =~ [^eulr]]]; echo $? #true

2 [["e" =~ [^eulr]]]; echo $? #false

3

4 #ATTENTION: this is not a cbe

5 [["a" =~ [o^ale]]]; echo $?

7 regular expressions/regex compbracket.sh

| alternation operator Specifies alternatives: Either the regex to the
right or the one to the left has to match. Note: Alternation applies
to the largest possible regexes on either side

1 #gives true , since ^wo

2 [["word" =~ ^wo|rrd$]]; echo $?

7 regular expressions/regex alternation.sh

CHAPTER 7. REGULAR EXPRESSIONS 91

(...) Grouping regular expressions, often used in combination with |,
to make the alternation clear, e.g.

1 [["word" =~ ^(wo|rrd)$]]; echo $? #1= false

7 regular expressions/regex grouping.sh

* The preceding regular expression should be repeated as many times
as necessary to find a match, e.g. “ico*’ matches “ic”, “ico”
or “icooooo”, but not “icco”. The “*” applies to the smallest
possible expression only.

1 [["wo (rd" =~ wo* \(]]; echo $? #true

2 [["woo (rd" =~ wo* \(]]; echo $? #true

3 [["oo (rd" =~ wo* \(]]; echo $? #false

4 [["oo (rd" =~ (wo)* \(]]; echo $? #true

5 [["wowo (rd" =~ (wo)* \(]]; echo $? #true

7 regular expressions/regex star.sh

+ Similar to “*”: The preceding expression must occur at least once

1 [["woo (rd" =~ wo+ \(]]; echo $? #true

2 [["oo (rd" =~ (wo)+ \(]]; echo $? #false

3 [["wo (rd" =~ (wo)+ \(]]; echo $? #true

7 regular expressions/regex plus.sh

? Similar to “*”: The preceding expression must be matched once or
not at all. E.g. “ca?r” matches “car” or “cr”, but nothing else.

There are a few things to note

• Programs will try to match as much as possible.

• Regexes are case-sensitive

• Unless ^ or $ are specified, the matched substring may start and end
anywhere and a single matching substring is enough to fulfil the condition
imposed by a regular expression

7.1.3 A shorthand syntax for bracket expansions

Both bracket expansion and complemented bracket expansion allow for a short-
hand syntax, which can be used for ranges of characters or ranges of numbers,
e.g

short form equivalent long form
[a-e] [abcde]

[aA-F] [aABCDEF]

[^a-z4-9A-G] [^abcdefgh ... xyz456789ABCDEFG]

CHAPTER 7. REGULAR EXPRESSIONS 92

Exercise 7.1. Consider these strings

“ab” “67” “7b7”
“g” “67777” “o7x7g7”

“77777” “7777” “” (empty)

For each of the following regexes, decide which of the above strings are matched:

• ..

• ^..$

• [a-e]

• ^.7*$

• ^(.7)*$

7.1.4 POSIX character classes

There are also some special, named bracket expansions, called POSIX character
classes. For example

short form equivalent long form description
[:alnum:] a-zA-Z0-9 alphanumeric chars
[:alpha:] A-Za-z alphabetic chars
[:blank:] \t space and tab
[:digit:] 0-9 digits
[:print:] printable characters
[:punct:] punctuation chars
[:space:] \t\r\n\v\f space characters
[:upper:] A-Z uppercase chars
[:xdigit:] a-fA-F0-9 hexadecimal digits

Note that POSIX character classes can only be used within bracket expansions,
e.g.

1 if [[$1 =~ ^[[: space :]]*[0[: alpha :]]+]]; then

2 # $1 starts arbitrarily many spaces

3 # following by at least one 0 or letter

4 echo Match

5 exit 0

6 fi

7 echo "No match"

8 exit 1

7 regular expressions/regex posixclass.sh

CHAPTER 7. REGULAR EXPRESSIONS 93

7.1.5 Getting help with regexes

Writing regular expressions takes certainly a little practice, but is extremely
powerful once mastered.

• https://www.debuggex.com is extremely helpful in analysing and under-
standing regular expressions. The website graphically analyses a regex
and tells you why a string does/does not match.

• Practice is everything: See http://regexcrossword.com/ or try the An-
droid app ReGeX.

Exercise 7.2. Fill the following regex crossword. The strings you fill in have
to match both the pattern in their row as well as the pattern in their column.

a?[3[:space:]]+b? b[^21eaf0]

[a-f][0-3]

[[:xdigit:]]b+

Exercise 7.3. Give regular expressions that satisfy the following

matches does not match chars
a) abbbc, abbc, abc, ac aba 4
b) abbbc, abbc, abc bac, ab 4
c) ac, abashc, a123c cbluba, aefg 5
d) qome, qol , qde eqo, efeq 4
e) arrp, whee bla, kee 4

Note: The art of writing regular expressions is to use the smallest number of
characters possible to achieve your goal. The number in the last column gives
the number of characters necessary to achieve a possible solution.

7.2 Using regexes with grep

grep uses regular expressions by default, so instead of providing it with a word
to search for, we can equally supply it with a regular expression as well. Instead
of filtering those lines of input data which contain the word provided, the regular
expression will matched to the whole line, i.e. grep will only show those lines
which are matched by the regex.
Care has to be taken to properly quote or escape those characters in the regex
which are special characters to the shell. Otherwise the shell tries to interpret
them by itself and they are thus not actually passed on to grep at all. In most
cases surrounding the search pattern by single quotes deals with this issue well.

1 # find lines containing foo!bar:

2 < file grep 'foo!bar '

Exceptions to this rule of thumb are

• A literal “'” is needed in the search pattern.

• Building the search pattern requires the expansion of shell variables.

In the latter cases one should use double quotes instead and escape all necessary
things manually. Note that this can lead to constructs like

https://www.debuggex.com
http://regexcrossword.com/

CHAPTER 7. REGULAR EXPRESSIONS 94

1 # find the string \'
2 echo "tet\'ter" | grep "\\\'"

where a lot of backslashes are needed.

Especially the -o-flag is extremely useful when used together with regular
expressions. It’s purpose is to have grep print only the part of the line, which
actually matches the regex. E.g. running

1 #!/bin/bash

2

3 echo "Plain grep gives:"

4 < resources/testfile grep ".[a-f]$"
5

6 echo "grep -o gives:"

7 < resources/testfile grep -o ".[a-f]$"

7 regular expressions/grep only matching.sh

gives

1 Plain grep gives:

2 some

3 data

4 some

5 date

6 grep -o gives:

7 me

8 ta

9 me

10 te

There are quite a few cases where plainly using grep with a regular expres-
sion does not lead to the expected result. Examples are when the regex contains
the (...), |, ? or + operators. If this happens (or when in doubt) one should
pass the additional argument -E to grep.

The -E flag is sometimes necessary since grep by default only expects a
so-called basic regular expression or BRE from the user, whereas the syntax
explained in this chapter gives so-called extended regular expressions or EREs4.
As the name suggests EREs are more powerful and can be considered a superset
of BREs5. Nevertheless it is a good idea to just use plain grep wherever this is
sufficient since matching strings using EREs is a more demanding process.

4To make matters worse there are actually even more kinds of regular expressions. The
scripting language perl has its own dialect, so-called perl-compatible regular expressions or
PCREs. Often which operators are understood as BRE or ERE — or even understood at all
— depends on the program or the implementation (e.g. GNU grep is different than traditional
Unix grep . . .)

5This is not fully correct, see grep manpage for details.

CHAPTER 7. REGULAR EXPRESSIONS 95

Exercise 7.4. This exercise tries to show you how much more powerful grep
becomes when used with regular expressions:

• Design a regular expression to match a single digit. In other words if the
string contains the number “456”, the regex should match “4”, “5” and
“6” separately and not “456” as a whole.

• Use grep -o together with this expression on the file resources/digitfile
. You should get a list of single digits.

• Look at the file. What does this list have to do with the input?

• Now pipe this result in some appropriate Unix tools in order to find out
how many times each digit is contained in the file. The output should be
some sort of a table telling you that there are e.g. 2 fours, 3 twos, . . .

optional Now we try to extract a little more structured information from the file
resources/matrices/bcsstm01.mtx. More information about the mtx-format
can be found in appendix C.1 on page 125 if necessary.

• First use grep -o -E to verify that the regular expression -?[0-9]\.[0-9]*

e[+-][0-9][0-9] extracts the 3rd values column from resources/matrices

/bcsstm01.mtx. Since the regex starts with a - itself you will need to call
grep like this

1 grep -o -E -e -?[0 -9]\.[0 -9]*e[+ -][0 -9][0 -9]

• Use this expression to find the largest matrix value of resources/matrices
/bcsstm01.mtx.

7.3 Using regexes with sed

sed — the stream editor — is a program program to filter or change textual
data. We will not cover the full features of sed, but merely introduce a few basic
commands which allow to add, delete or change lines on stdin. The invocation
of sed is almost exactly like grep. Either one filters a stream:

1 echo "data stream" | sed 'sed_commands '

or reads a file, filters it and prints it to stdout

1 sed 'sed_commands ' file

Again, if a literal “'” or e.g. parameter expansions are needed in sed_commands,
we are better off using double quotes instead. Be warned, that doube quotes
can lead to an accumulation of escapes for both sed as well as the shell:

1 # compare

2 echo '\$a ' | sed "s/\\\\\ $a/bbb/g"
3

4 # with the single -quote example

5 echo '\$a ' | sed 's/\\$a/bbb/g'

7 regular expressions/sed double quotes.sh

CHAPTER 7. REGULAR EXPRESSIONS 96

Overview of basic sed commands6:

cmd; cmd2 Run two sed commands on the same stream sequentially:
First cmd1 is executed and on the resulting line cmd2. Can
also be achieved by having the two commands separated by
a line break.

/regex/atext Add a new line containing text after each line which is
matched by regex.

/regex/itext Similar to above, but add the line with text before the
matched lines.

1 #!/bin/bash

2

3 {

4 echo blub

5 echo blbl

6 } | sed '/bl/alaber '
7

8 echo ------

9

10 {

11 echo blub

12 echo blbl

13 } | sed '/bl/ilaber '

7 regular expressions/sed insertion.sh

1 blub

2 laber

3 blbl

4 laber

5 ------

6 laber

7 blub

8 laber

9 blbl

/regex/d Delete matching lines.

1 #!/bin/bash

2 {

3 echo line1

4 echo line2

5 echo line3

6 } | sed '/2$/d'

7 regular expressions/sed delete.sh

1 line1

2 line3

6see e.g. the sed manual [4] for more details.

CHAPTER 7. REGULAR EXPRESSIONS 97

s/regex/text/ Substitute the first match of regex in each line by text. We
can use the special character & in text to refer back to the
precise part of the current line that was matched by regex

(so the thing grep -o would extract). Note that text may
contain special escape sequences like “\n” or “\t”.

s/regex/text/g Works like the above command except that it substitutes all
matches of regex in each line by text.

1 #!/bin/bash

2

3 generator () {

4 echo "line1"

5 echo " line 2 "

6 echo "LiNE3"

7 echo

8 }

9

10 generator | sed 's/in/blablabla/'
11 echo "-----"

12 generator | sed 's/i.*[1 -3]/...&.../ '
13 echo "-----"

14

15 # a very common sequence to normalise input

16 generator | sed '
17 s/[[: space :]][[: space :]]*/ /g

18 s/^[[: space :]]//

19 s/[[: space :]]$//
20 /^$/d
21 '

7 regular expressions/sed substitute.sh

1 lblablablae1

2 lblablablae 2

3 LiNE3

4

5 -----

6 l... ine1 ...

7 l...ine 2...

8 L... iNE3 ...

9

10 -----

11 line1

12 line 2

13 LiNE3

Similar to grep it may be necessary to with to extended regular expressions for
some things to work. For sed this is done by specifying the argument -r before
passing the sed commands.

CHAPTER 7. REGULAR EXPRESSIONS 98

7.3.1 Alternative matching syntax

Sometimes it is desirable to use the / character inside a regular expression for
a sed command as well. E.g. consider replacing specific parts of an absolute
path by others. For such cases a more general matching syntax exists:

• In front of a command, /regex/ can also be expressed as \c regex c, where
c is an arbitrary character.

• For the command s: s c regex c text c is equivalent to s/regex/text/.

1 #!/bin/bash

2 VAR="/some"

3 echo "/some/crazy/some/path" | sed "s#$VAR#/mORe#g"
4 echo "--"

5 echo "/some/crazy/path" | sed "\#crazy#d"

6 echo "--"

7 regular expressions/sed altmatch.sh

1 /mORe/crazy/mORe/path

2 --

3 --

Exercise 7.5. Consider the first 48 lines of the file resources/chem_output/

qchem.out.

• First use head to only generate a derived file containing just the first 48
lines

Write a bash one-liner using sed and grep that generates a sorted list of the
surnames of all Q-Chem authors:

• Exclude all lines containing the word Q-Chem.

• Remove all initials and bothering “.” or “-” symbols (Do not remove the
“-” on compound surnames!)

• Replace all , by \n, the escape sequence for a line break.

• Do cleanup: Remove unnecessary leading or tailing spaces as well as empty
lines

• Pipe the result to sort

optional This whole exercise can also be done without using grep.

Chapter 8

A concise introduction to
awk programming

In this chapter we will take a brief look at the awk programming language
designed by Alfred Aho, Peter Weinberger, and Brian Kernighan in order to
process text files. Everything we have done in the previous chapters using grep,
sed or any of the other Unix tools can be done in awk as well and much much
more In fact often it only takes a few lines of awk to re-code the functionality
of one of the aforementioned programs.

8.1 Structure of an awk program

All input given to an awk program is automatically split up into larger chunks
called records. Each record is subsequently split up even further into fields. By
default records are just the individual lines of the input data and fields are the
words on each line. In other words records are separated by <newline> and
fields by any character from [:space:].

awk programs are a list of rules given in the following structure

1 condition { action }

2 condition { action }

3 ...

During execution awk goes from record to record and tries to satisfy each
condition for it. If the record satisfies the condition the action code corre-
sponding to the fulfilled condition is executed.

Both the condition as well as the action block { action } may me missing
from an awk rule. In the former case the action is executed for each input
record. In the latter case the whole record is just printed to stdout without any
change made to it.

Similar to the shell the # starts a comment in awk programs and <newline> and
“;” may be both be used interchangeably. Note that each rule line has to be
ended with either <newline> or “;”.

99

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING100

8.2 Running awk programs

There multiple ways to run awk programs and provide them with input data.
For example we could place all awk source code into a file called name and then
use it like

1 awk -f name

to parse data from stdin. For our use case, where awk will just be a helper lan-
guage to perform small tasks in surrounding bash scripts, it is more convenient
to use awk just inline:

1 awk '
2 ...

3 awk_source

4 ...

5 '

Note, that once again we could use double quotes here and escape whatever is
necessary by hand. As it turns out awk has a few very handy features, however,
for passing data between the calling script and the inner awk program such that
we get away with single quotes in almost all cases.

Example 8.1. Just to give you an example for what we discussed in this section,
this is a shell script which pipes some input to an inline awk program, which
uses it to print some nice messages1. For the printing to stdout we make use of
the awk action command print (see 8.8 on page 114 below for details), which
works very similar to echo in the shell.

1 #!/bin/bash

2 {

3 echo "awk input"

4 } | awk '
5 # missing condition => always done

6 { print "Hi user. This is what you gave me:" }

7

8 # condition which is true and no action

9 # => default print action

10 1 == 1

11

12 # another message which is always printed

13 { print "Thank you" }

14 '

8 awk/basic example.sh

1 Hi user. This is what you gave me:

2 awk input

3 Thank you

We observe — as stated in the previous section — that rules without a condition
are always executed, and that rules without any action block trigger the default
action: Printing the whole record as it is to stdout.

1I will use syntax highlighting adapted for awk code for all example code in this chapter.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING101

8.3 awk programs have an implicit loop

As we said in section 8.1 on page 99, all rules of an awk program are executed
for each record of the input data. Usually a record is equal to a line, such that
we can consider the whole awk program to be enwrapped in an implicit loop
over all lines of the input.

Consider the following examples.

1 #!/bin/bash

2

3 # function generating the output

4 output () {

5 echo "line 1"

6 }

7

8 echo "Program1:"

9 # a small awk program which just prints the output

10 # line -by -line as it is

11 # we use a condition which is always true and the

12 # default action here (implicit print of the whole

13 # record , i.e. line)

14 output | awk '1==1'
15

16 echo

17 echo "Program2:"

18 # a program with two rules:

19 # one which does the default printing

20 # and a second one which prints an extra line

21 # unconditionally

22 output | awk '
23 1==1 #default print action

24 { print "some stuff" }

25 '

8 awk/each line example.sh

Here only a single line of input is specified and hence all rules of the two awk

programs are run only once: For exactly the single line of input. We get the
output

1 Program1:

2 line 1

3

4 Program2:

5 line 1

6 some stuff

We note that programs that for programs, which contain multiple rules (like
Program2), it may well happen that more than one action gets executed. Here
for Program2 both the default action to print the line/record as well as the extra
action to print “extra stuff” are executed. This if of cause since both actions
have conditions which are either true or not present and hence implicitly true.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING102

Now let us try the same thing but pass two or three lines of input

1 #!/bin/bash

2

3 # function generating the output

4 output () {

5 echo "line 1"

6 echo "line 2"

7 }

8

9 echo "Program1:"

10 output | awk '1==1'
11

12 echo

13 echo "Program2:"

14 output | awk '
15 1==1 #default print action

16 { print "some stuff" }

17 '

8 awk/each line example2.sh

1 Program1:

2 line 1

3 line 2

4

5 Program2:

6 line 1

7 some stuff

8 line 2

9 some stuff

and

1 #!/bin/bash

2

3 # function generating the output

4 output () {

5 echo "line 1"

6 echo "line 2"

7 echo "line 3"

8 }

9

10 echo "Program1:"

11 output | awk '1==1'
12

13 echo

14 echo "Program2:"

15 output | awk '
16 1==1 #default print action

17 { print "some stuff" }

18 '

8 awk/each line example3.sh

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING103

1 Program1:

2 line 1

3 line 2

4 line 3

5

6 Program2:

7 line 1

8 some stuff

9 line 2

10 some stuff

11 line 3

12 some stuff

In these two examples the implicit loop over all records of input shows up. The
source code of the awk programs has not changed, still we get different output:

• Program1 prints each record/line of input as is, since the default action is
executed for each record of the input.

• Program2 prints first each record of the input, but then the second rule
is also executed for each record as well since the conditions for both rules
are missing or true. So overall we get two lines of output for each line of
input: First the record itself, then the extra output “extra stuff” from
the second rule.

This behaviour is surely a little strange and counterintuitive for people who
have experience with other programming languages: The awk code is not just
executed once, from top to bottom, but in fact N times if there are N records in
the input.

8.4 awk statements and line breaks

Not only individual rules but also individual actions within an action block need
to be separately by a line break or equivalently a “;”2. Other line breaks are
(usually) ignored. This means that e.g.3

1 # the echo is just here to make awk do anything -> see ↙
↪→footnote

2 echo | awk '
3 {

4 print "some message"

5 print "other message"

6 }

7 {

8 print "third message"

9 }

10 '

2This is not entirely correct, see section 1.6 of the gawk manual [3] for details
3We already said that the awk rules are are executed N times if there are N records in the

input. This means that they are not touched at all if there is no input. So in many examples
in this chapter we will have a leading echo | in front of the inline awk code, just to have the
code execute once at all.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING104

and

1 echo | awk '{ print "some message"; print "other message" }

2 { print "third message" }'

and

1 echo | awk '{ print "some message"; print "other message" ↙
↪→}; { print "third message" }'

are all equivalent.

8.5 Strings in awk

Strings in awk all have to be enclosed by double quotes, e.g.4

1 # inside awk action block -> see footnote

2 print "This is a valid string"

Multiple strings may be concatenated, just by leaving white space between them

1 #!/bin/bash

2 echo | awk '{ print "string1" " " "string2" }'

8 awk/vars stringconcat.sh

1 string1 string2

awk per default honours special sequences like “\t”(Tab) and “\n”(Newline) if
used within strings:

1 #!/bin/bash

2 echo | awk '
3 { print "test\ttest2\ntest3" }

4 '

8 awk/vars stringspecial.sh

1 test test2

2 test3

8.6 Variables and arithmetic in awk

Variables and arithmetic in awk are both very similar to the respective constructs
in bash. A few notes and examples:

• Variables are assigned using a single equals “=”. Note that there can be
space between the name and the value.

1 var="value"

2 # or

3 var = "value"

4For some examples in this chapter the enclosing script is left out for clarity. They will just
contain plain awk code, which could be written inside an awk action block. You will recognise
these examples by the fact that they don’t start with a shebang.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING105

• Such a statement counts as an action, so we need multiple of these to be
separated by a line break or “;”:

1 varone="1"; vartwo="2"

• In order to use the value of a variable no $ is required:

1 print var # => will print "value"

• awk is aware of floating point numbers and can deal with them properly

1 #!/bin/bash

2 echo | awk '{
3 var="4.5"

4 var2 =2.4

5 print var "+" var2 "=" var+var2

6 }'

8 awk/vars fpaware.sh

1 4.5+2.4=6.9

• Undefined variables are 0 or the empty string (like in bash)

• Variables are converted between strings and numbers automatically. Strings
that cannot be interpreted as a number are considered to be 0.

1 #!/bin/bash

2 echo | awk '{
3 floatvar =3.2

4 stringvar="abra" #cannot be converted to number

5 floatstring="1e-2" #can be converted to number

6

7 # calculation

8 res1 = floatvar+floatstring

9 res2 = floatvar + stringvar

10

11 print res1 " " res2

12 }'

8 awk/vars fpconvert.sh

1 3.21 3.2

• All variables are global and can be accessed and modified from all action
blocks (or condition statements as we will see later)

1 #!/bin/bash

2 echo | awk '
3 { N=4; A="blub" }

4 { print N }

5 { print "String " A " has the length " length(A) }

6 '

8 awk/vars global.sh

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING106

1 4

2 String blub has the length 4

• Arithmetic and comparison operators follow very similar conventions as
discussed in the bash arithmetic expansion section 5.1 on page 57. This
includes the C-like convention of 0 being “false” and 1 being “true”:

1 #!/bin/bash

2 echo | awk '{
3 v=3

4 u=4

5

6 print v "-" u "=" v-u

7

8 v+=2

9 u*=0.5

10

11 print v "%" u "=" v%u

12

13

14 # exponentiation is ^

15 print v "^" u "=" v^u

16

17 # need to enforce that comparison operatiors are

18 # executed before concatenation of the resulting

19 # strings. Not quite sure why.

20 print v "==" u ": " (v==u)

21 print v "!=" u ": " (v!=u)

22 print v "!=" u "||" v "==" u ": " (v!=u||v==u)

23 print v "!=" u "&&" v "==" u ": " (v!=u&&v==u)

24 }'

8 awk/vars arithlogic.sh

1 3-4=-1

2 5%2=1

3 5^2=25

4 0

5 1

6 1

7 0

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING107

8.6.1 Some special variables

Some variables in awk have special meaning:

$0 contains the content of the current record (i.e. usually the current
line). Note that the $ is part of the name of the variable.

$1, $2, ... Variables holding the fields of the current record. $1 refers to
the first field, $2 to the second and so on. There is no limit on the
number of fields, i.e. $125 refers to the 125th field. If a field does
not exist, the variable contains an empty string. Note that these
variables may be changed as well!

1 #!/bin/bash

2 echo -e "some 7 words\tfor awk to process" | awk ↙
↪→'

3 {

4 print "arithmetic: " 2*$2
5 print $4 " " $1
6 }

7

8 {

9 print "You gave me: " $0
10 }

11 '

8 awk/vars fields.sh

1 arithmetic: 14

2 for some

3 You gave me: some 7 words for awk to process

This lookup also works indirectly:

1 #!/bin/bash

2 echo -e "some words for\tawk to process" | awk '
3 {

4 v=5

5 print $v
6 }'

8 awk/vars fields indirect.sh

1 to

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING108

NF contains the number of fields in the current record. So the last
field in a record can always be examined using $NF

1 #!/bin/bash

2 echo "some words for awk to process" | awk '
3 {

4 print "There are " NF " fields and the last ↙
↪→is " $NF

5 }'

8 awk/vars fields nf.sh

1 There are 6 fields and the last is process

FS field separator : regular expression giving the characters where the
record is split into fields. It can become extremely handy to ma-
nipulate this variable. For examples see section 8.9 on page 116.

RS record separator : Similar thing to FS: Whenever a match against
this regex occurs a new record is started. In practice it is hardly
ever needed to modify this.5

8.6.2 Variables in the awk code vs. variables in the shell
script

The inline awk code, which we write between the “'”, is entirely independent
of the surrounding shell script. This implies that all variables which are defined
on the shell are not available to awk and that changes made to the environ-
ment within the awk program are not known the surrounding shell script either.
Consider the example:

1 #!/bin/bash

2

3 # define a shell variable:

4 A=laber

5

6 echo | awk '
7 # define an awk variable and print it:

8 { N=4; print N }

9

10 # print something using the non -present shell variable A:

11 { print "We have no clue about string A: \"" A "\"" }

12 '
13

14 # show that the shell knows A, but has no clue about N:

15 echo --$A --$N --

8 awk/awk vs shell vars.sh

1 4

2 We have no clue about string A: ""

3 --laber ----

5Be aware that some awk implementations like mawk furthermore have no support for chang-
ing RS.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING109

So the question arises how we might be able to access computations of the
awk program from the shell later on. The answer is exactly the same as in
section 6.1.3 on page 71, where we wanted to extract multiple results from a
single command substitution: We need to pack the results together in the awk

program and unpack them later in the shell script. For example:

1 #!/bin/bash

2

3 # some data we have available on the shell

4 VAR="3.4"

5 OTHER="6.7"

6

7 # do calculation in awk and return packed data

8 RES=$(echo "$VAR $OTHER" | awk '{
9 sum=$1 + $2

10 product=$1*$2
11 print sum "+" product

12 }')
13

14 # unpack the data on the shell again:

15 SUM=$(echo "$RES" | cut -f1 -d+)

16 PRODUCT=$(echo "$RES" | cut -f2 -d+)

17

18 # use it in an echo

19 echo "The sum is: $SUM"
20 echo "The product is: $PRODUCT"

8 awk/awk vs shell getdata.sh

1 The sum is: 10.1

2 The product is: 22.78

Exercise 8.2. Write a script which uses awk in order to process some data,
which is available to the script on stdin:

• Print the second and third column as well as the sum of both for each line
of input data. Assume that the columns are separated by one or more
characters from the [:space:] class.

• You will only need a single line of awk.

Try to execute your script, passing it data from resources/matrices/3.mtx

or resources/matrices/lund_b.mtx. Compare the results on the screen with
the data in these files. Does your script deal with the multiple column separator
characters in the file resources/matrices/lund_b.mtx properly?

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING110

8.6.3 Setting awk variables from the shell

awk has a commandline flag -v which allows to set variables before the actual
inline awk program code is touched. A common paradigm is:

1 awk -v "name=value" ' awk_source '

This is very useful in order to transfer bash variables to the awk program, e.g.

1 #!/bin/bash

2

3 VAR="abc"

4 NUMBER="5.4"

5 OTHER="3"

6

7 # ...

8

9 echo "data 1 2 3" | awk -v "var=$VAR" -v "num=$NUMBER" -v "↙
↪→other=$OTHER" '

10 {

11 print $1 " and " var

12

13 sum = $2 + $3
14 print num*sum

15 print $4 " " other

16 }

17 '

8 awk/vars from shell.sh

1 data and abc

2 16.2

3 3 3

Exercise 8.3. Take another look at your script from exercise 6.5 on page 81.
Use awk to make it work for floating-point input as well.

8.7 awk conditions

Each action block may be preceded by a condition expression. awk evaluates
the condition and checks whether the result is nonzero(“C-false”). Only if this is
the case the corresponding action block is executed. Possible conditions include

• Comparison expressions, which may access or modify variables.

1 #!/bin/bash

2 VAR="print"

3 echo "some test data 5.3" | awk -v "var=$VAR" '
4 var == "print" { print $2 }

5 var == "noprint" { print "no" }

6 $4 > 2 { print "fulfilled" }

7 '

8 awk/cond comp.sh

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING111

1 test

2 fulfilled

• Regular expressions matching the current record

1 #!/bin/bash

2

3 {

4 echo "not important"

5 echo "data begin: 1 2 3"

6 echo "nodata: itanei taen end"

7 echo "other things"

8 } | awk '
9 # start printing if line starts with data begin

10 /^data begin/ { pr=1 }

11

12 # print current line

13 pr == 1

14

15 # stop printing if end encountered

16 /end$/ { pr=0 }

17 '

8 awk/cond regex record.sh

1 data begin: 1 2 3

2 nodata: itanei taen end

• Regular expressions matching the content of a variable (including $0, $1,
. . .)

1 #!/bin/bash

2 VAR="15"

3

4 echo "data data data" | awk -v "var=$VAR" '
5 # executed if var is a single -digit number:

6 var ~ /^[0 -9]$/ {

7 print "var is a single digit number"

8 }

9

10 # executed if var is NOT a single -digit

11 var !~ /^[0 -9]$/ {

12 print "var is not a single digit"

13 }

14

15 $2 ~ /^.a/ {

16 print "2nd field has a as second char"

17 }

18 '

8 awk/cond regex var.sh

1 var is not a single digit

2 2nd field has a as second char

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING112

• Combination of conditions using logical AND (&&) or OR (||)

1 #!/bin/bash

2 VAR="15"

3

4 echo "data data data" | awk -v "var=$VAR" '
5 var !~ /^[0 -9]$/ && $2 == "data" {

6 print "Both are true"

7 }

8 '

8 awk/cond combination.sh

1 Both are true

• The special BEGIN and END conditions, that match the beginning and the
end of the execution. In other words BEGIN-blocks are executed before a
the first line of input is read and END-blocks are executed right before awk

terminates.

1 #!/bin/bash

2

3 {

4 echo "data data data"

5 echo "data data data"

6 echo "data data data"

7 } | awk '
8 BEGIN { number =0 } # optional: all uninitialised

9 # variables are 0

10 { number += NF }

11 END { print number }

12 '

8 awk/cond begin end.sh

1 9

Usually BEGIN is a good place to give variables an initial value.

Note, that it is a common source of errors to use an assignment a=1 instead of
a comparison a==1 in condition expressions. Since the = operator returns the
result of the assignment (like in C), the resulting action block will be executed
independent of the value of a:

1 #!/bin/bash

2 {

3 echo "not important"

4 echo "data begin"

5 echo "1 2 3"

6 echo "end"

7 echo "other things"

8 } | awk '
9 BEGIN {

10 # initialise pr as 0

11 # printing should only be done if pr==1

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING113

12 pr=0

13 }

14

15 # start printing if line starts with data begin

16 /^data begin/ { pr=1 }

17

18 # stop printing if end encountered

19 /end$/ { pr=0 }

20

21 # print first two fields of current line

22 # error here

23 pr = 1 { print $1 " " $2 }

24 '

8 awk/cond assign error.sh

1 not important

2 data begin

3 1 2

4 end

5 other things

Exercise 8.4. Write a script using inline awk code to rebuild the piped version
of the command wc -l, i.e. your script should count the number of lines of all
data provided on stdin.

• A good starting point is the backbone script

1 #!/bin/bask

2 awk '
3 #your code here

4 '

• You will only need to add awk code to the upper script.

• Your awk program will need three rules: One that initialises everything,
one that is run for each line unconditionally and one that runs at the end
dealing with the results.

• Decide where the printing should happen. When do you know the final
number of lines?

• Once you have a working version: One of the three rules can be omitted.
Which one and why?

Exercise 8.5. The file resources/chem_output/qchem.out contains the logged
output of a quantum-chemical calculation. During this calculation two so-called
Davidson diagonalisations have been performed. Say we wanted to extract how
many iterations steps were necessary to finish these diagonalisations.

Take a look at line 422 of this file. You should notice:

• Each Davidson iteration start is logged with the line

1 Starting Davidson ...

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING114

• A nice table is printed afterwards with the iteration index given in the
first column

• The procedure is concluded with the lines

1 --

2 Davidson Summary:

Use what we discussed so far about awk in order to extract the number of
iterations both Davidson diagonalisations took. A few hints:

• You will need a global variable to remember if the current record/line you
are examining with awk is inside the Davidson table or not

• Store/Calculate the iteration count while you are inside the Davidson table

• Print the iteration count when you leave the table and reset your global
variable, such that the second table is also found and processed properly.

8.8 Important awk action commands

length returns the number of characters a string has,
e.g. length("abra") would return 4, length("") zero.

next Quit processing this record and immediately start processing the
next one. This implies that neither the rest of this action block nor
any of the rules below the current one are touched for this record.
The execution begins with the next record again trying to match
the first rule. In some sense this statement is comparable to the
continue in a bash loop.

1 #!/bin/bash

2

3 {

4 echo record1 word2

5 echo record2 word4

6 echo record3 word6

7 } | awk '
8 BEGIN { c=0 }

9 { c++ }

10 { print c ": first rule" }

11 /4$/ { next; print c " " $1 }

12 { print c ": " $2 }

13 '

8 awk/action next.sh

1 1: first rule

2 1: word2

3 2: first rule

4 3: first rule

5 3: word6

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING115

exit Quit the awk program: Neither the current nor any further record
are processed. Just run the code given in the END-block and return
to the shell. Note, that we can provide the return code with which
awk exits as an argument to this command.

1 #!/bin/bash

2

3 {

4 echo record1 word2

5 echo record2 word4

6 echo record3 word6

7 } | awk '
8 BEGIN { c=0 }

9 { c++ }

10 { print c ": first rule" }

11 /4$/ { exit 42; print c " " $1 }

12 { print c ": " $2 }

13 END { print "quitting ..." }

14 '
15 echo "return code: $?"

8 awk/action exit.sh

1 1: first rule

2 1: word2

3 2: first rule

4 quitting ...

5 return code: 42

print Print the strings supplied as arguments, followed by a newline char-
acter6. Just print (without an argument) is identical to print $0.

printf Formatted print. Can be used to print something, but without a
newline in the end.

1 #!/bin/bash

2 {

3 echo 1 2 3 4

4 echo 5 6 7 8

5 } | awk '
6 $1 < 4 { printf $3 " " }

7 $1 > 4 { printf $3 }

8 '

8 awk/action printf.sh

1 3 7

6Can be changed. See section 5.3. of the awk manual [3] for details

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING116

8.8.1 Conditions inside action blocks: if

awk also has analogous control structures to the ones we discussed in chapter 4
on page 32 for bash. We don’t want to go through all of these here7, just note
that conditional branching can also be achieved inside an action block using the
if control structure:

1 if (condition) {

2 action_commands

3 } else {

4 action_commands

5 }

where condition may be any of the expressions discussed in section 8.7 on
page 110. As usual the else-block may be omitted.

8.9 Further examples

Example 8.6. This script defines a simple version of grep in just a single line:

1 #!/bin/bash

2

3 # here we use DOUBLE quotes to have the shell

4 # insert the search pattern where awk expects it

5 awk "/$1/"

8 awk/ex grep.sh

Example 8.7. Process some data from the /etc/passwd, where “:” or , are
the field separators

1 #!/bin/bash

2 < /etc/passwd awk -v "user=$USER" '
3 # set field separator to be : or , or many of these chars

4 BEGIN {FS="[:,]+" }

5

6 # found the entry for the current user?

7 $1 == user {

8 # print some info:

9 print "Your username: " $1
10 print "Your uid: " $3
11 print "Your full name: " $5
12 print "Your home: " $6
13 print "Your default shell: " $7
14 }

15 '

8 awk/ex passwd.sh

7See section 7.4 of the awk manual [3] for all the remaining ones.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING117

Example 8.8. This program finds duplicated words in a document. If there
are some, they are printed and the program returns 1, else 0.8

1 #!/bin/bash

2 awk '
3 # change the record separator to anything

4 # which is not an alphanumeric (we consider

5 # a different word to start at each alphnum -

6 # eric character)

7 BEGIN { RS="[^[: alnum :]]+" }

8 # now each word is a separate record

9

10 $0 == prev { print prev; ret =1; next }

11 { prev = $0 }

12 END { exit ret }

13 '

8 awk/ex duplicate.sh

Note, that this program considers two words to be different if they are just
capitalised differently.

Exercise 8.9. Use awk in order to rebuild the command uniq, i.e. discard
duplicated lines in sorted input. Some hints:

• Since input is sorted, the duplicated lines will appear as records right after
another in awk, i.e. on exactly subsequent executions of the rules.

• Note that whilst $0 changes from record to record, a usual awk variable is
global and hence does not.

• The solution takes not more than 2 lines of awk code.

optional Also try to implement uniq -c. It is easiest to do this in a separate
script which only has the functionality of uniq -c.

Exercise 8.10. This exercise deals with writing another script that aids with
the analysis of an output file like resources/chem_output/qchem.out. This
time we will try to extract information about the so-called excited states, which
is stored in this file.

• If one wants to achieve such a task with awk, it is important to find suitable
character sequences that surround our region of interest, such that we can
switch our main processing routine on and off.

• Take a look at lines 565 to 784. In this case we are interested in creating
a list of the 10 excited states which contains their number, their term
symbol (e.g. “1 (1) A"” or “3 (1) A’”) and their excitation energy.

8If this program does not work on your computer, make sure that you are using the awk

implementation gawk in order to execute the inline awk code in this script. It will not work
properly in mawk.

CHAPTER 8. A CONCISE INTRODUCTION TO AWK PROGRAMMING118

• For the processing of the first state we hence need only the five lines

1 Excited state 1 (singlet , A") [converged]

2 --

3 Term symbol: 1 (1) A" R^2 = 7.77227e-11

4

5 Total energy: -7502.1159223236 a.u.

6 Excitation energy: 3.612484 eV

Similarly for the other excited states blocks.

Proceed to write the script:

• Decide for a good starting and a good ending sequence.

• How you would extract the data (state number, term symbol, excitation
energy) once awk parses the excited states block?

• Be careful when you extract the term symbol, because the data will sit in
more than one field.

• Cache the extracted data for an excited states block until you reach the
ending sequence. Then print it all at once in a nicely formatted table.

8.10 awk features not covered

This section is supposed to provide a quick overview of the features of awk we did
not touch upon. For further reading about awk see the gawk manual “GAWK:
Effective AWK programming” [3]. It is both comprehensive for beginners and
very clearly structured. In the following list the paragraph numbers in brackets
refer to appropriate sections of the gawk manual where more information can
be found.

• Formatted printing (§5.5): Controlling the precision of floats printed

• Control structures and statements (§7.4) in awk: Loops, case, . . .

• awk arrays (§8)

• awk string manipulation functions (§9.1.3): Substitutions, substrings, sort-
ing

• Writing custom awk functions (§9.2)

• Reading records with fixed field length (§4.6): Fields separated by the
number of characters, not a regex.

• Reading or writing multiple files (§4.9)

• Executing shell commands from within awk programs (§4.9)

• Creating awk code libraries (§10)

• Arbitrary precision arithmetic using awk (§15): Floating point computa-
tion and integer arithmetic with arbitrarily-high accuracy.

Chapter 9

A word about performance

Most of the time performance is not a key aspect when writing scripts. Com-
pared to programs implemented in a compilable high-level language like C++,
Java, . . . , scripts will almost always be manyfold slower. So the choice to use
a scripting language is usually made because writing scripts is easier and takes
considerably less time. Nevertheless badly-written scripts imply a worse per-
formance. So even for bash scripts there are a few things which should be
considered when large amounts of data are to be processed:

• Use the shell for as much as possible. Calling external programs is by far
the most costly step in a script. So this should really only be done when
the external program does more than just adding a few integers.

• If you need an external program, choose the cheapest that does everything
you need. E.g. only use grep -E, where normal grep is not enough, only
proceed to use awk, when grep does not do the trick any more.

• Don’t pipe between external programs if you could just eradicate one of
them. Just use the more feature-rich for everything. See the section below
for examples.

• Sometimes a plain bash script is not enough:

– Use a high-level language for the most costly parts of your algorithm.

– Or use python as a subsidiary language: A large portion of python
is implemented in C, which makes it quicker, especially for numerics.
Nevertheless many concepts are similar and allow a bash programmer
to pick up some python fairly quickly.

119

CHAPTER 9. A WORD ABOUT PERFORMANCE 120

9.1 Collection of bad style examples

This section gives a few examples of bad coding style one frequently encoun-
ters and is loosely based on http://www.smallo.ruhr.de/award.html. Most
things have already been covered in much more detail in the previous chapters.

9.1.1 Useless use of cat

There is no need to use cat just to read a file

1 cat file | program

because of input redirection:

1 < file program

9.1.2 Useless use of ls *

We already said that

1 for file in $(ls *); do

2 program "$file"
3 # or worse without the quotes:

4 program $file
5 done

is a bad idea because of the word-splitting that happens after command substi-
tution. The better alternative is

1 for file in *; do

2 program "$file"
3 done

9.1.3 Ignoring the exit code

Many programs such as grep return a sensible exit code when things go wrong.
So instead of

1 RESULT=$(< file some_program)

2

3 # check if we got something

4 if ["$RESULT"];then

5 do_sth_else

6 fi

we can just write

1 if <file some_program;then

2 do_sth_else

3 fi

http://www.smallo.ruhr.de/award.html

CHAPTER 9. A WORD ABOUT PERFORMANCE 121

9.1.4 Underestimating the powers of grep

One occasionally sees chains of grep commands piped to another, each with
just a single word

1 grep word1 | grep word2 | grep word3

where the command

1 grep "word1 .*word2 .*word3"

is both more precise and faster, too.
Also grep already has numerous builtin flags such that e.g.

1 grep word | wc -l

are unnecessary, use e.g.

1 grep -c word

instead.

9.1.5 When grep is not enough . . .

. . . then do not use it!

1 grep regex | awk '{commands}'

can be replaced by

1 awk '/regex/ {commands}'

and similarly

1 grep regex | sed 's/word1/word2/'

can be replaced by

1 sed '/regex/s/word1/word2/'

9.1.6 testing for the exit code

It feels awkward to see

1 program

2 if ["$?" != "0"]; then

3 echo "big PHAT error" >&2

4 fi

where

1 if ! program; then

2 echo "big PHAT error" >&2

3 fi

is much nicer to read and feels more natural, too.

Appendix A

Obtaining the files

In order to obtain the example scripts and the resource files, you will need for
the exercises, you should run the following commands:

1 # clone the git repository:

2 git clone https :// github.com/mfherbst/bash -course

3

4 # download the books from Project Gutenberg

5 cd bash -course/resources/gutenberg/

6 ./ download.sh

All paths in this script are given relative to the directory bash-course, which
you created using the first command in line 2 above.

All exercises and example scripts should run without any problem on all
LinuX systems that have the bash and the GNU awk implementation (gawk)
installed. On other Unix-like operating systems like Mac OS X it can happen
that examples give different output or produce errors, due to subtle differences
in the precise interface of the Unix utility programs.

122

Appendix B

Other bash features worth
mentioning

B.1 bash customisation

B.1.1 The .bashrc and related configuration files

Not yet written.

B.1.2 Tab completion for script arguments

Not yet written.

B.2 Making scripts locale-aware

Not yet written.

B.3 bash command-line parsing in detail

B.3.1 Overview of the parsing process

When a commandline is entered into an interactive shell or is encountered on a
script the bash deals with it in the following order

1. Word splitting on the line entered

2. Expansion

(a) brace expansion

(b) tilde expansion, parameter and variable expansion

(c) arithmetic expansion, and command substitution (done in a left-to-
right fashion)

(d) word splitting

(e) pathname expansion

3. Execution

123

APPENDIX B. OTHER BASH FEATURES WORTH MENTIONING 124

B.4 Notable bash features not covered

The following list gives some keywords for further exploration into scripting
using the bash shell. See the bash manual [2] or the advanced bash-scripting
guide [5] for more details.

• bash arrays

• Brace expansion

• Tilde expansion

• Coprocesses

Appendix C

Supplementary information

C.1 The mtx file format

The mtx files we use in this course1 for demonstration purposes, follow a very
simple structure

• All lines starting with “%” are comments

• The first line is a comment line.

• The first non-comment line contains three values separated by one or more
<space> or <tab> characters:

– The number of rows

– The number of columns

– The number of non-zero entries

• All following lines — the non-zero entries — have the structure

– Column index

– Row index

– Value

where the values are again separated by one or more <space> or <tab>

chars.

1We will only use a subset of the full format

125

Bibliography

[1] Eric S. Raymond. The Art of Unix Programming, September 2003. URL
http://www.faqs.org/docs/artu/.

[2] Bash manual. URL https://www.gnu.org/software/bash/manual/.

[3] Arnold D. Robbins. GAWK: Effective AWK Programming, April 2014. URL
https://www.gnu.org/software/gawk/manual/.

[4] Sed manual. URL https://www.gnu.org/software/sed/manual/.

[5] Mendel Cooper. Advanced bash-scripting guide, March 2014. URL http:

//www.tldp.org/LDP/abs/html/.

126

http://www.faqs.org/docs/artu/
https://www.gnu.org/software/bash/manual/
https://www.gnu.org/software/gawk/manual/
https://www.gnu.org/software/sed/manual/
http://www.tldp.org/LDP/abs/html/
http://www.tldp.org/LDP/abs/html/

List of Commands

apropos Search in manpage summaries for keyword

cat Concatenate one or many files together

cd Change the current working directory

chmod Change file or directory permissions (see section 1.3 on page 7)

cut Extract columns from input

echo Print something to output

grep Filter input by pattern

help Access help for bash builtin commands

info Access the Texinfo manual for commands

less View input or a file in a convenient way

ls List the content of the current working directory

man Open manual page for a command

mkdir Create a directory

pwd Print the current working directory

rmdir Delete empty folders

rm Delete files

sort Sort input according to some parameters

tac Concatenate files and print lines in reverse order

tee Write input to file and output

touch Change the modification time or create a file

uniq Take a sorted input and discard double lines

wc Count characters, lines or words on input

whatis Print a short summary describing a command

127

	Contents
	List of Tables
	Course description
	Learning targets and objectives
	Prerequisites
	Compatibility of the exercises

	Errors and feedback
	Licensing and redistribution
	Introduction to Unix-like operating systems
	The Unix philosophy
	Impact for scripting

	The Unix utilities
	Accessing files or directories
	Modifying files or directories
	Getting or filtering file content
	Other
	Exercises

	The Unix file and permission system
	What are files?
	Unix paths
	Unix permissions

	A first look at the bash shell
	Historic overview
	What is a shell?
	The Bourne-again shell

	Handy features of the bash
	Tab completion
	Accessing the command history
	Running multiple commands on a single line

	Redirecting command input/output
	The exit status of a command
	Logic based on exit codes: The operators &&, ||, !

	Tips on getting help

	Simple shell scripts
	What makes a shell script a shell script?
	Executing scripts
	Scripts and stdin

	Shell variables
	Special parameters
	Command substitution

	Escaping strings
	Word splitting and quoting

	Control structures and Input/Output
	Printing output with echo
	The test program
	Conditionals: if
	Loops: while
	Loops: for
	Common ``types'' of for loops

	Conditionals: case
	Parsing input using shell scripts
	The read command
	Scripts have shared stdin, stdout and stderr
	The while read line paradigm

	Influencing word splitting: The variable IFS
	Conventions when scripting
	Script structure
	Input and output
	Parsing arguments

	Arithmetic expressions and advanced parameter expansions
	Arithmetic expansion
	Non-integer arithmetic
	A second look at parameter expansion

	Subshells and functions
	Explicit and implicit subshells
	Grouping commands
	Making use of subshells
	Implicit subshells

	bash functions
	Overwriting commands

	Cleanup routines
	Making script code more reusable

	Regular expressions
	Regular expression syntax
	Matching regular expressions in plain [basicstyle=,postbreak=,prebreak=]!bash!
	Regular expression operators
	A shorthand syntax for bracket expansions
	POSIX character classes
	Getting help with regexes

	Using regexes with grep
	Using regexes with sed
	Alternative matching syntax

	A concise introduction to awk programming
	Structure of an awk program
	Running awk programs
	awk programs have an implicit loop
	awk statements and line breaks
	Strings in awk
	Variables and arithmetic in awk
	Some special variables
	Variables in the awk code vs. variables in the shell script
	Setting awk variables from the shell

	awk conditions
	Important awk action commands
	Conditions inside action blocks: if

	Further examples
	awk features not covered

	A word about performance
	Collection of bad style examples
	Useless use of cat
	Useless use of ls *
	Ignoring the exit code
	Underestimating the powers of grep
	When grep is not enough …
	testing for the exit code

	Obtaining the files
	Other bash features worth mentioning
	bash customisation
	The .bashrc and related configuration files
	Tab completion for script arguments

	Making scripts locale-aware
	bash command-line parsing in detail
	Overview of the parsing process

	Notable bash features not covered

	Supplementary information
	The mtx file format

	Bibliography
	List of Commands

