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Abstract Adiponectin is the most abundant adipokine and ex-
hibits anti-inflammatory, antiatherogenic and antidiabetic prop-
erties. Unlike other adipokines, it inversely correlates with body
weight and obesity-linked cardiovascular complications.
Diastolic dysfunction is the main mechanism responsible for
approximately half of all heart failure cases, the so-called heart
failure with preserved ejection fraction (HFpEF), but therapeu-
tic strategies specifically directed towards these patients are still
lacking. In the last years, a link between adiponectin and dia-
stolic dysfunction has been suggested. There are several mech-
anisms through which adiponectin may prevent most of the
pathophysiologic mechanisms underlying diastolic dysfunction
and HFpEF, including the prevention of myocardial hypertro-
phy, cardiac fibrosis, nitrative and oxidative stress, atheroscle-
rosis and inflammation, while promoting angiogenesis. Thus,
understanding the mechanisms underlying adiponectin-
mediated improvement of diastolic function has become an
exciting field of research, making adiponectin a promising ther-
apeutic target. In this review, we explore the relevance of
adiponectin signaling for the prevention of diastolic dysfunction
and identify prospective therapeutic targets aiming at the treat-
ment of this clinical condition.
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Introduction

The prevalence of obesity has reached epidemic propor-
tions worldwide. This epidemic poses important health
concerns due to the association between overweight and
obesity and adverse health effects such as cardiovascular
diseases [1, 2]. Actually, it has been shown that obesity
predisposes to changes in cardiac morphology and ven-
tricular function, contributing to diastolic dysfunction and
heart failure (HF) [3, 4], particularly the phenotype with
preserved ejection fraction (HFpEF). HFpEF is character-
ized by abnormal relaxation and increased passive stiff-
ness that manifests as prolonged isometric relaxation,
slow left ventricle filling and increased diastolic stiffness
[5]. It is a heterogeneous syndrome with several under-
lying etiologic and pathophysiologic factors [6]. It com-
prises a diversity of phenotypes and is initiated by co-
morbidities and inflammatory mediators with extracardiac
manifestations and cardiac abnormalities. In fact, HFpEF
affects not only the myocardium, but also other organs
such as lungs, skeletal muscles and kidneys [7].
Although it represents approximately fifty percent of all
HF cases, currently no effective therapeutic strategies are
available [8].

Adipose tissue is no more considered as an inert stor-
age depot for triglycerides, but rather as an important
endocrine organ, participating in the regulation of energy
homeostasis of many physiological systems, including the
cardiovascular system. Indeed, adipocytes secrete a num-
ber of biologically active adipokines such as adiponectin,
leptin, resistin, tumor necrosis factor-α (TNF-α), interleu-
kins and plasminogen-activator inhibitor type 1 (PAI-1)
[9].

Adiponectin is the most abundant protein secreted by white
adipose tissue. It accounts for approximately 0.01 % of total
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plasma protein, circulating at high concentrations ranging
from 5 to 30 mg/L in healthy lean individuals [10].

In contrast to other adipokines, whose levels increase with
fat mass, adiponectin levels are inversely associated with body
weight, being decreased in obese individuals. Adiponectin is
also known for its antiatherogenic [11], anti-inflammatory
[12], antioxidative [13] and insulin sensitizing features. In
addition, adiponectin is inversely correlated with cardiovascu-
lar risk factors such as hypertension [14], atherosclerosis [11],
dyslipidaemia [15] and hyperglycemia [16] and may represent
a potential target in diastolic dysfunction [17].

This review emphasizes some molecular characteristics of
adiponectin and explores the effects and underlying mecha-
nisms of this adipokine in the myocardium, specifically ad-
dressing its potential role in the prevention and treatment of
diastolic dysfunction.

Molecular Characteristics of Adiponectin

Structure

Adiponectin is a 244 amino acid protein of 28 kDa and be-
longs to the complement 1q family. It is also known as GBP-
28, apM1, AdipoQ and Acrp30 [18].

It is composed of an amino-terminal signal peptide, a short
non-helical variable region, a collagenous domain and a glob-
ular domain at the carboxyl-terminal with homology for the
subunits of C1q and the collagen types VIII and X globular
domains [19] (Fig. 1). Adiponectin is present in the circulation
at different molecular weight forms (Fig. 1), such as trimers
and hexamers, which constitute the low-molecular weight
oligomers (LMW), and multimers collectively called high-
molecular weight complexes (HMW) [9, 20] and which have
been shown to be the major contributors for the adipokine
metabolic actions.

Although adiponectin can circulate as full-length or as a
smaller globular fragment, the principal fraction in plasma
appears to be the full-length form [20].

Regulation of Adiponectin Expression and Secretion

There is no consensus regarding the place of production of
adiponectin. It seems clear that the main site of synthesis is the
adipose tissue, although it is controversial if the majority of
the hormone is produced in the visceral or in the subcutaneous
depot [21].

Despite being produced in the adipose tissue, adiponectin
plasma concentration is inversely correlated with body mass
index [9] and studies established an inverse relation between
adiponectin expression and obesity [22].

Recently, other authors identified adiponectin secretion in
various non-adipose cells, such as bone marrow, bone-

forming cells, fetal tissue, myocytes, cardiomyocytes [23]
and liver [21], although the regulating mechanisms seem to
be different of those in the adipose tissue [21].

Research has been carried out in order to understand hor-
monal and environmental influences in adiponectin levels.
These studies found that adiponectin circulating levels are
not under acute regulation per se, except for fasting and
refeeding acute regulation [24].

Adiponectin circulating levels show also a sexual dimor-
phism, presenting higher levels in females than in males.
Curiously, there is also sexual dimorphism in the oligomeric
complex distribution in the serum, as males have a reduced
proportion of HMW multimers compared to females [25].

Receptors and Related Signaling Pathways

Three different adiponectin receptors have been de-
scribed: two G-protein-coupled seven-transmembrane-do-
main receptor s , AdipoR1 and AdipoR2, and a
glycosylphosphatidylinositol-anchored extracellular pro-
tein, T-cadherin [9] (Fig. 2). AdipoR1 is essentially
expressed in skeletal muscle, playing an important role
in promoting lipid oxidation via AMPK activation [9,
21]. On the other hand, AdipoR2 is highly expressed in
the liver, enhancing insulin sensitivity and reducing
s t e a tos i s v i a AMPK ac t i va t i on and inc r ea sed
peroxisome-proliferator-activated receptor α (PPAR-α) li-
gand activity (Fig. 3) [21]. T-cadherin is present in mus-
cle, cardiovascular and nervous systems [9], having pref-
erence for HMW adiponectin multimers [9, 21].

Adiponectin and Diastolic Dysfunction –
Physiological and Pathophysiological Mechanisms

Diastolic dysfunction refers to a disturbance in ventricular
relaxation, distensibility or filling. In its pathogenesis are
implicated intrinsic factors, including determinants as
myocardial relaxation and passive properties of ventricu-
lar wall, and extrinsic factors, like structures surrounding
the ventricle, the left atrium, pulmonary veins and mitral
valve [26].

Recently, adiponectin has been shown to be involved
in preventing the pathogenesis of diastolic dysfunction
[22]. Indeed, in myocardium, adiponectin-mediated pro-
tection is linked to the prevention of myocardial hyper-
trophy, cardiac fibrosis, atherosclerosis, inflammation,
nitrative and oxidative stress and to the promotion of
angiogenesis (Fig. 4), all representing HFpEF patho-
physiological mechanisms that will be addressed in the
next sections.
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Myocardial Hypertrophy

An overload-induced increase in left ventricular mass, as in
systemic hypertension, is considered an adaptive response to
mechanical stress and a mechanism to preserve cardiac func-
tion [27]. Although cardiac hypertrophy is initially a compen-
satory response of the myocardium to increased mechanical
load, this continuous effect becomes deleterious, leading to
cardiac dysfunction and to heart failure. Hypertension repre-
sents a major risk factor for several heart diseases and an
important contributor to HFpEF, showing a prevalence of
55–86 % in HFpEF patients [28]. Indeed, adiponectin re-
strains hypertrophy and is closely linked to diastolic dysfunc-
tion prevention. Several studies established a relationship be-
tween hypoadiponectinemia and hypertrophy exacerbation.
Sam et al. [29] showed an increase in total wall thickness in

adiponectin-deficient (APNKO) mice with aldosterone-
induced diastolic hypertension, concluding that adiponectin
has an essential role in preventing ventricular mass increase
and that lack of adiponectin exacerbates myocardial hypertro-
phy and leads to diastolic dysfunction. McManaus et al. [30],
based on observational studies in humans, also found this
relation, suggesting a cardioprotective effect of adiponectin
by concluding that higher levels of adiponectin are associated
with lower left ventricular mass.

Adiponectin inhibition of myocardial hypertrophy appears
to be mediated by AMPK signaling activation (Fig. 3) [31].
AMPK is activated by phosphorylation, which is only stimu-
lated by the trimer form of adiponectin. AMPK is a protein
involved in energy regulation and metabolic homeostasis and
is increased in acute and chronic stresses such as hypoxia,
ischemia and cardiac hypertrophy. Its activation modulates

Fig. 2 Adiponectin and
adiponectin receptors. Globular
adiponectin exists as a trimer,
whereas full-length adiponectin
comprises 3 species of multimers:
a trimer, an hexamer and a HMW
multimer. The lines represent the
affinity of each type of
adiponectin for the different re-
ceptors. The dotted line reflects
the low-affinity between
adiponectin isoforms and the re-
spective receptor

Fig. 1 Structure of human adiponectin and adiponectin multimerization.
a. Adiponectin contains an amino-terminal signal sequence, a short var-
iable region, a collagenous domain involved in collagen-triple helix for-
mation and a globular head at the carboxyl-terminal. N: amino-terminal;

C: carboxyl-terminal. b. Adiponectin circulates in serum in a number of
complexes which include monomers, trimers and hexamers, collectively
described as low-molecular weight (LMW) oligomers, and high-
molecular weight (HMW) multimers
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rapid activation of energy-generating metabolic pathways by
enhancing glucose uptake and glycolysis and stimulating fatty
acid oxidation, leading to inhibition of cardiomyocyte hyper-
trophy [32].

Adiponectin suppression of ERK phosphorylation is anoth-
er important mechanism that prevents cardiomyocyte hyper-
trophy. ERK phosphorylation is stimulated by α-adrenergic
receptors and angiotensin-II and is responsible for myocyte
hypertrophy [33]. The trimer form of adiponectin and, in a
lesser extent, the hexamer or HMW forms suppress the

activation of ERK and play an important role in preventing
the increase of myocyte size [31]. Adiponectin has also an
indirect effect in the suppression of ERK phosphorylation,
as its activation of AMPK has been shown to also suppress
ERK phosphorylation (Fig. 3) [33].

In summary, adiponectin inhibits myocardial hypertrophy
via AMPK and ERK signaling pathways, which may result in
the improvement of diastolic function. However, further re-
search is needed to understand the importance of myocardial
hypertrophy to the development of HFpEF as, although it may

Fig. 3 Simplified model of adiponectin-mediated signaling pathways.
Adiponectin binds to its receptor (AdipoR), adaptor protein containing
pleckstrin homology domain, phosphotyrosine binding domain and leu-
cine zipper motif (APPL 1) binds to AdipoR and activates 5′ AMP-
activated protein kinase (AMPK). Matrix metalloproteinases (MMP) iso-
forms are translocated to the cell membrane (MT1-MMP) or secreted
(MMP2) and the inactive MMP zymogen secreted is activated by MT1-
MMP on the cell surface and facilitates cell migration. Extracellular-

regulated kinase (ERK) phosphorylation is stimulated by α-adrenergic
ligands, angiotensin-II (AngII) and reactive oxygen species (ROS).
Trimer, hexamer and HMW adiponectin forms bind to theirs receptors
and suppress the activation of ERK. AMPK also suppresses ERK phos-
phorylation. AMPK activates endothelial nitric-oxide sintase (eNOS) and
increases nitric-oxide (NO) production. gAd globular adiponectin and
GqR Gq-coupled receptor

Fig. 4 Main effects of
adiponectin on diastolic
dysfunction. Adiponectin is
implicated in the prevention of
myocardium hypertrophy, cardiac
fibrosis, nitrative and oxidative
stress, atherosclerosis and
inflammation and is involved in
the potentiation of angiogenesis,
avoiding the pathogenesis of
diastolic dysfunction
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contribute to diastolic dysfunction, less than 50 % of HFpEF
patients have ventricular hypertrophy [34].

Cardiac Fibrosis

Acute and chronic stressors have been shown to induce ne-
crotic cell death and the loss of cardiomyocytes. As a result,
the structural integrity of the myocardium is ensured by car-
diac fibroblasts, which mount a healing process [35]. This
response can initially aid contractile function but renewal of
matrix with inadequately structured collagen increases myo-
cardial stiffness and contributes to diastolic dysfunction.

Evidence indicates that effector hormones of the renin-
angiotensin-aldosterone system (RAAS) are key features of
cardiac fibrosis [35]. Angiotensin-II (Ang-II)-induced cardiac
fibrosis is mediated by AMPK-dependent PPAR-α suppres-
sion, a pathway activated by adiponectin, which plays an im-
portant role in protecting against cardiac fibrosis.

Indeed, Fujita et al. found that APNKO presented severe
Ang-II-induced fibrosis and that AMPK activation partly
inhibited Ang-II-dependent ERK1/2 signaling, whereas
blockage of Ang-II-induced ERK1/2 activation resulted in
AMPK activation [36].

Cardiac fibroblasts regulate ECM dynamics through a tight
balance between matrix metalloproteinases (MMPs), which
degrade structural proteins, and their tissue inhibitors
(TIMPs) [37]. Adiponectin has been shown to have an impor-
tant effect on principalMMP isoforms. This cytokine seems to
increase cell surface MT1-MMP levels and MMP2 activity in
extracellular media, contributing to a cardioprotective role by
promoting fibroblast migration to damaged areas and matrix
degradation, an initial favourable response to cardiac injury.
This response is mediated by adaptor protein containing
pleckstrin homology domain, phosphotyrosine binding do-
main and leucine zipper motif (APPL 1), a protein that plays
an essential role in activation of AMPK by adiponectin [38].

In conclusion, via interaction with the RAAS and inflam-
matory system reactions, adiponectin inhibits cardiac fibrosis,
limiting myocardial stiffness and improving diastolic
dysfunction.

Nitrative Stress

Nitric oxide (NO) is a known modulator of cardiac relaxation.
Adiponectin can regulate NO production by both endothelial
nitric oxide synthase (eNOS) and inducible nitric oxide syn-
thase (iNOS), although in an opposite way. Under pathologi-
cal conditions, when iNOS is induced, adiponectin inhibits
iNOS expression, preventing excessive NO secretion [39].
Under physiological conditions, adiponectin stimulates NO
production via AMPK-mediated eNOS phosphorylation
[40], contributing to vasodilator, anti-inflammatory and
cardioprotective effects.

On the other hand, in hypoadiponectinemia, reduced NO
levels [41, 42] may lead to phospholamban changes [43].
Phospholamban is a phosphoprotein that regulates Ca2+ reup-
take via Ca2+-ATPase (SERCA2) to the sarcoplasmic reticu-
lum and thus cardiac relaxation and contractility.
Phospholamban dephosphorylated form inhibits SERCA2
and its phosphorylated form reverses this inhibition, leading
to improved relaxation and contractility [44]. Thus, phospho-
lamban changes can result in increased cytosolic calcium, im-
paired myocardial relaxation and diastolic dysfunction [22].
Although there is no direct evidence of the link between cal-
cium signaling and adiponectin, this relation may explain the
effects of hypoadiponectinemia in diastolic dysfunction, thus
opening avenues for further research.

Although low NO levels lead to impaired relaxation and
diastolic dysfunction, at very high concentrations, NO can
also compromise diastolic function. Actually, NO itself does
not cause tissue injury, but reacting with superoxide, it gener-
ates peroxynitrite, a product that causes nitrative stress and
tissue injury, which can lead to diastolic dysfunction [45]. In
this context, iNOS inhibition induced by adiponectin plays an
important role in ischemic-reperfused cardiomyocytes,
exerting anti-ischemic and cardioprotective effects via inhibi-
tion of peroxynitrite-induced nitrative stress. In fact, experi-
ments demonstrated that, after ischemia-reperfusion, APNKO
mice presented enhanced NO production and intensified
peroxynitrite formation [46].

In summary, the lack of adiponectin may contribute to di-
astolic dysfunction by both reducing NO levels and inducing
phospholamban changes, and enhancing NO concentration,
facilitating nitrative stress.

Oxidative Stress

Oxidative stress is an imbalance between antioxidant defenses
and excessive reactive oxygen species (ROS), and modulates
intracellular signaling pathways that are important in HFpEF
[47]. Increased levels of ROS may promote changes in Ca2+

handling proteins and increase Ca2+ sensitivity of myofila-
ments inducing diastolic dysfunction [48]. Oxidative stress
also decreases NO bioavailability which may contribute to
increased myocardial stiffness, impaired relaxation and myo-
cardial hypertrophy [49].

Adiponectin protects cardiomyocytes against oxidative
stress via both positive and negative regulation of AMPK
and ERK signaling, respectively, and downstream regulation
of NF-kB activity [13].

ROS can have different effects in cardiac myocytes de-
pending on their concentration. At lower but physiological
concentrations, ROS, including hydrogen peroxide (H2O2),
induce hypertrophy [50]. At higher levels, ROS induce cell
death and enhance reactive radicals that lead to cardiac remod-
eling [51], namely hypertrophy via activation of MAPK and
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NF-kB. As described in previous sections, ERK and AMPK
signaling pathways are involved in mechanisms related to
hypertrophy [32, 33], and ROS are able to activate ERK,
p38 kinase, and JNK members of MAPK signaling cascades.
Adiponectin has been shown to have an inhibitory effect on
ERK activity in cardiomyocytes by preventing ROS-induced
ERK phosphorylation. Furthermore, adiponectin is responsi-
ble for AMPK phosphorylation [31], enhancing its activity
and inhibiting hypertrophy.

NF-kB activation is also involved in the development of
hypertrophy. ROS has a dual effect on NF-kB pathway, either
enhancing or reducing its activity. At high concentrations,
H2O2 seems to inhibit NK-kB, but at physiological concentra-
tions, H2O2 leads to its activation, an effect that has been
shown to be attenuated by adiponectin [52].

Moreover, oxidative stress induces MMP activity, and it
has been shown that adiponectin modulates H2O2-induced
MMP-9 and MMP-2 activity [13, 53], protecting against the
development of fibrosis as referred above.

In conclusion, adiponectin protects against effects induced
by accumulation of ROS, such as cardiomyocyte hypertrophy
and myocardial fibrosis, interacting with AMPK/ERK/NF-kB
signaling axis and being involved in the inhibition of MMP
expression, respectively.

Angiogenesis

Cardiac hypertrophy increases oxygen demand and promotes
myocardial angiogenesis in order tominimize the hypoxic situa-
tion and maintain cardiac function [54]. In this regard, in physi-
ological cardiac hypertrophy, an increase in the number of myo-
cardial capillaries is often observed, whereas in pathological hy-
pertrophy, reducedcapillarydensity triggersmyocardialhypoxia
and cardiac dysfunction [55–57].

Adiponectin is known to have proangiogenic and
antiapoptotic functions, protecting against the development of
diastolic dysfunction by preventing capillary loss. These effects
are specifically mediated by the HMW form of adiponectin and
involve AMPK signaling [58].

Indeed, adiponectin affects endothelial cell survival and stim-
ulates vascularization, maintainingmyocardial capillary density
andpreservingmyocardial relaxationfunction. It alsodiminishes
myocardial apoptosis, resulting in the direct pro-survival effects
of adiponectin onmyocytes. Studies demonstrated thatAPNKO
mice present reduced capillary density and impaired angiogenic
repair capacity, whereas treatment with adiponectin stimulated
blood vessel growth [59]. In contrast, other studies have demon-
strated a potent inhibition of endothelial angiogenic events like
migration and proliferation by adiponectin, involving MAPK
and cAMP-PKA pathways [60, 61].

These discrepancies seem to be due to the differences in the
forms of adiponectin used. Adya et al. [62], in a study to investi-
gate the effect of globular adiponectin (gAd) and full-length

adiponectin (fAd) on endothelial cell proliferation, and in vitro
migration and angiogenesis, found that gAd was implicated in
endothelial proliferation, migration and angiogenesis, whereas
fAdwas only relatedwith endothelial cell proliferation, and con-
cluded that the beneficial or detrimental effect of adiponectin in
angiogenesis remainedunclear andcoulddependon thedifferent
isoforms of adiponectin.

Atherosclerosis

Several studies demonstrated an association between athero-
sclerotic disease and diastolic function. Jaroch et al. [63] de-
scribed a significant correlation between arterial stiffness in-
dices and diastolic dysfunction parameters in untreated hyper-
tensive patients. Akintunde et al. [64] also found a correlation
between right ventricular diastolic dysfunction and carotid
atherosclerosis, in a group of hypertensive patients.

Atherosclerosis is characterized by chronic systemic inflam-
mation. The first change preceding the formation of lesions of
atherosclerosis isendothelial injury,whichismediatedbyinflam-
matory stimuli such asTNF-α. Subsequently,monocytes adhere
to the endothelium, migrate to arterial wall and transform into
macrophages, whichmodify LDL and transform into foam cells
[65].

Adiponec t in has been sugges ted to have ant i -
atherosclerotic properties. Its action can be resumed in three
major effects: (i) modulation of inflammatory response of en-
dothelial cells, by inhibiting TNF-α induced monocyte adhe-
sion and endothelial expression of endothelial-leukocyte ad-
hesion molecule-1 (E-selectin), vascular cell adhesion
molecule-1 (VCAM-1) and intracellular adhesion molecule-
1 (ICAM-1), and, via inhibition of endothelial NF-kB signal-
ing through the activation of cAMP, protein kinase A; (ii)
suppression of macrophage to foam cell formation through
the inhibition of class A macrophage scavenger receptor
(SR-A); (iii) inhibition of proliferation and migration of
smoothmuscle cells inducedbyplatelet-derivedgrowth factor
BB (PDGF-BB) by directly binding with PDGF-BB and by
inhibiting ERK phosphorylation in PDGF-BB-stimulated
smooth muscle cells [66].

Therefore, adiponectin seems to have an important role in
preventing atherosclerosis, which may contribute to the preven-
tion of diastolic heart failure.

Ontheotherhand,onestudyshowedthat, inpreclinical rodent
models, adiponectin levels didnot correlatewith atherosclerosis,
suggesting that adiponectin may not be involved in advanced
plaque progression in mice [67] and revealing the complex and
multifacetedactionsof adiponectin in the cardiovascular system.

Inflammation

A systemic pro-inflammatory state is a main characteristic of
HFpEF. It not only contributes to the development of a
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diversity of comorbidities such as obesity, diabetes [68],
chronic pulmonary disease [69] and renal dysfunction [70],
but also contributes to endothelial dysfunction and direct det-
rimental myocardial effects [71]. In fact, elevated levels of
pro-inflammatory cytokines may play an important role in
the pathophysiology of HFpEF, as they act locally on immune
activation, cause skeletal muscle wasting, reduce myocardial
contractility and induce myocardial hypertrophy [72].

Hypoadiponectinemia may contribute to an increased in-
flammatory response, but the mechanisms underlying this
association are yet poorly known. This inconsistency is fur-
ther supported by the fact that not all forms of adiponectin
seem to prevent the inflammatory response [73]. Literature
indicates that adiponectin isoforms may differ in their bio-
logical activity and in their role in inflammation. In fact,
although both LMW and HMW isoforms induce apoptosis,
reduce macrophage scavenger receptor mRNA expression
and stimulate phosphorylation of AMPK, only LMW iso-
form displays anti-inflammatory properties by reducing
lipopolysaccharide-induced IL-6 secretion [74].

An elevation of TNF-α and IL-6 plasma levels in patients
with diastolic dysfunction and preserved systolic function has
been observed [75]. The mechanism behind this association
was suggested by Wu et al., who demonstrated that these
cytokines down-regulate SERCA2 gene expression, decreas-
ing diastolic calcium reuptake and causing cardiac diastolic
dysfunction [76]. Treatment of cultured macrophages with
adiponectin has been shown to reduce TNF-α production
[77], which may be beneficial for the prevention of diastolic
dysfunction.

In recent studies, the inflammatory marker C-reactive pro-
tein (CRP) was also related to left ventricular diastolic dys-
function [78], and adiponectin has been shown to be inversely
correlated with CRP concentrations [12], suggesting that
hypoadiponectinemia may contribute to an increased inflam-
matory response in diastolic dysfunction.

Clinical Relevance and Future Directions

Adiponectin seems to prevent most of the pathophysiologic
mechanisms underlying HFpEF as it is linked to the preven-
tion of myocardial hypertrophy, cardiac fibrosis, atherosclero-
sis, inflammation, nitrative and oxidative stress and to the
promotion of angiogenesis. Considering these effects together
with the beneficial effects of adiponectin on several animal
models, adiponectin represents a potentially interesting thera-
peutic target in HFpEF. Actually, interventions that are asso-
ciated with an increase of adiponectin levels, have been pre-
viously related to the prevention and treatment of diastolic
dysfunction, including (i) exercise [79, 80], (ii) diet-induced
weight-loss [81, 82] and (iii) weight-loss induced by bariatric
surgery [83, 84], further highlighting the potential clinical

relevance of adiponectin in the treatment of patients with
HFpEF [81, 85]. On the other hand, one cannot ignore studies
that found no relation between adiponectin levels and diastolic
function [86, 87]. The contradictory results between studies
may be related to the evaluation of different stages of HFpEF
or to the study of different isoforms of adiponectin.

The peroxisome proliferator-activated receptor (PPAR)-γ is
the main regulator of adipocyte differentiation and adipocyte
gene expression [66], and PPAR-γ-dependent pathways are im-
portant targets to induce the expression of adiponectin [23].
PPAR-γ agonists, thiazolidinediones, have been shown to in-
crease plasma adiponectin levels in humans [88], revealing its
potential in improving diastolic function. However, despite the
direct benefic ial effects on adiponectin levels of
thiazolidinediones, they are also known to induce fluid retention
whichmaycontribute to thedevelopmentofheart failure [89].At
this moment, the available thiazolidinediones are not recom-
mended for the treatment or prevention ofHFpEF [90], however
the development of PPAR-γ agonists with greater specificity for
adipose tissuemay represent an interesting therapeutic approach
to increase adiponectin levelswithout thedetrimental fluid reten-
tion. Likewise, the fibrates have been shown to increase
adiponectin levels,partlymediatedbyPPAR-responsiveelement
(PPRE) [91].Treatmentwith angiotensin-converting enzyme in-
hibitors also triggers adiponectin levels elevation. The mecha-
nisms by which RAAS inhibition leads to the increase of
adiponectin concentration include enhancing insulin sensitivity,
recruiting and promoting differentiation of preadipocytes and
increasing transcription/translation of adiponectin [66].

Exogenous adiponectin has been used in several animal
models [92–94]. However, adiponectin is a complex molecule
that undergoes significant posttranslational modifications,
making direct administration of adiponectin a particularly
challenging and inconvenient treatment. On the other hand,
the use of synthetic molecules that could activate adiponectin-
related pathways is one of the more promising therapeutic
weapons in this field. Recently, an orally active synthetic
adiponectin receptor agonist (known as AdipoRon) was
shown, not only to significantly improve insulin sensitivity
and glucose tolerance in mice [95], but also to induce
cardioprotective effects through both AMPK-mediated and
AMPK-independent signaling in mice with myocardial ische-
mia [96]. More pharmacological and animal model studies are
required before we move on to treating humans.

However, the prospect of adiponectin treatment is an excit-
ing scenario for the treatment of many facets of diastolic
dysfunction.

Conclusion

Hypoadiponectinemia may be a link between obesity and di-
astolic dysfunction. Indeed, decreased levels of plasma
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adiponectin are present in obese individuals and are associated
with cardiovascular disease such as diastolic dysfunction.

HFpEF is a condition with complex and incompletely
known pathophysiology, and therapeutic options or consensu-
al diagnostic criteria for these patients are still lacking. Due to
its role in improving diastolic function, raising adiponectin
levels may become a potential pharmacologic target in dia-
stolic dysfunction.
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