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Preface

Welcome to ISMIR 2023, the 24th International Society for Music Information Retrieval Conference. ISMIR is the
world’s leading research forum on processing, searching, organizing, and accessing music-related data. Our community
reflects a diversity of scientific disciplines, seniority levels, professional affiliations, and cultural backgrounds. We aim
to foster and stimulate this diversity, leading to better science and better music services. The organizing team, who came
together from all over the world to ensure the success of this event, welcomes you to ISMIR 2023.

Scientific Program

The ISMIR 2023 scientific program comprised three keynote talks, six tutorials and 103 papers. A total of 272 abstracts
were registered on the submission system, of which 229 were submitted as complete papers eligible for review. In keeping
with the practices of the previous years, a two-tier double-blind review process was conducted involving a total of 211
reviewers and 63 meta-reviewers. Each paper was assigned to a single meta-reviewer and three reviewers, and replacement
reviewers were found when the originally assigned reviewer was unable to complete their review. Meta-reviewers were
also instructed to complete a full review of each of their assigned papers, in addition to the final meta-review summarizing
the individual reviews. Each meta-reviewer and reviewer was responsible for no more than 4 papers, in order that the
reviewing load would be manageable, thus promoting careful and thorough reviews. The initial reviewing phase was
followed by a discussion period, in which reviewers and meta-reviewers could discuss and revise their assessments of each
paper. Meta-reviewers were then instructed to summarize the discussion and reviews in the final report. The Scientific
Program Chairs (SPC) made the final decisions on each paper, based on the recommendations of metareviewers and
reviewers. 104 papers were accepted (one of which was later withdrawn by the authors), giving an acceptance rate of
45.4% (or 38.2% if incomplete submissions are included). The SPC would like to express their thanks to the ISMIR
community of reviewers and metareviewers for their wholehearted support of this critical aspect of a successful ISMIR
technical program.

Table 1 summarizes the number of submitted and accepted papers in each subject area (as selected by authors during
the submission process) together with the corresponding proportion of papers in the program. Table 2 summarizes the
publication statistics over the 24-year history of the conference.

Table 1: Papers submitted and accepted by subject area

Subject Area Submitted Accepted Accepted %

MIR tasks 77 21 20.2%
Musical features and properties 42 17 16.3%
Knowledge-driven approaches to MIR 37 18 17.3%
Applications 35 11 10.6%
MIR fundamentals and methodology 22 10 9.6%
Evaluation, datasets, reproducibility 19 7 6.7%
Human-centered MIR 19 8 7.7%
Computational musicology 12 6 5.8%
MIR and ML for musical acoustics 5 3 2.9%
Philosophical and ethical discussions 4 3 2.9%

Total 272 104
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Table 2: Summary of publication statistics over the 24-year-history of the ISMIR conference

Year Location Oral Poster Total Authors Unique Authors Authors
Paper

Unique Authors
Paper

2000 Plymouth 19 16 35 68 63 1.9 1.8
2001 Indiana 25 16 41 100 86 2.4 2.1
2002 Paris 35 22 57 129 117 2.3 2.1
2003 Baltimore 26 24 50 132 111 2.6 2.2
2004 Barcelona 61 44 105 252 214 2.4 2.0
2005 London 57 57 114 316 233 2.8 2.0
2006 Victoria 59 36 95 246 198 2.6 2.1
2007 Vienna 62 65 127 361 267 2.8 2.1
2008 Philadelphia 24 105 105 296 253 2.8 2.4
2009 Kobe 38 85 123 375 292 3.0 2.4
2010 Utrecht 24 86 110 314 263 2.0 2.4
2011 Miami 36 97 133 395 322 3.0 2.4
2012 Porto 36 65 101 324 264 3.2 2.6
2013 Curitiba 31 67 98 395 236 3.0 2.4
2014 Taipei 33 73 106 343 271 3.2 2.6
2015 Málaga 24 90 114 370 296 3.2 2.6
2016 New York 25 88 113 341 270 3.0 2.4
2017 Suzhou 24 73 97 324 248 3.3 2.6
2018 Paris 104 337 265 3.2 2.5
2019 Delft 114 390 315 3.4 2.8
2020 Virtual 115 426 343 3.7 3.0
2021 Virtual 104 334 269 3.2 2.6
2022 Bengaluru 113 423 355 3.8 3.0
2023 Milan 103 374 311 3.6 3.0

Best Paper Awards

Awards for the best paper and best student paper were given at ISMIR 2023. Best paper candidates were selected from
the 104 accepted papers. The SPC selected six candidate papers based on reviewers’ and meta-reviewers’ nominations as
well as the paper review scores and comments. The final selections were made by specially appointed judges drawn from
experienced MIR researchers who had no conflict of interest with any of the award candidates. In addition, judges from
Universal Music Group selected one paper from a longer list of highly ranked papers on the basis of its contribution to
responsible MIR research, for a special Responsible Research Award, sponsored by UMG.

The following papers were nominated for consideration for the Best Paper Awards (in order of paper number):

• Exploring the Correspondence of Melodic Contour with Gesture in Raga Alap Singing, Shreyas M Nadkarni, Sujoy
Roychowdhury, Preeti Rao and Martin Clayton

• CLaMP: Contrastive Language-Music Pre-training for Cross-Modal Symbolic Music Information Retrieval, Shangda
Wu, Dingyao Yu, Xu Tan and Maosong Sun

• BPS-Motif: A Dataset for Repeated Pattern Discovery of Polyphonic Symbolic Music, Yo-Wei Hsiao, Tzu-Yun
Hung, Tsung-Ping Chen and Li Su

• PESTO: Pitch Estimation with Self-Supervised Transposition-Equivariant Objective, Alain Riou, Stefan Lattner,
Gaëtan Hadjeres and Geoffroy Peeters

• LP-MusicCaps: LLM-Based Pseudo Music Captioning, Seungheon Doh, Keunwoo Choi, Jongpil Lee and Juhan
Nam

• Singing Voice Synthesis Using Differentiable LPC and Glottal-Flow-Inspired Wavetables, Chin-Yun Yu and George
Fazekas
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Each of the Best Paper candidates will be invited to publish an extended version of their paper in the Transactions of the
International Society for Music Information Retrieval (TISMIR), the open access journal of the Society. The Society will
cover the article processing charges of these publications. The following three awards were given:

Best Paper Award PESTO: Pitch Estimation with Self-Supervised Transposition-Equivariant Objective, Alain Riou,
Stefan Lattner, Gaëtan Hadjeres and Geoffroy Peeters

Best Student Paper Award CLaMP: Contrastive Language-Music Pre-training for Cross-Modal Symbolic Music Infor-
mation Retrieval, Shangda Wu, Dingyao Yu, Xu Tan and Maosong Sun

UMG Award for Responsible Research Data Collection in Music Generation Training Sets: A Critical Analysis, Fabio
Morreale, Megha Sharma and I-Chieh Wei

Diversity & Inclusion

The ISMIR 2023 conference took a broad view of Diversity, Equity, and Inclusion (DEI). We considered two “sides” of
DEI: on the one hand, the diversity and equity in the musical objects we study or create, as well as the musical artists,
technological approaches, and content that we work with; and the diversity, equity, and inclusion of the people doing
the research in MIR. From this standpoint, the DEI Chairs, in consultation with the organizing committee, coordinated
a variety of initiatives with the aim of bringing together (and widening) the range of perspectives, traditions, and people
across our MIR community. Notably, thanks to the Board and the generous support of our sponsors, we were able
to support an unprecedented level of financial support covering travel, accommodation, registration, and childcare costs.
Waivers and fee reductions for the above-mentioned categories were prioritized for underrepresented individuals including
women, ethnic minorities, members of the LGBTQIA community, and attendees from low-income countries. In addition,
priority was also given to unaffiliated attendees, “new-to-ISMIR” presenters, and students. All attendees were eligible to
apply for childcare grants.

Inclusion Panel The aim of the DEI panel was to foster discussion, both between panelists, and between the audience
and the panelists, relating to not only the diversity of people who work in MIR, but also diversity in topics, approaches,
and data. Panelists were selected based on their excellent track records of commitment to diversity in MIR. After a
brief overview of their research and how it has been influenced by, or relates to, DEI, our panelists contributed to a
rich discussion of both the content and the people in MIR, and the ways in which we, as a community, can improve.
Discussion topics included: bias in music access, consumption, and recommender systems; barriers and issues of DEI in
MIR scholarship and how to overcome them; the relation of DEI and “ethical AI”; and how to increase the number of
women and minorities in our field.

Moderator: Claire Arthur, Georgia Institute of Technology
Panelists: Anja Volk, Utrecht University; Jin Ha Lee, University of Washington; Christine Bauer, University of Salzburg;
Lorenzo Pocarno, European Commission Joint Research Center (Milan)

Inclusion Meetup A DEI meetup session was planned with the aim of designing a social event that would encourage the
intermingling of people from different backgrounds, levels of scholarship, and communities. Several interactive activities
were organized to encourage movement, mingling, discussion, and entertainment. According to those who who were in
attendance (over 100 people!), the event was a success.

Host: Riccardo Giampiccolo

Women in Music Information Retrieval (WiMIR)

Women in Music Information Retrieval (WiMIR) is a group of people dedicated to promoting the role of, and increas-
ing opportunities for, women in the MIR field. WiMIR’s initiatives started as informal gatherings around breakfast or
lunch during ISMIR conferences (2011–2014), and moved to formal WiMIR events included in the conference program
(2015–today) garnering a high turnout of both women and allies. These events provide occasions for people to network
and to discuss several important issues ranging from mentorship and conference support, to improving the representa-
tion of women and, more broadly, diversity in the community. In 2018, WiMIR started hosting its own workshop as a
satellite event, in which attendees of all genders participated. These workshops aim to offer participants an opportunity
for networking, put the spotlight on technical work done by women in the field, and foster collaboration between women
and allies by proposing group work led by project guides to try to solve small research problems or to undertake new
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research projects that could lead to longer-term collaborations. In 2023, due to the decline (and rotation) in volunteers, the
WiMIR workshop initiative was suspended. However, the aim is to resume these very popular and successful workshops
again in 2024. The ISMIR 2023 DEI Chairs gratefully acknowledge the support of this year’s WiMIR sponsors, whose
contributions support women in the field as well as the broader DEI efforts of this year’s conference.

Newcomer Initiative

A mentoring program was offered in 2023 for prospective authors who are new to ISMIR. They were given feedback on
their ideas and drafts of their ISMIR submissions. We would like to thank the following people who volunteered to be
mentors for this initiative:

• Emmanouil Benetos

• Geoffroy Peeters

• Brian McFee

• Juhan Nam

• Chris Donahue

• Cheng-i Wang

• Cory McKay

• Jin Ha Lee

• Gus Xia

• Mitsunori Ogihara

• Andre Holzapfel

Special Sessions

The Scientific Program Chairs organized two special sessions. Brief introductions and session information are provided
below:

Panel session: Hybrid deep learning for MIR

In MIR, as in many other domains, there is a significant trend towards purely data-driven approaches aimed at directly
solving the machine learning problem at hand, while only crudely considering the nature and structure of the data being
processed. In the music domain, prior knowledge can relate to the production of sound (using an acoustic model), the way
music is perceived (based on a perceptual model), or how music is composed (using a musicological model).

These models can usually be encoded with only a few parameters, leading to controllable and interpretable systems that
can be exploited in modern neural-based machine learning frameworks, resulting in so-called hybrid deep learning models.

The aim of this panel was to illustrate the concept of hybrid deep learning with some specific examples in MIR, and to
discuss its limits, merits and potential for future machine learning based music applications.

Moderator: Gaël Richard, Télécom Paris
Panelists: George Fazekas, Queen Mary University of London; Changhong Wang, Télécom Paris, Zhiyao Duan, Univer-
sity of Rochester; Gus Xia, NYU Shanghai/MBZUAI

Industry Panel

The industrial panel aimed to facilitate a high-level discussion, providing conference participants with insights into MIR
efforts by ISMIR’s sponsoring companies. This initiative aimed to foster collaborations among participants, be they from
the industry or academic realm. The primary focus was on delving into the future of multi-modal AI in music research
– a burgeoning paradigm that leverages diverse data types like audio, image, text, and speech to enhance outcomes.
Each panelist briefly presented their perspective on the topic, leading to an open discussion. Notably, the discourse also
explored the relevance of existing Large Language Models and their impact on the field of music.

Moderator: Xavier Serra, Director of the Music Technology Group of the Universitat Pompeu Fabra.
Panelists: Justin Salamon, Senior Research Scientist at Adobe; Elio Quinton, VP, Artificial Intelligence at Universal
Music Group; Akira Maezawa, Senior Engineer at Yamaha; Fabien Gouyon, Senior Director of Research at Pandora –
SiriusXM; Romain Hennequin, Head of Research at Deezer; Maria Stella Tavella, Senior AI Engineer and Manager at
Musixmatch; Filip Korzeniowski, Lead Data Scientist at Moises.AI
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Late Breaking/Demo Session

The Late Breaking/Demo (LBD) Session is where we showcase cool works that are still in the making — prototypes, early
ideas and results that generate excitement in the MIR community. This year we received more submissions than expected.
To handle the demand, we split the session into two parts and papers were presented in-person as well as using the virtual
platform. Following a light review process by the LBD chairs, we accepted 40 papers for live, in-person presentation,
while another 8 papers were accepted for virtual presentation, ensuring broader accessibility to the valuable insights
shared within the LBD Session. This decision allowed us to accommodate the diverse preferences and circumstances of
our contributors and attendees. Following previous years’ practice, LBD contributions are not part of the official ISMIR
proceedings and should be seen as non-refereed works — think of them as fresh works in progress and exciting fun demos
that led to an exceptionally lively session contributing to this year’s edition of ISMIR.

Unconference

ISMIR 2023 reintroduced the “Unconference” session, where participants team up into small groups to engage in discus-
sions on Music Information Retrieval (MIR) topics of their specific interest. Two weeks prior to the session, participants
were invited to propose their preferred topics. The session then started with a brief plenary in which session topics of
greatest interest were selected. The session gathered around 80 participants, including both students and senior researchers
from academia and industry. Four topics, namely "MIR + music education," "Open review for MIR," "Human-centered
AI," and "Evaluation of generative AI," were chosen for the initial round of discussions. Subsequently, participants were
divided into four groups, engaging in impromptu discussions for 30 minutes. Although it is customary in the Unconfer-
ence to choose new topics every 30 minutes, the participants in each group were so engrossed in their discussions that
they extended the conversation into a second and even a third round, all centered around the same topics. The session
concluded with a plenary session, during which one representative from each group was invited to provide a summary
of their discussions for the benefit of the other groups. Following this, participants were encouraged to continue their
conversations beyond the session and explore opportunities for potential collaborations on the discussed topics.

Music Session

The ISMIR 2023 Music Session received nine submissions, six of which were accepted for presentation. Half of the
contributions were performed live, whereas the remaining ones were pre-recorded and reproduced during the session. All
the pre-recorded contributions included video content. Overall, the selected submissions showed a high degree of variety,
ranging from AI-assisted performances to improvisations with augmented instruments and combinations with visual arts.

Here is the complete list of music pieces that were presented at ISMIR 2023:

Conversations with our Digital Selves: the development of an autonomous music improviser Matthew Yee-King, Mark
d’Inverno

“confluyo yo, el ambiente me sigue” Hugo Flores Garcia

Sliogán: a performance composed for the HITar Andrea Martelloni, Andrew McPherson, Mathieu Barthet

The Words I Tried to Say Angela Weihan Ng

Nor Hope Wenbin Lyu

AI Pianist Performance: Collaboration with Soprano Sumi Jo Taegyun Kwon, Joonhyung Bae, Jiyun Park, Jaeran
Choi, Hyeyoon Cho, Yonghyun Kim, Dasaem Jeong, Juhan Nam

Satellite Events

In addition to the main conference, four satellite events took place immediately before or after ISMIR, and were attended
by many ISMIR delegates:
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• Sound Demixing Workshop, November 4, 2023

• Workshop on Reading Music Systems (WoRMS), November 4, 2023

• Workshop on Human-Centric Music Information Research (HCMIR), November, 10, 2023

• 10th International Conference on Digital Libraries for Musicology (DLfM), November, 10, 2023
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Keynote Talk – 1

Help! – Bridging the Gap Between Music Technology and Diverse Stake-
holder Needs

Christine Bauer
Professor of Interactive Intelligent Systems
Paris Lodron University Salzburg

Abstract

Music information retrieval (MIR) has become an indispensable asset in the music industry. It powers music recom-
mendations for listeners and supports artists in mastering their crafts. While MIR has made remarkable progress, we
need to improve in serving the multifaceted needs of stakeholders who rely on these technologies. Taking examples from
music recommender systems, I will demonstrate the potential risks of neglecting artists’ needs and provide strategies for
mitigation.

Biography

Christine Bauer is EXDIGIT Professor of Interactive Intelligent Systems at the Department of Artificial Intelligence and
Human Interfaces (AIHI) at the Paris Lodron University Salzburg, Austria.

Her research centers on interactive intelligent systems, where she integrates research on intelligent technologies, the
interaction of humans with an intelligent system, and their interplay. She takes a human-centered perspective, where
technology follows humans’ and society’s needs. In recent years, she worked on context-aware recommender systems in
the music and media domains. The core interests in her research activities are fairness and multi-method evaluations.

She has authored more than 100 papers and holds several best paper awards and many awards for her reviewing activities.
She received the prestigious Elise Richter career research grant (2017–2020), funded by the Austrian Science Fund (FWF).
She is on the Editorial Board of ACM Transactions on Recommender Systems (TORS) and co-organizes the Workshop
series “Perspectives on the Evaluation of Recommender Systems (PERSPECTIVES)”.

She advocates for equal opportunities and engages in initiatives such as Women in Music Information Retrieval (WiMIR)
and the Allyship program at CHI.

Further information can be found at https://christinebauer.eu.
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Keynote Talk – 2

Building & Launching MIR Systems at Industry Scale

Rachel Bittner
Research Manager
Spotify

Abstract

There is a considerable gap in the research and engineering methods we use to build MIR systems for academic research
and the way we build them for industry-scale systems. This keynote covers some of the many differences and challenges
faced when building MIR systems for industry applications. We first discuss the way we define problems in the first place,
and why the academic definition of problems is often ill-suited for a particular application. There are also substantial
differences in engineering workflows – in particular when multiple researchers and engineers build a single system. We
explore differences in academic datasets which are usually “small and clean” to real-world datasets which are “large and
noisy”. Academic metrics are useful for us scientists, but they often either don’t match a product use case or mean nothing
to product teams. Finally, we dig into deployment considerations including how to run inference flexibly, considering cost
and speed, and where the system needs to run. We will explore numerous real-world examples throughout and provide
insight into how to build MIR systems within industry.

Biography

Rachel is a Research Manager at Spotify in Paris. Before Spotify, she worked at NASA Ames Research Center in the
Human Factors division. She received her Ph.D. degree in music technology and digital signal processing from New York
University. Before that, she did a Master’s degree in Mathematics at New York University, and a joint Bachelor’s degree in
Music Performance and Math at UC Irvine. Her research interests include automatic music transcription, musical source
separation, metrics, and dataset creation.
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Keynote Talk – 3

Seeing the Light Through Music, a Blind Man’s Journey of Discovery Through
Audio and How to Navigate Making Music That Speaks to the World in the
Age of the Screen Driven Universe

Joey Stuckey
Professor of Music Technology
Mercer University

Abstract

This presentation will encompass:

• Diversity, Equity, Inclusion and Accessibility issues and best practices for a truly vibrant and equitable community
in the audio industry and music business.

• Getting back to fundamentals, critical listening in the age of the “Screen Driven Universe”.

• Important elements of music making and the recording sciences

• How to live a successful life of intention despite obstacles

Biography

Joey Stuckey is the Official Music Ambassador of his hometown of Macon, Georgia. Joey spends every moment living life
to the fullest and sharing his story and inspirational spirit through his musical performances and speaking engagements.
As a toddler, Joey was diagnosed with a brain tumor and underwent surgery with little hope of survival. Though the tumor
left Joey blind and with other health challenges, today, he continues to live a successful life of intention in his chosen
field of music. Joey is professor of music technology at Mercer University, the music technology consultant for Middle
Georgia State University, and an official music mentor for the Recording, Radio and Film Connection in Los Angeles as
well as an active voting member of the Grammys. He is the owner and senior engineer at Shadow Sound Studio which is a
destination recording facility with state-of-the-art analog and digital technology. He has spoken and performed all over the
world including at the University College of London, the Georgia Music Hall of Fame, and the Audio Engineering Society
in New York City, just to name a few. In his roles as producer, engineer, recording artist and journalist, he has worked with
many musical legends including Trisha Yearwood, Clarence Carter, James Brown, Alan Parsons, Gene Simmons (KISS),
Al Chez (Tower of Power), Jimmy Hall (Wet Willie), Danny Seraphin (Chicago), Kevin Kenney (Drivin’ and Cryin’), and
many, many more.

For more information visit www.joeystuckey.com

Facebook: https://www.facebook.com/joeystuckey

Twitter: @jstuckeymusic

Instagram: @jstuckeymusic
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Tutorial 1

Analysing Physiological Data Collected During Music Listening: An Intro-
duction

Laura Bishop, Geoffray Bonnin and Jérémy Frey

Abstract

Music has diverse effects on listeners, including inducing emotions, triggering movement or dancing, and prompting
changes in visual attention. These effects are often associated with psychophysiological responses like changes in heart
activity, respiratory rate, and pupil size, which can themselves be influenced by the cognitive effort exerted during music
listening, e.g., when engaging with unfamiliar tracks on a web radio for music discovery.

This tutorial aims to introduce psychophysiological data analysis for a broad MIR audience, with a particular focus on
the analysis of heart rate, electrodermal activity and pupillometry data. It will be structured in three parts. The first part
will provide a presentation of psychophysiological data that we collected in the context of a preliminary study related to
music discovery. The second part will be a hands-on tutorial during which we will guide the participants to remake two
of our data analyses. In the third part, we will assist participants in undertaking their own data analysis of our data. These
analyses will be demonstrated using R and Python.

Our aim with this tutorial is twofold: to promote underrepresented topics in the MIR community, especially the recognition
of induced emotions from physiological data and discovery-oriented music recommendation; and to encourage researchers
from those domains to interact with the MIR community. The audience we target is therefore relatively large. Participants
should, however, possess sufficient knowledge of R and/or Python and standard statistical analysis methods to participate
in the hands-on parts of the tutorial.

Biographies of the Presenters

Laura Bishop is a researcher at the RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion and the
Department of Musicology at the University of Oslo. She specialises in pupillometry, eye-tracking, and motion capture
using approaches mainly grounded in psychology. She completed her PhD in music psychology at the MARCS Institute,
Western Sydney University, Australia, in 2013. She currently co-leads the Austrian Science Fund project “Achieving
togetherness in music ensembles” in collaboration with the University for Music and Performing Arts Vienna (mdw),
which investigates physiological and body motion coordination in ensemble playing.

Geoffray Bonnin is an Associate Professor at the Lorraine Research Laboratory in Computer Science and its Applica-
tions (Loria), Université de Lorraine. He obtained his Ph.D. in 2010 and joined the Loria lab in 2014 as an Associate
Professor. His research topics are related to artificial intelligence for music and for education. He is currently in charge of
the Music-Mouv’ project, which is a collaboration with researchers in the domain of psychology that started in October
2021. The project aims at helping individuals with Parkinson’s disease to walk by triggering relevant emotions through
physiology-based music recommendations.

Jérémy Frey is the CTO and co-founder of Ullo. After a master degree in cognitive sciences, he obtained his PhD degree
in computer science in 2015 from the University of Bordeaux, France. During his work within the Inria research team
Potioc, he had been studying how passive brain-computer interfaces could contribute to the evaluation of user experience,
using for example EEG to infer a continuous index of cognitive load. His current research interests revolve around
increasing introspection and social presence, by displaying inner states through tangible interfaces or wearables, with
applications ranging from well-being to education.
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Tutorial 2

Introduction to Differentiable Audio Synthesizer Programming

Ben Hayes, Jordie Shier, Chin-Yun Yu, David Südholt and Rodrigo Diaz

Abstract

Differentiable digital signal processing is a technique in which signal processing algorithms are implemented as differen-
tiable programs used in combination with deep neural networks. The advantages of this methodology include a reduction
in model complexity, lower data requirements, and an inherently interpretible intermediate representation. In recent years,
differentiable audio synthesizers have been applied to a variety of tasks, including voice and instrument modelling, syn-
thesizer control, pitch estimation, source separation, and parameter estimation. Yet despite the growing popularity of such
methods, the implementation of differentiable audio synthesizers remains poorly documented, and the simple formulation
of many synthesizers belies their complex optimization behaviour. To address this gap, this tutorial offers an introduction
to the fundamentals of differentiable synthesizer programming.

The tutorial will centre around practical demonstrations, which participants can follow using an accompanying suite of
Jupyter notebooks. All tutorial content will be documented in an accompanying web book, and all tutorial materials and
dependencies will be fully open source and accessible for free online. Prior experience with writing Python 3 code is
assumed, and a basic knowledge of PyTorch is beneficial though not strictly required. The tutorial is targeted at music
and audio researchers and engineers with a grounding in the basics of digital signal processing and machine learning. Our
aim is to equip participants to apply these techniques in their own research, whilst enabling those with prior knowledge to
sharpen their skills.

Biographies of the Presenters

Ben Hayes is a third year PhD student at the Centre for Digital Music’s CDT in Artificial Intelligence and Music, based at
Queen Mary University of London, under the supervision of Dr György Fazekas and Dr Charalampos Saitis. His research
focuses on expanding the capabilities of differentiable digital signal processing by enabling control over non-convex
operations. His work has been accepted to leading conferences in the field, including ISMIR, ICASSP, ICA, and the AES
Convention, and published in the Journal of the Audio Engineering Society. He also holds an MSc with Distinction in
Sound and Music Computing from QMUL and a first class BMus(Hons) in Electronic Music from the Guildhall School
of Music and Drama, where he is now a member of teaching faculty. He is a founding member of the Special Interest
Group on Neural Audio Synthesis at C4DM, and is the organizer of the international Neural Audio Synthesis Hackathon.
Previously he was a Research intern at ByteDance, music lead at the award-winning generative music startup Jukedeck,
and an internationally touring musician signed to R&S Records.

Jordie Shier is a first year PhD student in the Artificial Intelligence and Music (AIM) programme based at Queen Mary
University of London (QMUL), studying under the supervision of Prof. Andrew McPherson and Dr. Charalampos Saitis.
His research is focused on the development of novel methods for synthesizing audio and the creation of new interaction
paradigms for music synthesizers. His current PhD project is on real-time timbral mapping for synthesized percussive
performance and is being conducted in collaboration with Ableton. He was a co-organizer of the 2021 Holistic Evaluation
of Audio Representations (HEAR) NeurIPS challenge and his work has been published in PMLR, DAFx, and the JAES.
Previously, he completed an MSc in Computer Science and Music under the supervision of Prof. George Tzanetakis and
Assoc. Prof. Kirck McNally.

Chin-Yun Yu is a first year PhD student in the Artificial Intelligence and Music (AIM) programme based at Queen Mary
University of London (QMUL), under the supervision of Dr György Fazekas. His current research theme is on leveraging
signal processing and deep generative models for controllable, expressive vocal synthesis. In addition, he is dedicated to
open science and reproducible research by developing open-source packages and contributing to public research projects.
He received a BSc in Computer Science from National Chiao Tung University in 2018 and was a research assistant at
the Institute of Information Science, Academia Sinica, supervised by Prof. Li Su. His recent work has been published at
ICASSP.
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David Südholt is a first year PhD student in the Artificial Intelligence and Music (AIM) programme based at Queen
Mary University of London (QMUL). Supervised by Prof. Joshua Reiss, he is researching parameter estimation for
physical modelling synthesis, focussing on the synthesis and expressive transformation of the human voice. He received
an MSc degree in Sound and Music Computing from Aalborg University Copenhagen in 2022, where he was supervised
by Prof. Stefania Serafin and Assoc. Prof. Cumhur Erkut. His work has been published at the SMC conference and in the
IEEE/ACM Transactions on Audio, Speech and Language Processing.

Rodrigo Diaz is a PhD candidate in Artificial Intelligence and Music at Queen Mary University in London, under the
supervision of Prof. Mark Sandler and Dr. Charalampos Saitis. Rodrigo’s work has been published in leading computer
vision and audio conferences, including CVPR, ICASSP, IC3D, and the AES Conference on Headphone Technology.
Before starting his PhD studies, he worked as a researcher at the Immersive Communications group at the Fraunhofer
HHI Institute in Berlin, where he investigated volumetric reconstruction from images using neural networks. His current
research focuses on real-time audio synthesis using neural networks for 3D objects and drums. Rodrigo’s interdisciplinary
background includes a Master’s degree in Media Arts and Design from Bauhaus University in Weimar and a Bachelor of
Music from Texas Christian University.
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Tutorial 3

Transformer-Based Symbolic Music Generation: Fundamentals to Advanced
Concepts, Stylistic Considerations, Conditioning Mechanisms and Large
Language Models

Berker Banar, Pedro Sarmento and Sara Adkins

Abstract

With the rise of the attention mechanism and the success of auto-regressive generative modelling and large language
models, the Transformer architecture has arguably been the most promising technology for symbolic music generation.
While audio-based methods have shown promise, symbolic music generation offers distinct advantages in terms of control,
long-term coherence and computational efficiency. This tutorial explores the potential of the Transformer architecture in
symbolic music generation and aims to provide (1) a thorough understanding of the vanilla Transformer architecture
(emphasising the reasoning behind its design choices) and the utilisation of large language models for symbolic music
generation. Additionally, it offers (2) a comprehensive overview of the field, including a taxonomy and a curated list of
valuable datasets. The tutorial delves into (3) an in-depth analysis of Transformer variants and large language models
specifically tailored for symbolic music generation. Also, it examines (4) examples and advanced considerations such as
style, musical conditioning, and real-time performance. Furthermore, the tutorial offers (5) two hands-on exercises using
Google Colab Notebooks, enabling participants to apply the concepts covered. Overall, this tutorial equips participants
with the theoretical knowledge and practical skills necessary to explore the power of the Transformer architecture in
symbolic music generation.

Biographies of the Presenters

Berker Banar is a PhD Researcher (Comp. Sci.) at the Centre for Doctoral Training in AI and Music (AIM CDT) and the
Centre for Digital Music (C4DM) at Queen Mary University of London (QMUL), and also an Enrichment Student at the
Alan Turing Institute. His PhD focuses on ‘Composing Contemporary Classical Music using Generative Deep Learning’
under supervision of Simon Colton to enhance human creativity and enable new aesthetics. Berker’s research interests
include transformer-based generative modelling, optimisation, self-supervised representation learning for audio and mu-
sic, explainable AI, quality-diversity analysis of generative model and out-of-distribution generation. He has worked at
Sony and Bose as a research intern, and at Northwestern University Metamaterials and Nanophotonic Devices Lab as a
nanophotonics researcher. Berker holds a BS in Electrical and Electronics Engineering from Bilkent University, Ankara,
Turkey and a BM in Electronic Production and Design from Berklee College of Music, Boston, MA. His awards include
Enrichment Community Award (The Alan Turing Institute), Exceptional Great Work Award (Bose), Outstanding Students
of 2022 (EvoMUSART), Roland Award Endowed Scholarship (Berklee) and Outstanding Success Scholarship (Turkish
Educational Foundation, upon ranking 17th in 1.5 million people in national university entrance exam). As a musician
(drums and electronics), Berker has performed at venues such as the Museum of Fine Arts Boston, Harvard University
Holden Chapel & Carpenter Center for Visual Arts (an original piece premiered as part of Berklee Interdisciplinary Arts
Institute), Berklee Performance Center, Wally’s Jazz Club Boston, Nardis Jazz Club Istanbul and Istanbul Jazz Festival.

Pedro Sarmento is a PhD researcher at the Centre for Digital Music (C4DM), Queen Mary University of London
(QMUL), working under the supervision of Mathieu Barthet within the UKRI Centre for Doctoral Training in Artifi-
cial Intelligence and Music (AIM). His research focuses on guitar-focused symbolic music generation with deep learning.
This concerns the exploration of techniques for the creation of novel music that is represented in a digital tablature for-
mat, in which additional information about how to play specific music passages is provided. He holds an Integrated MSc
degree in Electrical Engineering from Faculdade de Engenharia da Universidade do Porto (FEUP), a degree in Classical
Guitar from the Conversatory of Music of Porto, and a second MSc degree in Multimedia and Interactive Sound from
FEUP. He has an ongoing collaboration with Orquestra de Jazz de Matosinhos (OJM) where he leads sessions that foster
an approach to STEM via musical concepts for young students. He volunteers for an online music magazine, writing
album reviews and conducting interviews with artists from the Metal scene.
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Sara Adkins is a music technologist, machine learning engineer, and performer who is enthusiastic about promoting the
use of machine learning and AI in the creative arts. Currently, she works as a Generative Music and Audio Developer
at Infinite Album, developing a real-time, interactive, and copyright-safe music engine for Twitch streamers. Sara holds
a Master of Science in Sound and Music Computing from Queen Mary University of London where she was funded
through a US-UK Fulbright grant. Her master’s thesis focused on developing a Transformer model capable of generating
loopable musical phrases for live coding and algorave performances, and received an Outstanding Student Mention at
EvoMUSART 2023. Before moving to London, Sara spent three years in Boston where she worked as a machine learning
engineer at Bose and played as a freelance classical guitarist. At Bose, she worked on deep learning models for speech
enhancement that were optimized to run live on a hearing aid micro-controller. She also led a research project that
developed generative audio algorithms that adapt to biofeedback signals to induce sleep using soothing music. Sara
graduated from Carnegie Mellon University with an interdisciplinary bachelor’s degree in music technology and computer
science. Her senior capstone project, “Creating with the Machine,” combined algorithmic and traditional methods of
composition into live performances to explore how interactive generative algorithms can influence creativity in musical
improvisation. “Creating with the Machine” was premiered by the Carnegie Mellon Exploded Ensemble in the spring of
2018 and was awarded the Henry Armero Memorial Award for Inclusive Creativity.
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Tutorial 4

Computer-Assisted Music-Making Systems: Taxonomy, Review, and Cod-
ing

Christodoulos Benetatos, Zhiyao Duan and Philippe Pasquier

Abstract

Computer-Assisted Music-Making (CAMM) systems, are software-based tools designed to assist and augment the musical
creativity of composers, performers, and music enthusiasts. CAMM systems encompass a wide range of systems that can
be broadly categorized into two main types according to their design purposes: to assist music performance and to assist
music composition. This tutorial offers a comprehensive review of the design principles, practical applications, taxonomy,
and the state-of-the-art research of CAMM systems, with an emphasis on systems assisting music performance, which are
also called “interactive music systems” or “musical agents” in the literature. Research on CAMMs is interdisciplinary in
its nature, combining fields such as Music Information Retrieval (MIR), Artificial Intelligence (AI) and Human-Computer
Interaction (HCI). Participants will gain an understanding of how these fields converge to create innovative and interactive
musical experiences. This tutorial will also feature a coding session for participants to build a real-time musical agent,
under the framework of Euterpe, a prototyping framework for creating music interactions on the Web. The tutorial
will examine existing systems built using Euterpe, provide insights into the development process, and guide participants
through the creation of their own musical agents. Participants in the coding part should bring a laptop with Chrome
and Node.js (https://nodejs.org/en/download) installed, as well as have some coding experience. Familiarity with
JavaScript will be helpful, but not necessary.

Biographies of the Presenters

Christodoulos Benetatos is a 5th year Ph.D student in the Department of Electrical and Computer Engineering at the
University of Rochester. He received his B.S and M.Eng in Electrical Engineering from National Technical University
of Athens in 2018. His research interests are focused primarily on automatic music generation as well as the design and
development of computer-assisted music-making systems. During his research internships at Kwai and TikTok, he worked
on audio digital signal processing and music generation algorithms. As a classical guitarist, he has won several prizes in
international guitar competitions and is a regular performer both as a soloist and as part of ensembles.

Philippe Pasquier is a professor at Simon Fraser University’s School of Interactive Arts and Technology, where he
directs the Metacreation Lab for Creative AI. He leads a research-creation program around generative systems for creative
tasks. As such, he is a scientist specialized in artificial intelligence, a software designer, a multidisciplinary media artist,
an educator, and a community builder. Pursuing a multidisciplinary research-creation program, his contributions bridge
fundamental research on generative systems, machine learning, affective computing and computer-assisted creativity,
applied research in the creative software industry, and artistic practice in interactive and generative art.

Zhiyao Duan is an associate professor in Electrical and Computer Engineering, Computer Science and Data Science at
the University of Rochester. He received his B.S. in Automation and M.S. in Control Science and Engineering from Ts-
inghua University, China, in 2004 and 2008, respectively, and received his Ph.D. in Computer Science from Northwestern
University in 2013. His research interest is in computer audition and its connections with computer vision, natural lan-
guage processing, and augmented and virtual reality. He received a best paper award at the Sound and Music Computing
(SMC) conference in 2017, a best paper nomination at the International Society for Music Information Retrieval (ISMIR)
conference in 2017, and a CAREER award from the National Science Foundation (NSF). He served as a Scientific Pro-
gram Co-Chair of ISMIR 2021, and is serving as an associate editor for IEEE Open Journal of Signal Processing, a guest
editor for Transactions of the International Society for Music Information Retrieval, and a guest editor for Frontiers in
Signal Processing. He is the President-Elect of ISMIR.
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Tutorial 5

Learning With Music Signals: Technology Meets Education

Meinard Müller

Abstract

Music information retrieval (MIR) is an exciting and challenging research area that aims to develop techniques and tools
for organizing, analyzing, retrieving, and presenting music-related data. Being at the intersection of engineering and
humanities, MIR relates to different research disciplines, including signal processing, machine learning, information re-
trieval, musicology, and the digital humanities. In this tutorial, using music as a tangible and concrete application domain,
we approach the concept of learning from different angles, addressing technological and educational aspects. In this way,
the tutorial serves several purposes: we give a gentle introduction to MIR, highlight avenues for developing explainable
machine-learning models, discuss how recent technology can be applied and communicated in interdisciplinary research
and education, and introduce a new software package for teaching and learning music processing.

Our primary goal is to give an exciting tutorial that builds a bridge from basic to advanced techniques in MIR while
highlighting technological and educational aspects. This tutorial should appeal to a broad audience, including students,
educators, non-experts, and researchers new to the field, by covering concrete MIR tasks while providing many illustrative
audio examples.

Links:

• Textbook: Fundamentals of Music Processing www.music-processing.de

• FMP Notebooks www.audiolabs-erlangen.de/FMP

• Python package: libfmp github.com/meinardmueller/libfmp

• PCP Notebooks www.audiolabs-erlangen.de/PCP

Biography of the Presenter

Meinard Müller received the Diploma degree (1997) in mathematics and the Ph.D. degree (2001) in computer science
from the University of Bonn, Germany. Since 2012, he has held a professorship for Semantic Audio Signal Processing at
the International Audio Laboratories Erlangen, a joint institute of the Friedrich-Alexander-Universität and the Fraunhofer
Institute for Integrated Circuits IIS. His recent research interests include music processing, music information retrieval,
audio signal processing, and motion processing. He was a member of the IEEE Audio and Acoustic Signal Processing
Technical Committee from 2010 to 2015, a member of the Senior Editorial Board of the IEEE Signal Processing Magazine
(2018-2022), and a member of the Board of Directors of the International Society for Music Information Retrieval (2009-
2021, being its president in 2020/2021). In 2020, he was elevated to IEEE Fellow for contributions to music signal
processing.

Besides his scientific research, Meinard Müller has been very active in teaching music and audio processing. He gave
numerous tutorials at major conferences, including ISMIR (2007, 2010, 2011, 2014, 2017, 2019), ICASSP (2009, 2011,
2019), Deep Learning IndabaX (2021), GI Jahrestagung (2017), Eurographics (2009, 2023), and ICME (2008). Further-
more, he wrote a monograph titled “Information Retrieval for Music and Motion” (Springer, 2007) as well as a textbook
titled “Fundamentals of Music Processing” (Springer, 2015, www.music-processing.de). Recently, he released a com-
prehensive collection of educational Python notebooks designed for teaching and learning audio signal processing using
music as an instructive application domain (https://www.audiolabs-erlangen.de/FMP).
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Tutorial 6

Kymatio: Deep Learning Meets Wavelet Theory for Music Signal Processing

Cyrus Vahidi, Christopher Mitcheltree, Vincent Lostanlen

Abstract

We present a tutorial on MIR with the open-source Kymatio (Andreux et al., 2020) toolkit for analysis and synthesis of
music signals and timbre with differentiable computing. Kymatio is a Python package for applications at the intersection
of deep learning and wavelet scattering. Its latest release (v0.4) provides an implementation of the joint time—frequency
scattering transform (JTFS), which is an idealisation of a neurophysiological model that is commonly known in musical
timbre perception research: the spectrotemporal receptive field (STRF) (Patil et al., 2012). In the MIR research, scat-
tering transforms have demonstrated effectiveness in musical instrument classification (Vahidi et al., 2022), neural audio
synthesis (Andreux et al., 2018), playing technique recognition and similarity (Lostanlen et al., 2021), acoustic modelling
(Lostanlen et al., 2020), synthesizer parameter estimation and objective audio similarity (Vahidi et al., 2023, Lostanlen et
al., 2023).

The Kymatio ecosystem will be introduced with examples in MIR:

• Wavelet transform and scattering introduction (including constant-Q transform, scattering transforms, joint time–frequency
scattering transforms, and visualizations)

• MIR with scattering: music classification and segmentation

• A perceptual distance objective for gradient descent

• Generative evaluation of audio representations (GEAR) (Lostanlen et al., 2023)

A comprehensive overview of Kymatio’s frontend user interface will be given, with examples of extensibility of the core
routines and filterbank construction.

We ask our participants to have some prior knowledge in:

• Python and NumPy programming (familiarity with Pytorch is a bonus, but not essential)

• Spectrogram visualization

• Computer-generated sounds

No prior knowledge of wavelet or scattering transforms is expected.

References

• Andreux, M., Angles, T., Exarchakisgeo, G., Leonardu, R., Rochette, G., Thiry, L., . . . & Eickenberg, M. (2020).
Kymatio: Scattering transforms in python. The Journal of Machine Learning Research, 21(1), 2256-2261.

• Andreux, M., & Mallat, S. (2018, September). Music Generation and Transformation with Moment Matching-
Scattering Inverse Networks. In ISMIR (pp. 327-333).

• Lostanlen, V., El-Hajj, C., Rossignol, M., Lafay, G., Andén, J., & Lagrange, M. (2021). Time–frequency scattering
accurately models auditory similarities between instrumental playing techniques. EURASIP Journal on Audio,
Speech, and Music Processing, 2021(1), 1-21.

• Lostanlen, V., Cohen-Hadria, A., & Bello, J. P. (2020). One or two components? the scattering transform answers.
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ABSTRACT

Musicology research suggests a correspondence between

manual gesture and melodic contour in raga performance.

Computational tools such as pose estimation from video

and time series pattern matching potentially facilitate

larger-scale studies of gesture and audio correspondence.

We present a dataset of audiovisual recordings of Hindus-

tani vocal music comprising 9 ragas sung by 11 expert per-

formers. With the automatic segmentation of the audiovi-

sual time series based on analyses of the extracted F0 con-

tour, we study whether melodic similarity implies gesture

similarity. Our results indicate that specific representations

of gesture kinematics can predict high-level melodic fea-

tures such as held notes and raga-characteristic motifs sig-

nificantly better than chance.

1. INTRODUCTION

Manual gesturing by singers is an integral part of vocal

music performances in the Indian classical traditions. Pre-

vious work has demonstrated that singers’ gestures have

several different referents and functions: for example, they

may relate to the rhythmic structure of the music (marking

a steady beat or tala cycle) or play a role in signalling to co-

performers or audience members, as well as appearing to

accompany or illustrate aspects of the melody being sung.

In the latter case, hand movements sometimes appear to

correspond to pitch height (i.e. ascending pitch co-occurs

with one or both hands rising and/or moving to one side);

at other times they relate to other aspects of melody, such

as the tension felt while sustaining certain notes, or the im-

age or abstract design visualised by the performer [1–5].

Little computational work has been carried out on

gesture-to-audio correspondence in Hindustani vocal mu-

sic. Paschalidou [6] carried out research on a motion cap-

ture dataset of solo alap recordings in the dhrupad genre,

looking at a range of movement and audio features in re-

lation to the concept of ‘effort’: although she found cor-

© S. Nadkarni, S. Roychowdhury, P. Rao and M. Clayton.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: S. Nadkarni, S. Roychowdhury, P.

Rao and M. Clayton, “Exploring the correspondence of melodic contour

with gesture in raga alap singing”, in Proc. of the 24th Int. Society for

Music Information Retrieval Conf., Milan, Italy, 2023.

Dataset Singers Ragas Pakad Alap Dur(min)

Study in [7] 3 (1M,2F) 9 37 55 193

Current Work 11(5M,6F) 9 109 199 664

Table 1: A summary of the newly augmented audiovisual

dataset compared with that of closest previous work [7].

respondences, generalising across performers proved chal-

lenging.

Clayton et al [7] explored the use of movement data to

classify 12-sec excerpts drawn from a corpus comprising

3 singers performing 9 common Hindustani ragas in the

khyal genre. The use of solo alap meant the gestures can-

not refer to either metric structure or interaction with co-

performers, and thus relate predominantly to the melody

of the ragas being presented. An inception block preceded

by independently trained convolution layers for each of

audio and gesture time series classification provided the

best performance in the context of singer-dependent raga

classification, especially reducing the confusion between

melodically similar ragas with respect to the otherwise

high-performing audio-only classification. While the work

demonstrated the complementarity of gesture and melodic

profiles in relation to raga identity, we are more interested

in the present work in understanding which characteris-

tics of gesture correlate with specific melodic character-

istics. Further, given that the dataset of [8] was limited to

3 singers and therefore not suited to cross-singer studies,

we present here a considerably enlarged corpus with 8 ad-

ditional performers, collected following a similar method-

ology, as summarised in Table 1.

In the related Karnatak tradition, Pearson’s research has

looked at the role of gesture in vocal teaching [9]. The re-

lation between the acoustics and the kinematics was stud-

ied in recent work by Pearson & Pouw using the track-

ing of left and right wrist positions [10]. They manually

segmented the gesture tracks and studied the correspon-

dence of various kinematic extrema with the temporally

aligned changes in the acoustics (fundamental frequency,

or F0, and amplitude envelope). A correspondence was

established between the magnitudes of local peaks in ac-

celeration and changes in F0, in line with previous work in

co-speech gesturing [11].

In this work, we study the newly expanded corpus of
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Figure 1: The overall testing and evaluation framework for the raga phrase-based segmentation. The audio and visual

components of a candidate AV segment (i-th segment from an alap) are separately compared with the respective audio

and visual components of a reference phrase segment (from a pakad) to see whether they are together consistent in their

estimation of similarity with the reference phrase. We note that the gesture T.S. (time series) is multidimensional while the

audio T.S. is a unidimensional sequence of F0 samples.

solo alap recordings. Since the same set of 9 ragas is per-

formed by all the singers (11 in this case), we can explore

commonalities in the gestures used by different singers for

particular raga-specific melodic movements. That is, in

contrast to the body of previous work, we use musically

motivated units, implied by the raga melodic structure, to

group the representations of melody and gesture. The aim

of the study is to investigate correspondences between the

singers’ movements (captured in the time series for x- and

y-coordinates of their wrist positions) and the melodies

they sing (represented as F0 contours).

Figure 1 depicts our overall framework. The melodic

phrase segments are obtained for each alap audio via a

subsequence search using a reference audio template (such

as a manually labeled phrase segment). The audio seg-

ment start and end times are then used to identify the cor-

responding time-synchronised video segment. The audio

and video segments are individually processed to compute

audio-based similarity and video-based similarity with re-

spect to the corresponding components of the AV (audio-

visual) reference template. We now seek to quantify the

extent to which video-based similarity predicts audio simi-

larity. We simplify the evaluation task to comparing, across

the two modalities, the following binary labels: L (i.e.

close to, or Like, the reference) or U (Unlike the refer-

ence).

In the next section, we provide the details of our dataset.

This is followed by a discussion of the audiovisual segmen-

tation methods. The experiments and results are presented

in the final two sections of the paper.

2. DATASET AND PREPROCESSING

We consider our dataset of vocal alap performances by 11

professional musicians performing 2 alaps each of 9 ragas.

Each alap is about 3 minutes long. The singers also con-

tributed shorter ‘pakad’ recordings, rendering some of the

key phrases of each raga in a brief format of a few sec-

onds. The total duration of this newly expanded dataset

(summarised in Table 1) is about 11 hours. Each piece

was recorded using three video cameras and separate mi-

crophone; only the central camera is used in the current

analyses. While each alap is labeled only by singer and

raga, we carry out further manual annotation of the pakad

audio files for selected raga phrases as used in this study.

That is, all the pakads of a given raga across the 11 singers

are searched for instances of the desired phrase (e.g. gmD

in raga Bageshree). This task, carried out by a musician, is

facilitated by the fact that the pakad is almost always sung

with solfege (unlike the alap).

Our audio and video processing pipelines closely follow

those of [7]. An initial stage of audio suppression of the

background drone is obtained via source separation [12].

The suppression, while not complete, is adequate for the

reliable estimation voicing and pitch at 10 ms intervals us-

ing monophonic pitch detection based on short-time au-

tocorrelation analysis [13]. Brief unvoiced regions (less

than 400 ms) arising from short breath pauses and con-

sonant utterances are filled in via cubic spline interpola-

tion to obtain the continuous pitch contours associated with

melodic movements that are bounded by silence (>400 ms)

on both ends. These are termed ‘Silence-Delimited Seg-

ments’ (SDS). The pitch contour is tonic-normalised using

an automatically detected (and manually verified) tonic to

obtain the F0 (cents) contour [14].

In order to extract the movement data, the central

video view of each piece is processed using the Open-

Pose pose estimation algorithm, which generates x- and

y-coordinates for 11 upper body joints [15]. We select the

right and left wrist coordinates. Any missing data are in-

terpolated and each of the time series is low-pass filtered to

remove jitter. The position time-series, originally sampled

at 25 fps is interpolated to 100 samples/sec to synchronise
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it with the sampled F0 contour. Other important low-level

human motion descriptors include velocity (rate of change

of the 2d position) and acceleration (rate of change of the

velocity) [16]. We derive velocity and acceleration profiles

from the 2d position time-series of each joint by computing

derivatives. A robust estimate of the derivative is obtained

via a differencing kernel such as a biphasic filter with its

controllable smoothing parameters [17, 18]. We find that a

101-point filter achieves a lowpass filtering of about 2 Hz,

giving a sufficiently smooth and physiologically plausible

movement acceleration profile [19]. We eventually obtain

the 8-dim gesture time series of position (x and y), veloc-

ity and acceleration for each of the left and right wrists for

each of the singer-alap and pakad recordings. In this, we

include the synchronized F0 contour to get the complete

audiovisual time series for an alap, now in the form of a

sequence of SDS. A detailed review of the data collection

and processing appears in the supplementary material.

3. SEGMENTATION METHODS

The first stage of segmentation of the synchronised

AV time series comprises the silence-delimited segments

(SDS) obtained in the previous section. We discard seg-

ments of duration less than 500 ms as too limited for our

further analyses. The retained SDS, numbering approxi-

mately 30 per alap, have a mean duration of 5.2 s with less

than 1% (of the total count of 6012) exceeding 20 s. As

discussed next, we apply melodic segmentation principles

to each SDS to obtain stable note and raga-characteristic

melodic movements or phrases that can help us explore the

links between specific musical expressions and the corre-

sponding gestures.

In a top-down approach, the alap can be segmented into

its phrases. A raga phrase, although notated simply by its

solfege sequence, has a melodic-rhythmic realisation com-

prising specific intonations and durations of its constituent

svaras, together with the transitions to/from neighbouring

svaras [20]. On the other hand, in a bottom-up approach,

the melodic contour can be viewed as comprising the fol-

lowing broad categories of segments: stable notes, and the

transitions between the notes which can include distinc-

tive melodic ornaments such as glides (meend) and os-

cillatory movements (andolan) apart from steep changes

of pitch or pauses [21]. Figure 2 presents an example of

an SDS that comprises a variety of stable and transitional

sub-segments. It is therefore of interest to examine audio-

visual correspondences in the context of the distinct types

of melodic movements. The two different audio-based seg-

mentation procedures are detailed next.

3.1 Stable note segmentation

To identify occurrences of stable or sustained tones,

the continuous F0 contour corresponding to an SDS is

searched for instances in which the same raga note (svara)

is sustained for > 250 ms. That is, a stable note is de-

fined as a region where the F0 lies within a 25 cent interval

of the mean intonation of the raga note. This is based on

Figure 2: A sample SDS with identified steady notes

(shaded regions of blue F0 contour) and pitch salience dis-

tribution (on the left) computed from the entire alap audio

with detected svara locations highlighted.

past work that associated the similar duration and intona-

tion parameters with a listener’s percept of a held note [22].

Further, given that a svara may not be realised on the eq-

uitempered grid but rather with a raga-specific intonation,

we use a finely binned pitch salience distribution computed

across the alap to establish the svara locations [22]. Stable

note regions corresponding to the same svara that are sepa-

rated by less than 100 ms are next merged. The boundaries

of the so detected stable notes are shown in the example of

Figure 2. Across our alap dataset, stable notes were found

to range from 0.25 s to 9.9 s with a mean of 0.73 s.

In a similar vein, we considered the segmentation of an-

other characteristic melodic movement, the glide (or slide).

This has been attempted previously via the quality of a

linear fit to the F0 contour for Indian popular vocal mu-

sic [23]. However we found that the variety and complex-

ity of glide movements in raga music make it challenging

to develop a universal glide detection algorithm. We there-

fore resort to template-based phrase detection for the pur-

pose, as explained next.

3.2 Phrase-based segmentation

As depicted in Table 2, the raga motifs selected for our

exploration include a distinctive upward slide of an aug-

mented fourth in Shree, a falling slide of a fourth in Nand,

and a three-note ascending phrase in Bageshree. The cho-

sen phrases are highly characteristic of the corresponding

raga and occur in the raga alap with relatively unchanged

melodic shape, prompting the question about whether their

gesture executions also bear some measurable similarity.

The corresponding pakad phrases serve as templates for

the segmentation of the alaps for the chosen raga across

the 11 singers. We obtain a number of templates of the

given phrase from across the 11 singers’ pakads. The set

of templates represents the diversity in the realization of

the phrase across and within singers. This is manually re-

duced to a set of 6 templates per phrase while retaining the

diversity. Figure 3 shows a few examples for each of the

phrases chosen for the current study. We observe that the

simple notation used to represent the up or down slide (/,
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Raga Svara (Notes) Phrase

Bageshree S R g m P D n gmD

Shree S r G M P d N r/P

Nand S R G m M P D N P\R

Table 2: The ragas and phrases used in this study. The

svaras S r R g G m M P d D n N correspond to the 12

notes of the Western chromatic scale with S representing

the tonic. The symbols / and \ denote the upward and

downward slide respectively [24], [25].

\) belies the complexity of contour shapes defined by raga

grammar. Also clear are the essential shape features that

point to the need for dynamic time warping (DTW) based

comparisons [26]. Next, the following steps (also visu-

alised in Figure 4) lead to the desired segmentation of the

alap audio files for each selected raga phrase.

1. The six phrase templates from the pakads are warped

to the same target length (that of the 3rd template in in-

creasing length order in the set) using a penalty parameter

that discourages large deviations from the diagonal path.

This helps to ensure that the subsequence DTW matching

costs can be meaningfully compared across the templates.

2. As shown in the middle panel of Figure 4, con-

strained DTW based subsequence search is executed on

each SDS with each of the 6 warped audio templates

(WAT) to obtain for each WAT the lowest cost match that

satisfies a duration criterion (> 0.5s) in order to avoid cases

of pathological warping [27]. Such matches are accepted

as valid and stored with the cost, temporal boundaries and

WAT index. In case no valid match is returned (in the top

20 retrieved responses) for a particular template, that SDS-

template is not considered further. This step leaves us with

between 1 to 6 best matched segments per SDS along with

the associated DTW costs.

3. Next, we pick the single lowest cost for each SDS

and use this value to cluster the entire set of SDS, across 22

alaps of the raga, into 2 clusters by fitting a kernel density

estimate (KDE) to the distribution of costs as shown in Fig-

ure 5 [28]. The cost value coinciding with the lowest point

in the valley between the peaks is used as a cost thresh-

old to label each SDS as one of the two classes:‘Like’ (i.e.

similar to the raga motif) and ‘Unlike’ (different from the

raga motif). These are the labels we would like to predict

from the corresponding gesture time series segments in the

context of our investigation of audiovisual correspondence.

4. In order to increase the number of examples for the

gesture-based prediction task, we club all the different tem-

plate matches obtained in Step 2 for the same SDS un-

der the same label. This was justified by our observation

that the SDS labeled Like (L) in Step 3 typically exhibited

similar low cost matches across all templates of the same

phrase. The SDS marked Unlike (U), on the other hand,

exhibited a relative wide spread in cost values above the

threshold, similar to that depicted in Figure 5.

Finally, with the audio segments computed in this sec-

tion, we extract the corresponding temporally synchro-

Figure 3: Sample templates for each of the three phrases:

gmD (purple), r/P (blue) and P\R (violet).

Figure 4: The pipeline for phrase-based segmentation us-

ing alap and pakad audio data. For warping the pakad

phrase templates, a window size of 100 and a penalty of

200 was chosen, while for the subsequence alignment, K =

20 and penalty = 0.1 were chosen [27].

nised gesture time series for each SDS and WAT pair. In

the next section, we report our experiments on testing vari-

ous kinematic features for the prediction of the correspond-

ing audio-derived labels in our two distinct tasks.

4. EXPERIMENTS

Past work on gesture kinematics in the context of speech

and singing co-gesturing has considered velocity and ac-

celeration parameters rather than the raw position time se-

ries with these parameters relating more directly to human

effort or force [10, 29–31]. We therefore include the (x,y)

position of each wrist as well as the corresponding ve-

locity and acceleration profiles across the segment as in-

put features for our two classification tasks. Summarising

the previous section, the gesture time series is segmented

based on the previously obtained audio segment bound-

aries giving us a time-aligned multidimensional time series
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Figure 5: Distribution of the DTW subsequence cost

across the SDS of all singer alaps for the best matched

audio phrase template for P\R of raga Nand. The dashed

vertical line shows the threshold derived from the KDE fit

(dashed contour), using which the SDS are labeled as Like

and Unlike with reference to the template phrase.

for (i) each stable-note and non-stable segment across all

the alaps in the dataset, and (ii) each pakad phrase gesture

template and its audio-matched gesture segment from the

SDS. We consider supervised classification for each task

with the different features as discussed next.

4.1 Stable-note prediction

Stable note segments were labeled as such based on the

F0 variation across the segment as discussed in Section

3.1. We would like to investigate whether there is any con-

sistency in the gesture kinematics corresponding to stable

note regions. We implement a binary classifier trained and

tested on the dataset of labeled stable notes and the (com-

plementary) non-stable regions where the training and test

data are both drawn from across singers and ragas. Al-

though 250 ms regions of stable pitch qualified as stable

notes, we restricted the examples of both categories used

in this experiment to those with a minimum duration of 0.5

s in order to ensure that the training dataset was relatively

balanced. When the segment duration was constrained to

the range 0.5 s to 5 s, the stable notes constituted 39% of

the total examples, with across-singer variability as cap-

tured in row 2 of Table 3.

Postulating that gesture kinematics are relatively more

subdued during the stable note events, we investigate a

simple set of explicit features using a Support Vector Ma-

chine (SVM) classifier. We compute the statistical aggre-

gates of each of the velocity and acceleration in the form

of the mean and variance across the duration of the cor-

responding time series segment. We thus have 4 features

per wrist (i.e. 8 features in all) for the binary classifica-

tion of segments into stable and non-stable pitch events.

We carry out 10-fold cross-validation on the dataset and

report the F1 score for the detection of stable notes with

the SVM hyperparameters tuned to maximise the average

performance across the folds. This exercise is carried out

on the entire dataset as well as on singer-specific datasets,

where the corresponding counts of examples are provided

in Table 3.

4.2 Raga phrase detection

Our goal is to determine whether the L and U labels (that

were assigned based on audio proximity) can be predicted

by gesture alone at better than chance (i.e. based only on

the priors) and, if so, which kinematic features are most

useful in this task. Our measure of similarity is the DTW

distance computed between the template and test (i.e.the

alap SDS subsequence) time series. In the context of our

alap gesture time series, already segmented based on the

audio phrase matching, we now compute DTW distance

between the multidimensional reference and candidate un-

der test.

Multidimensional time series present us with some dis-

tinct options for the distance computation. Two obvious

approaches are DTWI and DTWD depending on whether

the individual time series are each warped independently or

whether they are all forced into a single warping path [32].

The use of DTWD appears meaningful for the incorpora-

tion of the velocity and acceleration contours derived from

the corresponding position time series of the wrists. How-

ever, it is interesting also to test with independent DTW

costs across the separate time series (to get an 8-dim fea-

ture vector of costs) to see if this helps reduce the effect of

the less informative features, if any. We term this DTWIND.

Further, decoupling the left and right wrists to obtained two

differently warped sets of time series (DTWLR) is also per-

fectly meaningful in the current task.

With DTW cost(s) as the input features, we create 5

train-test splits with the uniform distribution of singers

across the splits. Thus every example appears once in the

test set. We train a logistic regression classifier with L2

regularizer and use 3-fold cross-validation within the train

set to learn the best set of parameters.

5. RESULTS AND DISCUSSION

5.1 Stable-note detection

Table 3 presents classifier performance in terms of the F1

score for the retrieval of stable notes. We restrict ourselves

to the set of labeled segments of duration between 0.5 s

and 5 s, with 20897 examples in all. With 38.9% of these

corresponding to stable notes, we find that the obtained

F1 score is 65.7% when considering the overall dataset

across singers and ragas. Given the known high singer-

dependence of gesturing, we also evaluate singer-specific

classification with the same kinematic features, now re-

stricted to training and validation (10-fold CV as before)

on the smaller dataset of each singer’s alaps across ragas.

As anticipated, we note a large variation in the F1 scores

across singers in Table 3 but with all values considerably

above chance (which equals the corresponding % Stable

entry in row 2). While some of the variation could be at-

tributed to the differences in distributions of labels across

the singers’ datasets, we observe variation even across

singers with similar distribution characteristics (such as AP

and SM, for instance).

As for the singers with F1 scores well below the across-

singers stable note detection F1 score (such as the case of

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

25



Singer All AG AK AP CC MG MP NM RV SCh SM SS

Count 20897 1242 1987 2382 2274 1822 2111 1769 1563 2069 2083 1595

% Stable 38.9 53.6 36.7 44.1 34.0 51.5 47.3 32.8 34.7 22.5 43.6 30.1

F1 Score (%) 65.7 81.1 63.6 69.5 68.2 72.5 71.6 65.8 65.2 60.5 75.1 49.2

Table 3: Overall and singer-specific performances for stable note detection from segmented gesture time series across the

set of instances in the duration range [0.5, 5] s. Count indicates the number of instances in each singer (or overall) dataset.

The F1 scores in the final row may be compared with the values in the row 2 that correspond to the chance-level F1 score.

Phrase Like Unlike Chance Accuracy DTWD (1) DTWI (1) DTWInd (8) DTWLR (2)

gmD 944 827 50.2 52.2 48.6 51.8 52.4

r/P 1035 1268 50.5 55.3 47.1 56.1 55.1

P\R 817 1340 53.0 65.0 45.7 65.2 65.1

Table 4: Classification accuracy (%) for Like and Unlike phrase detection with gesture time series and different DTW

distance measures. Feature dimensionality (i.e. DTW path costs) appears in parantheses. Bold font indicates that the model

performance is significantly better (p<0.005) than chance, with the chance accuracy (%) also mentioned in the table.

SCh and SS), we note the relatively low proportions of sta-

ble notes in their data. Such behaviour can arise, for ex-

ample, when the singer makes a choice to focus more on

melodic movements in their alap rather than long periods

of held notes. With a relatively low representation of their

stable note examples in the training data, it is probable that

idiosyncratic aspects of their stable note gestures, if any,

were not learned by the classifier. We did not find much

of raga dependence in stable note detection performance.

We also did an analysis of tonic versus other stable notes

to find that the tonic notes (fewer in number overall) were

harder to detect; this observation needs more data for a bet-

ter understanding.

5.2 Raga-phrase detection

Table 4 displays the Like/Unlike classification of raga

phrases across the alaps of all singers. We see a roughly

equal proportion of L and U examples and therefore chance

baseline accuracies close to 50%. Both P\R and r/P exhibit

gesture classification accuracies that are statistically better

than chance for all versions of DTW distance except the

DTWI which is the simple summing of independent path

costs across the 8 different series. In the case of the gmD

phrase, we see a relatively small increase over chance with

the only significant difference provided by the DTWLR that

combines left and right wrist paths, each computed in-

dependently of the other. A singer-based breakdown of

the overall accuracy showed relatively uniform behaviour

across singers for all the phrases except for one outlier (out

of the 11) for each of P\R and r/P phrases.

We would also like to comment on the equal proportion

of L and U examples in our data for this task. Although

there is a far larger number of U instances (that is alap seg-

ments that probably do not contain the phrase of interest

and therefore expected to return a high cost in the DTW

subsequence search of the audio), we found that many of

Suppl. material: https://dap-lab.github.io/audioGestureCorrespondence/

these actually led to invalid paths from pathological warp-

ing and thus were unusable candidates for this study.

6. CONCLUSION

This work proposed a new approach to examining melodic

similarity captured in co-singing gestures by analysing au-

diovisual recordings. With a new dataset of 11 singers,

raga-characteristic phrases were proposed as a proxy for

similar melodic movements within and across singers. As

in previous work, wrist movements that accompanied the

solo alap singing were represented as kinematics time se-

ries. In the absence of ground-truth phrase labels for the

alap data, we developed a pipeline for achieving the AV

segmentation for the chosen phrases via DTW-based au-

dio template matching using a small set of hand-labeled

segments. We also considered the classification task for

more generic AV segments defined in a bottom-up man-

ner such as stable-note regions. Overall, our experimental

results indicate that there is significant kinematic informa-

tion linked to the selected melodic events, and confirm the

importance of computed velocity and acceleration profiles

in the gesture representation.

A useful contribution of this work is the musicological

questions it encourages. Apart from the aspects already

mentioned in the discussion of the results, we note that the

use of multiple phrase templates can facilitate larger exper-

imental validation of hypotheses, such as that of Rahaim

[5], that gestures could function to draw attention to what

is different between two semantically close melodic pat-

terns. Finally, several enhancements to the presented meth-

ods are possible including better-motivated movement fea-

tures, more keypoints (elbow and hand joints) and using all

3 camera views to include depth movement.

The authors S. Nadkarni and S. Roychowdhury contributed equally to this
work.
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ABSTRACT

Thanks to advancements in deep learning (DL), auto-

matic music transcription (AMT) systems recently outper-

formed previous ones fully based on manual feature de-

sign. Many of these highly capable DL models, however,

are computationally expensive. Researchers are moving

towards smaller models capable of maintaining state-of-

the-art (SOTA) results by embedding musical knowledge

in the network architecture. Existing approaches employ

convolutional blocks specifically designed to capture the

harmonic structure. These approaches, however, require

either large kernels or multiple kernels, with each kernel

aiming to capture a different harmonic. We present TriAD,

a convolutional block that achieves an unequally distanced

dilation over the frequency axis. This allows our method to

capture multiple harmonics with a single yet small kernel.

We compare TriAD with other methods of capturing har-

monics, and we observe that our approach maintains SOTA

results while reducing the number of parameters required.

We also conduct an ablation study showing that our pro-

posed method effectively relies on harmonic information.

1. INTRODUCTION

When a note is played, a set of strongly related frequen-

cies start to sound leading to a pitch sensation for the lis-

tener. These strongly related frequencies are what we call

the harmonic spectrum, in which we distinguish two parts:

the fundamental frequency (f0) and the harmonics. The

fundamental is the frequency associated with the pitch, and

the harmonics are integer multiples of f0. Different in-

struments reinforce different harmonics, achieving differ-

ent timbres; but the underlying structure created by f0 and

its harmonics remain present.

Traditional Automatic music transcription (AMT) sys-

tems based on manual feature design employed this prop-

erty to look for harmonic patterns given an observed spec-

trogram [1]. When DL became more popular, many re-

searchers refrained from incorporating expert knowledge

into their model architectures, but relied on generic models

in combination with large amounts of task-specific train-

ing data. Even though these systems significantly outper-

© M. Perez, H. Kirchhoff, and X. Serra. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: M. Perez, H. Kirchhoff, and X. Serra, “TriAD: Capturing

harmonics with 3D convolutions”, in Proc. of the 24th Int. Society for

Music Information Retrieval Conf., Milan, Italy, 2023.

formed traditional approaches, models utilized large num-

bers of parameters. [2, 3].

The number of parameters plays an important role, as

more parameters can help capture the harmonic pattern

better; in exchange, larger models require more comput-

ing resources as the number of operations grows. Many

DL practitioners do not always have access to large GPU

clusters, and might not be able to train such large models.

Moreover, many portable devices such as phones have lim-

ited battery and memory, and such large models in those

devices will either quickly drain their battery or be directly

impossible to employ. Part of the research focused on re-

ducing the number of models’ parameters without harming

the transcription’s accuracy. This was achieved in many

cases through the incorporation of pitch expert knowledge

within the architecture neural network (NN) [4–9].

The main challenge resides in the unequal distances be-

tween harmonics in the spectrum, so previous approaches

employ either large kernels or several ones running in

parallel. This paper introduces a tridimensional kernel

harmonically dilated (TriAD), a neural block that captures

music intervals and is capable of observing multiple har-

monics while using a single yet small kernel.

The rest of the paper is divided into the following sec-

tions: Section 2 gives more details about prior work captur-

ing harmonics from the spectrum. Section 3 describes our

method, including the processing of the signal and the de-

sign of the kernels. The experimental setting is described

in Section 4. We present the results for these experiments

as well as an ablation study in Section 5. Finally, Section

6 contains our conclusions for this paper and future work.

2. RELATED WORK

As mentioned in Section 1, harmonics played an important

role in the first AMT systems. For example, [1] creates

a dictionary of sets of expected harmonics for each fun-

damental. These ideal patterns were then matched to the

spectrograms used as input for the system using the non-

negative least squares (NNLS) algorithm. The result is an

estimation of fundamental frequencies that along with their

respective harmonics, would resemble the input’s spectro-

gram.

For AMT systems using DL, prior work has incorpo-

rated domain-specific knowledge in two ways: 1. by

choosing a custom input representation that allows the

model to detect harmonic structures [4, 10, 11]; 2. by em-

ploying specific network architectures to search for pat-
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terns in a given feature map obtained at any point of the

network [6–8, 12]. Within the first category, one of the

most popular approaches is the harmonic constant Q trans-

form (HCQT) [4], a feature that extends the constant Q

transform (CQT) [13]. The standard CQT returns a log-

frequency representation of the spectrum, where the nth

bin is associated with the frequency fn = fmin · 2n/p

where fmin is the minimum frequency to be considered,

and p is the number of bins per octave. The magnitude of

CQT spectrogram is a representation containing a single

channel, Fbins frequency bins, for T frames; its shape is

[1, Fbins, T ]. The HCQT extends the CQT the channel di-

mension, where now H harmonics are aligned, resulting in

a tensor with dimensions [H,Fbins, T ]. This extension is

done by stacking a number of H CQTs through the chan-

nel dimension. Each one of these H CQTs is a regular

one whose fmin has been scaled by a harmonic factor h:

fn = h · fmin ; the CQTs with h = 1 will refer to the fun-

damental, h = 2 will refer to the first harmonic, h = 3 to

the third harmonic, etc. up to H different values. Similarly,

sub-harmonics can be added by making h = 0.5, 0.25, etc.

In a nutshell, the HCQT facilitates information about the

fundamentals directly at the network’s input.

As mentioned, other works incorporated the harmonic

knowledge within the architecture of NNs, e.g. [6] ex-

tended the idea of frequency-shifted representations, for

the internal feature maps obtained inside NNs. The au-

thors named this method multiple rates dilated harmonic

causal convolution (MRDC-Conv). Let X denote a feature

map, with shape [Cin, Fbins, T ] at an arbitrary point of the

network. The number of channels for that map is Cin. In

a CQT spectrum, the distance dn between the fundamental

frequency and the nth harmonic is given by:

dn = round(p · log
2
(n)) (1)

Where p is a parameter that determines the number of bins

per octave in the CQT spectra. To capture k harmonics

with MRDC-Conv, the feature map X is convolved with k

different kernels in parallel, resulting in k outputs. Each of

the outputs is shifted following the harmonic factors given

by Equation 1. E.g. to capture the first three harmon-

ics, three different kernels are required, thus, producing

three different outputs. In the case of p = 12 and follow-

ing Equation 1, the shifts associated with the 2nd, 3rd and

4th harmonics are 12, 19, and 24. The sum across the k

outputs is taken, leading to a single final output of shape

[Cout, Fbins, T ], where Cout is the number of output chan-

nels. This method is illustrated in Figure 1a. MRDC-Conv

achieves a convolution able to observe the input at the pre-

cise position of the harmonics; its drawback is that for each

of the harmonics, a different kernel is needed, thus requir-

ing a different feature map stored in memory for each of

the k harmonics before they can be aggregated.

Some other authors embedded harmonic knowledge

within the convolutional kernels rather than in the manipu-

lation of their inputs/outputs. In [12] the authors use sparse

convolutions so that only relevant parts of the spectrum are

considered. Sparse convolutions allow the kernels to “ig-

nore” certain parts of the input, so they do not contribute

Harmonics Music Interval pitc class distance

2, 4, 8, 16 octave b · 12
17 minor second b · 1

9, 18 major second b · 2
19 minor third b · 3

5, 10, 20 major third b · 4
21 perfect fourth b · 5

11, 22 augmented fourth b · 6
3, 6, 12, 24 perfect fifth b · 7

25 minor sixth b · 8
27 major sixth b · 9

7, 14, 28 minor seventh b · 10
15, 30 major seventh b · 11

Table 1: The harmonics of the first 3 octaves, and their as-

sociated music intervals. The rightmost column indicates

the distance in bins associated with each interval, where b

is the number of bins per semitone.

either to the output or to backpropagation during train-

ing [14]. According to [15], the harmonics are positive

indicators that a certain pitch is present, but some frequen-

cies indicate that the pitch might not be present at all. The

latter are called negative indicators. The sparse convolu-

tions from [12] are used in such a way that only positive

and negative indicators defined in [15] are taken into ac-

count. Sparse convolutions require nonetheless using large

kernels to cover relevant parts of the spectrum, i.e. [12] re-

sulted in around 650k parameters exclusively for harmonic

processing, accounting for the major portion of the model’s

parameters.

In [8], dilated convolutions are used to capture the har-

monics from the spectrum, with a method named harmonic

dilated convolution (HD-Conv). Dilated convolutions are

a special kind of convolution, where the kernels’ inputs are

spaced by a fixed amount. An example of dilated convo-

lutions can be seen in Figure 1b. By controlling the di-

lation size, the authors space the kernels’ inputs, so each

kernel obtains a specific harmonic. The outputs of the dif-

ferent kernels are aggregated by summing across the ker-

nels’ outputs as shown in Figure 1b. The size of the dila-

tions is given by Equation (1). E.g. for p = 12, the second

harmonic is separated from the fundamental by d2 = 12
bins, the third one by d3 = 19; to capture both the sec-

ond and the third harmonic, we would need to create two

convolutional kernels with a dilation size of 12 and 19 at

the frequency dimension. This method has the same draw-

back as MRDC-Conv, as different harmonics also require

a different kernel.

3. OUR METHOD

Similarly to [8], our method uses dilated convolutions to

capture the harmonics of the spectrum. As mentioned be-

fore, a constant dilation can not capture multiple harmon-

ics given the logarithmic nature of these. If it was possible

to use different dilations for the same kernel, this problem
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(a) MRDC-Conv (b) HD-Conv [8]

Figure 1: Figure (a) An example of MRDC-Conv [6]. Two kernels are applied to the same input. The fundamental f is

separated from the harmonic n by dn bins. One output gets shifted by dn, and so f and n get aligned. Figure (b) An example

of HD-Conv [8], with two kernels applied to the same input, each one with a different dilation (3, and 2 respectively).

would have been already solved, but currently, DL frame-

works support only dilations with constant spacing. Our

method is able to partially overcome this technical limita-

tion and achieve a convolution at the frequency axis with

different dilation rates; thanks to this, our proposed method

captures multiple harmonics by just using a single kernel.

We named our method TriAD, and it involves a series

of steps. The first step is to split the frequency dimension

into two new ones, each representing different octaves and

pitch classes. We call this representation the pitch/octave

spectrogram. Next, we create the kernels for our method.

Previous works used kernels spanning 2 dimensions: fre-

quency and time; our method’s kernels however span 3 di-

mensions: octave, pitch class, and time. An arbitrary num-

ber of m different kernels can be created, each one cap-

turing a different music interval. The m kernels are con-

volved with the previously described pitch/octave spectro-

gram, resulting in m different outputs. Finally, these out-

puts are aggregated by taking the sum across them. The

consecutive steps are illustrated in Figure 2.

Subsection 3.1 details the procedure followed to con-

vert a log-frequency spectrogram onto a pitch/octave spec-

trogram. Subsection 3.2 explains how our convolutional

kernels are created and the difference they have with the

method described in [8]. At the end of that subsection, we

describe a special kind of padding used in our technique,

the octave-circular padding.

3.1 The pitch/octave spectrogram

Let X Cin×Fbins×T be a feature map, with Fbins logarith-

mically spaced frequency bins, T frames, and Cin chan-

nels. Our goal is to separate octave and pitch class infor-

mation. We split the Fbins bins into two dimensions repre-

senting the octave (o) and pitch class (p) information. The

number of pitch classes is simply the number of bins per

octave used, and the number of octaves can be obtained by

o = Fbins

p . Note that o must be an integer, and so when

this condition is not met, we pad the upper part of X ’s fre-

quency dimension with the minimum amount of zeros that

satisfies the condition. The result is the pitch/octave spec-

trogram Y Cin×o×p×T , a view of X where Fbins has been

separated into its octave and pitch class information.

3.2 The harmonic convolutions

Our aim is to compare two pitch classes across multi-

ple octaves to capture harmonically related information.

As shown in Table 1, harmonics and music intervals are

closely related. Comparing two pitch classes separated by

a certain interval at multiple octaves simultaneously will

effectively obtain the harmonics associated with that mu-

sic interval.

As previously mentioned, our kernels have 3 dimen-

sions: Kko×kp×kt , related to the octaves (ko), pitch classes

(kp), and frames (kt) of the pitch/octave spectrogram; this

means that our method uses 3D convolutions 1 . By chang-

ing the convolution dilation at the pitch class dimension we

control which interval we capture, and consequently its as-

sociated harmonics. Since our goal is to compare the same

two pitch classes, our method has a fixed kp = 2, but the

sizes of ko and kt can be varied, spanning many octaves

and timesteps. The effect of dilation exclusively on pitch

classes is what achieves the aforementioned non-constant

dilation at the frequency dimension. E.g. Let p = 12
and a kernel K with ko = 3 and a perfect fifth dilation

at the pitch class dimension, in a certain position, this ker-

nel would see C1, G1, C2, G2, C3, G3 simultaneously. The

distance from each C to the next G is 7 bins, but the dis-

tance from each G to the next C is 5 bins. Our method is to

the best of our knowledge, the only one capable of achiev-

ing that effect in dilation. In the same scenario using linear

dilations [8], a kernel with the same size and dilation of

a perfect fifth would see instead C1, G1, D2, A2, E3, B3.

Using our method, a single kernel with ko = 3 and a dila-

tion of perfect fifths at the kp dimension capture 5 of the

first 7 harmonics (see Table 1).

As can be observed in Figure 2, the inputs and outputs

of the convolutions have the same size, which is achieved

by padding the pitch/octave spectrogram. The values used

to pad follow the values of the continuous log-frequency

spectrogram. E.g. given p = 12, to pad above B1, we

use the values of the bins C2,C♯2, etc. In contrast, values

above the highest octave of the pitch/octave spectrogram

will be padded with zeros. We call this method circular-

octave padding.

1 When kt = 1, our method can be implemented with 2D convolutions
by stacking frames across the batch dimension. 3D is just the general case
for an arbitrary kt
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Figure 2: An overview of TriAD. The channel dimension has been omitted in the image. The first stage converts a log-

frequency spectrogram onto a pitch/octave one. We apply m of our harmonically motivated kernels to the pitch/octave

spectrogram. Each kernel captures different harmonics, depending on the dilation at the p dimension. The kernels’ outputs

are aggregated by summing the m outputs. B stands for the batch dimension.

4. EXPERIMENTS

We test the performance of our method on AMT for the

subtask of piano transcription. Our method is compared

with other SOTA approaches of capturing the harmonic

spectrum within the architecture itself; concretely, we used

the harmonic blocks MRDC-Conv [6], and HD-Conv [8].

We do not include input manipulations such as the HCQT,

since these are input manipulations rather than network-

internal musically motivated convolutional operations, and

a fair comparison is not straightforward.

4.1 Datasets

We used two datasets in our experiments: MIDI and

audio edited for synchronous track and organization

(MAESTRO) [16], and MIDI aligned piano sounds

(MAPS) [17]. MAESTRO contains about 200 hours of

audio for complex piano performances precisely aligned

to note labels. Some compositions appear multiple times,

each played by a different interpreter. In the paper where

MAESTRO is presented, an official train/validation/test

configuration was also proposed so that compositions

played by different interpreters are in the same split group.

We use the latest version of this dataset, version 3, in our

experiments. MAPS is another popular dataset used in pi-

ano transcription. In contrast to MAESTRO that contains

only complete piano pieces, this dataset also contains iso-

lated notes and chords.

Following the practice used in previous works [7,8,16],

we use the train and validation splits from MAESTRO

to train our NNs, and the test sets of MAESTRO and

MAPS for testing the trained models. Chunks of audio

of 20 seconds and a sample rate of 16.000Hz were used

and transformed into a CQT spectrogram, with 352 bins,

fmin = 32.070Hz, and a resolution of 4 bins per semi-

tone. A hop size of 320 samples is employed, resulting in

a time resolution of 20 milliseconds.

4.2 The model

We use the HPPNet-base model from [8] for our experi-

ments. This model consists of a backbone and 4 differ-

ent heads; each head is in charge respectively of predict-

ing which notes are present in each frame, its velocity and

whether there is an onset or offset happening. Figure 3

shows an overview of the network. The backbone con-

sists of multiple convolutional layers, and it is divided into

three main sections. The first section consists of 3 blocks

with 2D convolutions, whose kernels are squarely shaped

(7× 7) and perform initial processing of the CQT spectro-

gram. The second section is in charge of doing the back-

bone’s harmonic processing; this is where either HD-Conv,

MRDC-Conv, or TriAD will be placed. The last block con-

sists of 5 2D convolutional layers with filter shape (1× 5),
spanning across the time dimension 2 .

The output of the backbone is then used as input for

the four heads. Each head consists of a bidirectional

long short-term memory (LSTM) [18] and a dense layer.

LSTMs model sequential data, which are the features as-

sociated with each output bin in this case. The dense layer

takes the features outputted by the LSTM and produces a

single value for each of the 88 notes of a piano. Details

about the design choices of HPPNet can be found in [8].

We run our experiments by comparing the model’s per-

formance when the backbone’s harmonic processing is

done either by our method (TriAD), MRDC-Conv [6], or

HD-Conv [8]. We use those methods as employed in their

respective papers: 12 kernels of shape (1 × 1) in the case

of [6], and 8 kernels with shape (3 × 1) in the case of [8].

For our method, we use just two kernels, one dilated for

perfect fifths, and another one for major thirds; these are

2 The third block differs from the original paper description; following
their description, that block of the backbone alone has 983.040 parame-
ters, whereas the paper specifies that the backbone contains 421K param-
eters. We used the network as implemented in the official repo, which
matches the number of parameters and replicates their reported results
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the intervals with the most associated harmonics. Our ker-

nels span 3 octaves (ko = 3) and a single frame (kt = 1).

The code for MRDC-Conv and HD-Conv can be found in

their official repositories 3 4 . We do not train a version

of the model with a “harmonically agnostic” block, as [8]

already shows in an ablation study that the model’s perfor-

mance drops significantly in that case.

As optimizer, ADAM [19] with a learning rate of 6 ·

10−3 was used. We trained all the models for 200.000
steps, where each step consists of a batch size of 4 chunks

of audio. The evaluation was done on MAESTRO’s evalu-

ation dataset every 500 steps, to check for possible cases

of overfitting. The models were trained 3 times, each

one with a random weight initialization. All the harmonic

blocks take a similar time to train, around 24h to complete

in a V100 GPU.

The employed loss is the same one as in HPPNet’s pa-

per [8], a combination of individual losses for the frame,

onset, offset, and velocity heads. Weighted binary cross

entropy (see Equation 2) was used as loss for the frame,

onset and offset heads. This loss is used since there are few

positive onset labels, yet predicting onsets is necessary to

distinguish consecutive notes. The parameter w controls

the relevance of positive labels in the loss and is chosen

as w = 1 for offsets and frames, and w = 2 for onsets.

The loss for the velocity head is the mean squared error

between the expected and estimated velocities of each in-

dividual note.

lbce(y, ŷ) = −wy · log (ŷ)− (1− y) · log (1− ŷ) (2)

5. RESULTS

The metrics reported follow the convention described in

[20]. These metrics report different aspects of the tran-

scription. The frame metric operates at the frame level,

while the other three operate at the note level. Within the

note level, three different metrics exist, considering off-

sets and/or velocity. This is due to the partially subjective

nature of this task. The onset (referred to as the moment

when a certain note starts to sound) is not very subjective

given the sharp attack of the piano [21]. In contrast, off-

set (the moment when a certain note stops sounding) and

velocity are less objective aspects of the transcription. An

estimate of a note is assumed to be correct if its onset is

within ±50ms of the reference, and its pitch is correct.

When contemplating offsets, in addition to the previous

requisites, the estimation’s offset should also be within a

certain range; this range is either ±50ms or 20% of the

reference note’s duration, whatever is larger.

Velocity estimation is more intricate, as depending on

the microphone position a note played with a certain ve-

locity can sound louder or quieter. We use the procedure

described in [2], which involves rescaling velocities and

using linear regression to account for the aforementioned

3 https://github.com/WX-Wei/HarmoF0
4 https://github.com/WX-Wei/HPPNet

Figure 3: A diagram of HPPNet. The brackets’ numbers

represent the sizes of the channel, frequency, and frame

dimensions. Letter d indicates the dilation rate.

difference in loudness. All the metrics were calculated us-

ing mir_eval [22].

The scores for Section 4 experiments are in Table 2. We

also report the results of some larger models of the SOTA

as reference. Onsets & Frames [2] is among the most

well-known DL models for piano transcription. Semi-

CRFs [3] is a method designed to improve the predictions

made about the offsets. These are large and capable mod-

els, but the ones using harmonic knowledge also manage

to achieve similar results with notably fewer parameters.

Both TriAD and HD-Conv blocks achieve similar results,

in pair with large models. The MRDC-Conv block uses

fewer parameters than HD-Conv, but in exchange drops in

performance. Noticeably, the model using TriAD has the

same number of parameters as the one MRDC-Conv, yet it

does not drop in performance.

5.1 Kernel dilation relevance

In music theory, some intervals are more important than

others. Equally, some music intervals have more harmon-

ics associated with them than others, as shown in Table

1. It could be expected, that using a kernel dilated with a

highly relevant interval yields better results than a kernel

associated a with less relevant interval. We tested whether

this assumption held or not in our method; instead of using

multiple kernels as previously described, our block con-

sists of a single kernel for these experiments. We used 2

relevant intervals (perfect fifth, major third), and 2 lesser

relevant intervals (minor second, major seventh) to test the

aforementioned assumption. These kernels span 3 octaves

(ko = 3) and a single frame (kt = 1), as in the previous ex-
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Model # Parameters
FRAME F1 NOTE F1 NOTE W/OFFSET F1 NOTE W/OFFSET & VEL. F1

MAESTRO

Onsets & Frames [2]* 26M 89.68% 95.22% 79.44% 78.85%
Semi-CRFs [3] 9M 90.75% 96.11% 88.42% 87.44%

HPPNet + HD-Conv 820K 91.62%(±.02) 96.14%(±.01) 82.91%(±.02) 80.91%(±.02)
HPPNet + MRDC-Conv 780K 78.69%(±.01) 84.71%(±.01) 58.77%(±.01) 52.15%(±.03)
HPPNet + TriAD (ours) 780K 91.50%(±.02) 96.16%(±.01) 82.62%(±.02) 80.76%(±.01)

MAPS

HPPNet + HD-Conv 820K 72.45%(±.02) 86.09%(±.01) 42.77%(±.02) 40.11%(±.02)
HPPNet + MRDC-Conv 780K 63.25%(±.01) 73.87%(±.02) 32.68%(±.02) 32.68%(±.01)
HPPNet + TriAD (ours) 780K 72.39%(±.03) 85.06%(±.02) 42.41%(±.02) 40.17%(±.02)

Table 2: Results for the experiments described in Section 4. In our experiments, each model was trained three different

times. The metrics here reported are the average across these runs and in parenthesis the variance. * Results from [8].

Model

Major third Perfect fifth Minor second Major seventh

MAESTRO MAPS MAESTRO MAPS MAESTRO MAPS MAESTRO MAPS

HPPNet + TriAD 90.14%(±.02) 71.58%(±.01) 90.23%(±.02) 71.98%(±.01) 83.16%(±.01) 68.53%(±.01) 83.36%(±.01) 69.19%(±.02)
HPPNet + HD-Conv 84.89%(±.01) 69.96%(±.02) 85.98%(±.02) 70.50%(±.03) 84.23%(±.03) 67.86%(±.03) 84.79%(±.01) 68.69%(±.02)

Table 3: F1 framewise results for the single kernel experiments described at section 5.1. Our method obtains worse results

if a “less relevant” music interval is chosen. HD-Conv achieves more similar results regardless of the dilation, with just a

small improvement for the case of the perfect fifth (where it employs two kernels).

periment. We also used the method with constant dilations

i.e. HD-Conv from [8], equally using single kernels except

for the case of the perfect fifth. There are two harmonics

associated with the perfect fifth within the first 3 octaves,

so we employ two rather than a single kernel. The constant

dilations capture in this case major third: 5th harmonic;

perfect fifths, 3rd and 6th harmonics; minor second, 17th
harmonic; and major seventh 30th harmonic. We noticed

that after 50.000 steps, the speed at which the loss dimin-

ished slowed down sensibly, and therefore, we reduced the

number of training steps for this experiment and trained for

70.000 steps in each run.

The results can be seen in Table 3. HD-Conv [8] ob-

tains slightly better results for the perfect fifth kernels, but

similar results for other cases. Our method (TriAD) has

a distinguishable performance gap depending on the inter-

val. Results are worse for minor second and major seventh

intervals, compared to the cases of the major third and the

perfect fifth. Moreover, in those two cases, our method

achieves notably better results than HD-Conv.

6. CONCLUSIONS

In this paper, we presented TriAD, a novel convolutional

block for NNs capable of capturing the harmonics related

to music intervals. To obtain such information, we sepa-

rate octave and pitch class dimensions from log-frequency

spectrograms and create convolutional kernels specifically

designed to process this disentangled representation. We

tested and compared our method with other ones designed

to capture harmonic information, in the task of piano-

AMT. We also compared how our model performed when

only a single kernel was employed. To the best of our

knowledge, our method is the only one capable of achiev-

ing dilated convolutions which are not “equally spaced”

along the frequency axis, allowing our model to capture

multiple harmonics using a small kernel. To achieve this

effect, other approaches require applying different convo-

lutional layers to the same input [6, 8] or using large ker-

nels [12].

Our method is still capable of reaching the performance

achieved by other harmonic blocks while making use of

fewer parameters, showing the effectiveness of our ap-

proach. Furthermore, the results from the experiment de-

scribed in Subsection 5.1 show that our method’s perfor-

mance highly depends on the dilation choice, thus hinting

that our method is indeed using the harmonics to determine

which pitches are present. Moreover, with an appropriate

dilation choice our model outperforms other methods also

using a single kernel.

Harmonic series are relevant for other tasks beyond

AMT, for example, instrument recognition. Some works

have found that the harmonics and their respective am-

plitudes are crucial to correctly classifying instruments

[23, 24]. Our method could be employed to capture the

amplitude of different harmonics and learn specific pat-

terns for each instrument. In future work, we will use “har-

monically designed” networks in other AMT related tasks.

Recent advances in AMT such MT3 [25] demonstrate that

with the current DL techniques is possible to transcribe an

arbitrary number of instruments from a piece of music au-

dio instead of just piano as shown here. Since the harmon-

ics are relevant for instrument recognition, we hypothesize

using harmonic blocks such as the ones presented here, the

accuracy with which notes are assigned to each instrument

in systems like MT3 could improve. We release code for

reproducibility experimentation 5 .

5 https://github.com/migperfer/TriAD-ISMIR2023
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ABSTRACT

The practices of data collection in training sets for Au-
tomatic Music Generation (AMG) tasks are opaque and
overlooked. In this paper, we aimed to identify these prac-
tices and surface the values they embed. We systemati-
cally identified all datasets used to train AMG models pre-
sented at the last ten editions of ISMIR. For each dataset,
we checked how it was populated and the extent to which
musicians wittingly contributed to its creation. Almost half
of the datasets (42.6%) were indiscriminately populated by
accumulating music data available online without seeking
any sort of permission. We discuss the ideologies that un-
derlie this practice and propose a number of suggestions
AMG dataset creators might follow. Overall, this paper
contributes to the emerging self-critical corpus of work of
the ISMIR community, reflecting on the ethical considera-
tions and the social responsibility of our work.

1. INTRODUCTION

The quest to generate music with AI (Automatic Music
Generation, AMG) is undergoing crucial but overlooked
ontological, artistic, and political transformations. Orig-
inally confined to academic labs and employed in niche
music genres, this quest is gaining traction mostly among
commercial companies 1 aiming at automatically gener-
ating music in all genres. These transformations are en-
abled by a combination of socio-technical novelties, in-
cluding i) the growing influx of money in the field [2, 3];
ii) advanced in Deep-Learning (DL) techniques, such as
Transformers [4]; and iii) the increase of cheap computa-
tional power. While, from a purely musical perspective,
the quality of the music created with AI is undoubtedly
rising, from a socio-political perspective, a new gold rush
resulting from efforts to outperform competitors and make
the best AMG model is following the typical blueprint of
capitalist innovation [5–7]: corners are being cut; critical

1 A list from Water & Music [1] includes, as of July 2023, companies
like Microsoft, Facebook, Google, Spotify, Deezer, and ByteDance.

© F. Morreale, M. Sharma, and I. Wei. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: F. Morreale, M. Sharma, and I. Wei, “Data Collection in
Music Generation Training Sets: A Critical Analysis”, in Proc. of the

24th Int. Society for Music Information Retrieval Conf., Milan, Italy,
2023.

questions have not been asked; short-term gains are priori-
tised; permission is not being sought.

These ethically questionable practices are causing in-
creased concerns. A group of artists 2 recently released
a manifesto that identifies one of the most urgent ethical
issues arising from AI-generated art: the exploitation of
artists’ work in training AI generation systems. Similarly,
Holly Herndon, a musician famous for popularising AI-
generated music, recently criticised OpenAI for not asking
living performers’ permission to use their music in their AI
model, JukeBox [8]. Most systems that generate artistic
content using Machine Learning (ML) indeed often indis-
criminately populate their training datasets by accumulat-
ing original material that is available online [9–12].

Within the ISMIR community, occasional fiery calls re-
quested the community to reflect on the ethical implica-
tions [13–15] of, and demanded accountability [2] for the
work we produce. However, no specific work investigated
the potentially exploitative nature of the datasets we use,
and no ethical consideration has been given to how data
has been generated. We argue that such investigation is
long overdue, especially as the publication of AMG mod-
els proceeds undisturbed - and actually, as we will show in
the paper, is steadily increasing.

To fill this gap, we aimed to assess the extent to which
training sets used in ISMIR papers that propose new AMG
models are affected by this issue. We first identified all
papers presented at the last ten editions of the conference,
from 2013 to 2022, that introduced a new music genera-
tion model or a pertinent dataset. Then we identified all
dataset(s) that have been used in these papers. Finally, we
surveyed information for each dataset, including how data
was populated and the extent to which musicians wittingly
contributed to its creation.

The contribution of this paper is threefold. First, we
provide descriptive statistics about the datasets that are
mostly used at ISMIR in AMG applications and how they
are populated. Second, we report the ideologies that are
embedded in them and outline a lack of adequate engage-
ment with musicians and carelessness on ethical matters.
Third, we offer suggestions for dataset creators interested
in following responsible practices in their work.

The rest of the paper is structured as follows. We first
review literature in Critical Data set Studies and report dis-
cussions on ethical issues within MIR. We then describe

2 The European Guild for Artificial Intelligence Regulation, https:
//www.egair.eu/
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the research process, report the results, identify the values
that are inscribed in the datasets, and offer suggestions for
dataset creators. We conclude the paper with a summary
of the study and directions for future work.

2. BACKGROUND

Deep-learning (DL), which nowadays is the most com-
monly adopted method to generate music automatically
[16–19], significantly relies on the quality and volume of
vast training data. Despite this reliance, dataset develop-
ment remains an underappreciated element in DL practice.

2.1 Critical Data Set Studies

A growing literature on critical data set studies [20] aims
at identifying the ethical issues and hegemonic power
structures of datasets, in particular when used to train ML
models [10,12,21]. One of the most urgent issues concerns
the exploitation of user labour in AI systems: datasets are
populated with data generated by “unwitting labourers” [9]
and scraped from the Internet “without context and without
consent” [11]. The question around consent is particularly
convoluted: consent may have been given unwittingly, for
a specific use only, and “some people may never have been
given the chance to offer their consent at all” [20]. This
concern is not limited to the ivory tower of academia. Mu-
sicians are gaining awareness of this issue, and an increas-
ing number of complaints arise from the unfair or uncon-
sented use of original material in AI-generated art. 3

Most critical work on dataset creation addressed Com-
puter Vision (CV) sets [11, 24, 25] like ImageNet and MS-
Celeb, which contain tens of millions of digital images up-
loaded by platform users. [25] identified the values em-
bedded into these datasets and their formation: evaluating
model work is prioritised to the detriment of careful data

work. Another case study that received attention is that of
reCAPTCHA [26–28]. Disguised as a human authentica-

tion tool, reCAPTCHA can be seen as a capture-machine
that exploits unpaid individuals’ perceptual abilities and
micro-labour to train AI datasets [27, 29].

The very way in which most datasets are created
embeds specific neoliberal values, like extractivism and
deregulation, as exemplified by OpenAI’s argument that
“IP should be free to use for AI, with training constituting
fair use“ [30, p. 54]. The all-you-can-scrap ideology dis-
misses individuals’ contributions to dataset creation, which
can be met by their creators with a laissez-faire attitude
[31] that overlooks the ethical implication and liability of
scraping the whole Internet [21,25]. In fact, when concerns
are voiced, they are specifically aligned with libertarian
values and related to how data privacy and data ownership
are barriers to collecting data [25].

The practices and routines of data accumulation are not
secret. The opposite is true. Among dataset creators, they
have become widely accepted, unquestioned, and unchal-
lenged following a process of dataset naturalisation: “the

3 Notable cases include GettyImages suing Stable Diffusion’s creators
[22] and audiobook narrators complaining against Apple for using their
voices to train AI [23].

contingencies of dataset creation are eroded in a manner
that ultimately renders the constitutive elements of their
formation invisible” [24]. Notably, the values and ideolo-
gies are not only inscribed in how technology is used but
also in how it is taught. The lack of interest in how datasets
are constructed can indeed be found in the lack of guidance
in typical ML textbooks or syllabi [24, 32].

While many dataset creators do not consciously attempt
to hide their data accumulation practices, they do not try
to fully disclose them either. Dataset naturalisation is in-
deed exacerbated by ill documentary practices: as reported
by [33], ML communities pay little attention to document-
ing data creation and use. [24] proposes that the lack of in-
formation on dataset creation (e.g. how datasets have been
created, and whether and how much annotators have been
paid) is structural - thus ideological - rather than acciden-
tal. Every decision and every step in dataset development
that is left unaccounted and unarticulated from documen-
tary practices has a political meaning as these steps and
decisions are related as "not important" [25]. We will re-
turn to this point in the discussions.

2.2 Critical turn in MIR and AIM

Several technology communities are undergoing a critical

turn [34–37] that challenges existing knowledge produc-
tion methods and political positions as well as ethical and
political thoughts within a field. This turn is ethico-onto-
epistemological [38, 39] insofar as it questions what kinds
of work, knowledge, and social commitment is pursued
within and by the community.

While most criticisms of MIR research come from out-
side the community [3, 40–42], recent academic produc-
tion within MIR [2, 3, 14, 43–45] and the development of
a workshop series on Human-Centric MIR [46] testify that
we might be close to a Critical MIR - i.e. MIR scholarship
devoted to critically analysing the work produced in the
field. However, the sort of work that is (not) published at
ISMIR (less than 0.5% of the ISMIR submissions engage
with any sort of ethical discussions [2]) indicates that the
response of the field on ethical issues is still inadequate.

With respect to AMG, the ethical issues that have been
identified include copyright issues [15, 47], a narrow and
Western-centered understanding to music [43, 45], the risk
of musician redundancy [2, 14] or the crisis of prolifera-

tion [44, 48], diversity issues [49], colonialist and extrac-
tive practices [2], and assumptions and bias that are embed-
ded in the AI systems [13–15]. To the best of our knowl-
edge, the potentially exploitative nature of AMG datasets
remains uncharted territory.

3. METHODOLOGY

3.1 Researcher Positionality and Motivation

Positionality statements are common in critical studies and
serve as a foundation for critical work to understand the
research context and the authors’ interpretation of the re-
sults. Since the outset of the research process, we have
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strived to maintain objectivity and reflexivity by acknowl-
edging our unique positions and backgrounds. All three
authors are actively involved in MIR. The first author is
formally trained in computer science and is expert in criti-
cal theory and technology studies; the second author has a
background in computer science; and the third author has
a background in electronic engineering and is specialised
in machine learning algorithms.

The motivation for undertaking this study is twofold.
First, we aimed to support the growth of ISMIR com-
munity by contributing to the corpus of self-reflective
work, identifying ideologies that might be latent but, once
surfaced, can be considered problematic by community
members. Second, the development of the suggestions for
dataset creation derived from the personal experience of
one of the authors, who was involved in dataset creation
for AMGs and acknowledged the importance of commu-
nity guidance on the best ethical practices to adhere to.

3.2 Analysis of ISMIR publications

We conducted a systematic review of the last ten editions
of ISMIR (2013-2022). A total of 1078 publications were
sourced from the conference proceedings. Two of the au-
thors manually filtered the papers adopting two inclusion
criteria. First, we included all papers presenting a new mu-
sic generation model. We included all models that generate
new compositions or performances, including in-painting,
style transfer, and improvisation. Second, we included all
papers that introduced a new dataset that could potentially
be utilised as training material for AMG models but re-
jected works that did not contain symbolic or raw audio
music files. For example, we did not include the NSynth
Dataset [50], which contains sampled notes from different
instruments, but we included MedleyDB [51], which con-
tains annotated multitrack audio.

The analysis proceeded in two phases. First, for each
paper, we identified whether authors employed existing
datasets (i.e. datasets released or introduced before the
publication of the ISMIR paper) or created new ones (i.e.
datasets created or introduced as part of the original re-
search reported in the paper). We also examined the pres-
ence of any discussions of ethics and permission for using
data entries training data for AMG models.

In the second phase, we examined the datasets identi-
fied in the first phase. For papers that used an existing
dataset, we retrieved dataset information from the origi-
nal paper (whether or not it was published at ISMIR) in
which it was introduced. When we could not find suffi-
cient information in the paper, we checked dataset release
links, which were found either in the original paper or by
a web search of the dataset name. The information we col-
lected included i) data format (symbolic or audio), ii) how
datasets were populated; iii) whether data contained orig-
inal performances, compositions, or arrangements; iv) the
data type; v) the extent to which musicians were involved
in the dataset creation and whether they were aware of the
intended purposes for the dataset; and vi) whether ethical
concerns were discussed.

Figure 1: Distribution of selected papers and datasets over
the years (only papers after 2003 were considered).

Dataset Name Format Occurrence

POP909 Symbolic 11
Nottingham Symbolic 9
Lakh MIDI Symbolic 5
HTPD3 Symbolic 3
Yamaha e-Competition Symbolic 3
Lakh Pianoroll Symbolic 3
MusicNet Both 3
URMP Both 3
AILABS17k Both 3
Bach Music21 Symbolic 3
Bach Chorales Symbolic 3
RWC Both 3

Table 1: The most popular datasets and their occurrences.
Each dataset comprises data in symbolic form, but three of
them also include audio files.

From a methodological point of view, most of these in-
vestigations involved checking the aspect under scrutiny
(e.g. whether ethics was discussed) from the dataset
sources. The task of identifying how datasets were pop-
ulated was not as straightforward. In order to streamline
the analysis and facilitate the report of the findings, we
aimed to cluster datasets into categories that reflected dif-
ferent ways of populating datasets. Two of the authors per-
formed this categorisation following a deductive approach.
As they analysed more datasets, they introduced new cat-
egories and deleted or merged existing ones. The analy-
sis spreadsheet is available at https://github.com/
Sma1033/amgdatasetethics.

4. FINDINGS

A total of 121 papers survived the filtering. Fig. 1 shows
the significant rise of interest in AMG in recent years.
Three fourth of the articles (82) introduced a new model,
which was either introduced on its own or with a new
dataset (Fig. 2a). From this list of papers, we identified
115 datasets (Fig. 2b). When only considering the 82 pa-
pers that introduced a new model, most (62 papers, 75.6%)
ISMIR researchers use, at least in part, existing datasets to
train their AMG models. Tab. 1 shows the 12 most fre-
quently used datasets in our survey, along with data for-
mat and their occurrence in our survey. The remaining 104
datasets were only used in one or two papers.
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(a) (b)

Figure 2: (a) What is introduced: new model (73 pa-
pers), new dataset (39), both (9). (b) Dataset Originality:

new datasets (58), existing datasets (53), both (12).

4.1 Dataset Creation

We clustered datasets into nine categories to reflect the dif-
ferent ways in which entries were collected (Tab. 2). The
categories are non-orthogonal: datasets could be associ-
ated with more than one category. In most cases, datasets
were populated without creators incurring any costs. Only
five datasets used paid online sources or compensated the
involved musicians. With the exception of those belong-
ing to the ‘Involved musicians’ and ‘Synthesised music’
categories, all datasets were populated with existing music
data. New music data accounted for 16.5% of all datasets.
We found evidence of poor documentary practices for 18
datasets (15.7%): in 10 cases, there was no information on
how data was collected; in 8 cases, we could not find any
documentation reporting how datasets were created.

4.2 Musicians’ involvement

Only 17 datasets (14.8%) involved musicians in any ca-
pacity (category ‘Involved musicians’). In 11 cases, musi-
cians performed or arranged existing compositions. Three
of these datasets (ASF-4, HP-10, and AIST) were en-
tirely created from novel compositions. The remaining
three datasets from this category did not contain compo-
sitions or performances created specifically for the dataset,
or at least, it was not explicitly mentioned. The Irish Tra-
ditional Dance Music dataset [61] used the recordings of
one of the authors’ own performances. For the remaining
two datasets [51, 62], the creators mentioned that profes-
sional musicians had created those recordings. However,
it is unclear whether these recordings are specifically cre-
ated for the dataset. The other two datasets that included
new music belonged to the ‘Synthesised music’ category
and algorithmically generated monophonic melodies [59]
or polyphonic MIDI sequences [63].

4.3 Musicians’ permission and awareness

We checked whether explicit permission was sought from
musicians to use their creations to train an AMG model.
Only three datasets creators reported having asked such
permission. The authors of ASF-4 and HP-10 datasets
[64] explicitly mentioned that the musicians involved were
made aware of the purpose of the dataset for AMG. Jazz
players participating in the creation of the FILOSAX

dataset [54] signed a document that provided explanations
about the goals of the dataset. However, it is not clear
whether these goals included AMG: whereas the authors
mention "music generation" in the Abstract, AMG was not
included in the list of potential applications of the dataset.
In the Mozart Piano Music Dataset [65], pianists gave per-
mission to use their performances for the intended use of
the dataset (music analysis), but they were probably not
aware and did not consent to have their performances used
to train the AMG model introduced in [66].

Two cases were particularly problematic. The MAST
Dataset [67], which was introduced for automatic rhythm
assessment, was sourced from student entrance exams
without seeking consent from the students. Another pop-
ular dataset, the Yamaha e-Competition dataset 4 features
MIDI files of piano performances obtained from the en-
tries of the piano competition. Although Yamaha claims
ownership over all data generated during the event, com-
petitors are unlikely aware their performances are used to
train AMG models, as seen in [68]. The lack of permission
sought from the musicians clashes with the several com-
ments offered by dataset creators that often acknowledged
the valuable contributions made by these musicians, which
allows the dataset to existing in the first place.

4.4 Discussions on Ethical Issues

Our analysis revealed a lack of engagement with ethical
issues, corroborating findings from [25] in their analysis
of CV datasets. Only four datasets included any ethical
considerations, and only two of them contained an explicit
ethics statement. The authors of [69], which presented a
new GuitarPro dataset, listed several questions, some of
which are particularly relevant to this paper: “How to ac-

knowledge, reward and remunerate artists whose music

has been used to train models?” and “What if an artist

does not want to be part of a dataset?”. While their spon-
taneous engagement with these issues is commendable, it
is not clear to which extent the authors used these questions
in the development of their dataset.

In [70], the authors raised concerns about the impact
of AMG for “human musicians of the future”. They also
stated “care have (sic) to be given regarding the fair use of
existing musical material for model training” but did not
further explain what sort of care and what constitutes un-
fair use. [57] included an analysis concerning plagiarism
issues and observed that their model demonstrated a poten-
tial tendency for plagiarism. This issue was also recently
highlighted in [47], similar to the level exhibited by a hu-
man musician.

5. DISCUSSIONS

By leveraging our findings, this section first reports and
discusses the values embedded in the datasets used at IS-
MIR for AMG models. Then, we move to offer practical
suggestions to AMG dataset creators.

4 https://www.piano-e-competition.com/
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Category Description Occurrence

Scraped online Existing music data collected online from websites [52] or databases [53] 49
Existing datasets Existing music data collected from existing datasets [16] 26
Involved musicians New music data was created by involving musicians in some capacity [54] 17
Private data Existing music data was collected from private databases [55] 5
Book collection Existing music data collected from printed books [56] 5
Online store Existing music data collected from an online commercial website [57] 4
CD collection Existing music data collected from published CD recordings [58] 3
Synthesised music New music synthesised using rule-based heuristics or other methods [59] 2
Not mentioned No explicit information about how data was obtained [60] 18

Table 2: Categorisation of how data was collected in the datasets. For each category, we included exemplary references.

5.1 The Values Embedded in Our Datasets

Our analysis extends what [24, 25, 33] have suggested for
other ML applications areas: data work and data collection
practices are de-prioritised and de-valued in AMG datasets
used at ISMIR. Most datasets (∼60%) had been populated
either by scraping songs from the Internet or by accumulat-
ing data from existing ones. Considering original music as
a terra nullius that is free for the taking means addressing
dataset creation with expediency. This approach follows
the hegemonic narrative that compares data to oil. This
comparison is highly ideological [71–73] as it disguises the
origin (and ends) of data [11], and de-penalises and jus-
tifies extractive practices using neo-colonial rhetoric that
data is something waiting to be discovered [71, 73].

This narrative underestimates or blatantly neglects the
human labour necessary for its development - which in-
cludes writing, performing, transcribing, and recording
music. The majority of datasets were created by amassing
musical compositions initially intended for purposes other
than AMG. In these cases, the original labour that was put
into the creative acts of composition or performance is sim-
ply neglected. Relatively few datasets included original
material, and in only two cases, specific permission was
asked to use musicians’ work to train datasets for AMG
purposes. This discussion point resonates with objections
to the unfair and exploitative practices of capturing individ-
uals’ labour and humanness [9] when creating data for dig-
ital platforms [6, 74–76] and training AI systems [10–12].
As proposed by [77], human labour is structurally obfus-

cated in ML applications to the benefit of profit and inno-
vation. Similarly, [78] proposes that hiding the labour in
this context is crucial to attracting capital investments.

Our direct knowledge and lived experience of MIR of-
fers us a vantage point that we can employ in our reflexive
inquiry. We propose that dataset creators might have pri-
oritised safety over criticality and followed common, albeit
questionable, procedures simply because these are the pro-
cedures that are typically employed in AMG research. This
comment is not intended to absolve dataset creators from
the responsibilities that come with their work. Rather, it
is an invitation to self-assess one’s alignment with the ex-
ploitative ideologies we surfaced in this section. Yet, we
unequivocally found a lack of data work - including a lim-
ited interest in creating one’s own data, exploitation of the

labour of unwitting musicians (e.g. in the e-piano compe-
tition) and students [67] in dataset curation, and poor doc-
umentary practices regarding the source of data [60, 79].
We argue that this lack is ideological. What we leave unac-
counted for or unspoken in dataset creation and documen-
tation signs what we consider important or irrelevant [25].

Our findings indicate that the rights and demands of
musicians are not prioritised by dataset creators and that
the degree to which new models and datasets advance or
curb a fair model for musicians is largely ignored. This
comment resonates with a note from [80], who explained
that streaming services overlook “the rights of musicians
or users because their decisions are made based on wholly
other problems”. It is thus essential that ISMIR researchers
and practitioners reflect on the problems they drive their
decisions on and the agendas they implicitly or explic-
itly follow. Answering questions like "what is the agenda
we are following and who benefits from it?" [81] requires
community discussions that are difficult, uncomfortable,
and controversial but nevertheless necessary. Avoiding en-
gaging with these questions is not a political absence but
rather a political tacit acceptance of the status quo [36, 37]
as datasets do not exist in a political void [20, 82].

5.2 Suggestions

In this section, we offer suggestions to the broader com-
munity and to individual authors interested in creating
new datasets or using existing ones to train AMG mod-
els. We developed these suggestions by integrating re-
sults from our analysis with findings from other academic
contributions, including ethical CV datasets recommenda-
tions [25]. These suggestions are not intended to be metic-
ulously followed as a recipe book. Rather, we devised
them as probes, navigation tools, or structured conversa-
tions whose development should continue in a participa-
tory way with the rest of the community.

Develop one’s own dataset. While exploiting musi-
cians’ labour in AI dataset creation is a questionable prac-
tice [9], expecting dataset creators to seek and obtain con-
sent from all humans involved in AMG datasets is unreal-
istic [30]. Thus, we recommend creating, whenever pos-
sible, one’s own dataset and hire musicians for as many
tasks as possible (i.e. composing, performing, arranging
songs). A small but important amount of datasets in our
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investigation followed this practice. We acknowledge that
this suggestion might lead to equity issues. If it were to
be enforced, only big companies and top university labs
would have the economic means to develop such datasets.
However, rather than dismissing this issue as unsolvable
and continuing business as usual, we propose that the com-
munity interrogates itself and finds strategies to tackle it.
As an alternative, efforts might be made to develop mod-
els that are trainable on small or procedurally-generated
datasets following recent successful examples like [30,83].

Receive consent from musicians and remunerate

them. Dataset creators should inform musicians about the
specific goals of the dataset. It is possible that musicians
would willingly consent to train a dataset for several MIR
tasks but not for training AMG. When possible, dataset
creators should consider paying musicians for their labour
and disclose the amount [24], as found in [54]. Given the
equity problem discussed above, when paying musicians
is not feasible, that should be reported [25], and musicians
should be at least acknowledged. When AMG systems are
integrated into commercial products, a technical infrastruc-
ture might be implemented to distribute royalties to dataset
contributors. This suggestion shares Holly Herndon’s vi-
sion for a novel IP framework “compensates me for my
likeness when (and only when) money is made from it” [8].

Document the process of dataset development. Our
analysis revealed a general lack of care not only in doing

but also in documenting data work. For instance, POP909
dataset’s creators did not mention the source or selection
process of the “909 popular songs” used to generate pi-
ano arrangements [84] and the Lakh dataset’s creators sim-
ply mentioned that they extracted songs from “publicly-
available sources on the internet” 5 website. Careless doc-
umentary practices, which we believe were mostly invol-
untary and caused by an undervaluing of this process in
the field [24, 25], implicitly reveal that how a dataset is

developed and whose labour goes in it is not important.
We suggest the community develop protocols, guidelines,
or templates offering fair practice suggestions for dataset
creators to follow.

Report the intended use of the dataset. Our find-
ings indicate that it is a common practice among AMG
dataset creators to reuse existing datasets. We suggest that
dataset creators should report the original intended use of
their dataset and list the potential ‘allowed’ applications,
following the example of [54]. This practice would pre-
vent, or at least dissuade, future dataset creators from us-
ing that data for purposes other than the ones envisioned by
the creators and that musicians agreed on. This suggestion
is grounded on the observation that technologies are often
interpreted, used, and appropriated in ways that their cre-
ators cannot foresee or control (what [85] terms designer’s

fallacy). As new applications of datasets are discovered,
measures should be taken to ensure that permission from
involved musicians is obtained to use their work for uses
other than the ones they agreed on.

When borrowing data, maintain the purpose of the

5 https://colinraffel.com/projects/lmd/

original datasets. Connected to the above suggestion, cre-
ators should maintain their original purpose when borrow-
ing entries for new datasets and avoid misappropriation.
This is particularly important when dealing with culturally
relevant and sensitive music. This is, for instance, the case
of the dataset on the Australian Aboriginal language used
by [86]. The author reported: “These datasets were public
domain and encouraged for use by the creator as a way to
share the sound of the language. Even so, it is not clear
that the creators of the dataset from the late nineties could
predict this (AI generation) ‘future use’ case” [30].

Volunteer ethical considerations. Our analysis re-
vealed that almost the entirety of the papers did not engage
in any form of ethical considerations. Authors can show
commitment to advancing more just practices in dataset
creation by reflecting on potential ethical limitations in
their datasets. Preferably, they should also include docu-
ments approved by an Ethics board, if applicable, that were
given and signed by the participating musicians.

6. CONCLUSIONS AND FUTURE WORK

We identified the dominant approaches to dataset creation
within ISMIR and analysed them with critical lenses to un-
derstand their ideological substrate. Most authors seem to
handle dataset creation with neoliberal attitudes and ex-
pediency. However, a small - yet significant - number of
dataset creators showed that other attitudes and values are
at play within ISMIR when creating datasets for AMG.
Our analysis did not explain the motivations for dataset
creators to engage, or not engage, with ethical issues in
their work, and this investigation is left for future work. Fi-
nally, we aim to extend the analysis to papers other than the
ones published at ISMIR and to conduct an ethnographic
study with AMG dataset creators to give voice to their
perspectives on the topic. To conclude, ISMIR has been
playing a significant role in the growth of ML models for
AMGs but the lack of an ethical infrastructure may facili-
tate an exploitative industry. It is our responsibility as the
main academic hub of AMG to recognise the need to en-
gage in discussions around the matters raised in the article
and to establish ISMIR as the home of this debate.
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ABSTRACT

Validity is the truth of an inference made from evidence and

is a central concern in scientific work. Given the maturity of

the domain of music information research (MIR), validity

in our opinion should be discussed and considered much

more than it has been so far. Puzzling MIR phenomena like

adversarial attacks, horses, and performance glass ceilings

become less mysterious through the lens of validity. In this

paper, we review the subject of validity as presented in a key

reference of causal inference: Shadish et al., Experimental

and Quasi-experimental Designs for Generalised Causal

Inference [1]. We discuss the four types of validity and

threats to each one. We consider them in relationship to

MIR experiments grounded with a practical demonstration

using a typical MIR experiment.

1. INTRODUCTION

The multi-disciplinary field of Music Information Research

(MIR) is focused on making music and information about

music accessible to a variety of users. This ranges from sys-

tems for search and retrieval, to recommendation, and even

to more creative applications like music generation. The

effectiveness and reliability of MIR systems are of prime

importance to the MIR researcher, not to mention other

stakeholders. The researcher thus performs experiments

to compare approaches for modeling and retrieving music

data. A principal focus is on users, but the cost of perform-

ing experiments with users is high, and the replicability of

such studies is difficult. This has motivated the Cranfield

Paradigm [2]: computer-based experiments where “test col-

lections” serve as proxies for human users. While such an

approach is inexpensive and replicable, its relevance and

reliability for MIR, and information retrieval in general,

have been questioned [3, 4].

Under the Cranfield Paradigm, state-of-the-art MIR sys-

tems perform exceptionally well in reproducing the ground

truth of some datasets, e.g., inferring rhythm, genre or emo-

tion from audio data. This leads to conclusions that the

© Bob L. T. Sturm, Arthur Flexer. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribution:
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systems are actually learning to perform the task believed

necessary to recover the ground truth from audio data. How-

ever, slight and irrelevant transformations of the audio, e.g.,

“adversarial attacks”, can suddenly render these systems

ineffectual [5–9]. Such attacks can reveal what an MIR

system is relying on for its success. In one case, a “genre

recognition” system relies on infrasonic signatures that are

imperceptible and irrelevant for human listeners [8]. In an-

other, a “rhythm recognition” system is recognising tempo

instead of rhythm, a confounding originating from the data

collection [6]. Systems relying on such “tricks” have been

called “horses” [5]. A related topic in MIR is “glass ceil-

ings” [10, 11], i.e., that an observed barrier to improving

system performance to perfect or human level is claimed as

coming from psychophysical and cultural factors of music

missing from features extracted from audio recordings [12].

In order to better understand the problems described

above it is necessary to consider what lies at the heart of any

experiment: the relationship between conclusions drawn

from its results and their validity, or “truth value” [1]. Ide-

ally, an experiment will be carefully designed and imple-

mented to answer a well-defined hypothesis. Its compo-

nents – units, treatments, design, observations, and settings

– should be carefully operationalised (translated from theory

into practice) to maximize quality and minimize cost (e.g.,

money and time). This is the purview of the discipline De-

sign of Experiments: how can one get the strongest evidence

for the least cost?

Despite a small chorus of calls to improve validity of

conclusions in MIR, e.g., [4–6, 13–19], there has yet to be

published a systematic and critical engagement of what va-

lidity means in the context of MIR, and how to consider it

when designing, implementing and analyzing experiments.

In this paper, we focus on the four principal types of validity

in Shadish et al. [1], an authoritative resource about validity

in causal inference and experimental science. Other typolo-

gies exist, e.g., [20], but we use that of Shadish et al. [1]

because it is an established point of reference, and has al-

ready been mentioned in the context of MIR, e.g., in [4].

We review the four types of validity and present actionable

questions that can help MIR researchers to scrutinize the

conclusions they draw from their experiments. We ground

our general discussion of validity in this paper by a practical

demonstration, 1 which presents a typical MIR experiment

1 See supplementary material here: https://github.com/

boblsturm/mirvaliditytutorial
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Model Accuracy Precision Recall f1-score

LDA 0.714 0.711 0.711 0.703

QDA 0.719 0.715 0.723 0.717

1NN 0.662 0.644 0.635 0.638

3NN 0.681 0.673 0.651 0.656

5NN 0.719 0.699 0.687 0.689

7NN 0.695 0.669 0.656 0.659

9NN 0.700 0.681 0.664 0.668

unif 0.12± 0.02 0.13± 0.03 0.12± 0.02 0.12± 0.02

freq 0.13± 0.02 0.13± 0.03 0.13± 0.02 0.13± 0.02

maj 0.16 0.02 0.12 0.03

Table 1. Accuracy, and macro-averaged precision, recall

and f1-score observed for several models in a testing parti-

tion of BALLROOM [21]. The performance of two mod-

els selecting labels randomly (with standard deviation) are

shown in the rows labeled: unif samples labels uniformly;

freq samples labels according to training data label fre-

quency. The last row maj shows the performance of a

model choosing the label most frequent in the training data.

that exemplifies a considerable amount of MIR research:

music classification using machine learning (ML) and a

benchmark dataset. We use the BALLROOM dataset [21],

which has appeared in dozens of studies seeking to build

MIR systems sensitive to rhythm [6]. We partition the

dataset into training and testing sets, extract features and

train ML models, then label test set recordings and count

coincident ground truth labels, and finally compute figures

of merit for the different ML models. Table 1 presents the

results from which we wish to draw valid conclusions.

A less abridged version of this paper [22] integrates the

supplementary material in more detail. We hope that these

materials will help MIR researchers to design, implement

and analyze experiments in MIR and draw valid conclu-

sions, but also convince them that the language of validity

is reason. Creative thinking is necessary when examining

the truth value of any conclusion drawn from an experiment.

2. COMPONENTS OF EXPERIMENTS

Before discussing the validity of conclusions drawn from

an experiment, we must identify its components: units,

treatments, design, observations, and settings. Treatments

are the things applied to units in order to cause an effect

(or not in the case of a control), units are the things that are

treated, and observations are what is measured on a unit.

The design specifies which treatment is applied to which

unit, and settings involve time, place, and condition. To

make this more concrete, consider a medical experiment in

which the effect of a treatment on blood pressure is being

studied. A number of people are sampled from a population,

some of whom will receive the treatment while the others

receive a placebo (control). The design describes which

people get the treatment, and which do not. The observation

is the blood pressure of a person after one month. The

setting can include particulars of the population (rural or

urban), place of treatment (hospital or home), and so on.

The experimentalist contrasts blood pressure observations

across groups to conclude, e.g., the effect of the treatment

(causes a decrease in blood pressure).

Our typical MIR experiment measures the effectiveness

of different ML models in predicting the labels of a test

recording dataset. There are two ways to see its compo-

nents. We can see the treatments as the ten models and the

units as replicates of the entire testing dataset, or we can

see the entire testing dataset as the one treatment and the

units as the ten models. Since Table 1 reports figures of

merit (observations) of each model on the entire test dataset,

the latter interpretation motivates conclusions about the ef-

fectiveness of particular models. In this case, the design is

simple: each unit (ML model) is given the same treatment

(dataset). The setting involves the dataset partitioning, the

extracted features, random seeds, software libraries, etc.

3. STATISTICAL CONCLUSION VALIDITY

Statistical conclusion validity is “the validity of inferences

about covariation between two variables” [1]. This includes

concluding that a covariation exists, and perhaps its strength

as well. This is the level at which one is concerned with

statistical significance, i.e., that an observed covariation

between treatment and effect is not likely to arise by chance.

As a concrete example, an experiment measuring the ef-

fects of two different medicines on lowering blood pressure

seeks to determine which of the medicines has the greatest

effect, if at all. The statistical conclusion validity of a con-

clusion resulting from this experiment relies on its power,

but can be threatened in other ways. Shadish et al. [1] (p.

45) includes a table of nine different threats to statistical

conclusion validity. Four threats relevant to computer-based

experiments are: violated assumptions about the statistics

underlying the observations (and the use of the wrong sta-

tistical test, a type III error [23]); a sample size too small to

reliably detect covariation (lack of power); the purposeful

search for significant results by trying multiple analyses and

data selections (“p-hacking” [24]); and increased variance

in observations due to the heterogeneity of units.

Are my results statistically significant? Null hypothesis

statistical testing (NHST) quantifies whether the observed

effects of the treatments on the responses arise by mere

chance, as well as the direction of effect and its size. This

answers the question: are the results statistically signifi-

cant? Fundamentals about statistical testing in MIR have

already been discussed [25], also for Artificial Intelligence

in general [26], and for ML [27]. One must take care in

selecting a statistical test to use; each one makes strong as-

sumptions that could be violated. NHST is most straightfor-

wardly applicable to completely randomized experimental

designs [28], thereby reducing the possibility of structure in

units and treatments interfering with the responses (which

results in confounding). Most MIR experiments cannot

use complete randomisation because the target population

from which samples come is unclear (what is a random

sample of “sad” music, with the term “sad” being quite

ill-defined?), and so the kinds of conclusions that can be

made with NHST in MIR are limited. 2

2 Experimental designs that cannot be completely randomised are called
quasi-experimental designs, another major topic of Shadish et al. [1].
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Is the observed statistical significance relevant for a

user? In MIR, even if one finds statistical significance, this

may not generalise to a perceivable difference for actual

users interacting with the “improved” MIR system. As an

example from MIR, a crowd-sourced user evaluation [29]

demonstrates that there is an upper bound of user satisfac-

tion with music recommendation systems of about 80%,

since this was the highest percentage of users agreeing that

two systems “are equally good.” In addition, for the MIREX

task of Audio Music Similarity and Retrieval it has been

demonstrated [29] that statistically significant differences

between algorithms can be so small that they make no prac-

tical difference for users.

Let us now consider the typical MIR experiment and

reason about what conclusions we can draw from it that

have statistical conclusion validity. Table 1 clearly shows

that each response of model to the dataset is greater than

the random approaches unif, freq and maj. How likely is it

that any of the responses of models is due to chance, i.e.,

that any of the models is actually no better than one of the

random approaches? Since we have the empirical distribu-

tions for unif and freq, we can estimate the probability of

either of them resulting in, e.g., a macro-average recall at

least as large as 0.6: p < e−200. 3 Hence, a valid statisti-

cal conclusion is that we observe a significant covariation

between the use of a machine learning model with these

particular features and the responses measured on a specific

partition of BALLROOM.

One might consider statistical conclusions relating to the

type of ML, i.e., Gaussian modeling (LDA and QDA) vs.

nearest neighbour modeling (KNN), or LDA vs. QDA. If

we conclude from Table 1 that Gaussian modeling performs

better than nearest neighbour modeling with these features

on 70/30 partitions of BALLROOM, we would be wrong.

This is a “type I error”, which is concluding there to be

a significant difference when in fact there is none. When

we perform this experiment 1000 times with random 70/30

partitions we observe that the difference between the best

response of a Gaussian model and the best response of

a nearest neighbour model is distributed Gaussian, and

that the probability of observing zero difference or less is

p > 0.41 for any of the figures of merit.

The most general statistical conclusion we can make

from Table 1 is that the responses we observe from ML

models are highly inconsistent with the responses of choos-

ing randomly. Each ML model knows something about

BALLROOM linking the features computed from a music

recording with its ground truth label. Because we do not

know the amount of variation in any response due to par-

titioning, we cannot make any valid statistical conclusion

about which type of ML model is the best for this particular

dataset. In order to go further, we must run the experiment

multiple times to obtain distributions of the contrasts. Even

then, however, we cannot say anything about the cause

of significant differences yet. This is where the notion of

internal validity becomes relevant.

3 See the supplementary material for an explanation.

4. INTERNAL VALIDITY

Internal validity is “the validity of inferences about whether

the observed covariation between two variables is causal”

[1]. While statistical conclusion validity is concerned only

with the strength of covariation between treatment and re-

sponses, internal validity is focused on the cause of a par-

ticular response to the treatment. Shadish et al. [1] (p. 55)

includes a table of nine different threats to causal conclu-

sions. Several of these involve confounding, which is the

confusion of the treatment with other factors arising from

poor operationalisation in an experiment. As a concrete

example, consider an experiment measuring the effects of

two different medicines on lowering blood pressure, but

where one medicine is given to young patients and the other

is given to elderly patients. This experimental design con-

founds the two medicines and patient age, and so the effects

caused by the two factors cannot be disambiguated. Any

conclusion from this experiment about the effects of the

medicines lacks internal validity.

Does my data collection introduce confounds? One’s

methodology for collecting data might unintentionally in-

troduce structure. For instance, it has been discussed that

BALLROOM was assembled by downloading excerpts of

music CDs sold at a website selling music for ballroom

dance competitions [6]. Ballroom dance competitions are

regulated by organisations, e.g., World DanceSport Feder-

ation (WDSF), 4 to ensure uniformity of events for com-

petitors around the world. These organisations set strict

requirements of tempo of each dance such that high skill is

required of the dancers. Hence, the labels of BALLROOM

can reflect any of the following: 1) the rhythm of the music;

2) the type of dance performed to the music; 3) the strict

tempo requirements of the dance in the context of competi-

tion. As a result, good performance in BALLROOM can be

due to rhythm detection and/or tempo estimation. Tempo

and rhythm are related musical characteristics, but they are

not the same thing [30].

Does my data partitioning introduce confounds? Dataset

partitioning can also introduce confounds, e.g., “bleeding

ground truth.” An example is to first segment recordings

into short (e.g., 40ms) time frames and then partition these

frames into training and testing sets, thus spreading highly

correlated features across these sets. In the context of

audio-based genre classification, the presence of songs from

the same artists or albums in both training and test data

has been shown to artificially inflate performance [31, 32].

Audio-based genre classification using very direct represen-

tations of spectral content has been shown [33] to degrade

more when employing artist/album filters than classifica-

tion based on more abstract kind of features like rhythmic

content (fluctuation patterns). This insight that problems

of data partitioning can affect MIR systems in quite differ-

ent ways and hence change performance rankings has been

confirmed in another meta-study [34].

Returning to our typical MIR experiment, of interest is

what it is in our trained ML models causing their response

to be inconsistent with random selection. Knowing how

4 https://www.worlddancesport.org/
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Gaussian models used in LDA and QDA are built – mean

and covariance parameters are estimated from training data

– an internally valid conclusion is that these models work

well in BALLROOM because likelihood distributions esti-

mated from the training data also fit the testing data well.

Another internally valid conclusion is that the high perfor-

mances of these ML models in BALLROOM are caused

by the features together with the expressivity of the models

capturing information related to the labels in BALLROOM.

With reference to the aims of MIR research, we want

to conclude something more specific, e.g., our ML mod-

els have learned to recognize the rhythms in BALLROOM.

This is certainly one explanation consistent with our ob-

servations, but is it the only one? The internal validity of

this conclusion relies on a key assumption: inferring the

labels of BALLROOM can only be the result of learning

to discriminate between and identify its rhythms. In other

words, we must assume that there is no other way to infer

labels in BALLROOM than by perceiving rhythm.

Since we know tempo is highly correlated with rhythm

in BALLROOM, we thus perform an experiment to test

the sensitivity of our trained ML models to tempo: we

alter all test recordings by some amount of pitch-preserving

time dilation, and then measure the responses of the models

to these new treatments. We see that the responses of all

ML models decay to being not significantly different from

random selection with dilations in the range of ±15 %. We

see this intervention clearly reveals the extent to which the

ML models we test rely on the tempi in the test data.

The experimental design of the typical MIR experiment

does not account for the structure present in the dataset;

we do not control for other ways of inferring the labels

of BALLROOM, which are guaranteed to exist by its very

construction. From Table 1 and our experimental design, we

thus cannot be any more specific in our causal inference than

this: the responses of our ML models are caused by their

having learned something about BALLROOM. This then

calls into question how comparing predictions with ground

truth in BALLROOM relates to the ability we might actually

want to measure, that is the recognition of rhythm. This is

where the notion of construct validity becomes relevant.

5. CONSTRUCT VALIDITY

Construct validity is “the validity of inferences about the

higher order constructs that represent sampling particu-

lars” [1]. This involves the relationship between what is

meant to be inferred by the experimentalist from an experi-

ment and what is actually measured, i.e., the operationalisa-

tion of the experimentalist’s intention. For instance, directly

measuring the blood pressure of a person involves an inva-

sive procedure inserting a measuring device in their veins.

Blood pressure can be measured less invasively but indi-

rectly by externally applying known pressure to a vein and

listening for when blood flow ceases. Knowledge about the

incompressibility of liquids in closed systems makes the

measurement of pressure in the balloon a relevant measure

of blood pressure. Shadish et al. [1] (p. 73) includes a table

of fourteen different threats to construct validity, but several

of these are irrelevant to computer-based experiments. The

main threat is a questionable relationship between what

is being measured and what is intended to be measured.

Selecting a measure by convenience but not relevance, sam-

pling from convenient populations, and a lack of definition

of what is intended to be measured, are threats to construct

validity. Construct validity involves more than just how

something is measured; it also involves what is measured

and in what settings.

How is classification accuracy, or any figure of merit, in

a labeled music dataset related to X? Two examples in MIR

are the use of “genre” classification accuracy as an indirect

measure of music similarity [11], or user satisfaction (see,

e.g., [14] for a discussion). The relationship between these

is very tenuous, especially so considering that accuracy

itself is an unreliable measure of whether or not a system has

learned anything relevant to music [5, 15]. A key reference

in this respect is that of Pfungst [35] describing a series

of experiments in trying to reliably measure the arithmetic

acumen of a horse that was only able to tap out answers.

Counting the number of correct answers tapped out by the

horse, no matter how many questions are asked, is irrelevant

without considering how each question is posed (the setting).

The key to Pfungst discovering the cause of the horse’s

apparent arithmetic acumen involved changing the setting:

the questions remained the same, and accuracy of correct

response was measured, but how the questions were posed

was changed in order to control for different factors of the

experiment. The same is true for MIR.

What is the “use case” of the system to be tested? To

counter threats to construct validity the MIR experimental-

ist must operationalise as much as possible the use case of

the system to be built and tested. One attempt to do so for

music description [36] emphasises the need to define suc-

cess criteria. The experimentalist must determine how their

method of measurement relates to the success criteria, e.g.,

relating accuracy in genre classification to the satisfaction

of a specific type of user.

How can we test the construct validity of a conclusion?

One possibility is to assess the outcomes of different ex-

periments which are supposed to measure the same higher

order constructs. An example in MIR is to study corre-

lations of different genre classifiers when given identical

inputs [18]. Low correlations between classifiers point to

problems of construct validity. A related topic is that of

adversarial examples, which casts doubt on the conclusion

that the high accuracy of an MIR system in some dataset

reflects its “perception” of the music in the waveform. Ad-

versarial examples have first been described in image anal-

ysis [37], where imperceptible perturbations of input data

significantly degraded classification accuracy. For music

genre classification systems, imperceptible audio filtering

transformations of music signals have been used [5] to both

deflate and inflate classification accuracy to be no better

than chance level or perfect 100%. Following these so-

called untargeted attacks which try to change a prediction to

an arbitrary target, targeted attacks aiming at changing pre-

dictions to specific classes have been explored. A targeted
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attack on genre recognition has been reported [7], where

magnitude spectral frames computed from audio are treated

as images and attacked using approaches from image object

recognition. For music instrument classification a targeted

attack allowing to add perturbations directly to audio wave-

forms instead of spectrograms has also been presented [9].

The attacks were able to reduce the accuracy close to a ran-

dom baseline and produce misclassifications to any desired

instrument. The authors also artificially boosted playcounts

via an attack on a real-world music recommender, thereby

demonstrating that such attacks can be a security issue in

MIR. Follow-up work presented lines of defence against

such malicious attacks [38].

Returning to our typical MIR experiment, we are in-

terested in making construct inferences around the latent

ability of rhythm recognition we are supposedly measuring

in our ML models. For instance, one construct inference

is that our features measure relevant aspects of rhythm in

recorded music. In some sense, by their definition from ba-

sic signal processing components, our features come from

temporal aspects that are certainly relevant to rhythm. Our

features are also reliant on acoustic information, and in

particular there being high-contrast differences in onsets

captured by spectral flux – hence limiting their relationship

to rhythms played by particular kinds of instruments with

sharp attacks. However, we have seen above that the fea-

tures are also indicative of tempo, and that tempo is another

path an ML model can use to infer the rhythm label. Hence

we are left to question the relationship of our features to the

concept we are trying to operationalise, i.e., rhythm.

Having a system label any partition of the BALLROOM

dataset provides no reliable measure of a system’s ability

to recognise rhythm without changing the setting to control

for other factors. It is not as simple as choosing a differ-

ent feature, measure, cross-validation method, or using a

particular statistical test. One must change the experiment

itself such that rhythm recognition is what is actually being

measured. This means that BALLROOM can still be use-

ful to measuring the rhythm recognition of an ML model.

Indeed, in the previous section we used it to disprove the

causal claim that the good performance of the ML systems

of Table 1 is caused by their ability to recognize rhythm.

Might performance in BALLROOM also be an indication

of performance in other datasets focused on rhythm? This

is where the notion of external validity becomes relevant.

6. EXTERNAL VALIDITY

External validity is “the validity of inferences about the

extent to which a causal relationship holds over variations

in experimental units, settings, treatment variables and mea-

surement variables” [1]. More generally, external validity

is the truth of a generalised causal inference drawn from an

experiment. An example is inferring that medicine found

to lower blood pressure in patients living in Germany will

also lower blood pressure in people living in Mexico – a

conclusion that can lack validity due to differences in diet,

living and working conditions, and so on. Another example

is that increasing the dose of the medicine will cause blood

pressure to lower further in the studied population. If a

causal inference we draw from an experiment lacks internal

validity, then generalising that inference to include varia-

tions not tested will not have external validity. Shadish et

al. [1] (p. 87) includes a table of five different threats to ex-

ternal validity, which are in addition to the threats to internal

validity. The main threat is that variation of the components

of the experiment might destroy the causal inference that

holds in the experiment. For instance, a medication may

work for the type of illness tested, but that type of illness

may not be generalisable to other closely related illnesses.

Does my model generalize to out-of-sample data? The

standard approach in evaluating MIR classification systems

is to use separate train and test sets in cross-validation

experiments to obtain seemingly unbiased estimates of per-

formance. However, if such MIR systems are exposed to

independent out-of-sample data often severe loss of per-

formance is observed. One example are experiments on

genre recognition where accuracy results do not hold when

evaluated across different collections that are not part of the

training sets [39, 40]. The results do not generalize to sup-

posedly identical genre labels in different collections, which

reflects a lack of external validity. Genre labels like ‘Rock’

will be used differently by different annotators working on

these collections – which is also a threat to construct va-

lidity. Another example are how different audio encodings

affect subsequent computation of descriptors and classifica-

tion results [41], or how in general differences in software

implementations diminish replicability [42].

Do different raters agree on a ground truth? Human

perception of music is highly subjective resulting in pos-

sible low inter-rater agreement. Therefore only a certain

amount of agreement can be expected if several human

subjects are asked to rate the same song pairs according to

their perceived similarity, depending on a number of sub-

jective factors [14, 43] like personal taste, listening history,

familiarity with the music, current mood, etc. Concern-

ing annotation of music, it has been shown [44] that the

performance of humans classifying songs into 19 genres

ranges from modest 26% to 71%. Audio-based grounding

of everyday musical terms shows the same problematic re-

sults [45]. It has even been argued [12] that no such thing

as an immovable ‘ground’ exists in the context of music,

because music itself is subjective, highly context-dependent

and dynamic.

The lack of inter-rater agreement presents a problem of

external validity because inferences from the experiment do

not generalize from users or annotators in the experiment to

the intended target population of arbitrary users/annotators.

It is also a problem of reliability, since different groups of

users or annotators with their differing subjective opinions

will impede repeatability of experimental results. This lack

of inter-rater agreement presents an upper bound for MIR

approaches, since it is not meaningful to have computational

models going beyond the level of human agreement. Such

upper bounds have been reported [14,43,46] for the MIREX

tasks of ‘Audio Music Similarity and Retrieval’ (AMS) and

‘Music Structural Segmentation’ (MSS). For AMS the upper
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Accuracy Precision Recall f1-score

LDA 0.659 0.647 0.643 0.643

QDA 0.682 0.678 0.672 0.673

1NN 0.622 0.616 0.602 0.604

3NN 0.636 0.629 0.610 0.613

5NN 0.644 0.643 0.617 0.619

7NN 0.647 0.646 0.619 0.621

9NN 0.645 0.643 0.615 0.618

unif 0.12± 0.01 0.13± 0.01 0.12± 0.01 0.12± 0.01

freq 0.13± 0.01 0.13± 0.01 0.12± 0.01 0.12± 0.01

maj 0.13 0.02 0.12 0.03

Table 2. As in Table 1, models trained in BALLROOM and

tested in all of X-BALLROOM [51].

bound has already been reached in 2009, while for MSS

the upper bound is within reach for at least some genres of

music. Comparable results exist concerning music structure

analysis [47] and chord estimation [48, 49].

Do raters agree with themselves at different points in

time? Going beyond the question of whether different an-

notators agree on a ground truth one can also access what

the level of agreement within one person is when faced

with identical annotation tasks at different points in time.

A high intra-rater agreement would help to overcome the

problem of upper bounds in MIR systems since it would

make personalization of models meaningful, i.e. to have

separate models for individual persons. However, at least

for the task of general music similarity it has been shown

that intra-rater agreement is only slightly higher than inter-

rater agreement [19], with the absolute level also depending

on music material and mood of raters at test time. An ap-

proach to personalize chord labels for individual annotators

via deep learning was more successful [50].

Returning to the typical MIR experiment, we cannot

validly conclude that any of our models is recognizing

rhythm in general because we do not know if they are rec-

ognizing rhythm in BALLROOM. Our dilation intervention

experiment in Sec. 4 reveals that all of the models lose their

supposed ability to recognize rhythm in BALLROOM, so

there is no reason to infer they will recognize rhythm else-

where. One causal conclusion we might make is that our

models perform well in BALLROOM because they have

learned something about BALLROOM – a curated set of

recordings downloaded from a specific website in 2004.

Might they have learned something about other recordings

from that same website, but collected many years later?

The extended BALLROOM dataset (X-BALLROOM)

[51] consists of 3,484 audio recordings in the same eight

dance styles or music rhythms as BALLROOM, but down-

loaded from the same website over a decade later. This

gives us a chance to test our conclusion. The figures of

merit measured from our models trained in BALLROOM

but applied to all of X-BALLROOM are shown in Table 2.

We still see significant covariation between response and

the use of ML with our features. By and large, whatever

concepts our ML models have learned about BALLROOM

carry over to X-BALLROOM – but we still do not know

whether or not those concepts have to do with rhythm.

7. CONCLUSION

This paper provides a review of the notion of validity based

on the typology given in Shadish et al. [1]. It brings together

the few sources in MIR that mention validity, and several

sources that do not but are related. This paper does not aim

to prescribe how to design and perform experiments such

that valid conclusions can be drawn from them. Instead, it

aims to bring within the realm of MIR what validity means,

why it is important, and how it can be threatened. One thing

to reiterate is that one does not talk about the “validity of an

experiment”. An experiment does not possess “truth value”.

Validity is a property of a conclusion made given evidence

collected from an experiment. The components of an exper-

iment – units, treatments, design, observations, and setting

– have major consequences for the validity of conclusions

drawn from it, whether it is statistical conclusion validity,

internal validity, construct validity, or external validity.

In MIR the predominant experimental methodology is

the Cranfield Paradigm: train a model on a partition of a

dataset and count the number of correct answers on an-

other partition. This kind of experiment is inexpensive,

and provides numbers that can be compared in ways that

convince peer reviewers that progress has been accom-

plished [52]. Despite various appeals [14, 53] and beseech-

ings [4, 5, 15, 16, 19, 29, 43], such an experimental approach

is still standard in the field and its serious flaws are ignored.

Any conclusion from this experiment that is more general

than “the system has learned something about the dataset”

lacks internal, construct and external validity. This does not

mean that all such inferences are false, just that they cannot

follow from the experiment as designed and implemented.

Reproducing the ground truth of a dataset represents a be-

ginning and must be followed by a search for the causes of

the observed behavior.

Shadish et al. [1] provides an established starting point

for MIR, but there exist other types of validity. For instance,

Lund [20] revises the typology of [1] to address ambigui-

ties between causes and treatments, to better define aspects

of settings, and to establish a hierarchical ordering of five

types of validity: statistical conclusion, causal, construct,

generalization and theoretical. Other kinds of validity in-

clude ecological, convergent, and criterion [13], but these

still deal with the kind of conclusion one is drawing from

evidence collected in some way.

As a final note, a frustration when encountering Shadish

et al. [1] as an engineer is that of its 623 pages there are

only five pages with at least one equation on them. Instead,

Shadish et al. [1] describe experiments and how each type

of validity manifests in the conclusions drawn, with specific

threats to the reasoning of those conclusions. Experiments,

not to mention experimentalists, are such complex assem-

blages that expressing them in formal ways that appear to

permit the computation of numbers that relate to each type

of validity would probably have very limited applicability,

and then only be understood by a limited audience. The

language of validity is reason, and we hope this article

will inspire MIR researchers to think creatively about the

phenomena they observe to discover their causes.
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ABSTRACT

In Carnatic music concerts, taniāvartanam is a solo per-

cussion segment that showcases intricate and elaborate ex-

tempore rhythmic evolution through a series of homoge-

neous sections with shared rhythmic characteristics. While

taniāvartanam segments have been segmented from con-

certs earlier, no effort has been made to analyze these per-

cussion segments. This paper attempts to further segment

the taniāvartanam portion into musically meaningful seg-

ments. A taniāvartanam segment consists of an abhiprāya,

where artists show their prowess at extempore enunciation

of percussion stroke segments, followed by an optional

korapu, where each artist challenges the other, and con-

cluding with mohra and korvai, each with its own nuances.

This work helps obtain a comprehensive musical descrip-

tion of the taniāvartanam in Carnatic concerts. However,

analysis is complicated owing to a plethora of tāla and

nad. e. The segmentation of a taniāvartanam section can be

used for further analysis, such as stroke sequence recog-

nition, and help find relations between different learning

schools. The study uses 12 hours of taniāvartanam seg-

ments consisting of four tāla-s and five nad. e-s for analysis

and achieves 0.85 F1-score in the segmentation task.

1. INTRODUCTION

Carnatic music (CM) is a South Indian music tradition con-

sidered an ancient form of Indian art music (IAM). A typ-

ical CM concert features a lead artist, typically a vocal-

ist, accompanied by a violinist and percussion instrument

artists. The lead percussion instrument in this ensemble is

usually the mridangam, while additional percussion instru-

ments like the ghatam, khanjira, and morsing may also be

present. A CM concert includes a solo percussion perfor-

mance known as taniāvartanam, or tani for short. Tani is

a structured sequence of rhythmic elaborations performed

at a fixed metric tempo and bound to a metric cycle (tāla).

This study attempts to study the elaborations in tani, seg-

ment them using a culture-specific approach, and assigns

semantically meaningful labels.
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Audio recordings of concert performances available on-

line often lack detailed metadata and annotations regard-

ing section boundaries and other information, particularly

in the context of IAM. With the increasing availability of

music collections and digital devices, there is growing in-

terest in accessing music based on its characteristics. The

paucity of editorial metadata has necessitated the develop-

ment of music information retrieval (MIR) techniques to

extract music’s characteristic properties from audio record-

ings automatically. The paper is organized as follows. The

taniāvartanam structure is described, followed by the task

objectives, challenges, and dataset description. Domain-

specific feature engineering is done, and the task is ad-

dressed for different cases. The experimental results are

analyzed and discussed with culture-specific explanations.

1.1 Taniāvartanam Description

The tani is a highly structured and elaborate percussion

performance that is a prominent feature of CM, showcas-

ing the rhythmic skills and creativity of the percussionist.

The main percussion instrument is the mridangam, occa-

sionally accompanied by ghatam (clay pot), khanjira, and

morsing (Jew’s Harp). Since tani is part of a main item,

it is performed in the same tāla, and metrical tempo as the

main item. The intricacies are based on the precise mathe-

matical calculations of the metric cycle.

The duration of the tani is divided among the mridan-

gam and accompanying percussion to showcase individ-

ual artistry, e.g., if mridangam and ghatam are present, the

structural framework of the tani is typically as follows:

The mridangam always starts first by playing sarvalaghu

(SV) patterns (indicators of basic tāla structure), and the

complex patterns are introduced gradually. These elabora-

tions are performed in a particular rhythm structure called

nad. e (usually in chaturaśra at first) for a few rhythm cy-

cles. These elaborations on a particular rhythmic theme

are termed as abhiprāya. The literal meaning is "opinion",

i.e, the artists’ viewpoint of that particular rhythm struc-

ture. Ghatam follows and tries to keep the same theme

built by the mridangam in the first cycle by playing in the

same nad. e [1]. In the second cycle, the mridangist usually

may change the nad. e (to tiśra, for example) and elaborates.

The ghatam usually follows in the same nad. e or switches

to a different nad. e (khand. a). These may or may not con-

tinue for more than two cycles, usually owing to time con-

straints. Each abhiprāya ends with a pattern called korvai,

which is repeated thrice to arrive at downbeat.
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Figure 1. Spectral Illustration of a few Carnatic Percussion

Strokes. D: Damped Strokes, R: Resonant Strokes

These abhiprāya-s are followed by the korapu, usu-

ally seen as a question-answer between mridangam and

ghatam. Here it starts with multiple cycles of rhythmic pat-

terns by the mridangam followed by ghatam, where each

artist challenges the other. The duration of the rhythm pat-

terns in korapu keeps reducing progressively from full cy-

cle, half cycle, quarter cycle until it finally reduces to a

single beat. It can be translated as “rhythmic descent” or

“step-by-step reduction”. The artist(s) then start playing

together playing faster with crisp strokes (farans), build-

ing up the necessary momentum for playing the last parts

of the tani called mohra and longer korvai [1]. Each of

these has a specific composition structure upon which the

artist builds. This structure holds even if only the mridan-

gam is present, except that the korapu part might be absent.

Summarizing the sequence of sections in a tani segment

can be listed as sarvalaghu patterns abhiprāya in a specific

nad. e → change of nad. e → back to starting nad. e → korapu

→ farans → mohra → final korvai [2].

1.1.1 Aspects of timbre and spectral differences among

the Carnatic percussion

In Indian music tradition, accompanying instruments are

relatively tuned according to the main melodic instrument

or voice. The percussion instruments are also catego-

rized on the sonic aspect. Figure 1 illustrates the damped

(D) strokes and resonant (R) strokes of Carnatic percus-

sion instruments. Two-sided percussion, mridangam has

both the low-frequency and mid-frequency spectra cov-

ered. The ghatam occupies a little over the mid-frequency

band, and morsing predominantly spreads over the high-

mid frequency spectrum and has a larger resonance. Khan-

jira occupies a low-frequency spectrum a bit less than the

left side of the mridangam. This explains the aesthetic

quality of the percussion instruments that have been tra-

ditionally in use for CM concerts. The tonal nature also

enhances the entire concert when played harmoniously.

1.2 Problem Objective and Challenges

This work addresses three primary tasks: (1) Diariza-

tion of the audio into mridangam, khanjira, and ghat.am

sections when multiple instruments are present, (2) Es-

timation of section boundaries using musical attributes,

and (3) Classification of segments into broad categories

such as abhiprāya, korapu, farans, mohra, and korvai. To

achieve these goals, the paper applies techniques from

well-researched music genres while also considering the

culture-specific characteristics of tani. To improve read-

ability and clarity, several terms are defined in Table 1.

Identifying and understanding the segments in tani is

difficult for most CM audiences, except for professionally

Segment
Audio fragment between any two adjacent detected boundaries

that may or may not cover a complete section.

Section
A primary portion of the taniāvartanam. A section can contain

multiple compositions and multiple segments.

Nad. e

A modifier to tāla that decides the number of strokes per beat,

The subdivision structure within a beat in CM

Chaturaśra, Tiśra, Khand. a are different kinds of nad. e-s

Abhipraya (AB) A rhythmic elaboration in a particular nad. e during tani.

Korapu (KP) A musical dialogue between the musicians during performance.

Farans (FA)
The first part of the conclusion in tani where the

percussionists play fast to gain momentum toward the end.

Mohra (MO)
Popular rhythmic structure played after the farans hinting

the climax of taniāvartanam.

Korvai (KO) Stroke patterns that are played three times, concluding the tani.

Table 1. Definitions of terms relevant to this paper

trained and practicing percussionists. However, this chal-

lenge can be addressed if we have a reliable system that can

classify the primary segments in tani from audio record-

ings. Such a system would not only aid in appreciating the

art form for a broader audience, but also serve as a valuable

learning tool for beginner-level percussion students.

Coming to the challenges, tani is very diverse and ex-

tempore. The number of percussions may vary across the

concerts. The duration of the tani also varies, influencing

the number of possible segments. Additionally, the pres-

ence of the korapu section is contingent on the number of

percussions, which is rare when only mridangam is played.

Each rhythmic structure is presented at multiple speeds.

This is reflected in the boundary within a single abhiprāya

due to sudden tempo changes. The rendition also has small

pauses, which may be part of the rhythmic elaboration

or due to the artist’s presentation style. As a result, the

tani segmentation task presents unique challenges to exist-

ing audio segmentation methods. Listening to the entire

audio carefully to mark the segment boundaries is time-

consuming. This underscores the need to develop systems

for automatic segmentation and annotations.

1.3 Dataset Description

Experimenting with various shades of tani requires a di-

verse collection of annotated audio data. As there is no

properly annotated dataset available for this task, we col-

lected diverse recordings of tani and labeled them. All the

audio data used in this work is a subset of the Charsur Car-

natic [3,4], Sangeethapriya [5] datasets along with two au-

dios from [6]. The tani part from the main concerts is ex-

tracted by marking the start and end points. Professional

performers listened and annotated the boundaries of pri-

mary sections in the tani. By doing so, we collected around

12 hours of annotated tani audio. The duration of each tani

in the dataset ranges from 6 minutes to 29 minutes, with

11 minutes of mean duration.

The dataset details are described in Table 2. The con-

sidered audios comprises of tani played in four major tāla-s

of CM [7, 8], namely ādi, miśra chāpu, khand. a chāpu, and

rupaka. The annotations consist of tāla labels, boundary

instances, and labels of primary sections of tani. The mul-

tiple percussion audios considered in this work have only

two instruments along with additional labelings of the in-

strument name for their respective segments. The dataset is

heterogeneous with artist variability (22 mridangam, >12

ghatam, >8 khanjira), tonic, and tempo variability.
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No. of Abhiprāya No. of Concerts Duration ~ (hrs:mins)

Mridangam 51 16 02:24

Mrid + Ghat 86 18 04:56

Mrid + Khanj 94 21 05:47

Total 231 55 12:08

Table 2. Dataset Description.

1.4 Related Work

Segmentation and metadata labeling of a music recording

have a fairly good research history both in Western [9–11]

and IAM traditions [12, 13]. Various acoustic and tempo-

ral parameters were used for the segmentation task [9, 14].

Foote et al. [15] proposed a self-distance matrix method to

determine the boundary between contrasting musical char-

acteristics. The changes in musical features in Pop and

Rock music were used to train the boosted decision stump

[16]. Lately, [17] explored neural networks for structural

segmentation, spanning various genres [18].

In the context of IAM, different approaches were ex-

plored for segmenting the main concert audios in the

Dhrupad [13, 19, 20], Hindustani [21, 22], and Carnatic

[12, 23–25] music traditions. For instrumental concerts,

Vinutha et al. [22] considered the segmentation of sitar and

sarod concerts using reliable tempo detection [26]. The

analysis of rhythm/percussion in IAM has primarily fo-

cused on stroke onset detection [27, 28], stroke recogni-

tion [6, 29–33], and sequence modeling [34, 35] percus-

sion pattern identification [36]. Ajay Srinivasamurthy [37]

worked on tracking the "downbeat," provided the tāla is

known. Tani diarization was also attempted in [4]. Fur-

ther, mridangam artist identification from tani audio was

attempted [38]. Parallel to [38], tabla gharānā recognition

from the tabla solo was addressed in [39, 40].

Nevertheless, no attempts have been reported on the

structural analysis of Indian solo percussion. This paper

attempts to include additional meta-information to the tani

portion of a concert, where the audio is segmented based

on musical attributes. This can help identify the tāla and

enable the association of the cycle of strokes with that of

the lyrics of the main composition in CM. The outcomes

can help in the concert summarization task and for further

MIR studies in the field of percussion, which is crucial as

it can give insights into the rhythm of the main item of the

concert. Combined with works on meter tracking [7], per-

cussion source separation [41], and stroke recognition [6],

this could lead to additional metadata that could be impor-

tant to an ardent listener or performer.

2. AUDIO FEATURE ENGINEERING

The raw concert audios have to be pre-processed for further

analysis. Since each concert is unique in the choice of met-

ric tempo, tonic, and compositional structure, the features

used should be based on concert-specific characteristics.

At the same time, it should scale inter-concert. We address

the tasks by computing relevant features considering the

culture-specific musicological perspectives. Initially, the

raw audio is pre-processed by computing the Hilbert enve-

lope of the linear prediction (LP) residual on the raw audio

[27]. Then the onset detection function (ODF) is computed

Figure 2. Flow Diagram for Segmentation and Labeling

using the spectral flux method [42]. It is shown to perform

on par with state-of-the-art machine learning-based onset

detection algorithms on percussion instruments [27]. The

computed onset locations are considered for further rhythm

analysis. While we have used LP analysis, any onset de-

tection technique could have been used.

2.1 Rhythm and Tempo Features

The change in the rhythm structure or the tempo is a promi-

nent indicator of the section transitions. In the case of per-

cussion instruments, rhythm pattern refers to the aspects of

stroke patterns. A rhythm representation can be obtained

by considering the stroke ODF (sampled at 10 ms) over a

suitably long window and computing the auto-correlation

function (ACF). The periodicity analysis using the ACF of

the ODF represents the audio in terms of rhythm called

rhythmogram [43–45], where rhythm/tempo alone is em-

phasized.

The ACF of the ODF is computed frame-wise with a

frame length of 4 seconds and a frameshift of 0.5 seconds

up to a lag of 1 second. The dimension of each frame of the

rhythmogram is p = 100, corresponding to a 1-second lag.

The window length must be large enough to contain suffi-

cient strokes for computing the ACF. Even while playing a

slower tempo, we observe at least more than 8-10 strokes

(sufficient to calculate the periodicity) in a window length

of 4-5 seconds. A uniform window size of 4s is chosen to

accommodate variability in rhythm. The peaks along the

lag axis of the rhythmogram depict the periodicity of the

surface rhythm, indicating surface tempo [22].

The tempo estimation using the product of ACF-DFT

[46] is often prone to tempo octave errors due to uneven

stroke distribution. We compute the number of strokes in

each 4 seconds frame and divide by 4 to get the stroke den-

sity at every frame instance. The feature is named aver-

age stroke density (ASD), as the averaging is done over 4

seconds frame. The ASD is robust to tempo octave errors

and is representative of surface tempo [13]. The mean and

std. deviation of strokes per second, as obtained in the en-

tire dataset, are 8.6 and 3.8, respectively. The variance of

ASD depicts the tempo diversity in the dataset. Figure 4(c)

shows the evolution of ASD over time.

2.2 Spectral Feature

From Section 1.1.1, it is clear that each of the Carnatic per-

cussion instruments has distinct spectral properties, and the

spectral features can serve as potential features for instru-
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Figure 3. Self-Similarity Matrices on Different Features

ment classification. In this work, we need to localize the

segments as coming from one of the percussion. To get the

complete spectral aspects of a particular instrument, the

spectrum must be computed over a window with almost all

kinds of strokes. Thus we computed a narrow band spec-

trogram (NBS) with a window size of 4s and a hop size

of 0.5s. From Section 2.1, we know that the mean ASD

is eight strokes per second. Thus in a four-second frame,

we can expect at least one resonant stroke. We can clearly

distinguish mridangam and ghatam segments from NBS in

Figure 4(a).

2.3 Spectral and Rhythm Posteriors

The high-dimensional NBS and ACF rhythmogram repre-

sent the spectral and rhythmic-tempo homogeneity within

the segment and the changes between the adjacent seg-

ments. This allows us to use Gaussian mixture models

(GMM) to model the instrument’s spectral and temporal

homogeneity. The NBS and ACF vectors are converted to

spectral and rhythm posteriors (NBS-P, ACF-P), represent-

ing class conditional probabilities.

We use two mixtures GMM to represent NBS feature

vectors with the intuition that each instrument property is

modeled by one mixture. Interestingly we find that each

mixture corresponds to a different timbre. We also tried a

third mixture to represent the portion where both the in-

struments play together (FA, MO, KO). This failed due

to the volume dominance of mridangam and gave false

alarms. The posterior feature computed on NBS is de-

picted in Figure 4(d). The posteriors from the rhythmo-

gram are computed with five mixture components, each

representing a particular speed. The GMM is fit only on

the NBS and ACF vectors from a particular concert. The

number of Gaussians is determined by the different speeds

and nad. e-s expected in a concert.

3. TANI SEGMENTATION AND LABELING

Since tani may contain only mridangam or multiple in-

struments, we first need to detect if a particular tani au-

dio has multiple instrument or not. The abhiprāya region

segmentation task is slightly different in both cases. Lo-

cating the abhiprāya boundaries is based on detecting a

change in the instrument itself (in case of multiple instru-

ment) and the local rhythmic structure of segments at the

highest timescale (in case of solo mridangam). Figure 2

shows the overall steps involved in the task. Each of the

segmentation and labeling steps is described here.

3.1 Multiple Instrument Detection

From Sections 1.1.1, we know that different Carnatic per-

cussion instruments differ in their sonic and timbral aspects

Figure 4. Eg: Multiple Instrument Tani: Segment labels

on top (a) NBS feature (b) ACF Rhythmogram with NF-

ACF+P overlay-ed (c) ASD evolution over time (d) Poste-

riors computed on NBS (e) NF-NBS-P (red) obtained from

(15s× 15s) kernel, NF-NBS (blue) from (3s× 3s) kernel

(f) NF-NBS-P replaced with NF-ACF+P in last 2.5 min in-

dicating FA, MO, KO boundaries, and ground truth

and occupy different frequency bins in the spectrum. We

use the NBS extracted in Section 2.2 from all the available

audios. We built a Gaussian Mixture Model (GMM) on

NBS with five mixtures, one for each class – mridangam,

ghatam, khanjira, mrid-ghat, mrid-khan. If the ratio of the

number of frames from any two classes to the total num-

ber of frames in a concert is greater than 20%, then that

concert is classified as having multiple instruments. Oth-

erwise, we verify if most frames are from mridangam (at

least 80%) and classify it as single instrument mridangam.

We performed GMM classification on MFCC features as

well. Both methods gave 100% classification accuracy in

detecting multiple percussion instruments in a recording.

3.2 Novelty Function Computation

The aim is to get an NF whose peaks indicate the desired

segment boundaries. Given the ACF, ACF-P, NBS, and

NBS-P feature vectors, the Self-Similarity Matrices (SSM)

are computed on each of them using L2 distance mea-

sure [10]. The SSM obtained on the ACF, ACF-P, NBS,

and NBS-P are displayed in Figure 3. The homogeneous

segments of length L frames possibly appear as (L × L)
blocks. The section change points with high contrast in

SSM are captured by convolving a checker-board kernel

along the diagonal of SSM [15]. The 1D output obtained

is called a novelty function (NF). The peaks of the NF in-

dicate the segment boundary instances having high con-

trast in SSM. The obtained NFs are (1) the average of NF-

ACF, NF-ACF-P (Figure 4(b), Figure 5(a)), (2) NF-NBS,

and NF-NBS-P (Figure 4(e).

NFs are computed by convolving (15s × 15s) ker-

nel with SSM of different features. Peak picking is per-

formed by maintaining a minimum distance between ad-

jacent peaks as 5s. We experimented with smaller ker-

nel sizes such as (3s × 3s), and (5s × 5s), resulting in

noisy NFs. This decreased the precision due to a lot of

false positives. Though much larger kernel sizes, such as

(50s×50s), made the NFs smoother, they compromised in
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Figure 5. Eg: Solo Mridangam Tani, (a) ACF Rhyth-

mogram with NF-ACF+P overlay-ed along with detected

peaks (b) First Dominant peak along the Lag axis FDL

(yellow), and its 1st diff. FDL-1D highlighting the dis-

continuities (c) FDL computed on the Gaussian smoothed

ACF (yellow) and its 1st diff. FDL-1D (white) (d) NF-

FDL-ACF (black) is a point-wise product of NF-ACF+P

(red) and FDL-1D (blue) (e) NF-FDL-ACF replaced with

NF-ACF+P in last 2.5 min indicating FA, MO, KO bound-

aries along with ground truth, and the segment labels below

resolving the closer boundaries. All the features and NFs

in this work are computed at the resolution of 0.5 seconds.

3.3 Case1: Multiple Instrument Tani

In the case of multiple instrument tani, each round of indi-

vidual percussion elaboration is considered one abhiprāya

(one thematic development). Thus instrument change

point detection is necessary and sufficient for getting the

abhiprāya boundaries. Since the instrument change points

are visually evident from the NBS, we used NF-NBS and

NF-NBS-P to get the boundaries. A NF obtained from a

smaller kernel enhances the rapid instrument change in the

KP section, useful in localizing the KP section but creat-

ing false positives during segmentation. The first portion

of the KP section is fairly large. A larger kernel empha-

sizes only the start instance of KP by suppressing the rapid

instrument change. Thus we used NF obtained from a

larger (15s×15s) kernel for the segmentation task and the

smaller (3s× 3s) kernel NF for localizing the KP section.

The FA, MO, and KO are always played toward the end

of the tani and the FA has a higher ASD. As we see in the

Figure 4(e), NF-NBS and NF-NBS-P do not capture these

change points. Thus we replace the last two and a half min-

utes of NF-NBS-P with the average of NF-ACF and NF-

ACF-P (NF-ACF+P). This gives the final NF (’red’ curve

in Figure 4(g)) in the case of multiple instrument tani. We

empirically choose the last 2.5 mins as the FA, MO, KO

are always found in the last 2.5 mins in the entire dataset.

3.4 Case2: Solo Mridangam Tani

Computing the AB boundaries on solo mridangam tani is

a tough task, as the AB change needs to be detected based

on the rhythm (nad. e) change. Nad. e change detection is

pivotal in getting the AB boundaries, especially in the case

of solo mridangam tani. Relying only on the raw rhyth-

mogram features (NF-ACF+P) creates false alarms due to

multiple tempo changes and irregularities within a single

AB segment. This necessitates the computation of a ro-

bust function to tempo octave changes but also captures the

non-octave tempo changes that indicate the nad. e changes.

We initially set to track the first peak along the lag axis

of the rhythmogram over time, and the change in the peak

lag apart from doubling and halving is expected to indi-

cate the nad. e change. But this is also found to be noisy

(’yellow’ curve in Figure 5(b)). Thus, we perform hori-

zontal Gaussian smoothing on the rhythmogram to mask

the irregularities, then pick the first dominant lag peak

(FDL). This fetched a smoother curve (’yellow’ curve in

Figure 5(c)) having discontinuities around the nad. e change

with less tempo octave errors. The peaks on the first

difference of this curve (FDL-1D) gave fairly good nad. e

change estimates, along with a few false positives. We

can observe that the peaks of both NF-ACF+P and FDL-

1D (Figure 5(d)-E1) coincide around the nad. e change in-

stances but not elsewhere. Thus we perform "AND" oper-

ation by multiplying NF-ACF+P and FDL-1D to get a NF

which is an indicator of nad. e change. We can observe that

the false positives are considerably reduced. Again we can

see that towards the last FA-MO-KO portion, this NF is

not indicating FA-MO-KO boundaries. Thus, we replace

the last two and a half minutes of NF-FDL-ACF with NF-

ACF+P, similar to Case1. This gives the final NF in the

case of solo mridangam tani (’black’ curve in Figure 5(e)).

3.5 Section Classification and Labeling

Given the hypothesized segment boundaries, the task is to

classify each segment with appropriate labels. Each sec-

tion, AB, KP, FA, MO, and KO, has unique structural, po-

sitional, and duration characteristics common across the

concerts. We use the characteristic musical cues to classify

and label the segments. For the multiple instrument tani, a

NF obtained from a smaller kernel (3s×3s) gives multiple

peaks in the KP portion. The hypothesized segment hav-

ing multiple peaks is labeled as KP [Figure 4(e)(E-2)]. The

segments before the KP are classified broadly as AB. We

compute the mean of ASD in each segment. As the ASD is

high during FA-MO, the segment after KP having the high-

est mean-ASD is labeled FA [Figure 4(c)(E-1)], followed

by KO at last. Labeling of FA, MO, and KO is the same for

solo mridangam concerts as well. Korapu is not present if

only mridangam is present. All the segments before FA are

broadly labeled as AB for solo mridangam concerts. Thus

the algorithm with a set of rules based on the structure of

tani and the domain knowledge performs classification and

labeling. Implementation, annotations, and dataset details

are shared for research purposes 1 .

4. ANALYSIS OF RESULTS AND DISCUSSION

The tani structural segmentation task is approached as a

boundary detection task, where the presence or absence of

1 https://bit.ly/3XIJfMa
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Case Section Precision Recall F1-Score

Multiple

Percussion

AB 0.92 0.99 0.96

KP-FA-MO-KO 0.82 0.89 0.86

Overall 0.87 0.94 0.91±0.03

Single

Percussion

AB 0.7 0.82 0.74

FA-MO-KO 0.82 0.86 0.83

Overall 0.75 0.84 0.79±0.05

Table 3. Segmentation Results

a boundary is examined in uniformly spaced feature frames

of 0.5 seconds. Unlike stroke onset detection, the task is

addressed at a larger time scale and thus has a tolerance

duration in "seconds" rather than milliseconds [27, 47]. A

true-positive detection is one where the prediction bound-

ary falls within ±3 seconds of the ground truth boundary,

while a false-positive detection is one where it does not.

Precision, recall, and F1-scores are used for evaluation.

Evaluation is performed on the entire dataset, as the pro-

posed method is unsupervised, and no model training is

done.

The segmentation evaluation scores for each case and

individual sections are tabulated in Table 3. The recall is

good in all cases, indicating that the system successfully

detects the desired boundaries considerably. We can ob-

serve that the precision is consistently less than recall, in-

dicating false positives. The change in local rhythm struc-

ture, which may be both gradual and abrupt, causes peaks

in the NFs. The gradual change in rhythm structure can be

seen often in the AB section as it is extempore.

In Case 1, the AB boundaries are identical to the in-

strument switching instances, and the NF-NBS/NF-NBS-

P captured it well with a 0.96 F1-score. The KP-FA-MO-

KO section performance is slightly lower, as the rapid in-

strument switching caused false positives. The end of the

KP section is not always evident as the cycle duration re-

duces to one beat. A small SV pattern may also exist after

KP while moving towards FA, making boundary detection

challenging. Since MO is played along with or immedi-

ately follows the FA, the FA-MO boundary is often missed,

reducing recall.

In Case 2, the AB boundaries are not straightforward.

The local variations, tempo doubling and halving cause

false positives when the NF-ACF and NF-ACF-P are used.

These local variations also cause the first dominant lag

on the ACF to be noisy. The horizontal averaging of the

rhythmogram aided in noise-free first dominant lag tracing

and considerably reduced false positives, but still, the false

alarms persisted. The nad. e changes are also very gradual

in many cases, which are not evident with tempo-related

ACF analysis. For example, while transiting from 6 to 5

strokes per beat, the change is hardly noticeable when the

metric tempo is fast. A few of the AB boundaries are also

missed during smoothing. The performance on the FA-

MO-KO is similar to Case:1, as the NF-ACF+P is used in

the last 2.5 mins for both cases. Case 2 has more variance

in F1-Score than Case 1. The average F1-score for both

cases combined is 0.83.

We also experimented with ±5s and ±1s tolerance win-

dows. The overall recall increased by 0.2 with a marginal

increment in precision for the ±5s case. The ±1s case re-

ported a drop of precision and recall by 0.4 and 0.3, respec-

tively. This is evident as 1s corresponds to only two feature

frames in this work, and many boundaries are missed.

Section classification performance is evaluated by con-

sidering the ground truth markings. We quantify the per-

formance of calculating the ratio of correctly classified

frames to the total number of frames in a tani. The

weighted average of correctly classified frames in the en-

tire dataset considering the lengths of each tani is 92%.

That is, given 10m of segmented tani, around 9m-15s of

the frames are correctly labeled as AB, KP, FA, MO, KO.

5. CONCLUSIONS

This work has addressed an unexplored problem, structural

segmentation, and labeling of tani audios. We motivate the

problem and present different facets and challenges in the

task. From the experiments performed, it is clear that in-

dividual features alone are inadequate for segmentation. A

culture-specific approach is clearly required, both in fea-

ture choice and modeling. Timbre is used when it is re-

quired to detect if multiple instruments are present in the

tani, and MFCC features were found to be adequate. On

the other hand, detecting AB sections required analysis of

both timbre and rhythmogram to detect boundaries. Iden-

tifying AB sections when two percussion instruments are

present is quite easy. In contrast, determining AB sec-

tions in a solo percussion instrument is difficult as nad. e

changes/speed changes are difficult to determine. The hope

is that such a task will aid in including additional meta-data

w.r.t a concert.

The major contributions of this work are as follows: (i)

curating a diverse dataset of tani recordings of around 12

hours having section boundary information along with pri-

mary section labels, (ii) evaluating the existing MIR tech-

niques with culture-specific adaptation for a musicologi-

cally important task, segmentation and labeling of tani,

(iii) formulating average stroke density (ASD) feature (a

representative of surface tempo), which is robust to tempo

octave errors, (iv) formulating the class-conditional prob-

ability features from the rhythmogram, and spectral fea-

tures, and (v) exploring the combination of different NFs

obtained from different features to achieve the task. Fi-

nally, this work provides an example of adapting available

MIR methods to genre-specific problems by performing

appropriate feature engineering.
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ABSTRACT

Deep neural network models have become the dominant

approach to a large variety of tasks within music informa-

tion retrieval (MIR). These models generally require large

amounts of (annotated) training data to achieve high ac-

curacy. Because not all applications in MIR have suffi-

cient quantities of training data, it is becoming increasingly

common to transfer models across domains. This approach

allows representations derived for one task to be applied to

another, and can result in high accuracy with less strin-

gent training data requirements for the downstream task.

However, the properties of pre-trained audio embeddings

are not fully understood. Specifically, and unlike tradi-

tionally engineered features, the representations extracted

from pre-trained deep networks may embed and propagate

biases from the model’s training regime.

This work investigates the phenomenon of bias prop-

agation in the context of pre-trained audio representations

for the task of instrument recognition. We first demonstrate

that three different pre-trained representations (VGGish,

OpenL3, and YAMNet) exhibit comparable performance

when constrained to a single dataset, but differ in their abil-

ity to generalize across datasets (OpenMIC and IRMAS).

We then investigate dataset identity and genre distribution

as potential sources of bias. Finally, we propose and evalu-

ate post-processing countermeasures to mitigate the effects

of bias, and improve generalization across datasets.

1. INTRODUCTION

Transfer learning generally refers to the concept of adapt-

ing a model for one task to solve another task. Often,

this is achieved by extracting the internal representation

(an embedding) of input data from a pre-trained neural net-

work, and providing it as input features to some (often sim-

pler) downstream model for the target task. While this ap-

proach is increasingly common and effective, pre-trained

embedding models may encode and propagate implicit bi-

ases which can have detrimental and disparate population-

© Changhong Wang, Gaël Richard, and Brian McFee. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: Changhong Wang, Gaël Richard, and Brian

McFee, “Transfer Learning and Bias Correction with Pre-trained Audio

Embeddings”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

dependent effects. Biases have caught wide attention from

research fields such as natural language processing (NLP)

[1–3], cognitive science [4], and computer vision [5], while

in music information retrieval (MIR), bias of pre-trained

audio embeddings, is under-explored.

In this paper, we identify and address the bias of dif-

ferent pre-trained audio embeddings for transfer learning

on the task of instrument recognition. We summarize the

contributions as following. (1) We study the within- and

cross-domain performance of three pre-trained audio em-

beddings (VGGish, OpenL3, YAMNet) on two instrument

datasets (IRMAS and OpenMIC-2018). (2) We demon-

strate that this approach can propagate bias by produc-

ing classifiers which are sensitive to the source domain

(dataset). (3) Based on the performance variation in cross-

domain generalization, we investigate dataset identity and

genre distribution as potential sources of bias. (4) We

propose a post-processing countermeasure to mitigate un-

wanted bias in the representation. We experiment differ-

ent bias correction strategies, and analyze the robustness

of each pre-trained audio embedding. The proposed strate-

gies make use of relatively little additional information,

and generally produce a modest improvement to cross-

domain accuracy for the instrument recognition task. Our

code for all experiments is publicly available 1 .

2. RELATED WORK

Pre-trained embeddings are becoming increasingly used in

transfer learning for audio-related tasks. Choi et al. [6] pre-

sented a transfer learning approach for music classification

and regression tasks using the internal activations of a pre-

trained convolutional network as features. The network

was trained on the source task of music tagging, and the

learned representation was then transferred to five target

tasks, including genre classification, vocal/non-vocal clas-

sification, emotion prediction, speech/music classification,

and acoustic event classification. Other well-known au-

dio embedding models include OpenL3 [7], VGGish [8],

and YAMNet 2 . The OpenL3 is a 512-dimensional em-

bedding model that results from self-supervised training

of the look-listen-learn (L3)-Net for audiovisual correla-

tions. VGGish (128-dimensional) and YAMNet (1024-

1 https://github.com/changhongw/audio-embedding-bias
2 https://github.com/tensorflow/models/tree/master/research/audioset/

yamnet
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dimensional) are both embeddings derived from classifica-

tion models trained on AudioSet [8]. Although these em-

bedding models differ in the architecture of the network,

source data, and training regime, they have each demon-

strated good and comparable generalization performance

for a variety of tasks.

Despite that embedding models are normally trained on

large amounts of data, it inevitably encodes biases due to

the limitation of collected data. This problem can be espe-

cially prevalent in models trained via unsupervised or self-

supervised strategies, where there may be no incentive for

the model to learn invariances or equivalencies in the data

beyond what is required for by the training objective. As

a result, pre-trained embeddings may propagate unwanted

biases to downstream tasks. Different types of biases and

bias correction methods are explored in the NLP literature,

such as gender [9], race and religion [10]. A general ap-

proach for addressing gender bias in word embedding was

proposed by Bolukbasi et al., following three steps: iden-

tify bias direction, remove bias by projecting out the bias

direction, and equalize pairs [9].

Besides field-specific biases, dataset bias is a general

type of bias that could happen in any application domain.

Tommasi et al. [5] investigated dataset bias in visual recog-

nition with a cross-dataset testbed comprising 12 different

datasets. Ganin et al. [11] proposed adversarial training

for domain adaptation to reduce sensitivity to data drawn

from similar but different distributions. When detecting

depression, a mental health disorder, from speech, Bailey

and Plumbley [12] found that biases in dataset could result

in skewed classification performance.

The approach we take in this paper is most similar to

those of Bolukbasi et al. [9] and Ganin et al. [11]. While

Bolukbasi et al.’s method requires numerous paired exam-

ples to identify a subspace which encodes undesirable bias,

our proposed method works at the level of collection statis-

tics rather than individual correspondence, and may be eas-

ier to apply for audio applications. Similarly, Ganin et al.’s

method requires adversarial training of the initial model to

produce a representation which cannot discriminate well

between subsets of data that should be treated equivalently.

Our approach is implemented as a post-processing step,

and can be applied to any pre-trained model. While we

focus in this work on dataset identity as a concrete source

of bias, we emphasize that the method should be generally

applicable to other scenarios in which audio representa-

tions exhibit unwanted sensitivity to identifiable attributes.

3. METHODS

We consider embedding bias from the perspective of do-

main adaptation. Unlike transfer learning, which relates to

the output of the model, domain adaptation refers to the be-

havior of a model (classifier, regressor, etc.) under changes

to the distribution of input data. This is closely related to

representation bias, which is one among many forms of

bias known to impact machine learning systems as enu-

merated by Mehrabi et al. [13]. If a classifier is trained on

a sample of (labeled) data which is not representative of

the target population, then we expect the model to gener-

alize poorly. The degree to which a pre-trained audio em-

bedding is sensitive to differences between populations of

interest—e.g., between a dataset annotated for instrumen-

tation, compared to other collections of music—is there-

fore of principal interest [14].

3.1 Domain sensitivity

We investigate the domain sensitivity of three pre-trained

embeddings (OpenL3, VGGish, and YAMNet) in transfer

learning for the downstream task of instrument recogni-

tion. Each embedding is evaluated in both within-domain

and cross-domain setting. For within-domain evaluation,

we train and test the embedding in a single dataset; while

for cross-domain case, we investigate the domain adapta-

tion capability of the embedding models across datasets,

i.e. training and testing the downstream classifier using

data from different datasets. As a study case, we consider

two well-known datasets for instrument recognition, i.e.

IRMAS [15] and OpenMIC-2018 [16] (see Section 4.1 for

dataset details).

Fig. 1 (a) and (d) visualize the within-domain (IRMAS–

IRMAS and OpenMIC–OpenMIC) recognition results in

terms of area under the receiver operating characteristic

curve (ROC-AUC) using the three embeddings above for

each of the ten instrument classes. 3 All three embeddings

achieve comparable results, although there is a loose per-

formance ranking of YAMNet > OpenL3 > VGGish for

most instrument classes.

When generalizing across domains, performance degra-

dation happens for both cross-dataset pairs, as shown in

Fig. 1 (b) IRMAS–OpenMIC and (c) OpenMIC–IRMAS.

The performance ranking of the three embedding does

not persist either. Comparing the results when testing on

OpenMIC, i.e. (b) and (d), only voice, piano, and guitar re-

tain close results. For the remaining instrument classes, all

three embeddings exhibit diminished performance. Simi-

lar trends take place in the comparison between (a) and (c)

where the test set is IRMAS.

Surprisingly, a dramatic performance drop happens for

the organ class. Examining this class in both datasets, we

notice a large distribution difference on genre, as shown

in Fig. 2. Organ in IRMAS is confined to pop/rock and

jazz/blue genres, suggesting that examples mostly contain

electric organ sounds (e.g. Hammond B3). The distribu-

tion of organ in OpenMIC is more balanced, but domi-

nated by classical recordings which are more likely to con-

tain pipe organ than electric. These differences aside, we

generally expect the instrument labels to refer to similar

sounds across domains.

3.2 Quantifying domain bias

To quantify the effect of domain bias, we first obtain the

domain separation direction vector w ∈ R
D by fitting a

linear discriminant analysis (LDA) model to discriminate

3 We report AUC because it is invariant to overall class proportions and
decision thresholds—which vary between datasets—and thereby allows
us to focus on the separating directions identified for each class.
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Figure 1. Within-domain (a, d) and cross-domain (b, c)

performance of pre-trained audio embeddings (VGGish,

OpenL3, and YAMNet) on instrument recognition in the

IRMAS and OpenMIC datasets. ROC-AUC refers to area

under the receiver operating characteristic curve.

between the OpenMIC and IRMAS datasets in each rep-

resentation (VGGish, OpenL3, and YAMNet). vk ∈ R
D

is the instrument separation direction vector, i.e. the coef-

ficient vector of the trained downstream classifier, for the

k-th instrument. k = 1, 2, ...,K is the instrument class

index and D is the dimension of pre-trained embedding.

We measure the correlation between the domain separation

and downstream classification using the cosine similarity

between w and vk:

ck(w,v) =
⟨w,vk⟩

∥w∥ × ∥vk∥
(1)

Large (in magnitude) ck indicates that the instrument clas-

sifier is sensitive to dataset identity.

Fig. 3 top shows the absolute correlation value for each

instrument class, when the classifier is trained on the train-

ing set of (a) IRMAS and (b) OpenMIC dataset, respec-

tively. The mean correlation value over all instruments for

each embedding is displayed in the legend. It clearly shows

that YAMNet is the least sensitive to dataset bias; OpenL3

is also relatively stable while VGGish is the most sensi-

tive to dataset bias. The relatively large correlation value

for the organ class matches our analysis in Section 3.1

that genre distribution might be also a potential source of

bias (see Fig. 2). Although the sensitivity of different em-

beddings to dataset bias are different, bias cannot gener-

ally be removed by simply using different pre-trained em-

beddings. As we will demonstrate, explicitly correcting

for dataset bias can potentially improve domain adaptation

performance for each choice of embedding.

3.3 Bias correction

To mitigate domain bias, we propose a post-processing

countermeasure on the pre-trained embeddings which does

not interact with the training process of embeddings. Im-

portantly, the proposed method requires only samples of

data which should behave similarly for the downstream

task, but it does not require these samples to be labeled

for the downstream task.

Continuing our instrument classification example, given

that both datasets contain examples from each of the in-

strument categories of interest, we should expect that a

well-formed linear classifier should behave independently

of the domain from which data is drawn. Concretely, this

means that the separating direction vk should be orthogo-

nal to any direction w which separates the two datasets in

the embedding space, resulting in ck(w,vk) = 0. While

Ganin et al. [11] use this intuition to adversarially train

the representation, this approach is impractical when using

pre-trained embeddings which are presumed to be fixed

in advance. Instead, we approach this problem by post-

processing the embedding to project out the direction w

which separates domains that should be indistinguishable

for the downstream task.

Concretely, if w ∈ R
D is the domain-separating di-

rection (normalized to unit length, ∥w∥ = 1), we project

this dimension out of the space by applying the following

transformation to input data x ∈ R
D:

xP :=
(

I−ww
T
)

x (2)

where I is the D×D identity matrix. The new embedding

xP is the input to the classifier.

3.4 Multiple bias correction

While the above strategy is defined for binary bias correc-

tion, e.g. where there are two domains to be reconciled,

it does generalize to more complex settings. In the instru-

ment recognition example, we may also consider differ-

ences between genres across datasets as a source of bias.

Even if two datasets both consist of examples in the same

genre categories, this does not necessarily mean that the

genre terms are used consistently between datasets.

To consider the influence of genre distribution, we pro-

pose also multiple bias correction, where we extract the

dataset separation direction in the genre subspace. That

is, for each pair of matched genre labels, e.g. pop/rock

in IRMAS and pop/rock in OpenMIC, we fit a binary

LDA to separate them. Then for each genre category

g = 1, 2, . . . G (for G ≥ 1 genres), we obtain a dataset

separation direction vector wg which depends only on ex-

amples from genre g. Collecting all wg into a matrix

W ∈ R
D×G defines a basis for a subspace of the embed-

ding of dimension at most G. Note that W may not be an

orthogonal basis, as different wg may correlate with each

other.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

66



cello
clarinet

flute
guitar

organ
piano

saxophone
trumpet

violin voice
0

100

200

300
nu

m
be

r o
f e

xa
m

pl
es (a) train = irmas

cello
clarinet

flute
guitar

organ
piano

saxophone
trumpet

violin voice

(b) train = openmic

pop/rock jazz/blue classical country/folk

Figure 2. Number of genre examples for each instrument in the training set of IRMAS and OpenMIC datasets. We align

the genre labels according to those in the IRMAS dataset: pop/rock, jazz/blue, classical, and country/folk.

We therefore derive an orthogonal basis by factorizing

W via the reduced singular vector decomposition (SVD):

W = UΣV T (3)

where Σ is a G×G diagonal matrix of singular values, and

U ∈ R
D×G and V ∈ R

D×G are the left- and right-singular

vectors. We use the right singular vectors as an orthogonal

basis for the domain-separating subspace, resulting in the

following generalization of Eq. (2):

xP :=
(

I− V V T
)

x (4)

In applying Eq. (4), it is important to verify that W is

full rank (G), e.g. by verifying that all singular values Σ
are sufficiently large, as Eq. (4) would otherwise remove a

larger than necessary subspace from the representation. In

all cases studied in this work, W was full rank.

3.5 Nonlinear bias correction

The above methods are based on two assumptions: 1) that

the downstream model will be linear, and 2) that the do-

mains are linearly separable. These assumptions may be

restrictive in practice, so we generalize the method above

by transforming the embeddings to a higher dimensional

space using kernel methods. While both logistic regres-

sion and linear discriminant analysis support kernel gener-

alizations [17], the subspace projection method described

above is less directly adaptable. 4

Instead of using implicit kernel representations, we will

use approximate, i.e. explicit kernel approximation. That

is, instead of replacing inner products ⟨w,v⟩ by nonlinear

kernel function calculations k(w,v), we apply an explicit

nonlinear transformation f : RD → R
D′

such that

⟨f(w), f(v)⟩ ≈ k(w,v) (5)

We then apply the previously defined bias correction meth-

ods on the transformed data f(w), which results in project-

ing out the dataset-separating direction(s) after applying f

but prior to fitting the downstream (instrument) classifiers.

There are several choices to be made here when select-

ing the kernel k and the approximating map f . In this

work, we use a standard radial basis function (Gaussian)

4 One could achieve a similar effect by adding a linear constraint
⟨w,v⟩ = 0 to the logistic regression problem, but this would require
a custom solver and limit the general utility of the approach.

kernel and the “random Fourier features” approximation

method [18]. However, we note that other choices (e.g., the

Nyström method) are readily available in scikit-learn [19],

and may work just as well.

In total, we have four bias-correction strategies: lin-

ear bias correction (LDA), linear multiple bias correction

(mLDA), nonlinear bias correction in the kernelized em-

bedding space (KLDA), nonlinear multiple bias correction

in the kernelized embedding space (mKLDA).

4. EXPERIMENTS

4.1 Datasets and experimental details

The datasets we use are two well-known datasets with

instrument annotations, IRMAS [15] and OpenMIC-

2018 [16]. The former comprises 20,000 examples of 10-

second excerpts, partially labeled for the presence or ab-

sence of 20 instrument classes; and the latter contains 6705

audio files of 3-second clips, of which only the predomi-

nant instrument were annotated. Since there are 20 instru-

ment classes in the OpenMIC dataset and 11 in the IR-

MAS, we focus only on the 10 mutual classes: cello, clar-

inet, flute, guitar, organ, piano, saxophone, trumpet, violin,

and voice. For the sake of consistency, electric guitar and

acoustic guitar in the IRMAS dataset have been merged

into a single class: guitar.

To investigate the impact of genre, we also align the

genres in the two datasets. Each audio sample in the

IRMAS dataset is labeled with one of the five genres:

pop/rock, jazz/blue, classical, country/folk, and latin/soul;

while samples in the OpenMIC datase has multiple la-

bels from around 130 genres. We consider four gen-

res (pop/rock, jazz/blue, classical, country/folk) as the

latin/soul genre has few examples in both datasets. The

genre labels of the OpenMIC dataset are merged into those

of IRMAS with name intersections. For example, we

merge the genres—Rock, Loud-Rock, Noise-Rock, Psych-

Rock, et. al.—in OpenMIC into one genre label: pop/rock.

Multiple genre labels in the OpenMIC dataset are reduced

to a single label by the first activation from the four con-

sidered genres or the first of the original labels otherwise.

With the embedding features extracted using pre-

trained VGGish, OpenL3, and YAMNet models, we train

a logistic regression classifier for each instrument class us-

ing IRMAS and OpenMIC training data. The input to the
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Figure 3. Correlation between domain separation and instrument classification for each instrument in the IRMAS and

OpenMIC training set. (Top): correlation in the original embedding space with domain separation direction extracted using

only dataset identity; (middle): correlation in the original embedding space with domain separation direction extracted

class-wise; (bottom): same as middle but in the kernelized embedding space. Mean value is given in parentheses.

classifier is the mean frame embedding of each audio ex-

ample. For OpenMIC dataset, we follow the train-test split

in [16], with a ratio of 3:1. For fair comparisons, we create

a new partition with the same train-test ratio on IRMAS

dataset which takes into account of the class-balance and

non-track overlap between training and test sets. To focus

only on distribution shift, we use the same number of sam-

ples per class for both datasets during training, following

the lower one.

For the nonlinear method, we first standardize the em-

bedding features using z-score normalization with the

training-set statistics. Then we approximate the kernels for

the embeddings with a fixed dimension D′ of four times

the dimension (D) of the original embeddings. Finally, we

tune the hyper-parameter for the logistic regression classi-

fier, i.e. the inverse of regularization strength C, by cross-

validation with a grid of 10−8:1:4.

4.2 Results

Table. 1 lists the instrument classification performance of

the debiasing methods discussed in Section 3 in terms

of mean ROC-AUC over the 10 instrument classes. To

compare the performance of using only dataset identity

as additional information and that uses also class-labels,

we present two sets of results: global bias correction and

class-wise bias correction. We first present some obser-

vations that are common to both cases and then discuss

the comparison. For the original embeddings (in italic),

large performance drop shows for all cross-domain cases.

OpenL3 is most sensitive to distribution shift, with a drop

of 12.7% and 7% when testing on IRMAS and OpenMIC

dataset, respectively. Yet, from the cosine similarity values

in Fig. 3 top and middle, OpenL3 does not embed the most

domain bias. This may indicate that for the task at hand,

other more significant distribution shifts that OpenL3 is

sensitive to may exist. For all embeddings, projecting

to the higher dimensional space (debiasing methods with

“K”) almost never substantially hurts the within-domain

performance and sometimes improves the performance.

Interestingly, when comparing linear debiasing (“-

LDA” and “-mLDA”) with nonlinear debiasing (“-KLDA”

and “-mKLDA”) for all embeddings, we find that kernel-

ization does not help for VGGish while YAMNet only

works in the kernelized embedding space. This explains

the relative increase of cosine similarity values for YAM-

Net after kernelization as compared to the other two em-

beddings (see Fig. 3 bottom). Both linear and nonlinear

debiasing exhibit performance improvement for OpenL3.

In terms of global bias correction, almost no improvement

for VGGish except LDA for OpenMIC->IRMAS; OpenL3

yields some boost for both cross-domain cases. YAMNet

improves the results only for OpenMIC->IRMAS. It is ex-

pected that the class-wise bias correction achieves better

performance as we extract the domain bias for the target

instrument exactly. This is also verified by the more no-

ticeable cosine similarity values in the middle subfigure as

compared to the top of Fig. 3. VGGish and OpenL3 yields

slight improvement for most linear debiasing. All nonlin-

ear debiasing improves the results of OpenL3 for IRMAS-

>OpenMIC and YAMNet for OpenMIC->IRMAS. Al-

though the overall improvement is not significant, we ob-

serve large improvements for some instrument classes.
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Global bias correction Class-wise bias correction
Debiasing method Within-domain Cross-domain Within-domain Cross-domain

IR-IR OP-OP OP-IR IR-OP IR-IR OP-OP OP-IR IR-OP

VGGish 91.6 87.95 82.82 83.81 91.60 87.95 82.82 83.81
VGGish-LDA 91.60 87.99 82.99 (+0.18) 83.82 (0.0) 91.60 87.94 82.93 (+0.12) 83.85 (+0.03)
VGGish-mLDA 91.45 87.98 82.70 (-0.11) 83.30 (-0.51) 91.56 87.87 83.13 (+0.31) 83.66 (-0.16)
VGGish-K 92.24 88.08 82.57 (-0.25) 83.67 (-0.14) 92.24 88.08 82.57 (-0.25) 83.67 (-0.14)
VGGish-KLDA 92.24 88.08 82.58 (-0.24) 83.67 (-0.14) 92.22 88.07 82.70 (-0.12) 83.78 (-0.04)
VGGish-mKLDA 92.22 88.15 82.42 (-0.39) 83.70 (-0.11) 92.26 88.08 82.70 (-0.11) 83.76 (-0.05)

OpenL3 93.26 87.16 80.56 80.13 93.26 87.16 80.56 80.13
OpenL3-LDA 93.26 87.16 80.56 (+0.01) 80.15 (+0.02) 93.24 87.18 80.59 (+0.04) 80.38 (+0.26)
OpenL3-mLDA 93.11 87.16 80.67 (+0.12) 79.93 (-0.20) 93.09 87.23 80.57 (+0.02) 80.62 (+0.50)
OpenL3-K 93.89 87.91 79.46 (-1.09) 81.23 (+1.11) 93.89 87.91 79.46 (-1.09) 81.23 (+1.11)
OpenL3-KLDA 93.89 87.84 79.03 (-1.53) 81.23 (+1.11) 93.96 87.91 79.99 (-0.57) 81.79 (+1.66)
OpenL3-mKLDA 93.88 87.88 79.56 (-1.00) 81.20 (+1.07) 94.04 87.83 79.97 (-0.59) 81.32 (+1.19)

YAMNet 94.65 89.74 85.01 85.47 94.65 89.74 85.01 85.47
YAMNet-LDA 94.65 89.74 85.01 (0.0) 85.47 (0.0) 94.65 89.74 85.02 (0.0) 85.47 (0.0)
YAMNet-mLDA 94.65 89.74 85.01 (0.0) 85.47 (0.0) 94.65 89.74 85.02 (0.0) 85.46 (0.0)
YAMNet-K 93.83 89.24 85.87 (+0.86) 84.56 (-0.91) 93.83 89.24 85.87 (+0.86) 84.56 (-0.91)
YAMNet-KLDA 93.83 89.23 85.87 (+0.86) 84.56 (-0.91) 93.63 89.24 86.00 (+0.99) 84.76 (-0.70)
YAMNet-mKLDA 93.79 89.19 85.72 (+0.71) 84.43 (-1.04) 93.79 89.34 85.53 (+0.51) 84.60 (-0.87)

Table 1. Mean ROC-AUC (%) of global bias correction and class-wise bias correction on instrument classification in

IRMAS (IR) and OpenMIC (OP) datasets. VGGish, OpenL3, and YAMNet (in italic) refers to the original embedding; the

other cases, i.e. with -LDA, -mLDA, -LDA, and -mKLDA, correspond to linear, linear-multiple, nonlinear, and nonlinear-

multiple debiasing strategies; cases with -K are the kernelized embeddings. Values in parenthesis are the performance boost

(>0.1 are bolded) or degradation as compared to the original embedding (the closest underlined above).

5. DISCUSSION

We notice two important factors for transfer learning with

pre-trained audio embeddings: the training regime of the

embeddings, and the class vocabulary alignment between

the source task and downstream task.

The better generalization performance of YAMNet and

VGGish in a transfer setting may be attributed to their

training regime. YAMNet and VGGish are derived from

supervised training while OpenL3 is from self-supervised

training and more prone to overfitting a domain. As a re-

sult, YAMNet and VGGish have both been incentivized

to learn invariances within specific categories (including

musical instrumentation), while OpenL3 has no such in-

centive as it is only designed to predict audio-visual corre-

spondence. Moreover, YAMNet was specifically trained

for sound classification using a vocabluary that broadly

subsumes that of our downstream task (instrumentation).

This likely contributes to its high performance and cross-

domain stability overall.

The class vocabulary alignment is related to label shift,

an under-explored type of distribution shift in the domain-

adaptation field [20]. The labelling scheme difference be-

tween the two datasets complicates the debiasing as the

IRMAS dataset only contains labels for the predominant

instrument while all active instruments are annotated in the

OpenMIC dataset. Aligning these two datasets is nontrivial

as it involves label shift besides covariate shift. We pro-

pose multiple-bias correction, i.e. debiasing in the genre

subpsace, to deal with this problem. Yet, it does not resolve

the conditional probability shift that happens due to un-

balanced relationships between instrumentation and genre,

e.g. the strong dependence between organ and pop/jazz

in IRMAS, and in this specific case an argument could be

made that the classification task is closer to transfer learn-

ing than domain adaptation.

A notable limitation of the presented experiments is

the small amount of functional data. Although OpenMIC

dataset is relatively large with 14915 samples for training,

only a small portion is actually used in the binary classifi-

cation of each instrument. After equalizing the number of

samples per class in both datasets, there are only 288, 221,

177, 578, 290, 551, 476, 427, 385, and 358 samples for

the 10 instrument classes in the binary classification. Most

classes have number of samples less than the dimension of

OpenL3 (512) and all of them are below that of YAMNet

(1024).

6. CONCLUSION

The method proposed in this work addresses one specific

form of bias that can arise in transfer learning scenarios.

Correctly applying this method requires identifying sub-

sets of data that should be treated equivalently, i.e., be in-

distinguishable under the chosen representation. We stress

that this notion of equivalence ultimately depends on the

choice of the downstream task, and caution should be ex-

ercised when identifying populations to treat as equiva-

lent. For the case study presented here—domain adapta-

tion and instrument recognition—we argue that the down-

stream task ought to be generally independent of the source

domain, though we recognize that this will not always be

true in practice. We therefore urge practitioners to criti-

cally investigate all assumptions of equivalence and inde-

pendence when applying bias correction methods.
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ABSTRACT

The Collaborative Song Dataset (CoSoD) is a corpus of

331 multi-artist collaborations from the 2010–2019 Bill-

board “Hot 100” year-end charts. The corpus is anno-

tated with formal sections, aspects of vocal production (in-

cluding reverberation, layering, panning, and gender of the

performers), and relevant metadata. CoSoD complements

other popular music datasets by focusing exclusively on

musical collaborations between independent acts. In addi-

tion to facilitating the study of song form and vocal pro-

duction, CoSoD allows for the in-depth study of gender

as it relates to various timbral, pitch, and formal parame-

ters in musical collaborations. In this paper, we detail the

contents of the dataset and outline the annotation process.

We also present an experiment using CoSoD that examines

how the use of reverberation, layering, and panning are re-

lated to the gender of the artist. In this experiment, we find

that men’s voices are on average treated with less reverber-

ation and occupy a more narrow position in the stereo mix

than women’s voices.

1. INTRODUCTION

As far back as the 1960s, Billboard charts have featured

collaborations between independent acts. In recent years,

however, the number of songs featuring a collaboration be-

tween artists has skyrocketed [1]. Part of this is due to the

rising popularity of hip-hop in the 1980s, in which col-

laboration between different artists is a fixture. The 1986

version of “Walk This Way” by Aerosmith and Run DMC

is an oft-cited example of such a collaboration. As Rose

notes, the success of a collaboration between a hip-hop

group (Run DMC) and a rock group (Aerosmith) “brought

[hip-hop’s] strategies of intertextuality into the commercial

spotlight” [2, p. 51–52]. The 1990 success of “She Ain’t

Worth It” by Glenn Medeiros ft. Bobby Brown marked the

first time a sung and rapped collaboration reached #1 on
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Billboard’s “Hot 100.” Molanphy notes that during this pe-

riod, multi-artist collaborations crystallized into two differ-

ent frameworks: the “featured bridge rapper,” and the “fea-

tured hook singer” [3]. Subsequently, tracks with one or

more guest artist(s) have become a mainstay on the charts.

By 2021, over a third (39%) of the songs in Billboard’s

“Hot 100” year-end chart credited more than one artist.

Consider for instance “Save Your Tears,” by singers The

Weeknd & Ariana Grande, which occupied second place

on the chart. A solo version of the song originally ap-

peared on The Weeknd’s album After Hours (2020). While

this version achieved commercial success, the remix with

Ariana Grande became a #1 single on the Billboard “Top

100” in May 2021 and became the longest-charting col-

laboration in Billboard “Hot 100” history. In the remix,

Grande performs approximately half of the vocals, trans-

forming the solo song into a dialogue between two charac-

ters. The collaboration between the two artists is responsi-

ble for the popularity of the remix, inviting both Grande’s

and The Weeknd’s fans to stream, buy, and otherwise en-

gage with the song. Several musicological studies have ex-

amined this relationship between collaborative songs and

commercial success [4–6]. Other work has provided in-

depth explorations of the musical characteristics of collab-

orative songs, with a particular focus on hip-hop [7–9].

Given the popularity of multi-artist collaborations, a

more systematic exploration of their musical features is

warranted. In this paper, we introduce the Collaborative

Song Dataset (CoSoD), an annotated dataset that facilitates

the study of various musical features in multi-artist collab-

orations. CoSoD provides metadata and analytical data for

331 multi-artist collaborations appearing on the Billboard

“Hot 100” year-end charts between 2010 and 2019. The

dataset also provides timed annotations on the song’s for-

mal structure, artists’ gender, vocal delivery and pitch, and

vocal production (reverberation, panning, and layering).

As detailed in Section 2, the range of features included in

the dataset makes it more broadly applicable for MIR re-

search tasks. These include structural segmentation, vocal

mixing, automatic music production, and examinations of

gender in popular music. After outlining the contents of

the dataset and the annotation methodology in Section 3,

we present an experiment in Section 4 that examines the

relationship between vocal production parameters and the

gender of the performer in a subset of CoSoD.
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2. RELATED WORK

CoSoD complements the growing list of annotated datasets

that provide information on song structure in various pop-

ular music genres, e.g., [10–17], and is the first dataset to

exclusively contain data on collaborative songs between

independent acts. It can thus be used for training and eval-

uating structural segmentation tasks and for studying the

specific structural characteristics of collaborative songs.

CoSoD also complements existing datasets for multi-track

mixing/analysis [18–23] and vocal analysis [24–26] by

providing analytical annotations on the treatment of the

voice in a mix.

In recent years, several studies have proposed tools and

methods to automate the mixing of multi-track recordings

[27, 28]. Such automatic production methods have various

artistic and creative applications. One framework has been

suggested to remix early jazz recordings, which are pre-

processed using source separation then remixed with auto-

matic production tools [29]. [30] proposes a prototype for

an automatic DJ mixing system allowing for cross-fading

via beat and tempo adjustment between songs. Studies on

automatic mixing can be enhanced by knowledge of com-

mon mixing practices for specific instruments or sound

sources. For instance, one study uses mixing practices that

are consistent between mixing engineers to create a model

that automatically mixes multiple drum tracks [31]. By fo-

cusing on vocals, which are a salient component of the mix

in popular music [32], CoSoD provides a complementary

approach to these studies on automated production. By

providing annotations based on close listening of specific

vocal mixing parameters in the different formal sections of

a song, the dataset allows for the identification of trends in

panning, layering, and use of artificial reverberation as they

are applied to vocals in commercially successful post-2010

popular music. It enables the direct comparison of how

various mixing parameters are applied to individual artists’

voices within and across songs. In addition to facilitating

the modeling of voice mixing, CoSoD also allows musicol-

ogists to ask questions about the way different voice types

and individuals are mixed.

Finally, CoSoD facilitates the study of the relation-

ship between gender and popular music. A number of

previous studies have examined music programming and

streaming services, exploring for instance how listeners

tend to stream male artists more than women and mixed-

gender groups [33]. Watson discusses gender inequality

and low programming of women’s music in country mu-

sic radio [34]. Other work addresses how a listener’s de-

clared gender impacts automatic music recommendation

[35] and musical preferences [36]. Additionally, various

studies have addressed race and gender, along with sexist

and racist discourses and practices, as they impact the mu-

sic industry in general and the Billboard charts in particu-

lar [37–43]. By providing data on musical features, gender,

and the role of these parameters within the formal structure

of a song, CoSoD offers a new and complementary angle

for the study of gender as it directly relates to the musical

content of post-2010 popular collaborations.

3. COLLABORATIVE SONG DATASET (COSOD)

CoSoD 1 consists of metadata and analytical data of a

331-song corpus comprising all multi-artist collaborations

on the Billboard “Hot 100” year-end charts published be-

tween 2010 and 2019. Each song in the dataset is asso-

ciated with two CSV files: one for metadata and one for

analytical data. We assembled the corpus by identifying

every song on the charts that featured collaborations be-

tween two or more artists who usually perform indepen-

dently from one another.

3.1 Annotation of Musical Features

The following analytical data is provided for each song in

the dataset:

1. Index number: 1 to 33

2. Time stamps: In seconds (start of new section)

3. Formal section label: Introduction, Verse, Pre-chorus,

Chorus, Hook, Dance Chorus [44], Link, Post-chorus,

Bridge, Outro, Refrain or Other

4. Name of artist(s): Full name of the artist performing

in each section. If all artists credited on the Billboard

listing perform in a section, the label both or all is used.

Songs were assigned at random to one of two annota-

tors, who generated time stamps at the onset of each formal

section with Sonic Visualiser. 2 The annotators provided

formal labels according to their analysis of the song. In

case of ambiguity in the formal sections, both annotators

discussed the analysis and agreed upon an interpretation.

For each formal section performed by one artist only,

the following analytical data on the voice is provided:

1. Gender of artist: M (Man), W (Woman), NB (Non-

binary)

2. Function of artist: Feat (Featured artist), Main (Main

artist), Neither, Uncredited

3. Style of vocal delivery: R (Rapped vocals), S (Sung

vocals), Spoken

4. Minimum pitch value: In Hz

5. First quartile pitch value: In Hz

6. Median pitch value: In Hz

7. Third quartile pitch value: In Hz

8. Maximum pitch value: In Hz

9. Environment value: On a scale of E1 to E5

10. Layering value: On a scale of L1 to L5

11. Width (panning) value: On a scale of W1 to W5

1 https://github.com/duguay-michele/CoSoD
2 The first annotator (first author) has a doctorate in music theory,

while the second (second author) is a doctoral candidate in the same field.
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The annotators determined the name of the artist(s) per-

forming in each section by ear, and using song lyric web-

site Genius.com to validate their hearing. In cases where

an artist only provides minimal background vocals (a few

words) in a particular formal section, their name is not in-

cluded. One annotator then provided analytical data on

each formal section performed by one artist only. Data

on gender was gathered from media interviews and social

media statements from the artists, and matches the artist’s

gender identity at the time of the dataset creation. This

methodology yielded three categories: man, non-binary,

and woman. We understand these labels as umbrella terms

that encompass a variety of lived experiences that inter-

sect with race, sexuality, and other power structures. The

style of vocal delivery was determined by ear. The dis-

tinction between rapping and singing is porous, with many

vocalists adopting ambiguous modes of vocal delivery. We

consider any formal section containing a melodic line per-

formed with sustained pitches as sung.

The pitch data was obtained by first isolating the vocals

from the full mix using Open-Unmix [45] and then running

the pYIN Smoothed Pitch Track transform [46] on the iso-

lated vocal file. The minimum, first quartile, median, third

quartile, and maximum pitch points in each formal section

were calculated and recorded in the dataset. 3

The Environment, Layering, and Width values were

determined by the first annotator to ensure consistency.

Rather than attempting to reconstruct the mixing process

itself, the annotations for these parameters represent the

way a listener might perceive the final mix upon listening

to it on stereo speakers. The Environment of a voice is the

space in which the voice reverberates. Environment values

were determined via an aural analysis of the full track by

using the following scale 4 :

E1: The voice’s environment sounds flat. There might be

minimal ambiance added to the voice, but there is no

audible echo or reverberation.

E2: The last word or syllable of most musical phrases is

repeated through an echo or reverberation effect.

E3: The vocal line is repeated in one clear layer of echo.

This added layer may be dry or slightly reverberant

and has a lower amplitude than the main voice.

E4: The main voice is accompanied by a noticeable

amount of reverberation. There is no clear echo layer,

but rather a sense that the main voice is being rever-

berated across a large space.

E5: The main voice is accompanied by two or more lay-

ers of echo. The echo layers may be noticeably re-

verberant, similar in amplitude to the main voice, and

difficult to differentiate from one another.

3 The accuracy of the F0 estimates used to calculate this feature is im-
pacted by the quality of the vocal source separation. A more accurate
isolated vocal file would allow for more precise pitch data. Additionally,
since pYIN Smoothed Pitch Track can only track a single melodic line,
the accuracy of the pitch data is lessened in sections that feature multiple
vocal layers with different pitch content.

4 The scales were initially published in [9].

The Layering of a voice refers to the additional vocal

tracks that are dubbed over a single voice. Layering values

were determined via an aural analysis of the full track by

using the following scale:

L1: The voice is presented as solo. Occasionally, a few

words may be doubled with another vocal track for

emphasis. Double-tracking is often used in the mix-

ing process to create a fuller sound, with a final result

sounding like a single vocal layer. Such cases fall into

this category.

L2: The voice is presented as solo, but additional vocal

layers are added at the end of musical phrases for em-

phasis.

L3: The main voice is accompanied by one or two layers.

Layers might provide minimal harmonies or double

the main voice. The layers have a noticeably lower

amplitude than the main voice.

L4: The main voice is accompanied by two or more lay-

ers. These layers are close copies of the main voice,

sharing the same pitch and similar amplitude.

L5: The main voice is accompanied by two or more lay-

ers. These layers add harmonies to the main voice,

creating a thick and multi-voiced texture.

The Width of a voice refers to the breadth it occupies on

the stereo stage. The Width was analyzed aurally with the

aid of panning visualisation tool MarPanning [47]. The an-

notator simultaneously listened to the isolated vocal audio

and observed the MarPanning visualization generated from

the isolated vocals to determine the Width value. Since

Open-Unmix occasionally omits reverberated components

of the voice from the isolated file, the analyst then listened

to the full track to confirm the Width value. Width values

were determined according to the following scale:

W1: The voice occupies a narrow position in the center of

the stereo stage.

W2: The voice occupies a slightly more diffuse position

in the center of the stereo stage.

W3: The main voice occupies a narrow position in the cen-

ter of the stereo stage, but some of its components

(echo, reverberation, and/or additional vocal tracks)

are panned toward the sides. These wider components

have a lower amplitude than the main voice.

W4: The main voice occupies a slightly more diffuse po-

sition in the center of the stereo stage, and some of

its components (echo, reverberation, and/or additional

vocal tracks) are panned toward the sides. These

wider components have a lower amplitude than the

main voice.

W5: The main voice and its associated components (echo,

reverberation, and/or additional vocal tracks) are

panned across the stereo stage. All components have

a similar amplitude.
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3.2 Metadata

The following metadata is provided for each song in the

dataset:

1. Index number: From 1 to 331

2. Year of first appearance on Billboard “Hot 100”

year-end charts

3. Chart position: As it appears on the Billboard “Hot

100” year-end charts

4. Song title: As it appears on the Billboard “Hot 100”

year-end charts

5. Name of artists: As it appears on the Billboard “Hot

100” year-end charts

6. Collaboration type:

• Lead/featured: Collab. with lead artist(s) and fea-

tured artist(s)

• No lead/featured: Collab. with no determined lead

• DJ/vocals: Collab. between a DJ and vocalist(s)

7. Gender of artists:

• Men: Collab. between two or more men

• Women: Collab. between two or more women

• Mixed: Collab. between two or more artists of

different genders

8. Collaboration type + gender:

• Collab M: Collab. between men, no determined

lead

• Collab M and W: Collab. between men and

women, no determined lead

• Collab NB and W: Collab. betwen women and

non-binary artists, no determined lead

• Collab W: Collab. between women, no determined

lead

• DJ with M: Collab. between male DJ and male

vocalist

• DJ with Mix: Collab. between male DJ and

mixed-gender vocalists

• DJ with NB: Collab. between male DJ and non-

binary vocalist

• DJ with W: Collab. between male DJ and female

vocalist

• M ft. M: Men featuring men

• M ft. W: Men featuring non-binary artist(s)

• W ft. M: Women featuring men

• W ft. W: Women featuring women

9. MusicBrainz URL: Link to the song on open music

encyclopedia MusicBrainz

Each song in the dataset is labeled with an index number

from 1 to 331. Songs are numbered in reverse chronologi-

cal order, beginning with the 2019 charts and ending with

2010. One annotator obtained the metadata on year, chart
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Figure 1. Summary of the gender distribution across

different types of multi-artist collaborations. Subplot (i)

shows gender counts for collaborations with lead and fea-

tured artists, subplot (ii) shows collaborations with no de-

termined lead or featured artist, and subplot (iii) shows col-

laborations between DJs and vocalist(s).

position, title, and artists from the information available

on the Billboard charts. Within years, songs are organized

according to their position on the chart, from highest to

lowest. Some songs appear on the charts two years in a

row. In such cases, we only include the data for the earliest

appearance.

3.3 Corpus Statistics

The dataset can be divided into three categories (shown in

Figure 1): (i) collaborations between the lead artist(s) and

featured artist(s), which account for 221, or 66.7% of the

tracks, (ii) collaborations with no determined lead or fea-

tured artist, which account for 59, or 17.8%, of the tracks,

and (iii) collaborations between a DJ and a vocalist, which

account for 51, or 15.4% of the tracks. In category (i), the

lead artist usually performs the majority of vocals. For ex-

ample, in “No Limit” (2018) by G-Eazy ft. A$AP Rocky

& Cardi B, G-Eazy performs most of the vocals. A$AP
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Figure 2. Number of formal sections performed by a sin-

gle artist (main, featured, or neither), categorized accord-

ing to formal section type

Rocky accompanies him in the chorus and Cardi B raps the

second verse. In category (ii), the performance of the vo-

cals is often more equally distributed. Such collaborations

are often billed as “duets,” and the artists’ names are sepa-

rated by a “+”, a “&”, or a comma on the Billboard charts.

For example,“Something’ Bad” (2014) is labeled as a “Mi-

randa Lambert Duet With Carrie Underwood.” Both vocal-

ists perform approximately equal portions of the song. In

category (iii), the DJ does not provide vocals. In “Sweet

Nothing” (2012), for instance, only the featured Florence

Welch sings. The voice of DJ Calvin Harris is not heard.

Mixed-gender collaborations (including any combina-

tion of non-binary, women, and men artists) frequently ap-

pear on the Billboard charts and account for 162, or 49%,

of the tracks in the dataset. Collaborations between two or

more men account for 159 tracks, or 48% of the dataset.

Finally, collaborations between women account for 10, or

3%, of the tracks. In six of the ten years under study–2011,

2012, 2015, 2017, 2018, and 2019–no collaborations be-

tween women reached the Billboard “Hot 100” year-end

chart. Conversely, songs with two or more male vocal-

ists were a consistent fixture on the charts. Mixed-gender

collaborations, with any combination of men, women, and

non-binary artists within the same track, also frequently

appear on the charts.

Figure 2 shows the number and type of sections per-

formed by individual artists in the corpus, categorized ac-

cording to gender. This figure includes identical sections

(such as choruses) that are repeated within a song. Sections

in which more than one artist performs are not included.

More sections are performed by men than by women and

non-binary artists, which is to be expected given the over-

representation of men in the dataset as a whole (Figure

1). Figure 3 displays the number and type of sections per-

formed by featured artists only.
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Figure 3. Number of formal sections performed by fea-

tured artists, categorized according to formal section type

4. EXPERIMENT: VOCAL PRODUCTION

FEATURES AND GENDER

This section examines the relationship between the gen-

der of an artist and the treatment of their voice, as char-

acterized by three of the annotated musical features in the

dataset: Environment, Layering, and Width. For the pur-

poses of statistical power in the experiment, only songs

with men and/or women artists were included. We only

included tracks that contained verse and chorus sections to

remove section types that occur in only a few tracks. In or-

der to avoid over-representations of tracks with repeated

sections (i.e., several instances of the same chorus), we

sampled the first verse and chorus performed by a single

artist from each track. 5 This method resulted in the inclu-

sion of two sections from 287 of the 331 dataset tracks in

the experiment.

We analyzed the data with three separate logistic

regressions–one for each feature–using the statsmodels

package in Python. We encoded the different levels of the

parameter scales (defined in Section 3.1) with one-hot en-

coding in order to allow us to examine whether there is

a correspondence between specific parameter scale levels

and gender.

Of the three logistic regressions, Environment

(R2
McFadden (4, N = 574) = 0.028, p < 0.0001) and Width

(R2
McFadden (4, N = 574) = 0.035, p < 0.0001) were statisti-

cally significant, while Layering (R2
McFadden (4, N = 574)

= 0.0036, p = 0.64) was not. The McFadden R2 values

for both Environment and Width were very low. This

was not surprising since we did not anticipate that these

features, particularly in isolation, would be explanatory.

We were instead interested in exploring whether there is

a significance between these features with respect to the

man/woman gender binary in these collaborations.

For Environment, there were significant effects (p <

5 If the first verse of a song was performed by two artists simultane-
ously, while the second verse was only performed by one, we sampled the
second verse.
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0.0001) for E1 (β=-1.18, 95%CI [-1.49, -0.87]), E2 (β=-

1.12, 95%CI [-1.56, -0.69]), and E3 (β=–0.78, 95%CI [-

1.14, -0.42). There was a significant negative effect for the

lower/mid-level environment values and gender, meaning

that men’s voices are more likely to be set in less rever-

berant spaces than women’s voices. For Width, there were

significant effects at all of the levels: W1 (β=-1.84, 95%CI

[-2.50, -1.17]), W2 (β=-1.58, 95%CI [-2.39, -0.77]), W3

(β=–1.13, 95%CI [-1.51, -0.75]), W4 (β=-0.47, 95%CI [-

0.77, -0.17), and W5 (β=-0.60, 95%CI [-0.95, -0.25]).

The Width results are harder to interpret than the En-

vironment ones because the coefficient values are smaller

and all negative. This is likely due to the imbalance be-

tween men and women in featured artist roles, both in the

dataset (see Figure 1) overall and in the sample used in

this experiment (404 of the included sections featured men

while only of 170 featured women). However, the over-

all trend is similar to the one in the Environment experi-

ment: lower-level values are more common for men than

women. Men’s voices are more likely to occupy a nar-

row, centered position on the stereo stage, while women’s

voices are more likely to occupy a wider space. These

results were expected given that high Environment values

tend to be associated with high Width values, as the rever-

berated components of a voice are generally panned across

the stereo stage.

The lack of significant results for Layering indicates

that there are no differences in the ways in which this pa-

rameter is applied to men’s and women’s voices. Since

textural variation (such as the addition of vocal layers) is

a standard feature of verse-chorus form, it is possible that

Layering is linked to the type of formal section rather than

to the gender of the vocalist. The significant results for the

Environment and Width parameters can be interpreted in

light of Brøvig-Hanssen’s and Danielsen’s work on techno-

logical mediation [48]. The authors establish a distinction

between transparent and opaque technological mediation

in recorded music. Transparent mediation, on one hand,

is meant to create a recorded product that sounds natural

and unaltered. Low Environment and Width values, for

instance, are closer to transparent mediation because they

sound closer to a real-life performance that is unmediated

with artificial reverb or panning. Opaque mediation, on the

other hand, highlights the use of technology by making it

obvious to the listener. High Width and Environment val-

ues, with their clearly audible artificial reverberation and

wide panning, are examples of opaque mediation. The re-

sults of the experiment therefore suggest that men’s voices

are more likely to be mixed to sound “transparent” and nat-

ural while women’s voices are more likely to be mixed to

sound “opaque” and technologically mediated.

Overall, this experiment demonstrates that within verse

and chorus sections in CoSoD, there is a significant differ-

ence between the treatment of men’s and women’s vocals

in terms of Environment and Width. This suggests that

some mixing parameters contribute to the sonic differenti-

ation of men’s and women’s voices in popular music.

5. CONCLUSION

CoSoD is a 331-song corpus of all multi-artist collabora-

tions for faciliating appearing on the 2010–2019 Billboard

“Hot 100” charts. Each song in the dataset is annotated

with metadata, formal sections, and aspects of vocal pro-

duction (including reverberation, layering, panning, and

gender of the artists). As outlined in Section 2, CoSoD has

several implications for MIR research. It provides anno-

tated data for structural segmentation tasks and a listener-

centered perspective on vocal mixing that could be useful

for automatic music mixing tasks. The dataset could also

be used to determine how these parameters interact with

song form. Further study could also examine the relation-

ship between the vocal range of an artist in a given section,

their type of vocal delivery (rapped, spoken, or sung), and

mixing parameters. Finally, the dataset also allows for the

examination of the ways in which Environment, Layering,

and Width values tend to be grouped together to create spe-

cific vocal production effects.

The dataset also facilitates musicological study of

multi-artist collaborations post-2010 and gender norms.

The experiment in Section 4 demonstrates this, as its re-

sults suggest that, for the chorus and verse data sampled

from 287 songs in the dataset, men’s voices are more likely

to be narrow and less reverberated than women’s. Opportu-

nities for future research include examining whether there

is a significant difference in the way Environment, Width,

Layering, or other parameters are applied to women’s and

men’s voices within collaborations that feature mixed- and

same-gender vocalists. In other future work, we plan on

expanding the annotations in the dataset with time-aligned

lyrics, harmonic analyses, and additional performance data

for the voice extracted using AMPACT [49,50]. These an-

notations will include both spectral features and seman-

tic descriptors, and the data will be encoded in relation

to vocal-line transcriptions, where possible [51]. We also

plan on providing annotations on vocal production param-

eters in sections performed by multiple artists and examin-

ing how vocal production parameters correlate with mixing

parameters such as panning.

Finally, while our dataset focuses on gender, we are also

interested in encoding other aspects of identity, such as

race, in order to provide an intersectional perspective on

artists’ identities. However, categorizing artists accord-

ing to race proves to be more problematic than gender.

Matthew D. Morrison writes that “white (and other non-

black) people freely express themselves through the con-

sumption and performance of commodified black aesthet-

ics without carrying the burden of being black under white

supremacist structures” [52, p. 791]. In other words, white

and non-Black artists–such as rappers Iggy Azalea and G-

Eazy, or singer Bruno Mars–often assume particular sonic

characteristics that implicitly associate them with com-

modified notion of Blackness. By categorizing all white

artists together, for instance, we would ignore this phe-

nomenon and the way it is sonically realized. Further work

needs to be done to understand how to best expand on

CoSoD, or datasets in general, to account for this dynamic.
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ABSTRACT

Recently, there has been a surge in Artificial Intelligence

(AI) tools that allow creators to develop melodies, har-

monies, lyrics, and mixes with the touch of a button. The

reception of and discussion on the use of these tools - and

more broadly, any AI-based art creation tools - tend to be

polarizing, with opinions ranging from enthusiasm about

their potential to fear about how these tools will impact the

livelihood and creativity of human creators. However, a

more desirable future path is most likely somewhere in be-

tween these two polar opposites where productive and eth-

ical human-AI collaboration could happen through the use

of these tools. To explore this possibility, we first need to

improve our understanding of how music creators perceive

and utilize these types of tools in their creative process.

We conducted case studies of a range of music creators to

better understand their perception and usage of AI-based

music creation tools. Through a thematic analysis of these

cases, we identify the opportunities and challenges related

to the use of AI for music creation from the perspective of

the musicians and discuss the design implications for AI

music tools.

1. INTRODUCTION

In the past few years, there has been an increase in the

creation of AI tools that support various musical activi-

ties. These activities are varied, including music recom-

mendation/organization [1], sound synthesis [2], compo-

sition [3–5], and mixing [6, 7]. Current discourse on the

use of AI-based tools in music production often presents

two polarized perspectives: one that sees AI as an oppor-

tunity for innovation and progress [8, 9], while the other

views it as a threat to the artistic creativity and livelihood

of human creators [10–12]. However, a more nuanced and

desirable approach entails a productive and ethical collab-

oration between humans and AI in the creative process,

allowing both human creators and AI tools to create some-

thing neither could easily do alone.

© M. Newman, L. Morris, and J.H. Lee. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: M. Newman, L. Morris, and J.H. Lee, “Human-AI Mu-

sic Creation: Understanding the Perceptions and Experiences of Music

Creators for Ethical and Productive Collaboration”, in Proc. of the 24th

Int. Society for Music Information Retrieval Conf., Milan, Italy, 2023.

Discussion around the perception of AI and music cre-

ativity tends to be focused on evaluation of the product of

the AI [13–15], legal issues [14, 16], or human-computer

interaction [17], and not on the implications and connec-

tions these factors have on the creative thinking of mu-

sicians, though there is growing interest in this domain

[18, 19]. Additionally, while there has been discussion

within the MIR community around the ethical implica-

tions of AI in music creation [18, 20], the experience of

using AI to perform songwriting tasks [17], and the per-

spectives of expert users in creative music information re-

trieval [21, 22], there is still a need to further understand

how creative MIR tasks are impacted by AI tools based on

creative context. Even within the ISMIR community, in the

last decade, there were fewer than 20 publications that dis-

cussed AI music creation tools, and less than half of them

considered the creator’s perspective before developing the

tool.

Musicians engage in creativity in many different ways

through generating products such as compositions, anal-

yses, and performances [23]. Our paper aims to address

the impact of AI tools on the perception and work of one

such domain: composition. Within composition we ex-

plore the impact of AI on what Peter R. Webster [23, p.

22] describes as "Creative Thinking," or "the mental pro-

cesses associated with creative production." We will refer

to those who engage in this act of creative thinking in com-

position as creators, their environment/creation goals as

creative context, and the act of creative thinking as the cre-

ative process. This paper addresses three research ques-

tions: (1) In what way do creators perceive and envision

the use of AI tools during their compositional process?, (2)

How does their creative context influence their use of AI?

and (3) What design implications can we derive to inform

the creation of AI tools for music creators?

Our paper extends knowledge about how AI impacts the

creative process of musical creators and adds to the discus-

sion of expert users of creative MIR and human-AI collab-

oration in music creation acts. [19,21,22,24,25] To address

these questions we conducted six case studies across a se-

lection of creative contexts and our results are collected

in a model that emphasizes the fluidity of roles that AI can

play across creative thinking in composition and represents

the start of future work aimed at building a dynamic model

of human-ai musical creativity.
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2. RELATED WORK

The idea of using computational means in composition is

not a recent development. Over the course of music his-

tory, creators have considered various ways to develop al-

gorithmic procedures to help with their process [26]. Since

the early days of the computer, programmers and music

creatives alike have utilized their skills to create programs

that allowed them to continuing this tradition; creating

computer-aided compositions (CAC) and computer-aided

algorithmic compositions (CAAC). As a whole, CAC tools

require user intervention - correction to misnoted parts, ad-

justment of autotuned voices, and creators choosing which

electronic instruments to employ and when [27]. CAAC

tools, unlike CAC tools, are intended to be used to help

"make music with minimal human intervention" [28]. Pop-

ular examples of CAAC tools include programs such as

Opusmodus [29] - a library for real-time computer-aided

composition in Max [30] - and more. These tools are ex-

tremely distinct in their purpose and use, helping to al-

gorithmically aid creators, with rhythmic trees, polymet-

ric notation, and data visualizations of algorithmically-

generated material. When defining algorithmic composi-

tion, Pearce et al. [31] state:

Many who write programs for music compo-

sition are motivated by artistic goals: these

programs are used to generate novel musical

structures, compositional techniques and even

genres of music...The composer may use an

existing computer program or she may write

a program herself: since identical motivations

are involved, we count both of these as algo-

rithmic composition. [31, p. 5]

In both cases, the question arises: What is creativity and

what does it mean for computers to be part of the creative

process? This question has been discussed in many ways

in multiple fields, as scholars from the humanities [32,33],

the sciences [34–36] , HCI [37, 38] and MIR [21, 22] have

speculated for years over how the use of computer systems

changes the creation process.

Through their exploration of using AI to co-songwrite,

Micchi et al. [17] list two potential ways in which AI tools

could assist creators: through (1) automation and (2) AI as

suggestion. They note that while AI as automation is more

akin to the tasks given to AI outside of the artistic field, the

idea of AI as suggesting solutions to compositional tasks,

acting as a partner in the process, is unique to the use of AI

within creative pursuits. As Tipei et al. [39] discuss in their

paper where student composers utilized DISSCO (Digital

Instrument for Sound Synthesis and Composition), com-

positions were still considered by users to be collaborative,

as participants were able to add, modify, or reject contri-

butions made by the software and other users. Researchers

compared this interaction to the process of collective im-

provisation, with the software playing a key role as a col-

laborator and manager in this compositional process - "[the

computer/software]...becomes part of the process not only

by performing a vast number of operations very quickly,

AI as Collaborator Democratization

Meaning of Creativity Bias in AI

Creative Control Corporatization of Art

Influence Knowledge of AI

Mechanism Creating Opportunities

Old vs. New AI Sharing of Tools

Types of AI Contributions Current State of AI

Table 1. Final Codebook for Interviews

but also as a consequential contributor to the creative ef-

fort" [39]. More specifically, this implies that AI simul-

taneously acts as a collaborator in the process and as a

tool, allowing the creator to explore different possibilities

of how AI can be applied within their workflow.

3. STUDY DESIGN AND METHODS

We employed a exploratory, multi-subject case study

method [40] to examine how creators perceive the use

of AI tools within their compositional process. Using

multiple-subject case studies allows us to better explore

the phenomenon of AI within the compositional process

across a variety of contexts in order to build a stronger ba-

sis of understanding and is useful for formulating concepts

for theory construction [40, 41].

Our case selection strategy was focused on representing

diverse cases within the varied creative contexts of both

western art music and western popular/commercial music

traditions [42]. Our cases included a classical/jazz music

composer, a film and video game music composer, an in-

teractive media composer, an electroacoustic composer, a

sound artist, and a DJ. Due to the scope of the study and re-

sources, we did not include case studies of programmers,

listeners, or creators outside the western context, though

these communities will be explored in further studies.

There were a total of six creators, one for each case, all

of which were over eighteen years of age and recruited via

email. Of the recruited participants, all had heard of AI

tools and five worked actively with AI tools within their

process. While all creators were actively working within

the music field professionally, the film music creator and

the intermedia creator were the only ones not affiliated

with an academic institution as a student, though both had

been trained within western academic music schools. All

participants had been composing over five years at the time

of the interview.

For each case, we conducted in-depth, semi-structured

interviews between 60 and 90 minuets. Interview ques-

tions for this study were generated via a review of the

existing literature on the use of AI in music composi-

tion and production, where we identified relevant themes

and topics (e.g., definitions of AI, AI creativity, typi-

cal tools in music creation). Topics ranged from par-

ticipants’ experiences with AI-based tools in music pro-

duction, their perceptions of the advantages and disad-

vantages of using AI, and their views on the ethical im-

plications of AI in music creation. Both descriptions of

the case contexts and interview questions can be found at
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the url: https://github.com/michelenewman/

ISMIR23_supplemental_material.

All interviews were conducted online over Zoom and

fully transcribed and edited for clarity. We created the

codebook using a mix of the inductive and deductive ap-

proach [43]. Initially, two of the authors created the first

draft of the codebook using thematic analysis of the tran-

scribed interviews. The codebook was iteratively refined

by adjusting and aligning the themes that emerged from

the interview data with those from existing literature. Us-

ing the final codebook, we first coded the interviews sep-

arately on the qualitative coding software ATLAS.ti, then

came together to discuss any discrepancy with a goal of

reaching an agreement and assigning final codes following

the consensus model [44].

4. RESULTS

During analysis, 12 categories emerged which were

grouped into two main sets: AI as Collaborator and De-

mocratization of Music Creation. The themes were influ-

enced by the current or lack of use of AI by the creators

and the reasoning behind their choices. Themes that arose

such as tool sharing are common practice among commu-

nities of creators, especially on the internet [45, 46], but

within the this study, refers specifically the sharing of AI

and ML tools.

Coding the interview transcripts led to the insight that

creators had specific creative tasks with which they would

or would not feel comfortable utilizing AI tools, as well

as parts of the process in which they would consider the

use of AI. The most common code within our analysis was

"Types of AI Contribution" in which the creators reflected

on how they would personally use AI within their own pro-

cess. This included tasks such as creating repositories (P4)

and mastering songs (P6). The least common code was

"Sharing of Tools." As a whole, all participants had some

knowledge of what AI was, and all but the jazz/classical

creator had utilized it in some capacity within their work-

flow. Three of the creators used also used non-musical AI

(such as text-based AI) in their process.

Based on our analysis, we present the Human-AI Cre-

ative Collaboration Model (Figure 1) to represent the use

of AI tools throughout the compositional process of mu-

sic creators situated within the western tradition of com-

position who may employ computer assisted tools. The

model is comprised of three parts: Factors on Influences,

AI Roles, and Creation as Process.

4.1 Factors on Influences

The far-most left section of our model represents the vari-

ous contextual factors that impact creators’ perception on

where AI should fall within their creative process. These

factors are broken into three parts within our model: per-

sonal context, social context, and creative goal. While all

creation contexts are different, these are the three most

common aspects that arose from our analysis.

Figure 1. Human-AI Creative Collaboration Model

4.1.1 Personal Context

The Personal Context is defined by the individual creator’s

familiarity with their own creative process and their music

literacy. When reflecting on whether or not participants

thought that an AI tool would be helpful to them, they

considered where it would fall into their process and how

much control they would be able to maintain over the fi-

nal product. Because our participants had been composing

for over five years, they already had a strong idea of how

their process worked and a familiarity with their personal

context of musical creation. Creators commented on their

desire to have AI tools that are flexible enough to work

within their current creative process, are interoperable with

existing compositional software, and have clear and con-

cise interfaces to help with facilitating their adoption and

use.

For example, the film music creator and DJ who work

in more commercial settings, with tighter schedules, men-

tioned utilizing AI tools that were already integrated within

software they used such as Ozone [7] and Logic’s Drum-

mer [47]. If integration is not possible, they suggested

AI should be designed in a way that it does not interfere

with the use of a primary creation tool. The electroacous-

tic creator, interactive music creator, and sound artist pre-

ferred to use older forms of AI due to developer trans-

parency. The participants differentiated older models from

the newer models, suggesting that newer models were hid-

den behind a corporate "black box" in order to work. These

creators preferred supervised learning algorithms to unsu-

pervised learning algorithms, so that they could change the

open source code and exert more creative control (P5). As

they had more experience with AI, they were more open to

learning and working with AI tools. All participants also

commented that current AI tools were not able to support

their process in the ways that they wanted due to the lack

of control and low-fidelity outputs.

4.1.2 Social Context

Creators also consider Social Context; this includes their

current community of practice where they often converse

and share their art with (other creators, their audience) and

their educational and musical upbringing. Many aspects

of the act of creativity are tied to the sociocultural aspects

of making music [48]. Those whose communities were

most open to using AI tools, often in more experimental

creative contexts such as in academic experimental com-
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munities, were much more willing to engage with the idea

of AI in different parts of their process. The jazz/classical

composer was adamant that they were very skeptical of AI

in part because the community around them was also very

skeptical, especially with a strong tradition of composition

within the western art context.

Similarly, they decided on what was an appropriate use

of AI by comparing the impact the tool had on others. Par-

ticipants raised the issue of bias in AI and using the cre-

ative works of others. All creators noted that most large-

scale models rely on Eurocentric training data that may not

align with their individual artistic expressions or require-

ments, feeling that the AI would "flatten" their work with

it has "biases and this kind of Eurocentric Westernization

of aesthetics" (P5). P4 noted, "There’s been a big problem

in the past couple of weeks with people coming out talk-

ing about how that’s not right, to be able to use someone’s

likeness and their voice however you want." This sentiment

highlights the worry that there was oversight in the ways

in which these models are being created and distributed,

leading to potential harms in taking the intellectual prop-

erty of others and using it to quickly make financial gains,

a sentiment echoed by others in the music industry [15].

Furthermore, participants expressed worry about the im-

pact of such rapidly generated artworks on not only their

personal work, but also on the general public’s perception

of art as a whole.

Participants also talked about how AI tools opened up

the potential for more types of creators to get involved in

the music creation process. Our DJ participant discussed

their use of the AI tool Ozone, which he uses to digitally

master his songs. While the tool costs 50 USD to purchase,

the participant could use it to process all of his songs and

have them match the audio specifications needed to up-

load to streaming services such as Spotify within seconds,

whereas if it was sent to a mastering engineer, each song

would cost him hundreds of dollars to master. In the same

vein, multiple participants mentioned that one of the poten-

tial abilities of AI music tools would be the ways it could

potentially allow entry-level musicians to bypass some of

the extensive music education they would need before be-

ing able to create music, including the cost and time invest-

ment of said education. "I think it can really accelerate the

learning process, the process of studying music and experi-

encing all this music that we’ve documented...I think it can

kind of build each person’s personal vocabulary of what

music is." (P1). These participants qualified their state-

ments by clarifying that this would not mean users should

bypass the whole process of learning the art of composi-

tion. Rather, the ability to create music without network-

ing and funding as a necessity in the creative process is

a kind of "freedom" one participant noted, one which be-

gun with the advent of the personal computer and has only

continued to expand as the process is simplified (P2).

4.1.3 Creative Goal

Lastly, Goal refers to creators’ specific reason for compos-

ing (i.e. for a film, for a commission, a performance). The

goal can put pressure on creation time, influence the social

practices and expectations, and change the personal work-

flow of the creator.

4.2 Potential AI Roles: Influences and Mechanisms

At the center of the model, we present the different ways

that AI could potentially be used in the creation process.

Participants expressed an overall positive view towards the

potential of AI tools as collaborators. Participants also per-

sonified the AI in their process stating it was similar to

having a "second person" check over their work or a way

to bounce off other ideas with the AI tools. While the list

is not exhaustive, these represent the most common tasks

that creators in our study talked about. These roles were

primarily impacted by the concept of "control" of a cre-

ative output across the process. All participants agreed

that computational creativity cannot supplant human cre-

ativity. While participants recognized that AI can "create

something" and output a product that mirrors human cre-

ativity, such as P4 stating that they were "...sure AI could

create something like a poem, for example, that would be

really hard for me to tell if it was from a human or from an

AI," they highlighted that AI lacks the deliberate decision-

making of human creators, continuing they would have a

hard time "emotionally connect[ing] with it."

In the former case, participants discussed engaging in

a process of "play" with the AI, which allowed them to

explore a variety of prompts and generate a collection of

potential options that they could later modify or combine

to achieve their artistic goals. P5 noted: "So sometimes

when I’m stuck, I like to grab some of the models I pre-

trained and just ask it something." The creators used the

tools to explore, both as a way to spark new ideas and as

a way to generate a large repository of content to remix

in their own way. Within this process though, the creators

emphasized the AI does not make the final choice. The

final decision was always made by the creator to maintain

their artistic agency.

For all of the participants, within the context of their

own compositional process, intention and choice was as

important as the creative product. One participant stated,

"You can have [AI] generate some sort of electronic mu-

sic code for you and that sort of just skips for me a whole

important step in the process, because in my process of

creating live electronic music, there’s sort of an interplay

between my coding and my writing. I think a lot will be

lost if you just take out an entire part of that process" (P3).

Another participant remarked, "For me, creativity also in-

volves the decision-making in a big way. And then to de-

termine where to end things. It doesn’t seem that my expe-

rience with AI so far affords these possibilities" (P6).

Elaborating on this idea of creative control, P6 noted: "I

feel that it doesn’t sound like me, or especially with music

compositions and working with some of these AI that will

give you a MIDI file, you know?", implying some kind of

loss in the creator’s personality in automatically generated

music pieces. P1 stated that "AI seems to be something

that’s designed to do some of that channeling of an idea for
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you. It seems like AI is kind of trying to be designed to do

the human part of the process." Personality Theory related

to intellectual property, put forward by thinkers like Em-

manual Kant and George Hegel [49], suggests that a per-

son’s personality is incorporated into their creative work

during the labor process, and is therefore an essential part

of their work. When an AI takes that labor away from the

creator, creators felt that the work now no longer has their

personality, and thus is no longer their creation.

4.2.1 Influences to Creative Process

The top section Influences to Creative Process lists tasks

that directly influence the final artistic product, allowing

for integrity of expression by the creator. On the left side

are acceptable influences. These tasks involve aspects that

help prompt ideas or create inspiration. Tasks that fall

within the acceptable influences do not need to be as inte-

grated with the programs creators already use, though they

should integrate with the overall creative process - espe-

cially in the ideation phase, where many creators felt AI

influences fit best. These tools should allow for continu-

ous reiteration, with understandable in-tool design signi-

fiers that indicate the ways they can edit, change, and ma-

nipulate the AI’s data before and after each iteration. Once

this ideation phase is over, there should be a clear way to

export their ideas into a new software or system, again al-

lowing for the interoperability that is vital for music cre-

ator’s process; this could be done in a number of ways such

as using MIDI files, WAV files, or MusicXML.

Participants also discussed ways that AI tools could go

beyond what humans are traditionally capable of, and in

that way become a partner in the expansion of their com-

positional capabilities. One potential function as noted by

a participant was the ability to use AI as a music analy-

sis tool, helping users pinpoint things they were not aware

of or even able to perceive with human hearing, such as

"the sound field...expanding from the front to the back"

(P6). Another participant described how their current use

of AI as part of their process has changed how they see the

world around them, gaining a new understanding around

what could be used or turned into data which allows them

to create patterns and connections within their music (P5).

AI tools also helped many creators find relationships be-

tween sounds, found materials, words, and pictures. One

participant explained it as a "feedback loop" (P6).

The right side displays aspects of the creative process

where creators are not comfortable engaging in Human-AI

collaboration. They felt using AI with these tasks nega-

tively affect the creative process by taking away an essen-

tial component of their creations. This includes losing the

ability to control their intent and choices, not being able to

specify performance parameters/low-fidelity outputs, and

interfering with their process and creative personality.

4.2.2 Mechanisms of Creation

The lower section is titled Mechanisms of Creation. It in-

cludes types of Human-AI collaborations where our par-

ticipants had little issue if AI took over the process com-

pletely, often searching for and utilizing AI that could com-

plete these tasks. In general, mechanisms are tasks that oc-

cur within the creative process that do not require direct

decision-making by the music creators, including house-

keeping tasks such as file naming, information retrieval

tasks such as looking for electronic instruments, and repli-

cating sounds. Many participants noted they would use AI

to complete tasks to help speed up their process or com-

plete tasks they did not want to do. These tasks often had

to do with analyzing data in some way. For example, P3

noted "I have an idea that I want to do, and I just use the

AI to make that idea happen faster."

4.3 Creation as Process

Lastly, on the far right side is a spectrum representing what

we call "Creation as Process," emphasizing the role of iter-

ation and thinking that happens during the process of writ-

ing music [23, 32]. For all of the participants, within the

context of their own creative process, intention and choice

was as important as the creative product. One participant

stated, "You can have [AI] generate some sort of electronic

music code for you and that sort of just skips for me a

whole important step in the process, because in my process

of creating live electronic music, there’s sort of an inter-

play between my coding and my writing. I think a lot will

be lost if you just take out an entire part of that process"

(P3). Another participant remarked, "For me, creativity

also involves the decision-making in a big way. And then

to determine where to end things. It doesn’t seem that my

experience with AI so far affords these possibilities" (P6).

The spectrum represents the level of intellectual en-

gagement needed in each task, ranging from highly inten-

tional choices to mechanical and repetitive tasks. Within

the process of creating, the given AI tasks may move to

higher or lower levels along the spectrum, sometimes influ-

encing the process more and other times receding to lower

levels of impact. The creative process is fluid, meaning

that both the factors and roles of the AI can change over

the course of creation.

5. DISCUSSION

Although our focus on only six case-studies of music cre-

ators in specific creative contexts presents a limitation to

our study, we believe that our focus allowed us to explore

possible applications of AI tools to creators’ needs, and

allowed us to form initial insights into the perception of

the use of AI tools in the creative process. Musical cre-

ativity is not a monolith and it is our belief that in order

to understand how to design specific AI systems that sup-

port creative musical tasks, we need to know how creative

thinking is conceived by those engaging in these types of

musical activities. Our main contribution in this paper is

to begin to situate certain AI tasks as potential helpful or

potentially harmful to the creative process of those who

create.

In this study, we argue that the discussion around the

threat that AI poses to both the jobs of creators and artis-
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tic integrity is of importance to creators; emphasizing that

co-creation of music in the context of music composition

is dependent not only on the larger creative context, but on

the process of creative thinking as well. Our work suggest

that Andersen and Knees [21, 127] notion of the impor-

tance of an "individual user[s’] models of music percep-

tion as well as a solid understanding of usage context" is

not only needed for exploring dissimilarity in search, but

also for understanding AI systems in the other forms cre-

ative endeavors. Knees et al.’s [50] consideration of the

use of "strangeness" for artists recommendations is use-

ful in AI systems as so far the AI is helping to generate

new ideas for creators; though strangeness is one aspect

of many needs that a creative engages with in AI music

systems. Other tasks such as analysis and editing are also

elements of creative MIR tasks that may be helpful to fa-

cilitating the creative process, though often can occur at

different points or simultaneously with the task of idea

generation. We argue that there is a need to understand

how specific creative processes view and interact with AI

at all stages. While there are some aspects of the use of

AI that many of our cases agreed on, such as allow AI to

take over tasks that have little to no control over the final

product of creative thinking which is echoed in other liter-

ature [50, 51], our study also indicated that the role of AI

is also dependent upon personal, social, and creative goal

related factors that are constantly in flux. The Human-AI

Collaboration Model demonstrates our belief that the role

that AI plays on creative thinking is highly flexible within

music creation and that without a clear understanding of

how creators are thinking, AI systems can hurt musical cre-

ative practices of musicians.

Oliver Bown has warned against the possible negative

affect that AI tools can have if it disrupts cultural applica-

tions and creation of music. [33]. If music AI systems are

designed to limit creator control, intent, or process, they

could potentially lead to Schröter’s notion of the "(possi-

ble) automatization of artistic work" [52]. Full control over

the final artistic product and an understanding of the cre-

ator’s emphasis on their process are the most important as-

pects to developing tools that can support, instead of harm,

human creativity - as noted by Knees, it is important that

the user is given agency in the process of "co-creation"

with high-level control of the generative process [19].

While it is true that the concept of "Explainable AI"

[53–55] can help to educate those who worry about the

role AI plays in future creative endeavors, it is not a full

solution to the lack of user trust or changing user hesi-

tancy in tool adoption. Recent fears over data misuse by

generative AI, backed up by online discussions and even

legal investigations into data scraping [56] and intellectual

property [57] have made creators fear utilizing AI tools,

with creators fearing that AI is trained on data that does

not meet their personal artistic goals or actively hurts other

artists. Increasing common knowledge about the functions

of AI tools would create more trust in these systems and

encourage users to integrate them more into their creative

process [58], but there is also a need to design in systems

in such a way that creators feel they can ethically use these

systems in their own work. This means ethically sourcing

material and allowing for the control of elements within AI

systems.

Designers of AI tools for creators should consider what

role they expect for their tool to play within specific cre-

ation processes and make choices that support this. The

specific inputs, outputs, and needs of an AI system will

change over the creative process. Because AI tasks can

move up and down in importance, that means that it is

highly possible to have a mismatch of the execution and

evaluation of AI systems that may lead to less cohesion be-

tween the creator and the AI as they will continually need

to reevaluate how these systems fit in their workflow.

6. CONCLUSION AND FUTURE WORK

Our findings support that creators have concerns surround-

ing the transparency of and lack control within AI tools,

but that there is still much to do in relation to understand-

ing the exact needs of creative users. In order to develop

useful AI tools, designers must consider the specific cre-

ation context, existing processes of creators, control of cre-

ator, and the fluidity of creating. Our Human-AI Creative

Collaboration Model is designed to help developers and

researchers who create AI systems to consider the variety

of factors and influences that exist on creative process and

how they might intersect with a creators experience. We

hope that this work encourages developers and other MIR

researchers to continue to consider advancing Human-AI

collaborations that align with music creators’ needs. There

are a variety of tasks that AI can perform, and consider-

ing if tasks are impacting creative thinking in a different

phases of creation will allow for a more ethical and pro-

ductive experience for music creators.

While we interviewed different creation contexts within

our case studies, there is still a need for future work to

consider how differences in cultural background, musical

training, and experience with AI factor into Human-AI cre-

ative thinking. Composing music can happen in a variety

of other contexts not explored in this study, including as

part of music education and cultural situations. Yet, com-

position is only one form of creative thinking within music

and future work might will continue work to identify the

differences that arise when using AI systems within differ-

ent forms of creation such as music analysis and perfor-

mance. Creators may be utilizing all these forms of think-

ing across the creative process in non-linear ways. There

is still much to learn about the impact that AI will have

on music as an art; if designed and deployed ethically, AI

offers the opportunity to enhance human creation and pro-

vide new avenues for creating and learning about music.

But, in order for AI to support musicians in any form of

creative thinking, we need to ensure we are designing AI

tools with creators in mind.
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[48] V. P. Glăveanu, “Creativity as a sociocultural act,”

The Journal of Creative Behavior, vol. 49, no. 3,

pp. 165–180, 2015. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/jocb.94

[49] J. Hughes, “The philosophy of intellectual property,”

Georgetown Law Journal, vol. 77, p. 287, 1988.

[50] P. Knees, K. Andersen, and M. Tkalˇciˇc, ““I’d

like it to do the opposite”: Music-Making Between

Recommendation and Obstruction,” in Proceedings of

the 2nd International Workshop on Decision Making

and Recommender Systems, vol. 1533. Charlotte,

United States: MUME, 2015. [Online]. Available:

CEUR-WS.org.

[51] D. Buschek, L. Mecke, F. Lehmann, and H. Dang,

“Nine potential pitfalls when designing human-ai co-

creative systems,” CoRR, vol. abs/2104.00358, 2021.

[Online]. Available: https://arxiv.org/abs/2104.00358

[52] J. Schröter, “Artificial intelligence and the democrati-

zation of art,” in The Democratization of Artificial In-

telligence: Net Politics in the Era of Learning Algo-

rithms, A. Sudmann, Ed. Transcript publishing, 2019,

pp. 297–311.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

87



[53] C. Zednik, “Solving the black box problem: A norma-

tive framework for explainable artificial intelligence,”

Philosophy & Technology volume, vol. 34, p. 265–288,

2021.

[54] A. Holzinger, “From machine learning to explainable

ai,” in 2018 World Symposium on Digital Intelligence

for Systems and Machines (DISA), 2018, pp. 55–66.

[55] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen,

and K.-R. Müller, Explainable AI: Interpreting, ex-

plaining and Visualizing Deep Learning. Springer,

2019.

[56] C. Fiesler, N. Beard, and B. C. Keegan, “No robots,

spiders, or scrapers: Legal and ethical regulation of

data collection methods in social media terms of ser-

vice,” Proceedings of the International AAAI Confer-

ence on Web and Social Media, vol. 14, p. 187–196,

2020.

[57] T. Zipper, “Mind Over Matter: Addressing Chal-

lenges of Computer-Generated Works Under

Copyright Law,” Wake Forest Journal of Busi-

ness and Intellectual Property Law, aug 7 2022,

https://jbipl.pubpub.org/pub/zn744tze.

[58] E. Ruane, A. Birhane, and A. Ventresque, “Conversa-

tional ai: Social and ethical considerations,” in Irish

Conference on Artificial Intelligence and Cognitive

Science, 2019.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

88



IMPACT OF TIME AND NOTE DURATION TOKENIZATIONS ON DEEP
LEARNING SYMBOLIC MUSIC MODELING

Nathan Fradet1,2 Nicolas Gutowski3 Fabien Chhel3,4 Jean-Pierre Briot1

1 Sorbonne University, CNRS, LIP6, F-75005 Paris
2 Aubay, Boulogne-Billancourt, France

3 University of Angers, LERIA, 49000 Angers, France
4 ESEO-TECH / ERIS, 49100 Angers, France

nathan.fradet@lip6.fr

ABSTRACT

Symbolic music is widely used in various deep learning

tasks, including generation, transcription, synthesis, and

Music Information Retrieval (MIR). It is mostly employed

with discrete models like Transformers, which require mu-

sic to be tokenized, i.e., formatted into sequences of dis-

tinct elements called tokens. Tokenization can be per-

formed in different ways, and recent research has focused

on developing more efficient methods. However, the key

differences between these methods are often unclear, and

few studies have compared them. In this work, we analyze

the current common tokenization methods and experiment

with time and note duration representations. We compare

the performance of these two impactful criteria on several

tasks, including composer classification, emotion classifi-

cation, music generation, and sequence representation. We

demonstrate that explicit information leads to better results

depending on the task.

1. INTRODUCTION

Most tasks involving using deep learning with symbolic

music [1] are performed with discrete models, such as

Transformers [2]. To use these models, the music must

first be formatted into sequences of distinct elements, com-

monly called tokens. For instance, a token can represent a

note attribute or a time event. The set of all known tokens

is commonly called the vocabulary, and each token is as-

sociated to a unique integer id. These ids are used as input

and output of models.

Compared to text, tokenizing music provides greater

flexibility, as a musical piece can be played by different

instruments and composed of multiple simultaneous notes,

each having several properties such as pitch, duration and

velocity. As a result, it is necessary to represent these ele-

ments in conjunction with the time dimension. To achieve

© F. Author, S. Author, and T. Author. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Author, S. Author, and T. Author, “Impact of time and

note duration tokenizations on deep learning symbolic music modeling”,

in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

this, researchers have developed various methods of tok-

enizing music, which are introduced in the next section.

While these works offer model performance compar-

isons between tokenization strategies, their main differ-

ences or similarities are not always clearly stated. Few

experiments have been conducted to compare model per-

formances using different tokenization strategies. Addi-

tionally, these studies mostly focus on music generation,

for which evaluations are performed on results obtained

autoregressively, which accumulates biases [3] and is ar-

guably difficult to evaluate [4].

This paper’s primary contribution is a thorough and

well-designed comparison of common tokenization tech-

niques. Our focus is on two critical aspects: the repre-

sentation of time and note duration. We believe that they

are significant and impactful design choices for any mu-

sic tokenization approach. Through experiments on com-

poser classification, emotion classification, music gener-

ation, and sequence representation, we demonstrate that

these design choices produce varying results depending

on the task, model type, and inference process. Autore-

gressive generation benefits from explicit note duration

and time shift tokens, while explicit note offset is more

discriminating better suited for contrastive learning ap-

proaches.

We present next the related works, followed by an anal-

ysis of music tokenization, experimental results, and fi-

nally a conclusion. The source code is available for re-

producibility. 1

2. DECOMPOSING MUSIC TOKENIZATION

2.1 Related works

Early works using discrete models for symbolic music,

such as DeepBach [5] or FolkRNN [6], rely on specific

tokenizations often tied to their training data. Since then,

researchers introduced more general representations appli-

cable to any kind of music. The most commonly used are

Midi-Like [7] and REMI [8]. The former tokenizes music

by representing tokens as the same types of events from

the MIDI protocol, while the latter represents time with

Bar and Position tokens and note durations with explicit

1 https://github.com/Natooz/time-duration-music-modeling
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Time Note duration

Tokenization TimeShift Bar + Pos. Duration NoteOff

MIDI-Like [7]
√

- -
√

REMI [8] -
√ √

-

Structured [17]
√

-
√

-

TSD [15]
√

-
√

-

Octuple [10] -
√ √

-

Table 1: Time and note duration representations of com-

mon tokenizations. Pos. stands for Position.

Duration tokens. Additionally, REMI includes tokens with

additional information such as chords and tempo.

More recently, researchers have focused on improv-

ing the efficiency of models with new tokenizations tech-

niques: Compound Word [9], Octuple [10] and PopMAG

[11] merge embedding vectors before passing them to the

model; 2) LakhNES [12] and [13], SymphonyNet [14]

and [15] use tokens combining several values, such as pitch

and vocabulary.

2.2 Music tokenization design

When analyzing the possible designs of music tokeniza-

tion, we can distinguish seven key dimensions:

• Time: Type of token representing time, either

TimeShift indicating time movements, or Bar and

Position indicating new bars and the positions of the

notes within them. We can also consider the unit of

Time-Shift tokens, either in beats or in seconds. 2

• Notes duration: How notes durations are repre-

sented, with either Duration or NoteOff tokens.

• Pitch: Most works use tokens representing absolute

pitch values, although recent work shed light on the

expressiveness gain of representing as intervals in-

stead [16];

• Multitrack representation: The representation of

several music tracks in a sequence, i.e., how are the

notes linked to their associated track.

• Additional information: Any additional informa-

tion such as chords, tempo, rests, note density. Ve-

locity can also falls in this category;

• Downsampling: How "continuous-like" features

are downsampled into discrete sets, e.g. the 128 ve-

locity values reduced to 16 values;

• Sequence compression: Methods to reduce the se-

quence lengths, such as merging tokens and embed-

ding vectors.

As time and note duration can both be represented in

two different ways, existing tokenizations can be easily

classified based on these dimensions, as shown in table 1.

2 In this paper we only treat of the beat unit. The MIDI protocol repre-
sents time in tick unit, which value is proportional to the time division (in
ticks per beat) and tempo. Hence, working with seconds would require a
conversion from ticks.

However, other dimensions offer a broader spectrum of po-

tential designs.

For instance multitrack can be represented by

Program tokens 3 preceding notes as in FIGARO [18],

distinct tracks sequences separated by Program tokens

as in MMM [19], combined note and instrument tokens as

LakhNes [12] and MuseNet [13], or merging Program

embeddings with the associated note tokens (MMT [20],

MusicBert [10]). One could even infer each sequence sep-

arately and lately model their relationships with operations

aggregating their hidden states an in ColBERT [21].

The MIDI protocol supports a set of effects and meta-

data that can also be represented when tokenizing symbolic

music, such as tempo, time signature, sustain pedal or con-

trol changes. Some works also include explicit Chord

tokens, detected with rule-based methods. Nevertheless,

only a few works experimented with such additional to-

kens so far ( [8, 22]).

Previous works have mainly compared tokenization

strategies by evaluating models with automatic and some-

times subjective (human) metrics, but often do not proceed

to comparisons between the ways to represent one of the

dimensions we introduced previously. [8] compared results

for the generation task, for the use of Bar and Position

tokens versus TimeShift in seconds and beats.

To the best of our knowledge, no comprehensive work

and empirical analysis have fairly compared these possi-

ble tokenization choices. Conducting such an assessment

would require an extensive survey. In this paper, we specif-

ically focus on the time and note duration representations,

as they are the two main characteristics present in every

tokenization.

We want to highlight the importance of the explicit in-

formation carried by the token types, as they directly im-

pact the performances of models. TimeShift tokens

represent explicit time movements, and especially the time

distances between successive notes. On the other hand,

Bar and Position tokens bring explicit information on

the absolute positions (within bars) of the notes, but not

the onset distances between notes. One could assume that

the former might help to model melodies, and the lat-

ter rhythm and structure. For note duration, Duration

tokens intuitively express the absolute durations of the

notes, while NoteOff tokens explicitly indicates the off-

set times. With NoteOff, a model would have to model

note durations from the combinations of previous time to-

kens.

Our experiments aim to demonstrate the impact of dif-

ferent combinations of time and note duration tokens on

model performance and which combinations are suitable

for different tasks. Next, we introduce our methodology.

3. METHODOLOGY

3.1 Models and trainings

For all experiments, we use the Transformer architecture

[2], with the same model dimensions: 12 layers, with di-

3 Following the conventional programs from the MIDI protocol.
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mension of 768 units, 12 attention heads and inner feed-

forward layers of 3072.

For classification and sequence representation, it is first

pretrained on 100k steps and a learning rate of 10−4, then

finetuned on 50k steps and a learning rate of 3 × 10−5,

with a batch size of 48 examples. An exception is made

for the EMOPIA dataset, for which we set 30k pretraining

steps and 15k finetuning steps, as it is fairly small. These

models are based on the BERT [23] implementation of the

Transformers library [24]. We use the same pretraining

than the original BERT: 1) from 15% of the input tokens,

80% is masked with a special MASK token, and 20% is

randomized; 2) half of the inputs have 50% of their tokens

(starting from the end) shuffled and separated with a spe-

cial SEP token, and the model is trained to detect if the

second part is the next of the first.

For generation, the model is based on the GPT2 im-

plementation of the Transformers library [24]: it uses

a causal attention mask, so that for each element in

the sequence, the model can only attend to the current

and previous elements. The training is performed with

teacher forcing, the cross-entropy loss is defined as: ℓ =
−∑n

t=1 log pθ(xt|x≤n).

All trainings are performed on V100 GPUs, using auto-

matic mixed precision [25], the Adam optimizer [26] with

β1 = 0.9, β2 = 0.999 and ϵ = 10−8, and dropout, weight

decay and a gradient clip norm of respectively 10−1, 10−2

and 3. Learning rates follow a warm-up schedule: they are

initially set to 0, and increase to their default value during

the first 30% of training, then slowly decrease back to 0.

10% of the data is used for validation during training,

and 15% to test models. Inputs contains 384 to 512 tokens,

and begin with a BOS (Beginning of Sequence) token and

end with a EOS (End of Sequence) one.

3.2 Tokenizations

We investigate here the four combinations of possible time

and note duration representation. In the results, we re-

fer to them as TS (TimeShift), Pos (Position), Dur

(Duration) and NOff (NoteOff). It is worth noting

that TS + Dur is equivalent to TSD [15] and Structured

[17], TS + NOff is equivalent to MIDI-Like [7], and Pos +

Dur is equivalent to REMI (without additional tokens for

chords and tempo).

We apply different resolutions for Duration and

TimeShift token values: those up to one beat are down-

sampled to 8 samples per beat (spb), those from one to

two beats to 4 spb, those from two to four beats to 2 spb,

and those from four to eight beats to 1 spb. Thus, short

notes are represented more precisely than longer ones.

Position tokens are downsampled to 8 spb, resulting

in 32 different tokens as we only consider the 4/* time

signature. This allows to represent the 16th note. We

only consider pitches within the recommended range for

piano (program 0) specified in the General MIDI 2 speci-

fications 4 : 21 to 108. We then deduplicate all duplicated

4 Available on the MIDI Manufacturers Association website.

notes. Velocities are downsampled to 8 distinct values. No

additional token (e.g., Chord, Tempo) is used.

We perform data augmentation by creating variations of

the original data with pitches increased and decreased by

two octaves, and velocity by one value. Finally, following

[15], we use Byte Pair Encoding to build the vocabularies

up to 2k tokens for generation and 5k for other tasks. All

these preprocessing and tokenization steps were performed

with MidiTok [27].

4. GENERATION

For the generative task, we use the POP909 dataset [28].

The models start with prompt made of between 384 to 512

tokens, then autoregressively generate 512 additional to-

kens. Evaluation of generated results remains an open is-

sue [4]. Previous work often perform measures of similar-

ity of certain features such as pitch range or class, between

prompts and generated results, alongside human evalua-

tions. Feature similarity is however arguably not very in-

sightful: a generated result could have very similar features

to its prompts while being of poor quality. Human evalu-

ations, while being more reliable on the quality can also

induce biases. Besides, [8] already shows results on an ex-

periment similar to ours.

Hence we choose to evaluate results on the ratios of pre-

diction errors: Token Syntax Error (TSE) [15]. This met-

ric is bias-free and directly linked to the design choices of

the tokenizations. It allows us to measure how a model

achieves to make reliable predictions based on the input

context and the knowledge it learned.

We use the categories from [15]:

• TSEtype: an error of type, e.g., when the model

predicts a token of an incompatible type with the

previous one.

• TSEtime: a wrong predicted Position value,

that goes back or stay in time.

• TSEdupn (duplicated note): a note predicted

whereas it was already being played at the current

time being.

• TSEnnof (no NoteOff): a NoteOn token been pre-

dicted with no following NoteOff token to end it.

• TSEnnon (no NoteOn): NoteOff token predicted

whereas this note was not being played.

For each generated token, a rule-based function ana-

lyzes its type and value to determine if both are valid, or

which type of error was made otherwise. The overall num-

ber of errors is normalized by the number of predicted to-

kens.

The results are reported in table 2. We first observe that

the type error ratios are lower than in other categories. This

is excepted since it is less computationally demanding to

model the possible next types depending solely on the last

one, rather than on the value of the predicted token, for
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Figure 1: Histograms of the note onset positions within bars (top-row), note offset positions within bars (middle-row)

and note durations (bottom-row) of the generated notes. There are 32 possible positions within a bar, numerated from 0

(beginning of bar) to 31 (last 32th note). The durations are expressed in beats, ranging from a 32th note to 8 beats.
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Figure 2: Token type succession heatmaps of the gener-

ated results. The horizontal axis denotes the next token

type per from the ones on the vertical axis. Each row is

normalized to a sum of 1.

which the validity depends on a the whole previous con-

text.

Position tokens bring almost no type errors, but a

noticeable proportion of time errors. When decoding to-

kens to notes, this means that the time may go backward,

and resulting in sections of overlapping notes.

Although Duration tokens seem to bring slightly

more note duplication errors, the use of NoteOn and

NoteOff tokens results in a considerable proportion of

Tokenization TSEtype ↓ TSEtime ↓ TSEdupn ↓ TSEnnon ↓ TSEnnof ↓
TS + Dur < 10−3 - 0.014 - -

TS + NOff < 10−3 - 0.001 0.109 0.040

Pos + Dur 0.002 0.113 0.032 - -

Pos + NOff 0.002 0.127 0.005 0.095 0.066

Table 2: Prediction error ratios when performing autore-

gressive generation. - symbol stands for not concerned,

and can be interpreted as 0.

note prediction errors. NoteOff tokens predicted while

the associated note was not being played (TSEnnon) does

not have undesirable consequences when decoding tokens

to notes, but it pointlessly extends the sequence, reducing

the efficiency of the model, and may mislead the next to-

ken predictions. Additionaly, NoteOn tokens predicted

without associated NoteOff (TSEnnof ) result in notes

not properly ended. This error can only be handled by ap-

plying a maximum note duration after decoding. Explicit

Duration tokens allows to specify in advance this in-

formation, for both short and long notes. Conversely, with

NoteOff tokens, the note duration information is implicit

and inferred by the combinations of NoteOn, NoteOff

and time tokens. This can be interpreted as an extra ef-

fort for the model. Consequently, some uncertainty on

the duration accumulates over autoregressive steps dur-

ing generation. Based on these results, the best tradeoff

ensuring good predictions seems to represent time with

TimeShift tokens and note duration with Duration

tokens.

In fig. 1 we observe the positions within bars and dura-

tions of the generated notes. In all cases, onset positions

are more distributed at the beginning of the bars. This is

especially the case with Bar and Position tokens, for

which we may find unexpected rests at the end of bars,
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when Bar tokens are predicted during the generation be-

fore that the current bar is completed. The TS + Dur com-

bination places note onsets much more on even positions.

The probability mass of TimeShift tokens (especially for

short values) seems to be much higher. However, this is not

the case for the TS + NOff combination, as TimeShift

tokens have to be predicted to move the time on odd po-

sitions of note offsets. As shown in fig. 2, right after the

model is likely to predict a next note, resulting in evenly

distributed onset distribution.

Finally, the use of NoteOff tokens tends to produce

longer note durations, especially when combined with

Position tokens. In this last case, we can assume

that the model might "forget" the notes currently being

played, and that it struggles more to model their durations

that have to be implicitly deduced from the past Bar and

Position tokens.

Tokenization Top-20 composers ↑ Top-100 composers ↑ Emotion ↑
TS + Dur 0.973 0.941 0.983

TS + NOff 0.962 0.930 0.962

Pos + Dur 0.969 0.927 0.963

Pos + NOff 0.963 0.925 0.956

Table 3: Accuracy on classification tasks.

5. CLASSIFICATION

For some classification tasks, symbolic music is arguably

better suited than audio or piano roll. This is particu-

larly true for classical music feature classification, such

as composer [29]. Mono-instrument music with complex

melodies and harmonies and no particular audio effect ben-

efit from being represented as discrete for classification

and modeling tasks. Given this, it felt important to us to

conduct experiments on such task.

We choose to experiment with the GiantMIDI [30]

dataset for composer classification and the EMOPIA [31]

dataset for emotion classification. The results, as shown in

table 3, indicate that there is very little difference between

the various tokenization methods. However, the combina-

tion of TimeShift and Duration consistently outper-

forms the others by one point

The classification task involves modeling the patterns

from data that are characteristic to composers or emotions.

Here, it seems that the time distance between notes, and

their explicit duration play a role in these task, more than

note offsets or onset positions. This comes with no sur-

prise for the composer classification task, considering that

the data is largely composed of complex music with dense

melodies and harmonies, featuring mostly short succes-

sive notes. Intuitively, patterns of note successions and

chords are more easily distinguishable with explicit dura-

tions. With implicit note durations, the overall patterns

must be deduced by the combinations of NoteOn and

NoteOff tokens while keeping track of the time.

6. SEQUENCE REPRESENTATION

The last task that we wished to explore is sequence repre-

sentation. It consists in obtaining a fixed size embedding

representation of an input sequence of tokens pθ : VL 7→
R

d. Here V ⊂ N denotes the token ids of the vocabulary

V , L is the variable input sequence length, and d the size of

embeddings. In other words, the model learns to project an

input token sequence into a embedding space, thus provid-

ing a universal representation. We find this task interesting

and well-suited to assess model performances as it directly

trains it to model the relationships between tokens within

the input sequence and between different representations

themselves. While the real-world applications of this task

for symbolic music are currently limited, it serves as a use-

ful benchmarking technique for measuring how tokeniza-

tion impacts the learning of models.

This task has previously been addressed in natural lan-

guage processing by SentenceBERT [32] or SimCSE [33].

We adopted the approach of the latter, which uses con-

trastive learning to train the model to learn sequence rep-

resentations, for which similar inputs have higher cosine

similarities. The sequence embedding is obtained by per-

forming a pooling operation on the output hidden states

of the model. We decided to use the last hidden state of

the BOS token position, as it yielded good results with

SimCSE [33] 5 . We trained the models with the dropout

method: during training, a batch of n sequences X =
{xi}ni=0 is passed twice to the model, but with different

dropout masks, resulting in different output sequence em-

beddings Z = {zi}Ni=0 and Z̄ = {z̄i}Ni=0. Although the

dropout altered the outputs, most of the input information

is still accessible to the model. Hence, we expect pairs

of sequence embeddings (zi, z̄i) to be similar, so having a

high cosine similarity. To achieve this objective, we train

the model with a loss function defined by the cross-entropy

for in-batch pairwise cosine similarities (sim):

ℓi = − log
esim(zi,z̄i)/τ

∑N
j=1 e

sim(zi,z̄j)/τ
(1)

As a result, the model will effectively learn to cre-

ate similar sequence embeddings for similar inputs, while

pushing apart those with dissimilarities. We kept a 0.1

dropout value to train the models, and used the GiantMIDI

dataset [30].

Evaluation of sequence representation is intuitively per-

formed by measuring the distances and similarities of pairs

of similar sequences. We resort to data augmentation by

shifting the pitch and velocity of the sequences in order to

get pairs of similar music sequences. The augmented data

keeps most of the information of the original data. As such,

the models are expected to produce similar embeddings for

pairs of original-augmented sequence. Ideally, the cosine

similarity should be high, yet not to be equal to 1, as this

would indicate that the model fails to capture the differ-

ences between the two sequences. The results, presented

in fig. 3, indicate that Position-based tokenizations per-

5 SimCSE uses a CLS token which is equivalent to BOS in our case.
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Figure 3: Density plots of cosine similarities between pairs of original and augmented token sequences.

form slightly better. Therefore, it appears that explicit note

onset and offset positions information facilitates models to

obtains a universal musical representation.

Unlike classification, the contrastive learning objective

models the similarities and dissimilarities between exam-

ples in the same batch. In this context, note onset and offset

positions appear to be helpful for the models to distinguish

music.

We also note the contrasting results when augmenting

the velocity. Increasing it by one unit, which would be

equivalent to playing just a little bit louder, have arguably a

very small impact. As a result, the models mostly produces

embeddings that are almost identical for the original and

the augmented sequences, but also exhibits uncertainty for

a notable proportion of samples.

To complement these results, we estimated the isotropy

of sets of sequence embeddings. Isotropy measures the

uniformity of the variance of a set points in a space.

More intuitively, in an isotropic space, the embeddings

are evenly distributed. It has been associated with im-

proved performances in natural language tasks [34–36],

because embeddings are more equally distant proportion-

ally to the density of their area, and are in turn more dis-

tinct and distinguishable. We choose to estimate it with

the intrinsic dimension of the sets of embeddings. In-

trinsic dimension is the number of dimensions required to

represent a set of points. It can be estimated by several

manners [37]. We choose Principal Component Analysis

(PCA) [38], method of moments (MOM) [39], Two Near-

est Neighbors (TwoNN) [40] and FisherS [41]. The re-

sults, reported in table 4, show that the embeddings cre-

ated from the Pos + Dur combination tend to occupy more

space across the dimension of the model, and are poten-

tially better distributed.

7. CONCLUSION

We have discussed the importance of different aspects of

symbolic music tokenization, and focused on two major

ones: the time and note duration representations. We

showed that different tokenization strategies can lead to

Tokenization lPCA ↑ MOM ↑ TwoNN ↑ FisherS ↑
TS + Dur 213 42.6 34.3 17.5

TS + NOff 161 43.7 32.7 17.5

Pos + Dur 146 39.1 33.1 17.1

Pos + NOff 177 45.2 35.6 17.8

Table 4: Intrinsic dimension of sequence embeddings, as

an estimation of isotropy.

different model performances due to the explicit informa-

tion carried by tokens, depending on the task at hand.

Explicitly representing note duration leads to better

classification accuracy as it helps the models to capture

the melodies and harmonies of a music. Modeling dura-

tions, when represented implicitly, adds an extra effort to

the model. However, the note offset position information

it brings have been found to be more discriminative and

effective in our contrastive learning experiment.

For music generation, the time representation plays a

significant role, for which the note onset and offsets distri-

butions vary due to the successions of token types. Implicit

note durations are less suited for the autoregressive nature

of this task, from a prediction error perspective, and some-

times "forgetting" notes being played resulting in higher

durations.

We did not explore music transcription, for which we

can assume that implicit note durations (note onset and

offset) might be better suited. When training with chunks

of log-scaled mel-spectrograms as done by [42, 43], these

may contain frequencies of unended or not begun notes.

Specifying their original durations might approximate on-

sets might alter model performances.

Future research will further explore the other dimen-

sions of music tokenization, such as multitrack or meta-

data, on transcription and other tasks analogous to natural

language understanding.
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ABSTRACT

Micro-timing is an essential part of human music-making,

yet it is absent from most computer music systems. Partly

to address this gap, we present a novel system for gen-

erating music with style-specific micro-timing within the

Sonic Pi live coding language. We use a probabilistic

approach to control the exact timing according to pat-

terns discovered in new analyses of existing micro-timing

data (jembe drumming and Viennese waltz). This imple-

mentation also required the introduction of musical me-

tre into Sonic Pi. The new metre and micro-timing sys-

tems are inherently flexible, and thus open to a wide range

of creative possibilities including (but not limited to):

creating new micro-timing profiles for additional styles;

expanded definitions of metre; and the free mixing of

one micro-timing style with the musical content of an-

other. The code is freely available as a Sonic Pi plug-in

and released open source at https://github.com/

MaxTheComputerer/sonicpi-metre.

1. INTRODUCTION

1.1 Metre Versus Rhythm

Metre is distinct from rhythm in that it primarily concerns

a kind of mental representation for processing events in

musical time; a common analogy casts metre as a “grid” or

“template” for categorising rhythmic events [1–3].

Although metre often involves familiar notions such as

“the beat”, and definitions often emphasise intuitive ideas

like regular periodicity, a clear-cut definition of metre is

surprisingly hard to pin down. This is especially so when

trying to capture the extremely wide range of musical-

cultural contexts for which some concept of metre might

be relevant. Nevertheless, notwithstanding the complex-

ities of these terms, and putting any more specific defini-

tion of these terms to one side, it is reasonable to argue that

some form of both “rhythm” and “metre” feature in almost

all known musics: “rhythm” in the sense of events occur-

ring in time, and “metre” in some form of semi-regular

cycle of event expectation.

© M. Johnson and M. Gotham. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: M. Johnson and M. Gotham, “Musical Micro-Timing for Live

Coding”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

1.2 On Micro-Timing in Theory and Practice

“Micro-timing”, in turn, refers to the specific timing of

both those actual rhythmic “events” and of the metrical

“grid” positions. While rhythm and metre are sometimes

modelled in terms of a completely regular underlying pulse

(e.g., 1-1-1-1-) and small integer combinations thereof

(e.g., 2-1-1-), it is impossible in practice for a human per-

former to play with the mechanical precision of identical

gaps between successive events. 1 Moreover, musicians

make a virtue of this. A close look at the micro-timings

in human performance reveals deeply sophisticated, style-

specific micro-timing strategies, a.k.a. “groove”. 2

Even when distinguishing between a mental “grid” for

events (metre) and the actual placement of those events

(rhythm), it is appropriate to discuss micro-timing for both

the rhythm and the metre. This distinction is sometimes

cast in terms of a difference between “categorical” and “ex-

pressive” timing where events may be expressively altered

from their expected (categorical) position [5], but note that

the “categorical” position itself is also subject to micro-

timing strategies because the “expected” positions are not

spaced with equal, 1:1 regularity. In short, although micro-

timing is sometimes described in terms of “small devia-

tions” from simple (natural number) pulse relations, it is

necessary also to consider micro-timing as part of the me-

tre itself. To continue the “metre as grid” analogy: the gaps

between grid lines are not evenly spaced.

In practice, these micro-timing durations are too short

to learn in a declarative fashion (verbal or mathemati-

cal). Partly for that reason, they are also typically ne-

glected by notation systems (including Western staff no-

tation). Nonetheless, these micro-timing strategies clearly

are taught and learned in the way that most music has been

passed on: through listening, playing, and embodiment.

Computers enable us to achieve a level of timing reg-

ularity beyond our human capability. As ever, the tech-

nology not only extends what we can do, but invites us to

consider new techniques, questions, and aesthetics. And

the human’s micro-timing can of course be combined with

the computer’s extreme timing precision, as when an MC

raps over a beat. Computers are also used to perform the

micro-timing analysis discussed here. However, comput-

ers are currently less exploited as a tool to help us engage

in creative uses of micro-timing strategies.

1 This has been systematically studied since Seashore [4].
2 See, for example, Justin London’s “many metres” [2].
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2. RELATED WORK

A substantial research field has grown to analyse the

micro-timing strategies in different musical styles. This

has included work on the Viennese waltz (from Bengts-

son and Gabrielsson’s landmark 1977 work to Yang’s 2022

analysis of ‘The Blue Danube’ [6, 7]), jembe music from

Mali (notably through Rainer Polak’s career-long focus on

this repertoire, [8–10]), and a recent surge of work on Afro-

Cuban and Latin musics (see, for instance, [11, 12]).

Creating music with synthetic micro-timing has also

been explored as part of the broad field of MIR, but

has concentrated on attempting to model human-like ex-

pressive timing [13]. For example, Flossman et al. use

probabilistic models for expressive performance render-

ing [14, 15]. There has been very little academic work

on integrating style-specific timing analyses into compu-

tational settings. The closest examples are in the commer-

cial sphere: Ableton Live, for instance, features “grooves”

which shift MIDI events from quantised positions accord-

ing to micro-timing styles, including a probabilistic ele-

ment and the option to create new “grooves” from any hu-

man performances (via MIDI).

Musical live coding is a way of creating and perform-

ing music by writing and modifying code in real time.

While there may or may not be pre-made materials, live

manipulation of the material is a given. Given the in-

herent “liveness” of live coding, 3 it is arguably an ideal

part of the computer music pantheon to integrate human

micro-timing. Yet most live coding languages lack not

only micro-timing functionality, but even a full represen-

tation of musical metre, typically encoding only events in

time, or at most an anaemic representation for beats and/or

time signatures. For example, the commercial Max/MSP

language uses its transport object to allow access to

bar and beat numbers for the current time signature. An ex-

ception is McLean’s open-source Tidal Cycles which uses

a cyclic notion of time that can be subdivided to achieve

more complex hierarchies [17].

In summary, although there has been much research into

the analysis of micro-timing in different musical styles,

and the application of expressive timing to computer-

generated music, we still lack implementations of style-

specific micro-timing in most computer-music software,

and even foundational notions of musical metre in most

live coding environments. This project seeks to address

those issues through an implementation of both metre and

style-specific micro-timing for Sonic Pi: a popular live

coding language and IDE designed to support a range of

creative possibilities while being simple enough to use as

an educational tool for use in schools [18]. 4 We aim to im-

prove not only how “life-like” the generated music sounds

in general (and thus, arguably the “liveness” of that live

coding), but also to do this in a style-specific way. In this

paper we report on implementation of two case studies as

well as a general framework for integrating further styles.

3 This is discussed in Chapter 5 of [16], for instance.
4 Sonic Pi’s domain-specific language is written in Ruby and uses the

SuperCollider sound synthesis server to produce sounds [19].

Metre

d = 2
4

MetreTree

d = 1
4

MetreLeaf

d = 1
8

MetreLeaf

d = 1
8

MetreTree

d = 1
4

MetreLeaf

d = 1
8

MetreLeaf

d = 1
8

Figure 1: An example of how MetreTree and MetreLeaf

objects are nested to construct a metrical hierarchy for 2
4 .

The total duration d of each node is also displayed, and the

duration of a parent node is the sum of the durations of its

children [22, 23].

3. IMPLEMENTING METRE

This section describes the model of metre we have imple-

mented for Sonic Pi. We argue that this is useful for a

range of applications including (but not limited to) use as

a basis for micro-timing as described below (§4). As dis-

cussed, metre is a very widespread phenomenon in gen-

eral but specific aspects differ. We can broadly distinguish

here between the specifically hierarchical aspects (impor-

tant for some styles but not all) and the more general notion

of categorical positions in a metrical cycle (much more

widespread, and axiomatic for the kind of micro-timing

systems discussed and implemented here).

3.1 Modelling Metrical Hierarchy with Trees

A favoured method for encoding metrical hierarchy in a

data structure is through trees. See Forth [20] for a de-

tailed mathematical treatment of trees used in this context

and the music21 Python library [21] for a popular imple-

menation. Our approach shares some high-level ideas with

music21 (and indeed Forth, and others), but differs in the

specific implementation.

The tree structure is implemented by the MetreLeaf

and MetreTree classes. Figure 1 shows the default tree

structure formed by these objects and their durations for

a Western 2
4 time signature. Note how the duration of a

parent node is the sum of the durations of its children.

To model tree data structures of any depth with a suc-

cinct, finite representation, we follow the Western nota-

tional assumption of diving each MetreLeaf into two equal

parts to get the next level where not specified otherwise. 5

Users can specify the full depth of a tree as necessary

against this assumption.

3.2 The MetreLeaf Class

A MetreLeaf object is the leaf node of the metrical tree

structure. It has an instance variable fraction which

represents the duration of the MetreLeaf as a fraction of a

whole note. For example, a leaf node with the duration of

one quarter note will have the value 1
4

.

5 See [24] for discussion of this point, of metrical “well-formedness”,
and the notion of “binary”, “ternary” and wider metrical structures.
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The class contains a subdivide()method, which di-

vides the MetreLeaf by two a given number of times, s. It

returns a new MetreTree with 2s MetreLeaf children, each

of value f/2s where f is the fraction of the original Me-

treLeaf.

3.3 The MetreTree Class

A MetreTree object represents the hierarchical tree or sub-

tree of a metre. The instance variable sequence is an

ordered list representing this node’s children and contains

any combination of MetreLeaf objects and other MetreTree

objects. For example, the hierarchy in Figure 1 could also

be written in list form as:

[[

1

8
,
1

8

]

,

[

1

8
,
1

8

]]

Each list is a MetreTree, and each fraction is a MetreLeaf.

The MetreTree class contains several methods for manip-

ulating and extracting information from the metrical hier-

archy it represents. The two most important of these are

explained in more detail below.

3.3.1 Getting Metrical Levels

Metrical level refers to the depth level of a metrical hier-

archy. Here, we base our representation on the beat level,

which is divided to get division levels, and grouped to get

grouping levels. 6 The get_level() method allows a

user to “flatten” the tree structure to a specified depth, ac-

cessing the sequence of events at a given metrical level.

For flattening to a division level (l > 0) or to the beat

level (l = 0), we perform a recursive depth-first search

on the tree. For each child in the sequence list, if it is a

MetreTree, the method is recursively called until the base

case of l = 0 is reached. At this point, all the children

of that node are combined into one MetreLeaf equal to the

sum of their durations. If the child is instead a MetreLeaf,

it is subdivided l times to reach the desired metrical level.

For a grouping level (l > 0), we find an estimate of

the structure of higher metrical levels by clustering nodes

together. It is an estimate because this information is not

in the MetreTree’s representation of the metre, so is just

one possibility for the higher structure. The algorithm re-

cursively clusters nodes until the desired metrical level l is

reached. The number of nodes combined in each cluster is

determined by the smallest prime factor of the number of

nodes at the level below. For example, if level l + 1 has

four nodes, they will be clustered in groups of two. If it

has nine nodes, they will be clustered in groups of three.

Some examples of the output of the flattened tree for the

following complex hierarchy are shown in Table 1:

[[

1

8
,
1

8

]

,

[

1

16
,
3

16

]

,
1

8
,

[

1

4
,

[

5

16
,
3

16

]]]

6 Centring the beat level in this way reflects the psychology of metre
better than alternative “top down” and “bottom up” approaches.

l get_level(l)

−2

[

11

8

]

−1

[

1

2
,
7

8

]

0

[

1

4
,
1

4
,
1

8
,
3

4

]

1

[

1

8
,
1

8
,
1

16
,
3

16
,
1

16
,
1

16
,
1

4
,
1

2

]

Table 1: Examples of the output of get_level(l) at dif-

ferent metrical levels l for an example hierarchy. Note how

level l = −1 is formed by the clustering of level l = 0.

Level 0

Level 1

Level 2

1
4

1
8

1
16

1
16

1
8

1
16

1
16

x

1
4

1
8

1
16

1
16

1
8

1
16

1
16

y

Figure 2: An example metrical hierarchy for 2
4 showing

those metrical events at each level which coincide with off-

sets x and y.

3.3.2 Getting Exact Metrical Events

We define an offset as a position in the metric cy-

cle represented by the quarter length duration to have

elapsed since the beginning of the cycle. 7 The

metrical_level_indices() method of the Metre-

Tree class finds any metrical events occurring at a given

offset, and returns their index.

Consider the example shown in Figure 2. Offset x oc-

curs on the first event of all three levels, so the function

would return L0(x) = L1(x) = L2(x) = 0, where Ll(x)
is the index of an event at level l that offset x occurs on.

Offset y occurs only on the last event of Level 1 and the

second-to-last event of Level 2, so the function would re-

turn L1(y) = 3, L2(y) = 6.

This method is important because it is used later to de-

termine the “categorical” position to link an event to and,

through that, which micro-timing probability distribution

to apply.

3.4 Bar Class

The Bar class is a representation of a single metrical cy-

cle, 8 and each instance of it has an associated metre. A

Bar object is responsible for:

7 “Quarter length” is a semi-standard measurement for a length of time
in symbolic values where the unit length is one “quarter note” duration
(UK: “crotchet”).

8 A more precise definition would account for hypermetre where bars
occur at the beat level [25], but the simple definition is sufficient for our
purposes. Note that “bar” is the UK English equivalent of “measure”
(USA).
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play :C4

sleep(1)

play :E4

sleep(1)

play :G4

sleep(0.5)

play :E4

sleep(0.5)

play :C4

(a) Old (above left)

use_metre '4/4'

bar do

add_note :C4, 0, 1

add_note :E4, 0, 1

add_note :G4, 1, 1

add_note :E4, 1, 1

add_note :C4, 0, 1

end

(b) New (above right)

(c) Western musical notation:

 
445 6 6 6 6 6

Figure 3: A bar of music represented by (a) the original

Sonic Pi syntax, (b) our new metre commands, and (c) tra-

ditional Western music notation. Note how the original

Sonic Pi syntax loses information about the metre. The

second and third arguments to add_note are the metrical

level and duration (l and d in §3.4).

• Keeping track of playback position during the cycle.

• Converting a note length given as a metrical level

and a duration into a quarter length.

• Checking if a note or rest fits in the remaining time

in the cycle, and updating the bar’s playback position

accordingly.

A note’s length is specified by a metrical level and a

duration, where the duration is in the units of an event at

the specified metrical level and acts as a multiplier. For

example, if a note’s length is defined as (l, d) = (0, 3), its

unit length is the duration of an event at level l = 0, and it

lasts for d = 3 of these units.

The add_note() method checks if a note fits into

the bar’s remaining time; if it cannot, an exception is

raised. This ensures the total (“actual”) duration of the bar

matches its metre’s (“nominal”) duration.

3.5 Playing Music

This framework for musical metre enabled the creation of

new Sonic Pi commands. Figure 3 shows a comparison

between the original Sonic Pi commands, our alternative

commands, and traditional Western music notation.

There are two main commands for metre. The first

is use_metre(m), which changes the current thread’s

metre to m (using a thread-local variable). The second

is bar do ... end, which creates a new Bar object,

stores this to a thread-local variable, then executes a block

of user code.

A user can use add_note to play a note on the cur-

rent synthesiser. This works by first getting the current Bar

object from the thread-local variables and calling the Bar’s

add_note() method to check if the note will fit in the

bar. It then passes the note pitch to Sonic Pi’s play func-

tion which creates the sound, and finally applies sleep

for the remaining duration of the note.

4. MICRO-TIMING

4.1 Storing Micro-Timing Information

In order to add micro-timing functionality to our imple-

mentation, we first needed a way of representing and

storing the micro-timing information for different musical

styles. We implement this by storing each event in the met-

rical cycle, the theoretical (isochronous) position of that

event in the cycle (e.g., 1), and the typical displacement

of the from this position (the µ of the micro-timing, e.g.,

+0.004). Actual event occurrence is modelled by normal

probability distribution around these µ values.

Samples can then be drawn from these distributions

using the Box-Muller transform [26] on uniform random

samples from Sonic Pi’s random number generator. Sonic

Pi’s generator produces a deterministic, repeatable se-

quence of pseudorandom numbers, which means the out-

put of a Sonic Pi program sounds the same each time it is

run [27].

4.2 Applying Micro-Timing

When a user sets a metre with the use_metre command,

they can optionally specify a style as well. This causes all

music played with that metre to use the micro-timing of the

chosen style.

At the start of each new bar, the Metre object sam-

ples new values from the Style’s probability distribu-

tions. When a note is played inside the bar, the add_note

command requests the timing shift that should be applied

to the note from the Metre. To calculate this, the Metre ob-

ject calls its metrical_level_indices() method

to determine which timing values from each level to use.

The individual timing contributions of each metrical level

are summed to produce an overall timing shift for the note.

A positive value means the note should be played slightly

late; a negative value means slightly early. This is returned

to add_note which then uses Sonic Pi’s time_warp

function to adjust the timing of the call to play.

For example, if the sampled timings, Tl, for each level,

l, are:

T0 = [0, 0.1]

T1 = [0.03, 0, 0,−0.02]

and the metrical level indices, Ll, for each level, l, are:

L0 = 1

L1 = 3

then the timing shift, t, would be calculated by:

t =
∑

i∈T.keys

Ti[Li]

= T0[L0] + T1[L1]

= 0.1 + (−0.02)

= 0.08

Therefore, the note will be played 0.08 quarter lengths after

the reference value.
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5. CASE STUDIES

Creating music with realistic micro-timing using the im-

plementation we have described requires a set of proba-

bility distributions which accurately characterise a style of

music. Clearly this is best implemented with data derived

from real-life examples of the musical style in question.

This project uses two different styles of music as contrast-

ing case studies for evaluation: jembe (or “djembe”) drum

music from Mali and Viennese waltz music. These two

styles both have robust, well-known micro-timing charac-

teristics. The distributions derived here form the “preset”

styles included in our Sonic Pi plugin.

5.1 Jembe Data Analysis

Jembe is a style of West African music involving a small

ensemble of drummers (typically 3–4). It provides an ideal

case study for our purposes because it has a highly con-

sistent micro-timing strategy [8]. Malian drummers have

been shown to exhibit some of the most consistent tim-

ing (lowest levels of variability) between performers in the

world [28].

Moreover, jembe music is relatively constrained in

terms of its pitch, timbre, and number of instruments. This

also helps by enabling a clear focus on timing. Exten-

sive research into the micro-timing of jembe music has in-

cluded the release of high-quality datasets of processed live

recordings [8–10].

The first dataset is from Jacoby et al. [10] and consists

of 11 processed recordings of a piece called ‘Suku’, which

is a very commonly played piece in this style. The second

dataset is from the “Interpersonal Entrainment in Music

Performance” (IEMP) Data Collection [29, 30]. This con-

sists of 15 recordings across three different pieces: ‘Man-

janin’, ‘Maraka’, and ‘Woloso’. Both datasets here use

recordings made by Rainer Polak in Mali. The datasets

supply the following information:

• Onset of the drum stroke in seconds since the start;

• Phase: beats since the start of the current cycle;

• Cycle (bar) number: a natural number count;

• Categorical metrical position within the cycle asso-

ciated with this event (integer, 0–11).

5.1.1 Micro-Timing Estimation

The pieces of jembe music in the dataset use a metre with

four beats, 9 each of which divides into three, for a total of

12 metrical events at the first division level (similar to 12
8

in Western classical notation). It is at this level, referred to

as the “pulse”, that the main micro-timing occurs.

Recall that the probability distributions described in

§4.1 store the displacement of each event. We calculate

this from the phase given by the datasets with the follow-

ing equation:

displacement =
(phase × beat division)− metric position

2
9 See Polak [8] for an ethnographically sensitive discussion of the ex-

tent to which metre applies in this context.

The phase is multiplied by the beat division (in this case,

3) to convert it into pulse units. The metric position at the

pulse level is subtracted to get the displacement. The final

division by 2 converts the displacement into quarter lengths

(because each pulse unit is an eighth length).

For example, if an onset has metric position = 6 and

phase = 2.01, the displacement would be calculated by:

displacement =
(2.01× 3)− 6

2
= 0.015 quarter lengths.

Once the displacement has been calculated for each

drum stroke, we were then able to estimate the distribution

of displacements for each of the twelve metric locations

using maximum likelihood estimation (MLE).

5.1.2 Tempo Estimation

Generating a synthetic piece of jembe music requires anal-

ysis of other musical features as well as the micro-timing to

sound realistic. One of these is the tempo, which in jembe

pieces of music typically increases substantially over the

duration of the performance [10], with the last 15 seconds

or so showing the tempo increasing at a much faster rate.

The inter-beat interval (IBI) is defined as the time be-

tween two consecutive beats in a piece of music, from

which the instantaneous tempo can be calculated [31]. A

moving average can be applied to the instantaneous tempo

to obtain an estimate of the global tempo.

For the jembe data, we first filtered all the onsets to in-

clude just those played by Jembe 2 (because it plays on

every beat as discussed in [10]), then filtered these to only

consider onsets on the beats. We then calculated the inter-

beat interval in bpm and applied a moving average with

window size 10 to smooth the tempo estimate.

Inspection of the smoothed tempo graphs (§6.2) showed

a logarithmic trend for the first ~95% of the piece. A

sharper increase follows this which was modelled by a

quadratic curve. To fit curves to the data, we used

the optimize.curve_fit function from the SciPy

Python library, which uses a non-linear least squares

method [32]. The parameters estimated by the curve fit-

ting are then used in Sonic Pi to control the tempo of a

synthetic jembe piece during playback.

5.2 Waltz Data Analysis

The Viennese waltz is a style of fast waltz notated in 3
4 (but

often counted in 1), originally intended for ballroom danc-

ing, and now often performed in concerts by Western clas-

sical orchestras.

The Viennese waltz provides a useful comparison to

Malian jembe in evaluating this project’s micro-timing im-

plementation. The fast three beats (34) and typical hyper-

metrical grouping in 2s and 4s make that metrical struc-

ture somewhat similar to that of jembe music, but with

a very different micro-timing profile. Distinctive micro-

timing can be observed on (at least) the beat level, where it

has a characteristic short-long-medium pattern [6, 33].

At the time this work was carried out, the micro-timing

in Viennese waltz had not been studied in as much detail or

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

102



0 1 2 3 4 5 6 7 8 9 10 11

Phase

0

2

4

6

D
en

si
ty

Figure 4: A histogram plot of the positions of each

pulse within the cycle for Suku. Dashed lines show the

isochronous division of the cycle for reference. Black

curves show the PDF of the MLE-derived probability dis-

tributions and the colours distinguish to the four beat.

as recently as jembe and there were no existing datasets of

Viennese waltz performances with micro-timing. There-

fore, we constructed a new dataset comprising of 30-

second samples from seven waltz recordings performed by

the Vienna Philharmonic Orchestra, all of which have no-

ticeable and statistically significant micro-timing.

We then performed automatic beat tracking on this

dataset using the libfmp Python library [34] (a dynamic

programming approach introduced by Müller [35]), with

some small manual corrections. Since the beat level is

where the primary micro-timing in the Viennese waltz oc-

curs, no additional onset detection was necessary.

Calculating the micro-timing displacement of each beat

from onset times alone involves first identifying the start

and end of each cycle, estimating the onset of each beat

as if they were isochronous, then finding the difference be-

tween this and the actual onset to get the displacement.

Once the displacements were derived, maximum likeli-

hood estimation was again used to fit the probability distri-

butions as discussed above for the jembe case.

6. RESULTS

6.1 Micro-Timing Estimation

Figure 4 shows the results of the micro-timing estimation

for one of the jembe pieces in the datasets: “Suku”. The

histograms show the positions within the cycle where the

12 pulses occurred (phase). The dashed lines indicate

where the event would occur if they were isochronous:

from this the existence of the micro-timing can be seen

clearly by the positions of the second and third pulses in

each beat. By examining the positions of the histograms,

we can see that the length of each pulse follows a short-

medium-long pattern (SML), which is consistent across

each beat. Also shown are the probability density functions

(PDF) of the maximum-likelihood estimated normal dis-

tributions. The plots/data for each beats showed the same

pattern which also corresponds to other jembe pieces and

matches results previously reported by Polak [8].

Figure 5 shows the results for the waltz dataset. The

calculations use the first beat as the definition for the start

of the cycle, so every Beat 1 has a displacement of 0.

The early onset of the second beat can be clearly seen in

the plot (µ = −0.0743, σ = 0.0795). A one-sample t-

test confirms the micro-timing as significant (t = −16.5,

p = 0.000). Beat 3 shows no significant deviation from a
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Figure 5: A histogram plot of the displacement of the sec-

ond and third beats for the waltz dataset. Dashed lines

show the metrical grid. Black curves show the PDF of the

MLE-derived probability distributions.

3-part isochronous division of the cycle, so the overall pat-

tern identified is the short-long-medium (SLM) discussed

elsewhere [7].

6.2 Jembe Tempo Estimation

The results of the jembe tempo estimation showed the in-

crease in tempo throughout the piece that is characteristic

of Malian jembe music. The more dramatic speedup at

the end is also reflected in this data – this is why we fit

two different curves to the data. For example, in “Suku”,

the tempo starts at around 135 bpm at the beginning of

the piece and ends at around 175 bpm. The tempo results

match those found by Jacoby et al. [36], and each jembe

piece showed the same trend.

7. CONCLUSION

In this project, we have investigated and implemented

probabilistic style-specific micro-timing in a musical live

coding language. To do this, we extended the Sonic Pi

language with implementations of both musical metre and

micro-timing, and we performed data analysis on record-

ings of music from two case study styles to generate music

with realistic micro-timing.

In further work (not reported here but available on re-

quest), we conducted a user study to assess how “realis-

tic” our synthesised micro-timing sounded for each of the

case study styles. Significant results were obtained for the

Viennese waltz, however participants struggled more with

the jembe, likely due to their unfamiliarity with the style.

Future work could conduct a new user study with expert

participants, as in Neuhoff [37].

Naturally, other future work could focus on additional

styles with well-documented micro-timing, such as jazz

swing rhythms [38], candombe drum ensembles from

Uruguay [11, 39], and Brazilian samba music [11, 40].

Likewise, larger datasets for the styles reported here would

enable more accurate distributions – two notable datasets

of Viennese waltz recordings have been released even since

the work reported here: Weigl et al. [41] and Yang [7].

As for software functionality, we imagine extensions in-

cluding new variable gridline positions in DAWs, and ad-

ditional controls within Sonic Pi to dynamically adjust the

“strength” of the micro-timing.
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ABSTRACT

Optical Music Recognition (OMR) is a well-established

research field focused on the task of reading musical no-

tation from images of music scores. In the standard OMR

workflow, layout analysis is a critical component for iden-

tifying relevant parts of the image, such as staff lines, text,

or notes. State-of-the-art approaches to this task are based

on machine learning, which entails having to label a train-

ing corpus, an error-prone, laborious, and expensive task

that must be performed by experts. In this paper, we pro-

pose a novel few-shot strategy for building robust mod-

els by utilizing only partial annotations, therefore requiring

minimal human effort. Specifically, we introduce a mask-

ing layer and an oversampling technique to train models

using a small set of annotated patches from the training

images. Our proposal enables achieving high performance

even with scarce training data, as demonstrated by exper-

iments on four benchmark datasets. The results indicate

that this approach achieves performance values compara-

ble to models trained with a fully annotated corpus, but,

in this case, requiring the annotation of only between 20%

and 39% of this data.

1. INTRODUCTION

Optical Music Recognition (OMR) is a research field ded-

icated to developing computational methods for transcrib-

ing musical notation from document images into digital

formats [1]. While this task could be accomplished man-

ually, the vast number and heterogeneity of music docu-

ments make this approach tedious, costly, and error-prone.

The development of OMR systems has the potential to

enhance music heritage accessibility and preservation, as

well as enable the application of analysis algorithms to in-

crease knowledge about this cultural legacy.

OMR typically follows a sequential workflow, which

divides the transcription process into simpler tasks. The

initial task is called Document Image Analysis (DIA),

which is itself a research field that studies how to obtain

© F. J. Castellanos, A. J. Gallego, and I. Fujinaga. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: F. J. Castellanos, A. J. Gallego, and I. Fujinaga, “A

Few-shot Neural Approach for Layout Analysis of Music Score Images”,

in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

a segmented version of the image by isolating the differ-

ent layers of interest, such as staves, lyrics, instructions,

ornaments, etc [2]. In the literature, multiple strategies

can be found to perform this layout analysis, ranging from

heuristic approaches that exploit specific features of the

images to deep learning techniques. Although heuristic

approaches achieve high performance in controlled scenar-

ios, these solutions are poorly generalizable. To obtain bet-

ter and generalizable results, the current trend is to rely on

machine learning and, more specifically, on neural network

architectures [3].

The application of deep learning in layout analysis has

been extensively studied, as evidenced by several state-of-

the-art works [4, 5]. However, a major drawback of these

methods is the requirement for a large amount of annotated

data for their training. This is particularly problematic for

the layout analysis of music scores since their high vari-

ability in appearance and styles makes necessary the an-

notation of each new application domain in order to train

robust models. Despite the importance of this issue, it has

been overlooked in the OMR literature, with domain adap-

tation being the only explored solution [6]. Nevertheless,

this technique also requires full annotations (even if it is

from a different domain) and the performance obtained is

not good or robust enough, which also makes it an imprac-

tical solution.

In this work, we propose a novel few-shot strategy for

building robust models for layout analysis by utilizing only

partial annotations, therefore requiring minimal human ef-

fort. Specifically, we introduce a masking layer and an

oversampling technique to train models using a small set of

annotated patches from the training images. Our approach

aims to drastically reduce the manual workload without

compromising performance, making it of particular inter-

est to real-world applications. Experiments on four bench-

mark datasets indicate that this approach achieves perfor-

mance comparable to models trained on a fully annotated

corpus—but requiring the annotation of only between 20%

and 39% of this data depending on the layer—thus making

it a highly efficient and effective strategy.

2. RELATED WORK

Traditional OMR workflows relied on a combination of

heuristic strategies to perform pixel-wise layout analysis

and classify each pixel of the image according to a set
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of categories [2]. A binarization process was commonly

applied to simplify the complexity of the image to de-

tect the ink pixels, either using generic approaches [7, 8]

or other particular ones proposed for the musical con-

text [9, 10]. The recognition and isolation of the staff

and the lyrics were then carried out using also heuristic

techniques [11, 12]. From these detected staves, the mu-

sical symbols were finally processed, sometimes carry-

ing out another step to remove the staff lines, as can be

seen in the review by Dalitz et al. [13] or in more recent

works [14–16].

More recently, all these steps were combined by means

of machine learning techniques. Calvo-Zaragoza et al. [17]

proposed a Convolutional Neural Network (CNN) to di-

rectly classify each pixel of the image—performing a

pixel-wise layout analysis—which was later improved us-

ing a U-net-like architecture—referred to as Selectional

Auto-Encoder (SAE)—to more efficiently classify the im-

age by patches [18]. This later work, on which our pro-

posal is based, trained a set of SAE specialized in the

detection of each layer of information—staff lines, notes,

text, or background.

The main challenge with layout analysis approaches

that rely on supervised learning is the large amount of an-

notated data needed to train the models [19, 20]. This re-

quires the annotation at the pixel level of a reference set of

images, which has to be done by hand, so it is not a scalable

solution given the high level of detail of these annotations

and heterogeneity in music documents. In addition, when

this constraint cannot be fulfilled, these learning-based ar-

chitectures fail to converge to obtain a suitable model for

the task at hand.

In the literature, we can find different proposals that

seek to alleviate this issue [21], two of the most common

being the use of regularization strategies [22] and data aug-

mentation processes [23]. We can also find more specific

proposals for cases of remarkable data scarcity, i.e., with

a considerably fewer number of annotated training sam-

ples. These scenarios are known as few-shot learning [24]

and typically employ specific neural architectures to es-

timate the similarity of the data [25]. Some of the most

typical examples of these techniques are Siamese Neural

Networks [26], Matching Networks [27], Prototypical Net-

works [28], and Relation Networks [29]. For a comprehen-

sive review of these strategies, the reader is referred to the

work by Jadon [30].

Our proposal follows a few-shot learning approach, but

instead of using a specific few-shot architecture, a state-

of-the-art layout analysis model—the previously described

SAE network—is modified to integrate a masking layer

that enables training with very little data. This layer is

complemented by an oversampling proposal used during

the training process to draw samples at random positions

around the chunks with annotated data. A mask is applied

to these pieces and used by the added layer to avoid pro-

cessing the non-annotated parts, which will randomly ap-

pear in different positions in each iteration, thus forcing the

architecture to generalize the learned weights.

In the related literature, masks have been used for dif-

ferent purposes. For example, Medhat et al. [31] proposed

the use of binary masks for sound classification to filter

out certain frequency bands. It has also been explored for

image classification, specifically, Suresh et al. [32] studied

the use of masks as a pre-processing task to filter the back-

ground of images with hand gestures, making the model

focus only on the gestures to be classified. However, as far

as we know, masks have not been used either in binariza-

tion tasks or for few-shot learning cases, so that the model

does not use the unlabeled areas.

3. METHODOLOGY

Our approach aims to build a robust few-shot learning

model for layout analysis of music score images that classi-

fies each pixel of an input image into one of the following

categories: staff, notes, text, and background.

In our context, the few-shot scenario can be represented as

a manual annotation of a limited number n of portions or

patches from a set of images I, with n ≪ N , where N is

the total number of possible patches that could be sequen-

tially extracted without overlapping from I. Therefore,

when n is small, less human effort and cost are required

to annotate the training set.

Note that labeling only part of the image makes the rest

of it uninformative, even if there are ink pixels. In a typical

training process, only the annotated patches would be used.

However, when the amount of data is limited, this would

lead to overfitting of the model. Although data augmenta-

tion may help mitigate this problem, in a few-shot learning

scenario, it is not very useful due to the little information

to be altered.

Our proposal introduces a novel approach to extract

a larger—and more varied—number of samples from the

scarce labeled information. Specifically, it is proposed

to extract random patches around the annotated areas—

keeping a minimum λ% of labeled information—to obtain

more varied samples, thus generating variations in the po-

sition of the elements and their labeling. Since some parts

of the extracted patches will fall outside the annotated area,

it is proposed to mark those parts with a special label (−1)

so that they are not used during training. This approach al-

lows us to control the number of samples to be drawn from

the images and get enough variability in the data to train

the model, as we will demonstrate in the experiments.

Formally, let X ∈ R
w×h be a collection of patches

of size w × h drawn from the input set of im-

ages I, and Y ∈ {0, 1}w×h be the corresponding

pixel-level annotation matrices extracted from the an-

notation set Ll for the layer to be processed l ∈
{staff,notes,text,background}, where 1 is used

to label the ink of that layer and 0 the rest, either back-

ground or information from another layer. Additionally,

let S = {(xi,yi) : xi ∈ X ,yi ∈ Y}
|S|
i=1

represent an an-

notated collection of data where each datum xi is related

to label yi by an underlying function f l : X → Y , that rep-

resents the objective function to be learned for each layer

l, and for which the SAE state-of-the-art architecture will
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be used. Note also that x∗ will be used to refer to the input

patches after applying the mask, which may contain values

in the range [0, 255], for the original pixels of the image,

but also the value −1 as a mask to mark the parts without

annotated information. This mask is therefore applied to

the input data in X and will be used by the masking layer

(described below) added to the networks f l to ignore those

parts during the training process.

Algorithm 1 describes the oversampling method pro-

posed to obtain the set S previously described. This

method receives as input the set of images I, the set with

the annotated data L, the layer l to be processed, the λ%
of minimum patch information, the total size of sampling

to perform, and the setM that contains the list of patches

annotated with their coordinates in the input images. The

algorithm first iterates through the number of patches an-

notated inM (line 3) and for each one obtains the in-

dex j of the image it corresponds to (line 4). It then

iterates for the number of samples that have to be extracted

for that annotated patch (line 5) and, for each one, per-

forms the following steps: 1) randomly selects the sam-

ple coordinates p using the mask of that patch and taking

into account the minimum λ% of annotated pixels allowed

(line 6); 2) extracts the patch x from Ij using the coor-

dinates p (line 7); 3) applies the mask to set a constant

value (−1) in those pixels that are not part of the annotated

area (line 8); 4) retrieves the layout annotations y for

that sample (line 9); and 5) both x
∗ and y are added to

the set S . The algorithm repeats this process until reaching

the requested size, finally returning the set S obtained.

Algorithm 1 Random masking patches generator.

1: function SAMPLEGENERATION(I,L,M, l, λ, size)

2: S ← ∅
3: for i← 1 to |Ml| do

4: j ← getPatchIndex(Ml
i)

5: for k ← 1 to size
|Ml|

do

6: p← getRandomPosition(Ml
i, λ)

7: x← getWindow(Ij , p)

8: x
∗ ← applyMask(x,Ml

i, p)

9: y ← getWindow(Ll
j , p)

10: S ← S ∪ (x∗,y)
11: end for

12: end for

13: return S
14: end function

Note that the getWindow(·) function may apply addi-

tional data augmentation to the sample in order to further

increase its variability.

This oversampling process is complemented by the pro-

posal of a masking layer that is added to the network archi-

tecture f l to ignore the pixels that are not annotated. This

layer, as indicated in Section 2, has been previously used

in other proposals to skip time steps in sequence processes

and to mask the background in classification tasks. In this

proposal, we adapt it to ignore the parts of the input with

this mask and also propagate the mask to the following

layers so that the non-annotated parts are not taken into ac-

count during the training process. Intuitively, the masking

layer acts as a regularizer and data augmentation process.

Given that the annotated and non-annotated parts will vary

in position and size across iterations, the network is forced

to generalize the weights learned during training by hav-

ing to use different connections of the network and non-

annotated pixels will not be used.

4. EXPERIMENTAL SETUP

This section describes the corpora and metrics considered

for evaluation and the implementation details of the neural

architecture. 1

4.1 Corpora

For the experiments, we considered the following 4

datasets with manual pixel-wise annotations of 4 layers of

information (staff, notes, text, and background).

Figure 1 shows some examples for each manuscript and

Table 1 includes a summary with their details.

• EIN: 9 high-resolution scanned pages of neumatic

notation belonging to the Einsiedeln, Stiftsbiblio-

thek, Codex 611(89), from 1314. 2

• SAL: A set of 10 high-resolution images of pages

from the Salzinnes Antiphonal manuscript (CDM-

Hsmu M2149.14), in neumatic notation. It is avail-

able in the Cantus Ultimus platform. 3

• MS73: Selection of 10 pages of square music nota-

tion from the miscellaneous choir book ‘Dominican,

CDN-Mlr MS Medieval 0073’ from Northern Italy,

written between 13th and 15th centuries. This cor-

pus is stored in the McGill Library collection, and it

is online available through Cantus Ultimus. 4

• CAP: A compilation of mensural notation

manuscripts from the 17-18th centuries belonging

to the ‘Cathedral of Our Lady of the Pillar’ in

Zaragoza (Spain), introduced for OMR purposes

by Calvo-Zaragoza et al. [33]. We use a subset of

the corpus, with 10 manually pixel-wise annotated

pages.

In all the cases, we used 4 images for training, 2 im-

ages for validation, and the remaining for testing. After

preliminary experiments and also based on previous pro-

posals, we selected a patch size of 256 × 256 pixels to

extract from these images. To be fair and more realistic,

we use the same number of samples for the validation set

as for the training partition. This is because, in a real case,

it would be necessary to annotate the validation partition

as well, so it is not fair to use the entire pages to validate

the models in a few-shot scenario. This does not apply to

the test set, for which we use all available data.

1 https://github.com/fjcastellanos/

FewShotLayoutAnalysisMusic.git
2 http://www.e-codices.unifr.ch/en/sbe/0611/
3 https://cantus.simssa.ca/manuscript/133/
4 https://cantus.simssa.ca/manuscript/35/
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(a) EIN (input). (b) EIN (ground truth). (c) SAL (input). (d) SAL (ground truth).

(e) MS73 (input). (f) MS73 (ground truth). (g) CAP (input). (h) CAP (ground truth).

Figure 1: Examples of images extracted from the corpora described in Table 1. In the ground truth images: red pixels

represent the staff lines annotation, black is used for music symbols, blue for text, and white for the background.

Corpus # imgs Resol.
Layers (%)

BG St No Te

EIN 9 6 496 × 4 872 87.9 3.5 2.7 5.9

SAL 10 5 847 × 3 818 87.6 2.4 2.5 7.5

MS73 10 6 990 × 4 797 93.4 1.8 1.8 3.0

CAP 10 2 126 × 3 065 85.7 6.6 5.1 2.6

Table 1: Details of the corpora considered including the

number of images (# imgs), the average resolution and the

proportion of pixels for each layer of interest, with BG for

background, St for staff lines, No for notes, and Te for text.

4.2 Metrics

To evaluate the performance of our few-shot approach, we

resorted to the F-score (F1) figure of merit to avoid pos-

sible biases toward any particular class given the inherent

label imbalance in the datasets considered (see Table 1).

Assuming a binary classification scenario, this metric is

defined as

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where TP, FP, and FN denote the True Positives, False Pos-

itives, and False Negatives, respectively.

Finally, given the non-binary nature of the task at hand,

we considered the use of the macro-averaged F-score (Fm
1

)

as the average of the F1 values computed for each layer.

Mathematically, this metric is defined as

Fm
1
=

∑|L|
l=1

Fl
1

|L|
, (2)

where Fl
1

is the F1 calculated for the layer l assuming a

one-versus-all evaluation framework and |L| represents the

total number of layers of information (in our case 4).

4.3 Implementation details

The architecture considered is based on a previous

work [18], in which a framework consisting of a series

of SAE models—one for each layer to be predicted—was

proposed. SAE follows a U-net architecture, in which an

image of size w × h (in our case a 256×256 pixels patch)

is given as input, and the output is a matrix of the same

size that contains the confidence value of pixels belonging

to the layer of interest. In our case, we have four layers to

be predicted, so we will have four SAE models, each one

specialized in one particular layer.

For the experimentation, we resort to the same archi-

tecture proposed in the original work. An encoder with

four blocks composed of a convolutional layer of 32 filters

of 3 × 3, a sub-sampling of 2 × 2, a batch normalization,

a Rectified Linear Unit (ReLU) activation, and a dropout

of 0.4. On the decoder side, the blocks follow the same

scheme except for the sub-sampling, which is replaced by

an oversampling of the same rate. The last layer of the de-

coder is connected to a convolution with one 3 × 3 filter

and a sigmoid activation to obtain the result of the predic-

tion with values between 0 and 1. This architecture was

only changed to add the masking layer after the input.

Note that each SAE was trained using the binary cross-

entropy loss for up to 200 epochs with a batch size of 16,

and an early stopping criterion of 20 epochs of no improve-

ment on the validation set. Adam optimizer [34] was used

with a learning rate of 0.001.

Furthermore, to favor the convergence of the model,

the input images were normalized in the range [0, 1]. The

mask was applied over this result, so the inputs can actu-

ally contain the values {−1} ∪ [0, 1]. For the extraction of

patches, a value of λ of 2.5% was used, since it allowed

obtaining chunks with sufficient information. In addition,

we also considered standard data augmentation to increase

data variability by applying random rotations between -45º

and 45º, zoom variations between 0.8x and 1.2x, and hori-

zontal and vertical flips.
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5. RESULTS

This section presents and discusses the results obtained

with the proposed method.

First, a preliminary experiment was carried out to an-

alyze the influence of the amount of oversampling. For

this, starting from a single annotated patch, we studied the

result obtained by increasing the number of randomly ex-

tracted samples around the annotated patch using the pro-

posed technique. Fig. 2 shows the average results of this

experiment in the validation set for all layers and consid-

ering both the application and non-application of data aug-

mentation. For a small number of randomly extracted sam-

ples, the proposal achieves approximately 30% of Fm
1

. The

average result is improved as the number of samples ex-

tracted increases, reaching over 70% of Fm
1

for 512 sam-

ples and barely improving for the case of 1 024 samples.

Additional data augmentation does not help to improve

the results, only for cases of sample size equal to or less

than 128. This may be because the proposed oversampling

method can be considered as a data augmentation process,

so that, from a given amount of sampling, there is enough

variability and other techniques of data augmentation may

not be necessary.
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Figure 2: Preliminary experiment to study the influence

of the number of samples drawn randomly from one an-

notated patch of 256 × 256 pixels. The result obtained in

terms of Fm
1

(%) in the validation partition is shown, con-

sidering both the application and the non-application of ad-

ditional data augmentation.

Based on these results, the sampling size is set to 512

for the following experiments. Also, since standard data

augmentation seems detrimental in combination with our

proposal, we decided not to use it.

The selected configuration was evaluated using the test

set, carrying out an analysis of the influence of the number

of patches annotated (from 1 to 32) and the influence of

these being extracted from the same page or from several

(up to 4, which would generate more variability). Fig. 3

shows these results compared to two baselines: an up-

per one representing the state-of-the-art model [18] trained

with all available information (if the entire training set was

annotated) and a lower bound training this model with only

one annotated patch (in both cases without applying the

proposed masking layer). One initial observation is that the

three case studies (with 1, 2, or 4 pages) demonstrate com-

parable trends. The results, as expected, show an increas-

ing trend with the number of annotated samples, from an

average Fm
1

of 40% when training with one annotated sam-

ple to ∼62% when using 32 annotated patches, and stabi-

lizing (or improving less) from 16 to 32 annotated patches.

If these results are compared with the baselines, it can

be seen how the proposal exceeds the lower bound by 16%

when training with one annotated sample and that it equals

or even improves the upper baseline in the cases with 1

and 2 pages from 16 annotated samples. Also, it is only

7% worse than the state of the art for the 4-page case but

with a much lower annotated data requirement (32 sam-

ples, which represents 39% of the total information).

Layer Annotated samples Baseline

Corpus 1 2 4 8 16 32 Bt Up

(1%) (2%) (5%) (10%) (20%) (39%) (1%) (100%)

staff

EIN 10.5 39.8 64.1 62.1 83.9 78.1 0.0 87.3

SAL 72.0 75.4 75.7 75.7 74.8 87.4 0.0 90.8

MS73 11.3 13.9 17.7 12.9 92.8 94.1 0.0 91.4

CAP 66.2 75.6 75.2 79.0 79.9 82.5 0.0 47.0

Avg. 40.0 51.2 58.3 57.4 82.9 85.5 0.0 79.1

note

EIN 19.0 16.7 20.7 0.0 20.4 26.3 0.0 77.8

SAL 35.3 3.3 21.2 4.1 38.6 50.2 0.0 4.1

MS73 0.2 3.2 6.7 7.3 7.1 7.3 0.0 2.7

CAP 66.7 69.7 73.0 77.9 81.2 82.6 0.3 8.3

Avg. 30.3 23.2 30.4 22.3 36.8 41.6 0.1 23.2

text

EIN 22.9 15.1 17.2 67.3 31.7 37.0 11.3 11.3

SAL 67.6 15.5 46.1 32.3 71.7 73.4 0.0 78.5

MS73 6.3 9.4 26.2 16.7 15.3 14.3 0.0 13.5

CAP 3.6 0.0 15.1 37.0 45.4 16.7 3.6 12.7

Avg. 25.1 10.0 26.2 38.3 41.0 35.4 3.7 29.0

background

EIN 93.9 93.8 93.8 93.8 93.8 93.7 93.7 93.7

SAL 93.2 93.2 93.2 93.2 97.9 99.1 93.2 98.5

MS73 40.0 36.8 46.6 49.2 87.4 96.8 96.8 96.8

CAP 93.6 93.6 93.7 93.6 93.6 93.6 93.6 93.6

Avg. 80.2 79.4 81.8 82.5 93.2 95.8 94.2 95.7

Table 2: Average results in terms of F1 (%) for each layer

considering 1 page in a few-shot evaluation. The percent-

age of annotated information is indicated between paren-

theses. Bt represents the bottom baseline, which is the

state-of-the-art model trained with 1 annotated sample per

page, and Up is the upper baseline, with full pages used

for training. Both baselines do not apply any masking.

From these results, we now analyze in detail the case of

a single page, since it represents the most extreme case as

it has less variability available for the annotation. Table 2

shows a summary of the results obtained individually for

each dataset and layer considered, including the baselines

and the percentage of the image used in each case. As

in the previous results, it is observed that the performance

of our approach improves as more annotated samples are

used. In this case, we can analyze how the results vary

according to the layer and the corpus evaluated. In general,

the proposal improves the bottom baseline, in some cases,

such as staff, notes, and text, by a wide margin.

However, note that this baseline fails to converge on most

layers, except for the background one. In this case, on

average, the proposal only improves the baseline by using

32 samples—39% of the image. This is due to the fact

that for fewer annotated samples, poor overall results are

obtained for the MS73 dataset. This may be because this

dataset presents a greater variability of backgrounds. In
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(c) 4 training pages.

Figure 3: Average results in terms of Fm
1

(%) with respect to the number of annotated samples (from 1 to 32) and the

number of pages (from 1 to 4). Dashed lines represent baseline results for reference. The upper reference line indicates the

results of the state-of-the-art model trained with fully annotated pages, while the lower reference line represents the results

obtained when only one sample is annotated. Note that both baselines do not use the proposed masking method.

(a) SAL (input). (b) Background layer. (c) Staff layer. (d) Notes layer (e) Text layer.

Figure 4: Example of the results obtained in SAL for the four layers considered in this work. The method was trained with

32 samples drawn from one page. White represents the detected information for the particular layer.

fact, the rest of the layers of that corpus also obtain low-

performance values when the annotated data is scarce.

Regarding the upper baseline, it can be seen how the

proposal, on average, improves it in all layers, although it

requires a different number of labeled samples depending

on the layer. As stated before, on average, from 16 patches

or 20% labeling, a better result is achieved. It is inter-

esting that for the simplest and more homogeneous layers

(such as staff and background), the upper baseline

obtains a better result and it is more difficult for the pro-

posal to overcome it, while for the more difficult ones that

present greater variability (notes and text), the base-

line obtains a worse result while the proposal achieves a

greater margin of improvement. This may be due to the

fact that the proposal performs some overfitting in the sim-

plest cases with less variability and, therefore, requires a

greater number of labeled samples to learn it.

To complement the quantitative results, Fig. 4 shows

an example of prediction for SAL. As can be seen, the

background and the staff layers are correctly retrieved, and

some false positives can be found in the notes layer. The

text layer seems the most challenging as it is not able to

differentiate the ink of the text from other elements. How-

ever, the text is recovered, and the false positives could

be removed by combining the predictions obtained for the

other layers.

6. CONCLUSIONS

In this work, we presented a few-shot neural approach for

pixel-wise layout analysis of music score images. The pro-

posal includes a masking layer, which acts as a regular-

izer, that is combined with an oversampling technique to

leverage the limited annotated information available. The

oversampling technique extracts annotated parts of the im-

ages at different random positions at each training itera-

tion, leaving annotated and non-annotated information in

different positions of the input. This strategy forces the

neural architecture to generalize the learned weights, sim-

ilar to a data augmentation process but adapted to the case

of few-shot and partial annotation in documents.

The proposal is evaluated on four benchmark datasets to

study the influence of the amount of annotated data in the

layout analysis task. We found that the number of anno-

tated samples is key to optimizing performance, and anno-

tating a relatively small number of them—between 16 and

32 samples, which represents using only between 20% and

39% of the total information—can achieve average results

of 65.5% of Fm
1

, which is very close to the result obtained

by the state of the art (72%) using the entire training set

annotated. It is also interesting to note that the proposal

obtains similar results when labeling more pages, so it is

enough to have a single page for training and perform a

partial annotation of between 16 and 32 patches.

In general, the approach shows very competitive results

in few-shot scenarios. Therefore, we hope this research

can open doors to new avenues in this line. Reducing the

amount of annotated data required for pixel-wise layout

analysis is essential, and techniques such as domain adap-

tation and transfer learning may help to reduce human ef-

fort. We plan to investigate new ways to address this prob-

lem, including to combine domain adaptation techniques

with our masking proposal and studying the feasibility of

incremental and active learning.
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ABSTRACT

Drummers spend extensive time practicing rudiments to

develop technique, speed, coordination, and phrasing.

These rudiments are often practiced on "silent" practice

pads using only the hands. Additionally, many percus-

sive instruments across cultures are played exclusively

with the hands. Building on these concepts and inspired

by Einstein’s probably apocryphal quote, "Make every-

thing as simple as possible, but not simpler," we hypoth-

esize that a dual-voice reduction could serve as a natu-

ral and meaningful compressed representation of multi-

voiced drum patterns. This representation would retain

more information than its corresponding monotonic rep-

resentation while maintaining relative simplicity for tasks

such as rhythm analysis and generation. To validate this

potential representation, we investigate whether experi-

enced drummers can consistently represent and reproduce

the rhythmic essence of a given drum pattern using only

their two hands. We present TapTamDrum: a novel dataset

of repeated dualizations from four experienced drummers,

along with preliminary analysis and tools for further ex-

ploration of the data.

1. INTRODUCTION

1.1 Motivation

Music is a fundamental aspect of human culture, and

rhythm is a central element of musical expression. Many

different cultures have developed complex and sophisti-

cated rhythmic traditions that are deeply rooted in their

history, language, and social structures [1]. Representing

music, and more specifically rhythm, in a symbolic form

is crucial for a wide range of purposes, including com-

munication, and preservation of musical traditions. More-

over, symbolic representations of music are essential for

enabling the efficient processing and manipulation of mu-

sical data by computers, enabling new possibilities for mu-

sic analysis and creation. However, representing complex

rhythmic patterns in a notation system that accurately cap-

tures their essence and feeling can be a challenging task,
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particularly when the rhythms are highly complex or in-

volve multiple layers of interlocking patterns.

Some attempts on representing percussion in a domain

specific-way have been made, initially focusing on a sin-

gle stream of onsets [2]. In [3], Toussaint offers a holis-

tic analysis of rhythmic patterns, with an approach largely

centred around monotonic representations. Representing

a rhythmic pattern in a monotonic stream of offsets has

indeed proven to be successful for some tasks like trans-

forming a sequence of taps to a fully-orchestrated percus-

sive pattern in GrooVAE [4]. However, while a rhythmic

pattern reduced to a monotonic stream of its onsets re-

tains part of its horizontal structure related to temporality,

it also loses its vertical quality, which is related to the in-

terplay between different voices [3]. As a result, a mono-

tonic pattern transformation fails to capture the complete

essence of a multi-voice rhythm, as noticed by Lartillot and

Bruford [5]. Inspired by Einstein’s probably apocryphal

quote, "Make everything as simple as possible, but not sim-

pler," in this work we hypothesise that a dual-voice reduc-

tion could serve as a more natural and meaningful com-

pressed representation of multi-voiced drum patterns than

its monotonic equivalent, and that this representation could

preserve some quality related to the interaction or tension

between instruments, while maintaining relative simplicity

for tasks such as rhythm analysis and generation.

The rationale behind this approach can also be related to

the role of the human motor system in rhythm perception.

The importance of the motor system in rhythm creation and

perception is rooted in the fact that many musical rhythms

are based on movements that involve two limbs. It was

previously documented that the synchronisation of move-

ment to a musical pulse happens automatically, whether of

the hand movements [6, 7], walking [8], or dancing [9]. A

number of studies prove that motor areas of the brain play

a significant role in beat perception and synchronisation.

As Patel and Iversen argue in [10], the ability to coordi-

nate two limbs in a synchronised and precise manner is

essential for playing musical instruments and dancing to

music. This is exemplified by the tradition of drumming,

which typically involves striking a drum with two hands.

The renowned drummer Jaki Liebezeit, even simplified his

drum kit to only require two hands to play, and developed

a rhythmic notation system called E-T that employs only

two symbols to represent any rhythm, accommodating any

musical situation [11]. Thus, the use of two limbs in mu-

sic and rhythm is not only a fundamental aspect of motor
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coordination, but also a practical consideration in the rep-

resentation and communication of musical rhythms.

A bell pattern is a two-voiced pattern frequently used

in West African music, which is usually used as a key pat-

tern to suggest a temporal organisation for different instru-

ments and musicians [12]. This pattern is used from the

Sub-Sahara, to West Africa, to the central lands of Congo

and the Nyusa lands in Southeast Africa [13]. Agawu

[14] claims that the notoriously complex rhythms in West

African music can be represented with a bell pattern, which

could usually be played with two-voiced percussion instru-

ments. This African tradition migrated to the new world

during the colonial period. Rooted in the Caribbeans, the

Clave cross-rhythm also splits the beat into two voices, one

regular beat and another irregular [15].

Additionally, subjective rhythmization is a widely rec-

ognized phenomenon in auditory perception [16], which

occurs when individuals are exposed to monotonous au-

ditory stimuli such as the ticking of a clock. Rather

than hearing a simple "tick-tick-tick" pattern, our brains

transform the sound into a more complex rhythmic se-

quence, such as "tick-tock-tick-tock," comprising two dis-

tinct parts. This naturally occurring cognitive process en-

hances the subjective perception of rhythm and makes the

stimulus more engaging and dynamic to the listener. The

concept of rhythm streams, which is linked to the theory of

auditory streaming, is examined by Witek et al. [17]. Their

research reveals that the addition of a single instrumental

component to a monotonic rhythmic pattern can greatly in-

fluence its perceived rhythm, whereas the addition of an-

other component to a two-instrument pattern has a dis-

cernible impact only in certain instrumentation contexts.

Finally, Lartillot and Bruford [5] argue that any rhythm can

be reduced to an oscillation between two states: high and

low. Their rule-based system transforms multi-voice pat-

terns into a monotonic stream of timed events representing

the toggles between the states and their accentuations.

All the aforementioned evidences provide support for

the initial hypothesis that simplified, dual-voice represen-

tations of multi-voice rhythmic patterns may be adequate

in communicating both the vertical and horizontal charac-

teristics of rhythm.

1.2 Rhythm Pattern Dualization

To formalize this idea, we introduce the novel concept of

dualization of rhythm patterns. The task of rhythm dualiza-

tion could be defined as the transformation of any multi-

voice rhythmic pattern to another pattern composed of a

maximum of two voices, while preserving the coherence

and the perceptual essence of the original rhythm as much

as possible. Dualization involves simplifying and high-

lighting the most essential features of complex rhythmic

patterns. This dualized representation can be viewed as a

form of abstraction, in which the most essential features

of a rhythm are distilled and represented in a way that is

easier to process, grasp, and perform.

Dualization could also enhance the creative and ex-

pressive potential of contemporary musicians, by provid-

ing them with a tool for exploring and adapting traditional

rhythmic patterns in new and innovative ways. Moreover,

the study of dualization can shed light on the cognitive and

neural mechanisms involved in rhythm perception and per-

formance, as well as the cultural and historical factors that

shape rhythmic traditions. By introducing this novel con-

cept, we hope to stimulate further research and innovation

in the field of rhythm notation, and to advance our under-

standing of the cognitive, cultural, and creative processes

involved in rhythmic expression.

In the next section, we present the dualization exper-

iments we have conducted with the participation of four

highly skilled professional drummers to validate our hy-

pothesis. We introduce the dataset that emerged from these

experiments, which serves as a valuable resource for our

analysis. In Section 3, we delve into a detailed analysis

of this dataset, shedding light on key findings and insights.

Subsequently, in Section 4, we highlight potential applica-

tions and promising avenues for future research.

2. METHODOLOGY

While monotonic representations of multi-voiced rhythms

can be obtained by simply flattening any rhythmic pat-

tern, the process of dualizing a multi-voiced rhythm ap-

pears to be less straightforward. To further support our

hypothesis that dualized patterns can serve as a natural

and more meaningful compressed representation of multi-

voiced drum patterns compared to their monotonic coun-

terparts, we aimed to investigate whether there is a level

of consensus or consistency in how multi-voiced patterns

can be dualized. To this end, we recruited 4 professional

drummers and conducted various dualization exercises, ex-

ploring different approaches and gathering insights into the

process of dualization.

2.1 Preparation of Rhythmic Material

To ensure a diverse range of rhythms for dualization, we

utilized Magenta’s Groove MIDI Dataset [4]. This dataset

comprises of 13.6 hours of live recordings performed on a

Roland TD-11 electronic drum kit, each labeled with beat

type (i.e. "beat" or "fill"), time signature, and style. The

recordings are not quantized (neither in time nor velocity)

and vary in duration and styles. For our work, we focused

on the "beat" subset of the dataset resulting in 503 original

recordings. In this subset, only twelve performances were

not in 4/4 meter, and subsequently, we dismissed them. Ta-

ble 1 summarizes the distributions of styles within the final

selected samples.

Rock Funk Latin Jazz Hip-hop Other

Count 124 42 41 34 25 79

Percentage 36% 12% 12% 10% 7% 23%

Table 1. Style distributions within the 345 2-bar samples

selected from GMD

The original GMD recordings vary from several sec-

onds to a few minutes. As a result, for each session we
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selected a single 2-bar segment with the highest total co-

sine similarity with every other 2-bar segments within the

session (similarity was calculated between fully quantized

patterns). This approach ensured that we had a diverse and

representative set of 2-bar rhythms from different sessions

and styles for our dualization experiments. These repre-

sentative segments were further processed to exclude pat-

terns that contained only 2 or less voices (which would

have made the dualization task trivial). This left us with a

final set of 345 individual meaningful and non-trivial 2-bar

loops, suitable for our dualization experiments.

2.2 Data Collection Sessions

We hired 4 drummers with expertise in Western drumming

tradition, two of them with conservatory experience, as

shown in Table 2. Each drummer participated in several

individual sessions of approximately one hour each. The

experiments consisted of playing 2-bar multi-voice drum

loops to the participants and asking them to concurrently

perform dualized versions using only drum sticks on a

Roland HandSonic HPD-15 MIDI drum pad. Participants

were instructed to only hit the left region of the drum pad

with the left hand and vice-versa.

P1 P2 P3 P4

Age 41 20 24 22

Experience (Years) 25 11 10 9

Dominant Hand Left Left Right Right

Table 2. Demographics of the participants

For each of the data collection sessions, an Ableton

Live 1 project was prepared in advance, containing the

drum patterns to be dualized at their original tempo, with-

out any velocity or timing quantization. As shown in Fig-

ure 1, the sessions were set up such that the participant

would listen to a looping 2-bar pattern and after 1 or 2 rep-

etitions would start to concurrently play their dualized in-

terpretations of the pattern. The participants were allowed

to continue their dualizations for as many repetitions as

desired until they were confident in the accuracy of the du-

alization. All the drum patterns in all of the sessions were

synthesized using a single sound source. 2 No auditory

feedback of dualizations were provided to the participants

except for the acoustic sound of the drum pad.

Figure 1. Set up of the dataset collection sessions

2.3 Post Session Questionnaire and Interviews

After the first recording session, each participant was given

a questionnaire and an open interview was also conducted.

1 www.ableton.com
2 Neutral preset of Addictive Drums 2’s Fairfax sound pack

The questionnaire comprised of three sections: (1) general

information about the participant, (2) assessment of the in-

tuitiveness of the task and confidence in their performance,

and (3) exploration of how various rhythmic factors and

metrics (e.g., number of instruments, tempo, genre, den-

sity, syncopation, mostly extracted from [18, 19]) could

potentially influence the dualization process. Parts 2 and 3

of the questionnaire utilized a 7-point Likert scale ranging

from 0 to 6. Results from these two parts are summarized

in Table 3.

P1 P2 P3 P4 Avg.

General Impressions

Intuitiveness 4 5 6 5 5

Confidence 6 3 4 4 4.25

Influence of Rhythmic Features*

No. of Instruments 0 6 5 5 4

Beat Division 0 4 3 5 3

Tempo 0 4 3 2 2.25

Style 6 3 5 6 5

Familiarity with Style 6 6 6 5 5.75

Syncopation-ness 6 5 5 1 4.25

Dynamics 6 4 3 4 4.25

Note Density 6 4 5 4 4.75

LMH Distribution 6 3 2 5 4

LMH Syncopation-ness 6 2 4 1 3.25

LMH Dynamics 6 4 3 4 4.25

LMH Density 3 4 4 6 4.25

Table 3. Summary of the questionnaires.

* refers to the perceived importance that different rhythmic

features have on the dualizations. LMH refers to the Low,

Mid and High frequency regions. Descriptors taken from

[18, 19].

Additionally, after the questionnaire, open interviews

were conducted with each participant. In the following

sections, we provide a summary with some of the more

relevant an recurrent topics discussed.

2.3.1 Meaningfulness, Replicability and Universality

All four participants unanimously agreed that the concept

of dualization is valid and meaningful. Despite one of them

admitting to not having thought much about it before, they

all found the concept intuitive and useful after the session.

Despite that the patterns in the introductory sessions were

randomly repeated without notifying the participants, they

were able to notice the duplication of the same 2-bar tracks

in the session, and they strongly believed that even though

their corresponding dualized patterns might not be identi-

cal, they would likely share a high similarity. While the re-

sults were not entirely conclusive (as discussed in the next

section), all participants also expressed confidence in hav-

ing similar mindsets as their peers while dualizing the same

rhythm. Participant 1 justified this idea by referencing the

development of the Western percussive tradition from the

snare drum, stating that fundamentally, drummers listen to

key elements represented by the snare.

2.3.2 The Effects of Style and Repetition

One participant stated that genre greatly influences which

voices to focus on; for example, in the case of rock, the

snare and the bass drum would more often be followed,
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whereas in jazz-influenced styles, the hi-hat and the ride

cymbal could probably be included in the reduction, as

they emphasise lay back and swing. However, not all par-

ticipants agreed on interpreting dualization solely as the

replication of the two most prominent voices. Some be-

lieved that they needed to first digest and understand each

rhythm, before extracting its essential form for dualization.

Two participants also mentioned that listening to the same

pattern repeatedly in the experiment promoted a "dualiza-

tion refinement", listening more deeply to each iteration

and thus refining the extraction of the pattern’s rhythmic

essence.

2.3.3 Problems with the Recording Sessions

Participants reported some issues during the recording ses-

sions, such as using always the same VSTI for all pat-

terns, independently of their musical style. Also, the use

of Roland HPD-15, which has a single surface with mul-

tiple pads, seems to encourage some drummer habits such

as paradiddles, and some participants would have preferred

a separated two-pad device. Some tracks were inade-

quately selected for a 4/4 based recording as Participant

1 interpreted them as a 6/8 time signature, even though

GrooveMIDI labelled them as in 4/4. For some swing and

shuffled rhythms sometimes the last semiquaver was cut.

Participants were also aware of the style bias and of the

abundance of Western influenced styles specifically rooted

from a snare drum tradition.

3. DATASET AND ANALYSIS

In this section, we will start with providing an overview of

the dataset. Subsequently, we will provide a preliminary

analysis of the collected dualizations. The objective of this

analysis is to establish whether there is any validity to the

hypothesis that professional drummers are able to dualize

drum patterns with some level of consistency, so as to es-

tablish whether further research on this topic is warranted.

During the dataset collection sessions, we had a limited

time span during which all four participants were available.

For the initial session, we had access to all four partici-

pants. This session was set up in a manner that would allow

us to investigate two main questions: (1) whether a single

drummer dualizes a given pattern consistently at different

times (Intra Participant consistency) and (2) how consis-

tently different drummers dualize the same drum pattern

(Inter Participant consistency). As such, we selected 24

drum patterns to be presented randomly three times to each

of the four drummers without notifying them about the rep-

etitions (Subset A1). During the first stage of the data

collection sessions, Participant 1 was able to participate

longer, as a result, 48 more drum patterns were dualized

by him in the same manner (Subset A2).

During the A2 sessions, Participant 1 notified us that

he was aware that we were testing a single drum pattern

multiple times. Following this comment, he told us that,

if needed, he can dualize the drum patterns in two differ-

ent ways, in his own terms, in a “simple” and a “complex”

manner. Inspired by this comment, we confirmed with the

other participants about this view of dualization. Subse-

quently, we modified the remaining sessions so as to ex-

plore whether there is any consistencies among the “sim-

ple” and “complex” dualizations. We were able to partially

conduct these sessions with Participants 1 and 2 (Subset

B1), while the remaining sessions were only conducted

with Participant 1. Table 4 summarizes the collected data.

The final dataset consists of 1116 dualizations obtained

from the participants. These dualizations were obtained

from the set of 345 unique drum patterns. Moreover, each

of the drum patterns were used in a single dualization test,

that is, for example, a drum pattern used in Subset A1 was

not reused in the A2, B1 and B2 subsets. The decision to

not reuse the drum patterns in different subsets was made

to maximize the number of drum patterns for which at least

one set of dualizations were available in the final dataset.

In Section 3.1, we will use the collected dataset to pro-

vide a preliminary analysis on whether there are any in-

tra/inter participant consistencies between the dualizations

obtained at random from all four participants (Subset A1)

- see Figure 2. Lastly, in Section 3.2, we will compare

simple dualizations with their complex counterparts from

both intra- and inter-participant perspectives. The analysis

presented in this section has been done on a binary repre-

sentation of the dualizations, fully quantized to a 16th note

grid. Moreover, it should be noted that, as confirmed with

the participants, a given dualization can be reproduced us-

ing an inverse hand combination. As such, to compare

the rhythmic similarity between the dualizations, a hand-

agnostic measure should be employed (e.g. L0R0LL and

R0L0RR patterns should be treated as identical - L and R

refer to Left and Right hand hits at a 16th note time step

and 0 refers to silence).

Figure 2. Inter-/Intra- pairs. For each drum pattern, intra-

pairs are selected from each of the participants. Inter-pairs

are selected by pairing a participant’s repetition with all

other repetitions corresponding to the same test.

To this end, we focused our analysis on the flattened

versions of the dualizations, that is, the left and right hand

patterns were superimposed onto a single sequence (e.g.

101011). While this approach does not explore the func-

tion of each of the dualized streams, we believe that it is

valid as a preliminary investigation, because if the flattened

patterns show no rhythmic consistency, further analysis on

the function of each hand may not be warranted. In other

words, the validity of our hypothesis is contingent upon

the presence of rhythmic consistency in the dualized pat-

terns, and further analysis may be needed to determine the

functional aspects of each hand in the dualizations.
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Subset Tested Drum Patterns Repetitions Per Test Total Dualizations
P1 P2 P3 P4

Three Repetitions (A) Multi-Participant (A1) 24 3 3 3 3 288 (24×3× 4)
Single Participant (A2) 48 3 - - - 144 (48×3× 1)

Simple vs Complex (B) Multi-Participant (B1) 69 2 2 - - 276 (69×2× 2)
Single Participant (B2) 204 2 - - - 408 (204×2× 1)

Total 345 762 210 72 72 1116

Table 4. Summary of the collected dataset

3.1 Three Repetitions (A1 Session, Participants 1-4)

In Subset A1, we presented 24 drum patterns 3 to each

of the four participants three times in a random order, re-

sulting in a total of 288 obtained dualizations. We first

examine the consistency of each participant’s dualizations

over the three repetitions (intra-participant analysis), and

then we investigate the consistency of each of dualizations

with their counterparts 4 from other participants (inter-

participant analysis). To establish the similarity between

two given patterns, we used the Jaccard similarity measure,

defined as the ratio of the overlap of two sequences divided

by the union. Moreover, to establish the perceptual simi-

larity of the dualizations, we used Edit Distance [20, 21],

defined as the minimum number of operations (insertions,

deletions, or substitutions) required to transform one se-

quence into another. Figures 3 and 4 summarize the results

of inter/intra-participant analysis using a pair-wise com-

parison. In both cases, in order to establish a baseline com-

parison, we also calculate the Edit and Jaccard values for

the same number of pairs randomly selected (each random

pair comes from dualizations obtained from two randomly

selected participants and are ensured not to be associated

with the same drum pattern).

Figure 3. Intra-Participant Analysis of Subset A1

The results of the intra-participant distributions (Figure

3) show that the Edit distances are smaller for any of the

four participants’ repetitions compared to the distance be-

tween randomly paired dualizations. Similarly, the Jaccard

similarities are also higher than the random pairs.

Unlike the intra-participant distributions, the edit dis-

tances for inter-participant dualizations have some overlap

with the random pairs. This overlap is also observed in the

Jaccard similarity values. However, despite this overlap,

the inter-participant distributions still show a trend towards

higher similarity values compared to the random pairs. The

lower consistency between inter-participant dualizations,

compared to the intra-participant dualizations may be an

indicator that experienced drummers have a consistent du-

3 latin: 4, hiphop: 3 , jazz: 3, rock: 3, funk: 2, soul: 2, afrobeat: 1,
afrocuban: 1, dance: 1, neworleans: 1, pop: 1, punk: 1, reggae: 1

4 dualizations obtained from the same drum pattern tested

Figure 4. Inter-Participant Analysis of Subset A1

alized interpretation of rhythms, however, these interpre-

tations vary to some extent compared to other drummers.

While this is a possibility, we believe more comprehen-

sive analysis is required prior to making this conclusion as

there are a number of limitations to the approach taken in

this paper.

The current state of our analysis imposes several restric-

tions and simplifications that limit the depth of our study

of the dataset. Firstly, it is constrained to the flattened ver-

sions of the dualizations. Secondly, it dismisses (quan-

tizes) the velocity and micro-timing information, which

are important factors in drumming that can affect nuances

and groove. Experienced drummers often utilize velocity

and micro-timing to add expressiveness to their playing,

potentially leading to differences in the perceived rhythm.

Therefore, a comprehensive investigation of the dualiza-

tions should incorporate these dimensions for a more nu-

anced understanding.

3.2 Simple/Complex (B Sessions, Participant 1)

As mentioned previously, Participant 1 pointed in the open

interview that a dualization can be done in different man-

ners: simple and complex. For further exploring this idea,

in a second phase of the dataset collection sessions, two

participants were asked to first dualize a drum pattern in a

simple manner, and also immediately after, re-dualize the

same pattern in a more complex manner. These sessions

were partially conducted with Participants 1 and 2 (session

B1), and more tests were done using Participant 1 (session

B2). For the sake of brevity, we focus the analysis of this

subset on Participant 1 (a total of 273 paired simple and

complex dualizations).

Figure 5 shows that a major distinction between the

simple and complex dualizations of Participant 1 is that

the simple versions are considerably less active than their

complex counterparts. One interesting observation is that

the activity level of the dualizations obtained from Partic-

ipant 1 during the first session (A1) (in which this sim-

ple/complex distinction had not been introduced) are more

on par with the complex dualizations. This observation
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Figure 5. Step Densities. Left two distributions corre-

spond to the 273 simple and complex dualizations obtained

from P1 in sessions B1 and B2; remaining four correspond

to 72 dualizations per each participant in A1

along with the step density distributions for Participants

2-4 raises a question that perhaps, unless restricted, the

drummers default to more active dualizations. This ten-

dency may be explainable from two perspectives: (1) in

most styles, the hands are generally highly active as they

are responsible for playing the majority of the drum kit,

and (2) the dualizations may be by default more biased

towards the rudiments that many drummers strenuously

practice using their hands.

To further analyze the simple and complex dualizations,

we calculated the edit distance and Jaccard distance be-

tween each pair of dualizations (see Figure 6). Similar to

section 3.1, to establish a baseline comparison, we used

an equal number of uncorrelated simple and complex pairs

from Participant 1 dualizations. The results here show that,

while lower in general, the distribution of the edit distances

between the simple and complex pairs are partially over-

lapping. Moreover, this distribution is higher than the in-

tra repetition distribution in Subset A1. These trends are

also evident in the Jaccard similarity distributions. These

differences relative to the intra distances in subset A1 are

fully expected knowing that the dualizations are intention-

ally varied in this experiment.

Figure 6. Distributions of distances/similarities between

all of the Participants simple dualizations and their corre-

sponding complex dualizations

4. APPLICATIONS AND FUTURE WORK

The majority of our work has been focused on data collec-

tion and curation, as well as preparing tools to allow the

community to easily explore and study the data. All the

collected data have been carefully processed and organized

for both A and B subsets. Moreover, we have prepared an

accompanying website that enables researchers to listen to

all paired repetitions while also visualizing the piano rolls.

Lastly, we have also developed an open-source API that

allows for easy access to the data, visualization, synthesis,

and analysis using both pre-implemented and third-party

tools of interest. All these resources are publicly available

at https://taptamdrum.github.io . 5

We envision that the dataset can be used in a variety of

studies. Rhythm reduction studies could use it to exam-

ine the simplification of multi-voiced patterns into dual-

voiced ones. The dataset can also be used to develop

computational models for drum pattern reduction. These

models would be highly valuable as they allow for eas-

ier study of polyphonic drum patterns. Moreover, know-

ing that the dualizations of a single participant for a given

drum pattern are highly correlated (i.e. they are percep-

tual interpretations of the same pattern), researchers can

validate whether the features extracted from the dualiza-

tions are also highly correlated. This would provide a

way to evaluate the effectiveness of rhythm feature ex-

traction algorithms and potentially improve them. Sim-

ilarly, to establish the perceptual relevance of rhythmic

distance/similarity measures, researchers can use the sim-

ple/complex subset of the dataset to ensure that the pro-

posed measures result in reasonable distances that correlate

with the perceptual re-interpretations of a given pattern.

Lastly, the dataset can also be used for drum generation

tasks. For instance, a generative model could be devel-

oped so as convert a dual sequence into a full drum pat-

tern (similar to single voice rhythm into multi-voice drum

generators [4, 22]). Such generative models can be used

in many creative ways as during the inference stage, each

of the left/right streams fed into the drum generator can

be extracted from separate instruments/sources. Moreover,

the random repetitions and the simple/complex repetitions

can be used in developing deep metric learning models that

rely on paired training samples.

5. CONCLUSIONS

In this work, we presented TapTamDrum, a novel dataset

consisting of 1116 dualizations of drum patterns performed

by four experienced drummers, covering 345 unique drum

patterns selected from Magenta’s GrooveMIDI dataset.

The analysis conducted in section 3.1 provides valuable in-

sights into the dataset. Firstly, it shows that there are intra-

participant consistencies in the dualizations. That said, the

inter-participant analysis are less definitive and require fur-

ther detailed investigation. Moreover, the simple/complex

comparisons (section 3.2) show that the complex dualiza-

tions are significantly more active than the simple ones

while adhering to some level of rhythmic consistency with

their simple counterparts. The analysis conducted in this

work was preliminary and limited and has not explored the

full potential of the dataset. The main focus of this work

was to collect, curate, organize the dataset and also pro-

vide resources for prompt exploration of the data. To this

end, we have prepared an accompanying website and an

open-source API. Finally, this dataset can be used in a va-

riety of rhythm related studies ranging from perception to

generation.

5 https://github.com/taptamdrum/dataset
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ABSTRACT

Real-time music information retrieval (RT-MIR) has

much potential to augment the capabilities of traditional

acoustic instruments. We develop RT-MIR techniques

aimed at augmenting percussive fingerstyle, which blends

acoustic guitar playing with guitar body percussion. We

formulate several design objectives for RT-MIR systems

for augmented instrument performance: (i) causal con-

straint, (ii) perceptually negligible action-to-sound latency,

(iii) control intimacy support, (iv) synthesis control sup-

port. We present and evaluate real-time guitar body per-

cussion recognition and embedding learning techniques

based on convolutional neural networks (CNNs) and CNNs

jointly trained with variational autoencoders (VAEs). We

introduce a taxonomy of guitar body percussion based on

hand part and location. We follow a cross-dataset evalua-

tion approach by collecting three datasets labelled accord-

ing to the taxonomy. The embedding quality of the models

is assessed using KL-Divergence across distributions cor-

responding to different taxonomic classes. Results indi-

cate that the networks are strong classifiers especially in a

simplified 2-class recognition task, and the VAEs yield im-

proved class separation compared to CNNs as evidenced

by increased KL-Divergence across distributions. We ar-

gue that the VAE embedding quality could support control

intimacy and rich interaction when the latent space’s pa-

rameters are used to control an external synthesis engine.

Further design challenges around generalisation to differ-

ent datasets have been identified.

1. INTRODUCTION

There is increasing interest in deep neural networks for

processing audio in real time with sufficiently low latency

to be used in musical performance. There is also a drive to

provide small self-contained platforms that could perform

inference at the edge, that is, on a device that can be fitted

in a musical interface or a musical instrument [1–3]. Many

of the tasks in Music Information Retrieval, such as onset

© A. Martelloni, A. P. McPherson, M. Barthet. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: A. Martelloni, A. P. McPherson, M. Barthet, “Real-

Time Percussive Technique Recognition and Embedding Learning for the

Acoustic Guitar”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

detection [4], playing technique classification [5], timbre

transfer [6], re-synthesis of musical information [7] and

generative composition [8], find an application in the de-

sign of Digital Musical Instruments (DMI) and augmented

instruments, as long as the solutions conform to real-time

requirements. For Real-Time MIR (RT-MIR), two physical

constraints that limit the application of Deep Neural Net-

work (DNN) models are causality, implying the inability to

look into the future, and low action-to-sound latency [9].

Acceptable action-to-sound latency in music performance

was found to be 10 ms [10] for percussion instruments,

and the latency’s jitter (the variation) was also found to be

a factor in the quality of the interaction [11]. Although

there are ways to work around higher latencies, for exam-

ple by synthesising generic attacks before a specific sound

is generated [12], the ideal approach would be to develop

a system fulfilling the latency constraints in the first place.

In this work, we investigate RT-MIR for the process-

ing and mapping of guitar body hit sounds to augment the

timbral palette of the instrument in percussive fingerstyle.

Percussive fingerstyle is an extended guitar technique that

uses layered arrangements, alternate tunings and hits on

the guitar’s body to create the impression of a “one-man

band” [13]. Our method relies on deep learning to develop

recognition and embedding learning of guitar body percus-

sion. Our model addresses the task of generating represen-

tations of body hits according to performers’ percussive

gestures, separating them by hand part and location. One

possible application is to map such a description as pa-

rameters for a synthesis engine, such as real-time physics-

based synthesis. We adapted an Automatic Drum Tran-

scription (ADT) model based on a Convolutional Neural

Network (CNN) to fit the practical constraints of an aug-

mented instrument for percussion. Our longer-term aim is

to design a network that not only works as a classifier, but

also describes guitar body hits with a set of features unique

for each sample, to support control intimacy [14] and try

to achieve the same level of nuance afforded by acoustic

instruments. To this end, we propose a variation of our

model that jointly trains a classifier and a Variational Au-

toencoder (VAE) [15].

2. BACKGROUND

Percussion DMIs. In opposition to the direct control

offered by acoustic percussion, digital percussion instru-
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ments have historically afforded indirect control of discrete

events [16], with hit dynamics often being the only expres-

sive parameter over individual hits. Jathal [17] provides

a detailed description of commercial digital percussion in-

struments, emphasising the fact that they force the player

to adapt their technique to the tool, usually a set of but-

tons or a zone-based sample trigger. The author also ad-

vocates for the design of interfaces that interpret the tech-

nique that performers of a particular acoustic instrument

have already mastered: traditional techniques will be the

first sensorimotor reference that expert players will use for

the exploration of DMIs [18], and they have been used in

the past as the basis for controllers to navigate synthesiser

spaces [19].

Hit classification. One approach is to take data from

audio transducers or other sensors for on-the-fly event de-

tection and classification, and the use of that data to trig-

ger the generation of a sound associated to that category.

Examples are Turchet et al.’s Smart Cajón [20], Jathal’s

HandSolo [17] and Zamborlin et al.’s Mogees [21]. This

approach is well supported by music tools and software

for machine learning in music such as bonk˜ for Max/PD

[22], timbreID’s barkSpec˜ and the Wekinator [23].

This has also been applied to the acoustic guitar through

the work of Lähdeoja [24] and Stefani et al. [3, 25], the

latter applying fully-connected DNN layers for multi-class

classification of guitar techniques, including percussive

ones. No direct attempts have been made to use machine

learning to achieve a description beyond classification, es-

pecially one that would support Moore’s control intimacy

[14].

Automatic Drum Transcription in MIR. A task re-

lated to guitar percussion classification in MIR is Auto-

matic Drum Transcription, the audio-based detection and

inference of score notations for percussive parts. Current

literature does not only address the Western drum kit, but

also other percussion instruments such as the tabla [26].

A recent review [27] reports that, in the current state of

the art in ADT, solutions either use non-negative matrix

factorisation (NMF) or look into the relationships between

hits and tackle the problem with a language model or a re-

current neural network. The most relevant system for our

application is based on a CNN that jointly performs event

detection and classification for ADT using a sliding buffer

of 150 ms [28] and was trained on the MIREX17 drums

dataset [29]. Mattur Ananthanarayana (MA) et al. fine-

tuned the model on a dataset of tabla strokes, noting a re-

semblance between Kick Drum, Snare Drum and Hi-Hat

sounds and the tabla strokes themselves [30].

Real-time DNNs for music performance. Our pur-

pose is not the direct re-synthesis of guitar body hits, but

rather the control of the parameters of a synthesis engine.

However, we are inspired by the introduction of neural

networks as tools for music performance, through solu-

tions such as Neural Audio Synthesis and Neural or Dif-

ferentiable Digital Signal Processing (DDSP). Bottlenecks

and latent spaces have been used with VAEs [31, 32] and

autoencoder-like structures [33] for re-synthesis of sounds

Tool Latency

bonk˜ (Puckette [22]) 6 ms

Stefani et al. [3] 20 ms

RAVE (Caillon et al. [34]) DAW-defined

Mogees (Zamborlin [21]) 23 ms

HandSolo (Jathal [17]) 17 ms

Tabla stroke classifier (MA et al. [30]) 150 ms

Table 1: Reported buffer values for detection and inference

for some of the works and studies cited in this section.

and timbre transfer, with successful real-time implementa-

tions such as RAVE [34] and DDX7 [7]. NN-based so-

lutions have also been applied to model linear [35] and

non-linear audio systems, such as guitar amplifiers [36]

and stomp-box overdrives [37, 38]. Solutions exist to load

an arbitrary neural DSP network into a plugin to be run in

a DAW, such as the Neutone VST host by Qosmo 1 and

IRCAM’s nn˜ 2 Max/PD external.

Latency. The impact of latency and jitter in music

performance systems was investigated, for example, by

McPherson et al. [11]. Table 1 reports the measurements

published by the authors cited so far on the latency of their

tools, specifically the duration of analysis and inference

rather than audio input-to-output latency, which is system-

dependent more than algorithm-dependent. Most tools that

are meant for real-time use achieve latencies in the region

of 20 ms, which exceeds Wessel and Wright’s 10 ms ceil-

ing for musical instruments [10].

Challenges in rich representation. Gesture classifi-

cation toolkits like bonk˜ have been deployed in many

music-making interfaces, including guitars [24], but they

were shown to make percussive guitar performers uneasy

owing to the chance of misclassification for ambiguous or

unexpected inputs [39]. Standard classifiers also do not

represent subtle variability within gestural categories, lead-

ing to a small gestural bottleneck [18]. Related studies in

Human-Computer Interaction (HCI) also promote the de-

sign of DMIs sensitive to the micro-scale of musical ac-

tions, the scale of differences across gestures of the same

category [40]; authors have suggested that rich and con-

trollable behaviour could be as important as high classifi-

cation accuracy for creative applications [41]. Dimension-

ality reduction of input representations through VAEs, as

performed for example by RAVE, could help investigate

these rich dimensions.

3. METHODOLOGY

3.1 From taxonomy to datasets

This work builds upon our two prior studies on the inves-

tigation of the technique of percussive fingerstyle [13] and

the design of a prototype augmented guitar to optimally

capture those techniques [39]. Those observations firstly

1 https://neutone.space/plugin/
2 https://github.com/acids-ircam/nn_tilde
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Input Features CNN Type Bottleneck

TablaCNN 80-band Mel 2-layer 2D.
Kernel size:
1x7, 1x3

128 dimensions,
reduced through
PCA

PercCNN 512-bin FFT dec-
imated to 64 bins

3-layer 1D.
Kernel size:
6, 5, 5

2 dimensions

PercVAE 512-bin FFT dec-
imated to 64 bins

3-layer 1D.
Kernel size:
6, 5, 5

2 dimensions (µ
+ σ)

Table 2: Differences across network architectures used.

Hand Part Location In networks

2-class Kick - K (heel),
Non-Kick - NK
(all others)

None TablaCNN,
PercCNN,
PercVAE

4-class Heel - H, Thumb
- T, Fingers - F,
Nails - N

None TablaCNN,
PercCNN,
PercVAE

4-class +
5-class
(Hierar-
chical)

Heel - H, Thumb
- T, Fingers - F,
Nails - N

Soundhole, Up-
per Bout, Lower
Bout, Upper
Side, Lower Side

TablaCNN,
PercCNN

Table 3: Output layers mapped to guitar body percussion

taxonomy.

led to the creation of a taxonomy of guitar body percus-

sion, inspired by the work by Goddard on the taxonomy of

bass playing techniques [42]:
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hit

scrape
the guitar with
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thumb

fingers

nails

at the































soundhole

upper bout

lower bout

upper side

lower side

This was used to create the labelled dataset GPercRep

by producing 50 examples (one hit per second) of each

combination of taxonomy attributes, excluding those that

are ergonomically impossible, e.g. reaching the lower

sides of the body with the heel of the hand. This leads to an

imbalanced but ecologically valid dataset [43]. Each com-

bination was repeated at four dynamics levels (p, mp, mf,

f ). All recordings were made by the first author on the gui-

tar built for [39], which has a six-channel output made out

of one magnetic pickup and five piezo sensors on each of

the locations (soundhole, etc..., see taxonomy above). The

guitar had 12-53 gauge strings in standard tuning, muted

with the left hand, and the hits were played with the bare

right hand. After excluding scrapes from the analysis, as

they require a time-based gesture follower, the dataset has

3,157 examples extracted from 52 minutes and 37 seconds

of audio at 44.1 kHz. The dataset is currently not public.

3.2 Network architectures

The baseline model for our experiments is an adaptation of

the tabla transcription model proposed in MA et al. [30].

This network processes three stacked spectrograms with

different time/frequency resolutions on a window of 150

Input: 6 channels x 64 bins

Linear: 64 to Nemb

Linear: Nemb to Ncl (sigmoid)

Linear: Nemb to 8 (ReLU)

Linear: 8 to Nloc (sigmoid)

Linear: 64 to Nemb (σ)

Recon: 6 channels x 64 bins

Conv1d: 32 x 6 (BN + Leaky ReLU)

MaxPool1d: 2

Conv1d: 64 x 5 (BN + Leaky ReLU)

MaxPool1d: 2

Conv1d: 64 x 5 (BN + Leaky ReLU)

Linear: 1792 to 64 (Leaky ReLU)

Dropout: 0.2

Conv1dTranspose: 32 x 6

MaxUnpool1d: 2

Conv1dTranspose: 64 x 5

MaxUnpool1d: 2

Conv1dTranspose: 64 x 5

Linear: 64 to 1792

VAE Reparametrization

Figure 1: Architecture of PercCNN. The extra layers for

location classification are on the right-hand side, the de-

coder of PercVAE on the left. Nemb = 2, Nloc = 5,

Ncl = 2 or 4.

ms. Each frame of the spectrogram has an 80-bin Mel rep-

resentation of a window.

To adapt this network to real-time requirements we con-

strained the input window to be 512 samples, or 11.6

ms. Our adaptation (TablaCNN) receives one window

of six single Mel-frequency spectra, one for each pickup

of the prototype. A further modification (PercCNN) pro-

cesses down-sampled FFT features through three one-

dimensional convolutional layers and a bottleneck layer of

two dimensions before the output (Figure 1). To perform

dimensionality reduction jointly with classification, we im-

plemented reparametrisation from the bottleneck layer and

a decoder mirroring the encoding CNN (PercVAE).

3.3 Output classes

The labels according to the guitar body taxonomy were

simplified to: (i) a 2-class scenario with “kicks” (heel hits,

in reference to kick drum sounds that heel hits are sup-

posed to imitate) and “non-kicks”; a 4-class output imple-

menting all hand parts; (ii) 4-class hand part plus another

5-class output trained on hit location on the body (hier-

archical output). The hierarchical output was not imple-

mented on the VAE. This gave us a total of eight network

configurations. Tables 2 and 3 illustrate differences be-

tween network architectures, and the mappings between

the taxonomy in Section 3.1 and the output layers.

Loss functions used were Binary Cross-Entropy for 2-

way classification, Cross-Entropy for 4-way classification,

and a sum of two equally weighted Cross-Entropies for hi-

erarchical classification (hand part and location). The VAE

used the following loss function, where γ = 0.001 and

β = 3 after hyperparameter search, and BCE replaced by

Cross-Entropy in the four-class model:

LV AE = BCE + γ(MSERecon + βKLD)

3.4 Training, data augmentation, cross-validation

All networks were trained on the GPercRep dataset with

hold-out cross-validation: a stratified 20% of the shuffled

dataset was reserved for testing, whereas the remainder of
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GPercRep GPercHeel GPercPat

K NK F N W/Avg Recall K NK W/Avg

TablaCNN - 2-class 97.46 99.42 99.05 85.69 44.44 85.07 74.56

PercCNN - 2-class 98.33 99.61 99.37 91.68 0.00 85.14 63.10

PercVAE- 2-class 97.87 99.51 99.20 85.02 0.00 85.14 63.10

H T F N W/Avg

TablaCNN - 4-class 97.48 91.06 89.81 94.46 92.92 91.35 35.71 87.32 73.97

PercCNN - 4-class 94.61 78.95 80.86 93.26 86.92 69.05 74.29 93.33 88.40

PercVAE - 4-class 97.44 90.30 87.44 93.16 91.63 81.86 0.00 85.14 63.10

TablaCNN - Hierarchical 96.61 92.24 89.59 93.99 92.77 89.18 23.08 86.11 69.80

PercCNN - Hierarchical 95.73 82.05 87.60 94.18 90.12 69.55 0.00 85.14 63.10

Table 4: F-Measure (as percent) for each network on the three test datasets (hold-out of GPercRep, GPercHeel and GPerc-

Pat). H = heel, K = kick, T = thumb, NK = non-kick, F = fingers, N = nails, W/Avg = weighted average.

the examples was used for training (80%) and validation

(20%). All networks were trained with an Adam optimiser

for 100 epochs with a batch size of 128, saving the model

with the highest accuracy on the test set. We trained with

the following data augmentation functions: high-pass at 80

Hz, high-pass at 160 Hz, tanh() waveshaping distortion

with gain of 5, phase inversion and random changes in gain

between the six channels of each example. Those functions

are meant to represent the different input impedances and

different gains of other audio preamplifiers.

Further to the GPercRep dataset, generalisation was

checked by performing cross-dataset evaluation [44]. We

recorded a snippet of real-world guitar percussion patterns

(GPercPat); musically coherent patterns, still with no tonal

sounds, were played, rather than hits repeated every sec-

ond. Acquisition was done with a different audio inter-

face, which led to a different combination of gains and fre-

quency responses across channels in the input audio. The

dataset was annotated only with a “kick" and “non-kick”

label, leading to 85 hits in one minute of audio.

Testing on the GPercPat dataset highlighted a bias in

our networks against heel hits or “kicks”. An explana-

tion was thought to be the lack of balance across classes

in the dataset, however the issue was not mitigated by bal-

ancing the dataset, ensuring the same number of examples

for each category. To gather further information about this

phenomenon, we created a third dataset consisting exclu-

sively of 601 heel hits, acquired and labelled with the same

taxonomy as GPercRep: this will be called GPercHeel.

3.5 Evaluation metrics

The classification performance of the networks was eval-

uated with Precision, Recall and F-measure for each cate-

gory, as a 2-class or 4-class problem (see Table 3).

We also wanted to quantitatively investigate the qual-

ity of the network’s embeddings. Thus, we made sub-

sets of the data in GPercRep according to each label the

network was trained on (kick VS non-kick or hand part),

and for each category, we drew distributions for each of

the other parts in GPercRep’s taxonomy: for example, we

divided non-kicks according to their location or their dy-

namics. Then we calculated the KL-divergences between

the probability distributions of each sub-category. The hy-

pothesis behind this method is that, if the embeddings do

not carry any meaningful information beyond the classes

that the network was trained on, the distributions will over-

lap and their KL-divergences will be small and noisy. If,

on the other hand, different hit properties lead to different

positions in the embeddings, KL-divergences will be dif-

ferent across sub-categories and the sub-categories will be

arranged following a certain order of similarity.

Reconstruction metrics for the VAE were not evaluated

beyond their inclusion in the loss function. Future work

could focus on the correlation between better reconstruc-

tion and better separation of each feature.

4. EVALUATION

4.1 Classification

Table 4 contains the F-Measure for the predictions of

each network, with the three test datasets. In the case of

GPercHeel, only the Recall is reported; the Precision is al-

ways 1, as all hits are heel hits and there cannot be false

positives (non-heel hits classified as heel hits).

2-Class discrimination. All networks are able to pre-

cisely discriminate between kicks and non-kicks with an F-

measure above 99%. The GPercHeel dataset shows much

reduced but still effective classification, especially with

PercCNN. However, the test on GPercPat exposes a gen-

eralisation problem: despite performing data augmenta-

tion during training, all networks show a bias toward non-

kicks. PercCNN and PercVAE return only non-kicks in the

dataset, despite the two classes being visually separable

when data points are extracted and plotted from their em-

beddings (not pictured). This result may suggest that the

networks still overfit to the extent that they are very sensi-

tive to the way that the data is acquired.

4-class discrimination. Uniformly across the tests, the

networks yield an F-measure around 90% for GPercRep.

The introduction of the classification by location (in the

two Hierarchical networks) does not affect the score of

the hand-part classifier. GPercHeel yields a similar Recall

score, although higher in the case of TablaCNN networks.

Interestingly, the weakest model in GPercRep, the 4-class
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(a) PercCNN
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Figure 2: Embeddings from GPercRep: example with finger hits labelled by dynamics, with matrix of KL divergence

across the distributions of each dynamic level.

PercCNN, ends up being the best model in GPercPat, al-

though an F-measure of 74% for kick hits may still not

be satisfactory in musical performance. PercVAE shows

better performance than PercCNN, although it still fails to

generalise to GPercPat and defaults to flagging all events

as non-kicks.

The F-Measures in our results are higher on average

than the ones found in MA et al.’s work on tabla hit

transcription [30]. At the same time, our results fall be-

low the 95% accuracy achieved by Stefani [45] with an

8-class discriminator on guitar techniques, and the 97%

by Jathal [17] on the three-way discriminator for tabletop

drumming. These results, however, are not directly com-

parable as the figures refer to different datasets.

4.2 Computation times and latency

Avg Std Dev

PercCNN 0.496 0.332

TablaCNN 0.422 0.496

PercCNN in Max 12.675 1.132

System (PercCNN) 22.310 0.670

System (no NN) 9.922 0.020

Table 5: Computation times in µs of both networks mea-

sured through TorchScript in a C++ wrapper, then end-to-

end within Max and with an external analogue excitation.

Our models all require a fixed 11.6 ms input buffer

to populate the input window after an event is detected,

for example through a time-based attack detector [46].

TorchScript was used to wrap the two-class (PercCNN and

TablaCNN) into a C++ test routine and a Max/MSP ex-

ternal for a synthetic soak test and real-world latency tests

on a laptop with an Intel i7-8665U CPU running Windows

(Table 5).

PercCNN and TablaCNN have comparable latencies in

the synthetic test. They both execute in less than half a mil-

lisecond on average when called 10,000 times. The real-

world latency measured manually within Max/MSP (over

30 examples) reports a value that is consistent with the 11.6

ms window plus the synthetic timing reported above, with

the attack detection not introducing much further latency

or jitter. The low-power laptop used requires an audio

buffer size of 256 samples to comfortably run PercCNN

in real time alongside a suitable synthesis engine: the total

system latency jumps to 22 ms when probing with a Bela 3

board attached to the laptop’s sound card (averaged over

500 examples). Input and output buffers can be greatly re-

duced on ad-hoc hardware or software.

4.3 Embeddings

As introduced in Section 3.5, the distribution of subclasses

of the taxonomy within each class was explored in the em-

beddings of each network. In addition to a visual and qual-

itative inspection of the distribution through scatter plots,

KL-Divergence is used here as a similarity metric to mea-

sure the distance between distributions. In the following

analysis, we will take finger hits divided according to dy-

namics as an example, but our observations are valid for

all other hand parts, and versus hit location (e.g. heel hits

3 https://bela.io

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

125



divided by body location).

Classifier embedding. When PercCNN is only trained

as a classifier, the four dynamic points overlap in the

embeddings (Figure 2a). KL-Divergences range between

2 · 10−5 and 0.2, so this range of numbers will be used as

a baseline for the interpretation of further results. PercC-

NNHierarch, trained to discriminate according to hand part

and location, shows very precise segmentation of hit lo-

cations but no meaningful segmentation by dynamics (not

pictured 4 ).

Embedding with PCA. TablaCNN’s embeddings are

not a bottleneck within the network itself, but they are cal-

culated through PCA on the 128-dimensional dense layer.

Principal Component Analysis is shown to disentangle

some of the other features in the dataset, as the dynam-

ics subclasses are distributed along a right-to-left gradient

(Figure 2b). The KL-Divergence across those distributions

reaches a maximum of 20.1.

Embedding/VAE latent space. PercVAE shows a sim-

ilar but more pronounced subdivision in the 2-dimensional

latent space. The right-to-left gradient is visible but the

KL-Divergence is much greater at a maximum of 43.2.

The KL-Divergence values steadily increase from p to f,

more evidently than in the embeddings extracted via PCA.

This was noticeable also when hits were segmented by

location (not pictured): for example, Lower Side had a

KL-Divergence of 30.8 versus Upper Side, 31.7 vs Lower

Bout, 38.7 vs Upper Bout, and 40.7 vs Soundhole.

5. DISCUSSION

The evaluation shows that all our models act as very accu-

rate 2-class classifiers. Even though classification accuracy

is not as high as in other situations (with different datasets),

the simplicity of our models and the 11.6 ms input buffer

makes them faster than those systems, and well suited for

implementation on an edge device.

Challenges. The main issue arising from our evalu-

ation is the poor generalisation to our GPercPat dataset.

Still, we have anecdotal evidence that these networks do

not behave like poor classifiers in the real-world context

of musical performance with our augmented guitar proto-

type, the HITar 5 . The 2-class PercCNN was coupled with

a time-domain hit detector and made to run in real time;

its continuous output probability was mapped to a linear

interpolation of parameters on the modal synthesis engine

MetaSynth by CNRS-AMU PRISM [47]; the signal chain

was connected to a different guitar (same make and model)

to the one the network was trained with; the network is

able to reliably adapt synthesis parameters even when used

by players other than the main author. There is scope to

expand the training and the evaluation by involving more

guitars, more players and different data augmentation tech-

niques. However, the augmented guitar that we built allows

4 All pictures of embeddings available at https://github.com/
iamtheband/martelloni_et_al_ismir2023

5 Performance of the HITar at the Guthman Musical Instru-
ment Competition 2023: https://www.youtube.com/live/

NPtHGYH0JV0?t=1150

HITar’s Linktree: https://linktr.ee/hit4r

us to pursue a further type of behavioural evaluation with

guitar players. In particular, musicians performing in real

time may adapt their gestures until they reliably produce a

desired set of outcomes, something not possible with pre-

recorded data. A study on the performance of guitar play-

ers with different network configurations running on the

augmented guitar prototype will help investigate the degree

to which the musicians can adapt to the expectation of the

network; such a study would continue our work in [39].

Support for rich interaction. We observed that Per-

cVAE is able to encode differences in hit dynamics and

location within the embeddings without being trained to

discriminate between them; rather than separating them

with decision boundaries like PercCNNHierarch, each sub-

category overlaps neighbouring subcategories, providing a

smooth transition that could map well to continuous quan-

tities such as dynamics or location on a surface. The use

of a bottleneck layer is also a more efficient solution than

PCA, as performing PCA would require extra matrix com-

putation that was not captured in the timings measured at

Section 4.2. The parameters of a synthesis engine such as

MetaSynth could be controlled not just by the categorical

output of the discriminator, but also by the latent represen-

tation of the VAE, either directly or through a transform. A

mapping function could be designed between the embed-

dings and synthesis parameters, or the embedding vectors

could be exposed directly to synthesisers as MIDI Poly-

phonic Expression (MPE) [48] controls.

6. CONCLUSIONS

We presented three adaptations of Automatic Drum Tran-

scription for guitar body percussion classification and em-

bedding learning, to support real-time music performance

and the augmentation of an acoustic guitar through Deep

Neural Networks. We chose and simplified a model for

ADT that was shown to be effective in the detection of

tabla strokes; a variant was also proposed which supports

high-level continuous feature representation through the

use of embeddings jointly trained as a Variational Au-

toencoder’s latent space. All network configurations were

trained on a dataset of percussive fingerstyle hits acquired

ad hoc, and they were tested on a hold-out portion of

that dataset plus two other datasets of similar material.

The networks performed very well on a simplified 2-class

discrimination, and comparably to the state of the art on

the full 4-class stroke classification with smaller latency.

However, they generalise poorly on a dataset that was

recorded with different computer equipment. The embed-

dings were analysed both qualitatively and quantitatively

through KL-Divergence between subclasses in the taxon-

omy; they show that the network encodes some informa-

tion beyond the categories with which it was trained. We

argue that this information can be used to support richness

in musical interaction with digital and augmented instru-

ments based on DNN analysis.
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Figure 1. IteraTTA is an interface dedicated for allowing novice users to show their creativity in text-to-audio music

generation processes. It provides a) computational guidance for constructing initial prompts and b) dual-sided iterative

exploration of text prompts and audio priors.

ABSTRACT

Recent text-to-audio generation techniques have the poten-

tial to allow novice users to freely generate music audio.

Even if they do not have musical knowledge, such as about

chord progressions and instruments, users can try various

text prompts to generate audio. However, compared to the

image domain, gaining a clear understanding of the space

of possible music audios is difficult because users cannot

listen to the variations of the generated audios simultane-

ously. We therefore facilitate users in exploring not only

text prompts but also audio priors that constrain the text-

to-audio music generation process. This dual-sided explo-

ration enables users to discern the impact of different text

prompts and audio priors on the generation results through

iterative comparison of them. Our developed interface, It-

eraTTA, is specifically designed to aid users in refining

text prompts and selecting favorable audio priors from the

generated audios. With this, users can progressively reach

© H. Yakura and M. Goto. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

H. Yakura and M. Goto, “IteraTTA: An interface for exploring both text

prompts and audio priors in generating music with text-to-audio mod-

els”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

their loosely-specified goals while understanding and ex-

ploring the space of possible results. Our implementa-

tion and discussions highlight design considerations that

are specifically required for text-to-audio models and how

interaction techniques can contribute to their effectiveness.

1. INTRODUCTION

Recent advances in generative machine learning tech-

niques open up novel ways for a diverse group of individu-

als to engage in creative processes [1, 2]. Specifically, mu-

sic generation models can foster creative expression among

novice users, who may not necessarily possess formal mu-

sical knowledge [3, 4]. Consequently, several approaches

have been proposed to enable users to control various mu-

sical attributes of generated audios, such as specifying the

note or rhythm density [5, 6] and chord progression [7–9].

Text-to-audio models [10,11] are promising in terms of al-

lowing users who are not familiar with the concepts of such

musical attributes to generate their own sounds.

Nevertheless, there are still several gaps toward deploy-

ing such models to support the creativity of novice users.

For example, the models rely on annotated labels of music

clips presented in their training datasets [12–14], which

primarily consist of musical descriptions such as genres,

instruments, and moods. Therefore, providing such infor-
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mation as a text prompt is crucial for enabling fine-grained

control over generated music audios. However, this may

prove challenging for novice users due to disparities in

artistic vocabulary among individuals with varying levels

of musical knowledge [15]. Experimentally, it has been

suggested that non-musicians tend to rely more on abstract

concepts, such as the pleasantness or complexity of music,

when appreciating musical pieces [16], which may pose

difficulties in fully exploring various text prompts.

Moreover, understanding the space of possible results is

also challenging, particularly when compared to the use of

text-to-image models. In text-to-image generation, users

can look over various generation results at a glance, which

fosters their understanding of the space and helps them de-

cide on directions to explore [17]. From the perspective of

explainable AI (XAI), we can say that such results serve as

explanations by example [18] because the results implicitly

invite the users to infer the behavior of the models. How-

ever, in text-to-audio generation, users cannot simultane-

ously listen to multiple generation results, thus impeding

their comprehension and ability to efficiently explore the

space. These points imply that specific design considera-

tions are necessary to fully leverage the potential of text-

to-audio models and exploring them would also provide a

new perspective in terms of XAI.

In this paper, we introduce IteraTTA, an interface ded-

icated to the text-to-audio (TTA) music generation pro-

cesses of novice users. This interface enables iterative ex-

ploration of both text prompts and audio priors, allowing

users to gain a comprehensive understanding of the space

of possible results by sufficiently constraining the genera-

tion processes. We constructed this interface based on our

observations and related literature on creativity support,

which emphasize the importance of 1) computational guid-

ance for constructing initial prompts and 2) dual-sided iter-

ative exploration of text prompts and audio priors. More-

over, we deployed the interface as a publicly-available Web

service and analyzed the diverse ways in which users uti-

lized it in their creative processes. Our results and discus-

sions shed light on ways to utilize models developed in the

MIR community to unleash the creativity not only of ex-

pert users [19] but also of individuals with varying degrees

of musical knowledge.

2. RELATED WORK

2.1 Music Generation Techniques

Music generation has been one of the central topics with

the MIR community [20–24], and recently, generative ma-

chine learning techniques have been widely employed for

this purpose [24, 25]. While methods for symbolic music

generation that output MIDI files have been popular [26–

32], some methods use generative models to directly out-

put audio, leveraging their expressiveness [33–36]. For ex-

ample, Jukebox [33] and RAVE [34] use variational au-

toencoders and autoregressive models trained on large-

scale music datasets to generate diverse music audios.

Controllability in music generation has been also em-

phasized [5–9, 37–39] because it is vital to open up its ap-

plications for supporting users’ creative processes [40,41].

For instance, Music FaderNets [5] allows users to modify

the rhythm and note densities of generation results, while

Music SketchNet [6] enables them to specify pitch con-

tours and rhythm patterns. Wang et al. [7] and Dai et al. [8]

have proposed methods to further constrain the chord pro-

gression of generation results. However, as mentioned in

Section 1, users are not always familiar with such con-

cepts, and then, they would have difficulties in using these

methods to output music audios they want to generate. We

acknowledge that some methods [38, 39] provide percep-

tual control that does not require extensive musical knowl-

edge: emotion-based musical generation. Nevertheless,

they are based on Russell’s valence-arousal model [42]

consisting of four classes, which limits the range of con-

trols and may hamper users’ agency [43] when the meth-

ods are used to support their creative processes.

In this context, recent text-to-audio models [10, 11] can

be an effective tool for such novice users. These models

learn the relationship between music audios and their text

descriptions (more specifically, latent representations en-

coded from the descriptions by RoBERTa [44]) and use

it to guide results in generating new audios from an in-

putted text (i.e., text prompt). As RoBERTa can encode

text prompts with variable length and content, the mod-

els can provide flexible control without requiring specific

musical knowledge of rhythm patterns or chord progres-

sions. Moreover, they allow users to constrain generation

results not only by text prompts but also by audio priors,

ensuring that the results have similar characteristics to the

priors. For example, the diffusion model [45] employed by

AudioLDM [11] usually uses Gaussian noise for the seed

of its generation process, but by using a noise-infused au-

dio prior, we can obtain generation results preserving the

characteristics of the provided audio.

Here, text-to-image models that use similar schemes

have been shown to unleash the creativity of novice users,

allowing them to iteratively explore open-ended variations

of text prompts [17] and customize their intermediate re-

sults by specifying image prior constraints [46]. Similarly,

text-to-audio models can be leveraged to provide users

with such iterative exploration or customization. However,

we also expect that text-to-audio music generation pro-

cesses may pose several specific difficulties, as explained

in Section 1. Therefore, we explored how interaction tech-

niques can address these challenges by developing an in-

terface dedicated to text-to-audio models.

2.2 Interfaces for Music Generation

There is a series of research on building interfaces to

let users interact with music generation techniques effec-

tively [47–53]. MySong [47], for instance, involves a mu-

sic accompaniment generation model, with which users

can control the happiness or jazziness of generation re-

sults. Louie et al. [49] proposed an interactive interface for

novice users so that they can use a symbolic music gener-

ation technique with control of happiness or randomness.
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The interface also allows users to constrain generation re-

sults by providing music priors, which was experimentally

confirmed to be effective in iteratively refining the results.

Zhou et al. [52,53] utilized a user-in-the-loop Bayesian op-

timization technique to enable novice users to iteratively

explore melodies composed by a generative model.

These interfaces underscore the significance of provid-

ing controls and supporting iterative exploration in facili-

tating the creativity of novice users using music generation

techniques. Consequently, the provision of recent text-to-

audio models to novice users would be highly suitable for

this purpose, as they offer more flexible control, compared

to using several parameters such as happiness, while also

allowing the use of audio priors. Our paper contributes to

this series of research by examining design considerations

of interfaces for text-to-audio music generation processes,

aiming to expand the scope of applications of recent tech-

niques developed in the MIR community.

3. DESIGN REQUIREMENTS

As stated in Section 1, our goal is to leverage text-to-audio

models to facilitate the creative expression of novice users

regardless of their musical knowledge. To this aim, we

embarked upon an examination of potential challenges that

these users may encounter during text-to-audio music gen-

eration processes and subsequently derived a set of design

requirements to address these issues. Guided by the princi-

ples of human-computer interaction, we utilized the think-

aloud protocol [54, 55] by involving three volunteers who

self-reported that they possessed no formal musical train-

ing beyond compulsory education. Specifically, we pro-

vided the volunteers with access to one of the latest text-

to-audio models [11] on Google Colab using its official

implementation 1 , which enabled them to provide any text

prompts and subsequently listen to three music audios gen-

erated from the text prompts. Here, since the remotely-

participated volunteers were Japanese speakers recruited

via word-of-mouth communication, we told them that they

can use DeepL Translator to translate text prompts into En-

glish to obtain better results with the model that is mainly

trained on the dataset with English text labels [12–14].

They freely used the model for approximately 30 minutes

while sharing their screens on a video call and verbaliz-

ing their thoughts and feelings. This allowed us to identify

the challenges that they encountered and the factors that

contributed to these challenges. We then conducted semi-

structured interviews to validate the challenges identified

and to gain further insight into the reasons behind them.

Their responses were analyzed based on open coding [56],

which yielded the following design requirements in line

with the existing literature on creativity support.

3.1 Computational guidance for constructing initial

prompts

We observed that the volunteers frequently encountered

difficulty in formulating appropriate text prompts to initi-

1 https://github.com/haoheliu/AudioLDM

ate their use of the model. For example, one volunteer en-

tered the phrase “a song sounds like star wars,” resulting in

audio containing a battle cry with a space-like sound effect.

This can be attributed to the characteristics of the text la-

bels in the dataset used to train the model [12–14]. Specifi-

cally, the labels of music clips consist primarily of musical

descriptions such as genres, instruments, and moods, like:

“An orchestra plays a happy melody while the strings and

wind instruments are being played [14].” Therefore, pro-

viding such a description would be essential to ensure that

the model trained on the dataset generates music audio as

intended. The volunteer was unable to generate music-like

audio until he attempted several prompts and finally en-

tered “solemn music starting with a trumpet fanfare.”

In the context of creativity support, two underlying fac-

tors could explain the aforementioned observation. First,

an inherent gap in artistic vocabulary exists between ex-

pert and novice users [15]. Without deep musical knowl-

edge, it can be challenging to conceive a precise descrip-

tion of music audios. Additionally, novice users often

have loosely-specified goals when starting a creative en-

deavor [57–59]. They refine their objectives gradually by

exploring the space of possible results through iterative

exploration [60, 61]. However, the dependency of text-

to-audio models on precise descriptions of clearly-defined

goals makes it difficult for novice users to initiate such

exploration. This suggests that supporting them compu-

tationally in constructing initial prompts could potentially

facilitate the creativity of novice users.

3.2 Dual-sided iterative exploration of text prompts

and audio priors

We also observed that the volunteers encountered chal-

lenges in efficiently exploring the generated results. One

volunteer who had prior experience with text-to-image

models mentioned the point, as:

“Unlike text-to-image models, comparing various

results at a glance was difficult with the text-to-audio

model. So, finding a text prompt reflecting my inten-

tion most faithfully became much tough.”

In other words, iteratively trying different text prompts

would not necessarily assist users in comprehending the

space of potential results, although it is necessary for

novice users to refine their loosely-specified goals [60,61].

Therefore, users cannot determine which direction would

be closest to their goals and what text prompt to try next.

Another volunteer mentioned an issue he faced, as:

“I once found a generation result with a good

melody, but I wanted to change its tone. So, I added

‘with a flute’ to its text prompt and regenerated.

However, the melody was then completely changed,

which was frustrating.”

This implies that we need to let users utilize not only text

prompts but also audio priors to constrain the tune of gen-

eration results. In sum, supporting the creativity of novice

users in text-to-audio music generation processes requires

enabling them to efficiently explore variations of both text
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Figure 2. To facilitate the exploration of text prompts and audio priors, IteraTTA allows a) comparison of generation results

with an audio prior and b) instant edit of a text prompt.

prompts and audio priors, allowing them to iteratively re-

fine their goals by understanding the space of possible re-

sults. This demands us to develop an interface specif-

ically tailored for text-to-audio models to provide such

dual-sided exploration of text prompts and audio priors.

4. IteraTTA

Based on the above design requirements, we present Iter-

aTTA, a dedicated interface for text-to-audio music gener-

ation processes. It was implemented as a Web-based sys-

tem, allowing novice users to instantly benefit from the lat-

est text-to-audio models in their creative processes.

4.1 Design

As illustrated in Figure 1, our interface requires users to

first input a theme phrase for music audios to generate. The

inputted phrase need not include precise musical descrip-

tions since IteraTTA leverages a large language model to

derive such descriptions suitable for text-to-audio models

using knowledge embedded in the models [62]. Specif-

ically, the interface queries a large language model that

“Please give me four variational lists of comma-separated

phrases describing what does a music clip of "[theme

phrase]" sound.” It then uses the four responded phrase

lists as a variety of the first text prompts to start the music

generation processes in parallel. This feature allows novice

users to translate loosely-specified goals in their minds into

musical descriptions, which can also help them to envisage

variations of text prompts to explore.

IteraTTA then generates three music audios for each of

the four prompts. The generated audios are arranged in

two dimensions (see Figure 1), which enables novice users

to understand how different music audios are generated by

different text prompts, and also, how different music au-

dios are generated by the same text prompts. This is in-

tended to assist users in identifying which text prompts

and audio priors are closely aligned with their goals and

which direction is worth exploring. If a user identifies

a suitable candidate text prompt, they can customize the

prompt and generate new music audios with it. Alterna-

tively, if the user discovers a suitable music audio, they

can use it as an audio prior to generate new music audios.

In essence, the user can explore the subspace of possible

results that are proximate to their goals by constraining ei-

ther text prompts or audio priors, while gradually refining

their goals by themselves.

We have incorporated several features to facilitate the

exploration of text prompts and audio priors, as shown

in Figure 2. For instance, when a user specifies an audio

prior, IteraTTA enables the user to compare generated re-

sults with it. It also offers an instant editing feature of text

prompts, allowing users to amplify or suppress the sound

of a selected instrument. This is achieved by simply adding

a phrase of "with strong [instrument]" or "with no [instru-

ment]" into a text prompt, but it provides an example of

how they can modify generation results through prompts.

4.2 Implementation

As mentioned, we developed IteraTTA as a Web-based

system to invite novice users for trying music generation

with it. For the implementation of its back-end server,

we utilized Python with FastAPI and incorporated an API

of GPT-3.5 2 to construct initial prompts, while Audi-

oLDM [11] was employed to generate the music audios.

The length of music audios to generate was predeter-

mined at 10 seconds so that our GPU server harnessing an

NVIDIA RTX 2080 Ti can afford the generation of 12 au-

dios (3 audios × 4 prompts) simultaneously. On average,

the generation process takes approximately 15 seconds. In

addition, we used DeepL API to translate text prompts

into English when they were provided in non-English lan-

guages because we observed that it led to better results in

Section 3. For the front-end interface of IteraTTA, we uti-

lized Vue.js, which enables users to download the gener-

ated music audios or share them on Twitter.

2 We used gpt-3.5-turbo of https://platform.openai.
com/docs/models/gpt-3-5.
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Figure 3. Word cloud of theme phrases the 8,831 users inputted on our Web service.

5. ANALYSIS

To investigate the effectiveness of IteraTTA in supporting

diverse users in the wild, we deployed it as a publicly-

available Web service in Japanese 3 . Within two days of

release, 8,831 users generated 246,423 music audios. In

this section, we discuss the insights we extracted from their

usage logs and their responses to a form that we put a link

to it on the Web service so that they can share their opinion

and feedback voluntarily.

5.1 Diversity of theme phrases

We first examined the theme phrases that users inputted to

initiate text-to-audio music generation processes and found

that they were highly varied. Some users provided music-

related phrases, such as “nice city pop” and “cute future

bass,” while others were more specific, like: “80’s hip

hop that break dancers would dance to.” There were also

phrases expressing more abstract ideas, such as “Arabian

caves” and “silent dream of a priestess.” Figure 3 visual-

izes the words often used in the translated phrases in the

form of a word cloud, showing their diversity.

To explore the role of IteraTTA, we compared the theme

phrases inputted by the users and the text prompts derived

from them by the large language model to the text labels

in the dataset used for training the text-to-audio model.

Specifically, we randomly sampled 1,000 cases for each

of the theme phrases, text prompts, and text labels 4 and

calculated their representation vectors using the same pre-

trained model of RoBERTa [44] as the text-to-audio model.

We then visualized the distribution of the vectors using t-

SNE [63], as presented in Figure 4. This indicates that

IteraTTA guided the large language model to derive text

prompts that bridged the gap between the diverse users’

3 Its English version is currently available at
http://iteratta.duckdns.org/, and readers can try it on
their Web browsers (Google Chrome is recommended).

4 For the text labels, we extracted labels containing “music” from Au-
dioCaps [13].

Figure 4. Visualization of the representation vectors of

the theme phrases inputted by the users, the text prompts

computationally derived from them, and the text labels in

the training dataset.

theme phrases and the text labels in the training dataset. In

fact, we found that the large language model successfully

derived text prompts containing musical descriptions even

from abstract phrases, such as “otherworldly harmonies,

delicate strings, minimalistic percussion, dreamlike vo-

cals” for “silent dream of a priestess.” These results sug-

gest the effectiveness of guiding the construction of initial

prompts to support the creative processes of novice users,

as discussed in Section 3.1.

5.2 Journey of iterative exploration

We also investigated how the users interacted with gen-

erated results produced by IteraTTA. We analyzed the in-
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Figure 5. Visualization of how the users utilized the dual-sided exploration of IteraTTA.

teraction log of the service and obtained Figure 5. While

some users just tried the exploration feature once, we

found that others made iterative use of the feature, alter-

nating between providing text prompts and audio priors.

Interestingly, one user repeated this refinement process 32

times, specifying text prompts 14 times and audio priors

18 times before sharing their final result on Twitter. These

points imply that our design, which enables dual-sided it-

erative exploration, helped the users effectively utilize the

text-to-audio model.

5.3 Unleashing the creativity of novice users

We lastly analyzed the users’ responses to the feedback

form, which received 33 responses in total. Overall, most

of them expressed their affirmative experiences with the

text-to-audio music creation processes, like:

“It was a very interesting trial. I can interact with it

throughout the day.”

“In my personal opinion, it can be used as a source

of sampling materials and an idea generator. As a

person who usually composes music, I never had any

negative feelings about composing from text using

this. It is wonderful.”

The latter comment suggests that the features of IteraTTA

prepared for novice users can also benefit experienced

users in different ways.

It is also notable that the users left comments imply-

ing the importance of the design requirements discussed in

Section 3, such as how they enjoyed the open-ended explo-

ration starting from loosely-specified theme phrases.

“It was fun to encounter songs that fit the theme I

provided but I had never heard before.”

“I really enjoyed the points that I could take advan-

tage of ChatGPT’s ability to associate and verbalize

even seemingly unconnected ideas, which allowed

me to provide crazy theme phrases that would not be

understood by a human. I also learned a lot about

how to describe songs by looking at the derived text

prompts.”

Interestingly, in the form, some users left a successful

prompt that they reached after exploration:

“I would like to report that including a phrase of

‘simple progression’ or limiting the number of tracks

yielded stabilized music audios, like: ‘Ideal harmo-

nious song: balanced instrumentation, band sound,

simple chord progressions, rhythmic drum patterns,

catchy pop melody, up to 12 tracks.’ ”

“Adding ‘clear sound quality’ produces less noisy

audios.”

It is surprising that, even though we provided no ex-

plicit description of the behavior of text-to-audio mod-

els, the users were able to gain such knowledge by them-

selves through the iterative exploration with IteraTTA.

While such prompt modifiers (also known as quality boost-

ers) [64] that influence results in a specific way have

been discovered for text-to-image models in a community-

driven manner [17, 64], the above comments would be

the first examples for text-to-audio models, to the best of

our knowledge. We assume that this is a manifestation

of users’ creativity in text-to-audio music generation pro-

cesses and would be hard to derive without IteraTTA.

6. CONCLUSION

This paper introduces IteraTTA, an interface specifically

designed for supporting novice users in their text-to-audio

music generation processes. Its design is guided by two

main principles, providing a) computational guidance for

constructing initial prompts and b) dual-sided iterative ex-

ploration of text prompts and audio priors. The former

can help novice users translate their loosely-specified goals

into text prompts, which serve as starting points for ex-

ploration, even if they do not have rich artistic vocabu-

laries. The latter is important for enabling them to com-

prehend the space of possible results and gradually re-

fine their goals. To examine how diverse users utilize It-

eraTTA in their creative processes, we deployed it as a

publicly-available Web service and analyzed users’ behav-

iors, which highlight the importance of these design con-

siderations in supporting the users’ creativity. Importantly,

these principles are applicable not only to the specific text-

to-audio model but to other models, including those to be

proposed in the near future. We believe that this paper can

serve as a foundation for enabling novice users to benefit

from state-of-the-art models in the MIR community.
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ABSTRACT

The directivity of a musical instrument is a function that

describes the spatial characteristics of its sound radiation.

The majority of the available literature focuses on mea-

suring directivity patterns, with analysis mainly limited to

visual inspections. Recently, some similarity metrics for

directivity patterns have been introduced, yet their appli-

cation has not being fully addressed. In this work, we in-

troduce the problem of musical instrument retrieval based

on the directivity pattern features. We aim to exploit the

available similarity metrics for directivity patterns in order

to determine distances between instruments. We apply the

methodology to a data set of violin directivities, including

historical and modern high-quality instruments. Results

show that the methodology facilitates the comparison of

musical instruments and the navigation of databases of di-

rectivity patterns.

1. INTRODUCTION

The analysis of the directional sound radiation characteris-

tics of musical instruments is a rather old topic in the liter-

ature with first works by Olson [1] and Meyer [2–4] dating

back to the seventies. In the past few decades, numerous

studies were proposed mainly focusing on accurate mea-

surements of the directivity patterns [5–8] or on qualitative

comparisons of the instrument characteristics [9–11].

Recently, the interest in spatial audio technologies [12]

for virtual and augmented reality increased the attention

towards the modeling and analysis of directivity patterns.

In particular, the modeling of directional sound sources

showed to provide improved sound field reconstruction for

the navigation of sound scenes [13, 14]. Therefore, differ-

ent solutions have been proposed to include the directiv-

ity of acoustic sources in simulation frameworks such as

boundary and finite element methods [15], numerical sim-

ulation [16] and geometrical acoustics [17]. As a matter of

fact, the directivity of sound sources impacts on the accu-

racy of room acoustics simulation [17] and it was shown to

be relevant for auralization [18].
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In [19], the authors demonstrated that users are able

to perceive differences between omnidirectional and direc-

tional sound sources, however the evaluation is limited to a

single-tone dependent directivity pattern. In the work [20],

it was shown that fluctuations occurring in the directivity

patterns due to the movements of the musician influence

the perception of listeners both in anechoic and reverberant

conditions. More recently, in [21], the difference between

frequency-dependent directivities and an average directiv-

ity pattern has been investigated proving the importance

of modelling specific frequency-dependent directivities by

means of listening tests.

Several studies [22–26] focus on the analysis of voice

directivity patterns. In particular, [23, 25] analyze the pat-

terns associated to held or isolated vowels and consonants

from speech and singing voice [24]. Interestingly, the re-

sults on mouth and vocal tract configurations [26] showed

their impact on the directivity pattern shape.

As far as the musical instruments are concerned, most

of the works put the emphasis on accurate measurement

procedures. Typically, the directional sound pressure is

acquired in anechoic environments and under controlled

conditions [6, 7]. Alternatively, near-field acoustic holog-

raphy [27, 28] has been employed for the evaluation of the

directional sound radiation using scanning microphone ar-

rays [29]. More recently, a flexible procedure for measur-

ing the directivity pattern of sound sources that works in

low-reverberant environments was introduced in [8].

In [9], the directivity patterns of forty one orchestral

instruments have been acquired and analyzed. The in-

struments were played by musicians, rather than mechani-

cally excited, showing that the presence of the player body

has the effect of smoothing the patterns. Nevertheless, al-

though [9] draws an interesting analysis of the patterns, the

evaluation is mainly limited to graphical inspection with-

out a systematic comparison of the directivity patterns.

As a matter of fact, the quantitative and objective com-

parison of directivity patterns is still an open challenge.

In the literature, some simple metrics have been proposed

[30–33]. Although effective, the interpretation of the re-

sults and the quantification of the differences might not be

easily interpreted. In general, most of the proposed metrics

rely on the correlation between the directivity patterns, ei-

ther in the spherical harmonics domain [30] or in the spa-

tial domain [32]. In [30], the authors employed the nor-

malized cross correlation (NCC) over the spherical har-

monics coefficients of the directivity patterns. The anal-
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ysis assessed similarities of partials at a given frequency

generated by different played pitches. In [34], a rotation-

invariant version of the NCC has been proposed to com-

pare the directivity patterns of the data sets in [9,35], which

have been made available through [36]. The devised met-

ric has been used to find similarities across the partials of

one instrument or between different instruments and a vi-

sualization of the corpus through MultiDimensional Scal-

ing (MDS) [37] has been provided.

More recently, in [38], a novel set of metrics has been

introduced, which includes the Jaccard similarity index

(JSI) and the centers of mass distance (CMD) in addition

to NCC. Both JSI and CMD are derived from the anal-

ysis of the so-called principal radiation regions, namely

angular regions of the directivity pattern which exhibit the

highest sound energy radiation. In [38], the metrics are

used for the characterization of directivity patterns of pres-

tigious historical violins enabling the quantitative compari-

son of the instruments. Nonetheless, the analysis is limited

to a small set of 10 instruments and the conclusions drawn

by the analysis of each metric, although relevant, are not

readily combined.

In this work, we aim to exploit available similarity met-

rics for directivity patterns in a comprehensive and sys-

tematic fashion. Considering the problem of musical in-

strument retrieval based on the directivity pattern features

[34, 39], we introduce novel distances, namely the Jaccard

similarity distance (JSD) based on JSI, and the directivity

index distance (DID) derived from the so-called directivity

index (DI), which are combined with the CMD in a cumu-

lative Directivity Pattern Distance (DPD). The proposed

distances are blind with respect to the source type, be-

cause they work directly on the directivity values. There-

fore, ideally they can be applied on any kind of sound

sources, including musical instruments of different fami-

lies. The joint adoption of multiple distances allows us to

take into account different aspects of the directivity pat-

terns without limiting the comparison to a single metric.

Moreover, the introduced DPD provides a single-valued

solution that represents the distance between the directiv-

ity patterns combining the information provided by each

considered metric.

Although the proposed distances can be applied on dif-

ferent musical instruments, we tested them on a data set of

violin directivities. As a matter of fact, violins represent an

interesting case study due to the highly variability of direc-

tivity patterns among the instruments [40, 41]. The corpus

contains a total of 18 instruments equally divided between

10 historical and 8 modern high-quality violins. To the

best of our knowledge, this is the largest data set of vio-

lin directivity patterns evaluated in the current literature.

The analysis allowed us to observe interesting similarities

among the instruments, identifying relevant information in

the data set. In particular, modern instruments are rela-

tively distant from the historical ones. Moreover, thanks to

the adoption of DPD, we could identify clusters of histori-

cal instruments made by one violin maker and two modern

“twin” violin. Similarly to [34], we exploit the MDS tech-
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Figure 1. Example of directivity pattern D(φ, θ, ω) of a

Genelec 8030A at 1.4 kHz, taken from [43]. The principal

radiation region P is delimited by a solid black line, while

the center of mass r is marked by a black cross. The refer-

ence system is reported from top and frontal views.

nique for the visualization of the data set, which allows

us to graphically assess the distances between the instru-

ments observing the clusters of similar violins within. The

obtained results pave the way to the retrieval of musical

instruments according to their directional sound radiation

and open novel perspectives for the exploitation of direc-

tivity pattern databases.

2. SIMILARITY METRICS FOR DIRECTIVITY

PATTERNS

Let us define the directivity pattern of an acoustic source as

the square-integrable function D(·) ∈ L
2(S2) describing

the energy of the directional sound radiation. The directiv-

ity pattern is thus defined over a unit sphere comprising all

the possible directions of emission. It follows that the di-

rectivity pattern can be conveniently expressed through the

widely adopted spherical harmonics expansion [5,8,13] as

D(φ, θ, ω) =
N∑

n=0

n∑

m=−n

Cm
n (ω)Y m

n (φ, θ), (1)

where φ ∈ [0, 2π] and θ ∈ [0, π] are the azimuth and

inclination angles, respectively, Cm
n (ω) are the spherical

harmonics coefficients associated with the source directiv-

ity pattern and Y m
n (φ, θ) is the spherical harmonic of de-

gree n and order m [42]. It is worth noting that the di-

rectivity pattern (1) depends on the temporal frequency ω.

Moreover, in (1), we assumed the directivity pattern to be

band-limited being N the maximum expansion order. In

Fig. 1, an example of a loudspeaker directivity pattern is

reported.

2.1 Data model

2.1.1 Binary directivity pattern

In [38], the principal radiation region of a directivity pat-

tern is defined as the set of adjacent directions P that cor-

respond to the maximum acoustic energy emission. In par-

ticular, given a threshold value τ , the principal radiation

region is defined as

P(ω) =
{
(φ̄p, θ̄p) : DdB(φ̄p, θ̄p, ω) ≥ τ

}
, (2)

where τ = −3 dB and

DdB(φ, θ, ω) = 10 log10

(
D(φ, θ, ω)

max(D(φ, θ, ω))

)
(3)

represents the normalized directivity pattern in decibel

scale with max the function extracting its maximum value.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

139



In Fig. 1, the principal radiation region P is delimited by a

solid black line.

The thresholding procedure in (2) allows one to define

the binary directivity pattern indicating the principal radi-

ation region as

D̄(φ, θ, ω) =

{
1 (φ, θ) ∈ P(ω)
0 otherwise

. (4)

The adoption of the binary patterns is preferable rather

than considering only the direction of the maximum, i.e.

a single point, in the directivity pattern. As a matter of

fact, the binary pattern indicates the regions of high energy

emission, i.e. principal radiation, which can have arbitrary

shape and extension accordingly to the overall directional

characteristics of the directivity pattern.

2.1.2 Centers of mass

Although the binary pattern (4) provides a comprehensive

representation of the principal radiation regions, it is con-

venient to further identify a “preferred” direction of emis-

sion for each region. Therefore, we define the center of

mass for a principal radiation region P as [38]

r(ω) =
1

M

∑

p∈P(ω)

mprp, (5)

where rp =
[
sin θ̄p cos φ̄p, sin θ̄p sin φ̄p, cos θ̄p

]T
are the

points belonging to the set defined in (2). In practice, the

directions of P are weighted using the corresponding en-

ergy value in the normalized pattern, namely

mp =
D(φ̄p, θ̄p, ω)

max(D(·, ω))
, with M =

∑

p∈P(ω)

mp. (6)

The center of mass of the directivity pattern is marked in

Fig. 1 by a black cross.

2.2 Distance Metrics

In order to compare the directivity patterns of acoustic

sources within a data set, we rely on a set of metrics re-

cently proposed in [38]. Differently from customarily di-

rectivity pattern comparisons, where a single metric is con-

sidered, the employment of multiple metrics allows us to

take into account different characteristics that are captured

by each metric.

2.2.1 Jaccard Similarity Distance (JSD)

According to [38], we define the Jaccard similarity index

(JSI) between two binary directivity patterns as

JSIk,j(ω) =
|D̄k(ω) ∩ D̄j(ω)|

|D̄k(ω) ∪ D̄j(ω)|
, (7)

where ∩ is the intersection operator and ∪ is the union be-

tween the binary patterns of the kth and jth sources. From

the definition in (7), it follows that JSIk,j(ω) = 1 when

two binary patterns match exactly, while JSIk,j(ω) = 0
when the corresponding principal radiation regions do not

overlap. In order to interpret the JSI in terms of a distance,

we introduce the JSD metric as

JSDk,j(ω) = 1− JSIk,j(ω), (8)

so that the JSD decreases up to 0 when two principal radi-

ation regions are matched and the maximum value of JSD
is 1, indicating two completely disjoint regions.

2.2.2 Center of Mass Distance (CMD)

The CMD is defined in order to compute the distance be-

tween two centers of mass as [38]

CMDk,j(ω) = arctan

(
|rk(ω)× rj(ω)|

rk(ω) · rj(ω)

)
, (9)

where × and · denote the vectorial cross and dot products,

respectively. As in [33], when multiple centers of mass are

present inside the directivity patterns, the vectors r (5) are

selected in order to retain the lowest CMDk,j(ω) values.

2.2.3 Directivity Index Distance (DID)

The directivity index (DI) is a well-known feature that de-

scribes the directionality of a sound source [33]. In par-

ticular, the DI measures how much energy is concentrated

around the principal directions of a directivity pattern. In

this work, we consider the DI of the normalized directivity

patterns defined as

DIk(ω) =
1

∫ 2π

0

∫ π

0
D̂k(φ, θ, ω)dφdθ

, (10)

where D̂k is the normalized directivity pattern of the kth

source in linear scale. The DI in (10) is computed with

respect to the maximum value of the directivity pattern,

which in case of normalized patterns is equal to 1. It fol-

lows that high DI values occur for directivity patterns with

large principal radiation regions, and vice versa.

In order to compare two directivity patterns in terms of

their DI values, we define the DID as

DIDk,j(ω) =

√
(DIj(ω)−DIk(ω))

2
, (11)

where DIk and DIj are the DI (10) of the kth and jth

sources, respectively.

2.2.4 Directivity Pattern Distance (DPD)

In order to conveniently compare two sound sources in

terms of their directivity features, we introduce an over-

all metric that combines the previously defined JSD, CMD
and DID into a scalar value. Hence, we define the so-called

directivity pattern distance DPD metric as

DPDk,j= JSDk,j+
CMDk,j

max(CMDk,j)
+

DIDk,j

max(DIDk,j)
, (12)

where JSDk,j ,CMDk,j ,DIDk,j denote the mean of the

three distance metrics over the frequency axis. It must be

noted that the values of CMDk,j and DIDk,j in (12) are

normalized with respect to the maximum value encoun-

tered in the data set under analysis, such that all the com-

ponents of the sum vary within the same dynamic range,

i.e. between 0 and 1, and thus have the same relative im-

portance in the definition of DPD.
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3. EVALUATION

3.1 Data set of violin directivity patterns

The proposed methodology is applied to a data set of vi-

olin directivities. The data set includes the frequency-

dependent directivity patterns of eighteen violins, includ-

ing ten historical violins made between the 16th and 17th

centuries and eight modern violins made during the last

two centuries. For all the instruments, the owners provided

consent for the usage of the results in an anonymous fash-

ion. For this reason, and for the ease of reading, we will

denote all the historical violins with labels H1–H10, while

we will refer to the modern ones as M1–M8.

Concerning the collection of modern violins, it is note-

worthy that the instruments labeled with M1–M6 are fine

violins selected among the candidates of the “Antonio

Stradivari International Triennial Competitions of Stringed

instrument making”. The competition, held in the city of

Cremona since 1976, embraces both Cremonese and inter-

national competitors. Moreover, violins M7 and M8 were

made by a Cremonese luthier and are known as “twin vi-

olins”. The twin violins were built by employing the very

same block of tonewood and following the same geomet-

rical model. As a matter of fact, previous research already

showed the high similarity in all the spatial characteristics

of their sound.

The patterns were collected experimentally through the

measurement procedure described in [8] and were evalu-

ated at varying frequency within the range [200, 5000] Hz
using a 4th-order spherical harmonics expansion in (1).

The instruments are played by one professional violin-

ist who is free to move and play comfortably, while the

source position and orientation are estimated by the system

enabling the measurement of the directivity as described

in [8]. The data processing pipeline and the computation

of the metrics is developed using the MATLAB software.

3.2 Analysis of the metrics

To assess the significance of the proposed distance metrics,

we first compare the frequency-averaged values of JSD,

CMD and DID computed over the set of violin directivity

patterns to those obtained for the same data with a com-

monly used similarity metric, namely NCC. The NCC
metric provides a measure of the element-wise similarity

between two patterns. In order to properly compare the

previously defined distances with the baseline, the NCC
between the patterns of the k-th and l-th violins is formal-

ized in terms of a distance as

NCCk,l= 1−
1

S

S∑

s=1

D̂k(φ, θ, ωs)D̂l(φ, θ, ωs)

∥D̂k(φ, θ, ωs)∥∥D̂l(φ, θ, ωs)∥
, (13)

where ωs is the s-th frequency at which the directivity pat-

terns are evaluated, with s = 1, . . . , S and S the total num-

ber of frequency bins in the data set. In this way, NCCk,l

is close to zero when two patterns are similar and reaches

a value equal to 2 when they are inversely correlated.

Fig. 2 shows a comparison between all the metrics under

study. For any possible pair of metrics, a 2D scatter plot is

(e)

(c)(b)(a)

(d) (f)

Figure 2. Comparison between proposed distance met-

rics (JSD,CMD,DID) and Normalized Cross Correlation

(NCC). For each combination of metrics, a 2D scatter plot

of the corresponding frequency-averaged values is shown.

Z-score normalization is applied to ensure the same dy-

namic range along the axes [44]. Linear regression is per-

formed to analyze the correlation between the metrics. The

regressed line and the R2 value, measuring the degree of

correlation, are highlighted in red.

reported. The coordinates of the markers in the plot corre-

spond to the two distances for all the possible pairs of vio-

lins in the data set. Z-score normalization is applied to the

resulting values to ensure the same dynamic range along

the axes [44]. The scatter plots in the first row show the

comparison between NCC (13) and each of the proposed

metrics, while the scatter plots in the second row present

the comparison between JSD, CMD and DID only. By in-

specting the resulting distributions of points, it is possible

to highlight correlations between the metrics.

On the one hand, it can be noticed that some pairs of

metrics exhibit a point distribution that concentrates along

a line. A linear trend, in fact, can be observed in Fig. 2a

and 2b, showing the (NCC, JSD) and (NCC,CMD) point

distributions, respectively. Although less emphasized, a

similar trend can be noticed in Fig. 2d and 2e, reporting the

distribution of (JSD,CMD) and (JSD,DID), respectively.

The presence of linearity in these point distributions

can be interpreted as due to correlation, i.e. shared in-

formation, between the metrics under analysis. This can

be particularly true for NCC and JSD, which both mea-

sure the degree of pattern matching by definition. More in-

terestingly, however, correlation can be observed between

CMD and NCC. We can thus conclude that two violins

with similar principal directions of radiation tend to ex-

hibit highly matching directivity patterns. Furthermore,

JSD and CMD can be used instead of NCC to provide two

similarity measures by looking at the pattern shape and at

the principal direction of radiation separately without los-

ing information. Indeed, Fig. 2d shows that JSD and CMD
are less correlated than when considering NCC.

On the other hand, Fig. 2c and Fig. 2e do not exhibit

a linear distribution. We can interpret this evidence as the

absence of correlation between DID, NCC and CMD. As

a matter of fact, DID measures the difference in the direc-

tivity index of two patterns, which is related to the energy

distribution, and thus extracts an energy-related informa-
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(a) (b) (c)

Figure 3. Evaluation of violin similarity based on JSD (a), CMD (b) and DID (c). The elements inside the matrices are

obtained by averaging the frequency-dependent distance values. Pairs of similar violins are denoted with dark blue colors,

while dissimilar violins are highlighted in yellow. Hierarchical clustering algorithms are employed to sort the elements

inside the resulting matrices. The resulting dendrograms are reported above each distance matrix.

tion that is not captured by the other metrics.

A quantitative measure of the correlation between the

metrics under analysis can be evaluated by performing lin-

ear regression on each point distribution. The regressed

lines are denoted in red inside each 2D scatter plot. The

regression accuracy is assessed in terms of the coefficient

of determination R2, which is related to the Pearson cor-

relation coefficient in the case of simple linear regression.

The resulting R2 values are reported as an inset inside each

plot. According to [45], the values range between 0 and

1, and moderate and strong correlation occurs for values

greater than 0.3 and 0.6, respectively.

It can be noticed that the pair (NCC, JSD) shows mod-

erate to strong correlation, with R2 = 0.57. Moderate cor-

relations can be observed for (NCC,CMD), (JSD,CMD)
and (JSD,DID), with R2 = 0.42, R2 = 0.33 and

R2 = 0.38, respectively. Finally, no correlation occurs

for (NCC,DID) and (CMD,DID), with R2 = 0.09 and

R2 = 0.03, respectively.

3.3 Violins clustering based on similarity metrics
In order to group musical instruments that exhibit a sound

emission with similar spatial characteristics, the proposed

distance metrics can be used together with classical clus-

tering methods. In this case, hierarchical clustering meth-

ods are employed, based on the generation of dendrograms

[46]. In particular, the proposed similarity metrics are used

for the iterative definition of the dendrogram. It is worth to

underline, that the adopted clustering algorithm does not

require any training data and it is applied directly on the

computed similarities. Fig. 3 shows the distance matrices

assessing the pairwise similarity between all the violins in

the data set under study. The matrix elements in Fig. 3a,

3b and 3c are obtained using the frequency-averaged JSD,

CMD and DID values, respectively. Pairs of similar vi-

olins are highlighted with dark blue colors, while dissim-

ilar violins are colored in yellow. The elements of each

distance matrix are sorted according to the leaf order of a

dendrogram tree. The Ward’s method [47] is used to gener-

ate the tree branches, such that similar violins concentrate

inside the matrix.

By inspecting the resulting distance matrices, it is note-

worthy that the order of the elements in the matrix varies

depending on the specific distance considered. However,

expected groups of violins can be highlighted. In Fig. 3a,

the subsets of historical and modern violins are clearly dis-

tinguished, being placed at the top-left and bottom-right

corners of the JSD matrix, respectively. In particular, the

twin violins (M7-M8) exhibit the minimum JSD value

in the matrix and the remaining modern violins (M1-M6)

cluster together. The same behavior occurs also in Fig. 3b

and 3c, although at different locations inside the matrices.

Regarding the historical violins, H1 appears to be very

different with respect to the rest of the data set. In particu-

lar, high values are encountered for JSD and DID, which

are related to the pattern shape and energy, respectively.

Conversely, the same violin is more similar to other histor-

ical violins concerning the principal directions of radiation.

Fig. 4 shows the results of violin clustering based on the

proposed overall metric DPD. On the left, the dendrogram

computed with the Ward’s method is shown, while on the

right the resulting distance matrix is reported, with the ele-

ments sorted following the dendrogram hierarchy. Pairs of

violins characterized by DPD values close to either zero or

the maximum are colored in green or white, repsectively.

Typically, clusters can be extracted from the hierarchy

of the dendrogram tree by applying a thresholding with re-
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Figure 4. Violin clustering based on the proposed DPD metric. Small distance values correspond to pairs of similar violins

and are highlighted in green, while pairs of dissimilar violins exhibit high distance values and are highlighted in white. The

elements inside the matrix are sorted according to the dendrogram tree, shown on the left. Clustering is performed by

thresholding the dendrogram tree. The threshold is denoted with a cyan line, while the resulting clusters are colored in red.

spect to the tree height. We decide to subdivide the dendro-

gram at a height equal to 1.9, i.e. the mean value between

the height of the lowest branch in the tree and the height

of its root, denoted with a vertical dashed cyan line. As a

result, seven clusters are identified inside the data set: (i)

three consisting of a single violin (i.e. H1, H10 and H3),

(ii) one cluster made of five historical violins (i.e. H4-H6-

H7-H8-H9), (iii) one cluster made of two historical violins

and the twin violins (i.e. H2-H5-M7-M8), (iv) one clus-

ter with four modern violins (i.e. M3-M4-M5-M6) and (v)

one cluster with two modern violins (i.e. M1-M2).

The obtained clusters are coherent with the similarities

extracted from the single proposed metrics. In particular,

the distinction between historical and modern violins and

the high similarity between the twin violins (M7-M8) are

emphasized by the DPD. Moreover, hierarchical cluster-

ing based on DPD is able to recognize a cluster with five

historical violins i.e. H4-H9-H6-H8-H7. Remarkably, the

instruments belonging to this cluster have been made by

the same luthier.

3.3.1 Visualization of the data collection through MDS

Given the similarity analysis of the violin directivity pat-

terns based on the proposed DPD metric, the employment

of MultiDimensional Scaling methods (MDS) allows one

to easily visualize and navigate the collection of data [37].

In practice, MDS methods enable the mapping of the vio-

lins into a multidimensional space so that the similarities

between the musical instruments in the data set are pre-

served.

Fig. 5 shows a 3D representation of the data set based on

MDS. In this case, the coordinate system results from the

use of Nonclassical MDS with the distance matrix shown

in Fig. 4 as input. Each marker in the scatter plot corre-

sponds to a violin, and the same marker color is used to

denote violins belonging to the same cluster.

4. CONCLUSION

In this paper, we tackle the problem of directivity patterns

comparison by introducing a novel distance metric denoted

Figure 5. 3D representation of the violin data set based

on Multidimensional Scaling. Nonclassical MDS is ap-

plied on the resulting DPD matrix to map the violins into

a three-dimensional space. Each marker in the scatter plot

corresponds to a violin. The same marker color is used for

violins belonging to the same cluster.

as DPD, which is based on a combination of different sim-

ilarity metrics and features of the patterns. This approach

allows one to compactly compare the similarity of directiv-

ity patterns exploiting the different information provided

by JSD, CMD and DID. The considered metrics are com-

pared within each other and with respect to the well-known

NCC, highlighting that they provide mutually uncorrelated

information.

We analyzed a data set of directivity patterns of 18 vi-

olins divided between 10 historical and 8 modern instru-

ments. Through the use of DPD, we were able to iden-

tify clusters of similar instruments among which a set of

historical instruments made by the same maker and two

“twin” violins. Finally, the MDS technique enabled the vi-

sualization of the violin data collection starting from the

computed distances.

We foresee the application of the proposed approach for

the retrieval of musical instruments based on directivity

pattern characteristics. This opens new perspectives for the

navigation of data sets of directivity patterns which can be

used to provide a more realistic acoustic presence of musi-

cal instruments within spatial audio applications.
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ABSTRACT 

Computational models and analyses of musical rhythms 

are predominantly based on the subdivision of durations 

down to a common isochronous pulse, which plays a fun-

damental structural role in the organization of their dura-

tional patterns. Meter, the most widespread example of 
such a temporal scheme, consists of several hierarchically 

organized pulses. Deviations from isochrony found in mu-

sical patterns are considered to form an expressive, micro 

level of organization that is distinct from the structural 

macro-organization of the basic pulse. However, poly-

rhythmic structures, such as those found in music from 

West Africa or the African diaspora, challenge both the hi-

erarchical subdivision of durations and the structural 

isochrony of the above models. Here we present a model 

that integrates the macro- and micro-organization of 

rhythms by generating non-isochronous grids from isoch-
ronous pulses within a polyrhythmic structure. Observed 

micro-timing patterns may then be generated from struc-

tural non-isochronous grids, rather than being understood 

as expressive deviations from isochrony. We examine the 

basic mathematical properties of the model and show that 

meter can be generated as a special case. Finally, we 

demonstrate the model in the analysis of micro-timing pat-

terns observed in Brazilian samba performances. 

1. INTRODUCTION 

Isochrony has been a fundamental element of computa-

tional and cognitive models of musical rhythm, which are 

often inspired by the organization of rhythms found in 
Western classical music theory [1]. The advantages of 

isochrony as a structural foundation for the organization of 

music are numerous, from the potential to explain our abil-

ity to synchronize to music [2–5], to defining higher level 

qualities such as tempo [1, 6]. However, while periodicity 

is common in music, strict isochrony is almost never ob-

served [7] and many studies document with empirical data 

the systematic durational patterns from music around the 

world, which do not fit into an isochronous structure, in-

cluding the Viennese waltz [8], Brazilian Samba [9–11], 

Mali Jembe music [12] and the Norwegian Telespringar 
[13].  

Generally, such patterns are understood on the basis of 

an underlying structural basic isochronous pulse and ex-

pressive deviations from it [14]. Although an isochronous 

pulse may not be directly observed and measured in the 

music signal, a steady beat may be inferred by the listener, 

most evidently when we bob our head or tap our feet to the 
music. Numerous beat tracking algorithms exist in the mu-

sic information retrieval literature [15] and even cognitive 

models have been formalized that attempt to imitate this 

behavior [16, 17]. In most music-theoretical and cognitive 

models of rhythm, the beats of the basic isochronous pulse 

are grouped together, say every two or three, resulting in 

slower pulses that coincide with all faster ones, forming a 

hierarchical structure often referred to as meter [1, 18].  

Typically, deviations from isochrony are modeled by 

processing repeating rhythmic patterns to derive statistical 

properties, such as the mean deviation from an isochronous 
pulse at each location of the repetition cycle (see for ex-

ample [10]). Such statistical models only describe the pro-

cessed recordings and cannot be generalized. They do, 

however, provide evidence that deviations from isochrony 

may be more than a mere expressive element of the perfor-

mance, and are rather structural components of music [12]. 

Polyrhythmic music challenges the principle of hierar-

chical organization of rhythms. Polyrhythms are organized 

on the basis of multiple isochronous pulses of different pe-

riods that do not coincide [19–21]. Polyrhythmic elements 

are found in music around the world, with most representa-

tive examples coming from West Africa and the African 
diaspora [22, 23].  Even in groove-oriented music, where 

a strong sense of pulse is felt, short patterns that suggest an 

alternative pulse are common [24]  and evidence indicate 

that they are central to experiencing groove [25]. Perhaps 

unsurprisingly, certain polyrhythmic music traditions also 

exhibit large and systematic deviations from isochrony 

[26]. It has been proposed that the deviations from 

isochrony and the polyrhythmic character of music from 

the African diaspora are related, one enhancing the other 

[9, p. 234, 23].  

This paper presents a music-theoretical model that con-
structs non-isochronous grids from different isochronous 

pulses within a polyrhythmic context. Essentially, it attrib-

utes systematic non-isochronous patterns to underlying 

polyrhythmic structures that may be considered fundamen-

tal to the organization of the rhythmic patterns. In section 

2, we present relevant music-theoretical concepts. Section 

3, introduces a mathematical formalization of our model 

along with its key properties. In section 4, we employ the 

model to analyze Brazilian samba performance data taken 

from existing literature. 
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2. BACKGROUND 

2.1 Structural isochrony 

In music theory, meter is formalized as a hierarchical 

structure that groups pulses periodically [18].  In typical 

mainstream Western music, the events are aligned across 

the voices in such a way that the salient moments coincide 

to form a metrical hierarchy (Figure 1). The different lev-

els of the hierarchy correspond to various regularities 
found in the rhythm. While each level takes the form of a 

steady pulse, the various levels are stacked so that slower 

pulses coincide with all faster ones. Consequently, the pe-

riodicities in the articulated patterns in the music should 

also align in a similar fashion, although each voice may 

not necessarily articulate a specific metrical level. The pe-

riodic grouping of the beats has been formalized as a prime 

factorization problem [27–29]. Generative models of me-

ter that can be implemented in computer algorithms have 

been developed as a set of transformations [30] and an ab-

stract context-free grammar [31]  

As a cognitive mechanism, meter is understood as os-
cillations that represent the attentional energy of the lis-

tener [3, 4, 32] or a predictive schema [33] that expresses 

our expectations about the timing of musical events [34]. 

The limitations of our cognition impose temporal limits to 

the pulses of the metrical hierarchy [1, p. 29, 35]. At the 

lower limit, the shortest pulse has a period of ~100ms, and 

at the upper limit, the longest pulse has a period of ~1.5s. 

The highest metrical salience is observed for pulses with a 

moderate period of ~700ms [6]. Tempo is then defined as 

the frequency of the most salient isochronous pulse of the 

metrical hierarchy. 
The durations of the sound events are classified by the 

listener into discrete categories [2, p. 382, 36–39] that are 

influenced by the sensation of a pulse or meter evoked in 

them, so that a certain duration may be interpreted as a dif-

ferent category when listened in a different metrical frame-

work [40]. A rhythmic pattern is essentially coded as a se-

ries of nominal durations that are a multiple of the basic 

isochronous pulse of the metrical hierarchy. 

Despite the fundamental role that isochrony plays in the 

construction of meter, non-isochronous grouping of beats 

create non-isochronous metrical levels and meters (NI me-

ters) [1, Ch. 7] (see Figure 2 for an example). Such group-
ings are based on the principle of maximal evenness [1, 41, 

42] which is also the basis for the Euclidean rhythms that 

are encountered in many traditional rhythms [43, 44]. Such 

non-isochronous patterns are constructed by distributing a 

number of onsets k as evenly as possible over a number of 

beats n of an isochronous pulse. A Euclidean rhythm can 

then be denoted as E(k,n) [43]. 

2.2 Micro-timing 

While the metrical hierarchy determines durational cate-

gories for musical events, continuously variable timing de-

termines an expressive level of organization of rhythms 

[14]. Systematic deviations from the nominal durations are 
typically measured in ms or as a percentage of the nominal 

beat duration to allow for an easier comparison between 

music segments with different tempi (Figure 3). The phe-

nomenology of micro-timing has been discussed within 

the context of various music genres (see [9, 12, 45, 46] for 

some examples). Micro-timing modeling typically relies 

on statistical analysis of the timing of musical events over 

the duration of a performance to identify systematic, non-

isochronous patterns [10, 47]. 

 

Figure 3: Onsets (o) may not exactly align with the isoch-

ronous pulse and have expressive (micro) timing devia-

tions denoted with arrows (®). 

2.3 Polyrhythms 

Polyrhythms have been described in music theory as a 

form of metric dissonance [19, 20]. While consonant 
pulses align to give rise to the hierarchical structure of me-

ter, dissonant pulses intertwine. Typically, polyrhythms 

consist of pulses with distinct beat durations that are not 

simple integer multiples of one another. The ratio between 

the beat durations of the two pulses determines the length 

of the repetition cycle of the entire polyrhythm. The num-

ber of beats of each pulse within a cycle of the polyrhythm 

!!and !" are related to the beat durations of the two pulses 

"#!and "#": 

 "#!
"#" $

!"
!! (1) 

 

 

Figure 1: The metrical structure (bottom) emerging from 

The first two bars of “Conquest of Paradise” of composer 

Vangelis (top). Events are marked with (o). The three pulse 

levels of the metrical hierarchy ( | )  have periodicities of 

simple integer ratios 1:3:4 and are aligned with no phase 

differences. 

 

Figure 2: Example of a Non-Isochronous meter. The mid-

dle metrical level is non-isochronous and can be con-

structed as the Euclidean rhythm E(4,9). 

 

 

Figure 4: The 2|3 polyrhythm. A basic isochronous pulse 

subdivides both the 2-beat and the 3-beat pulses. 
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Polyrhythms can then be represented as !!%!".  Figure 4 

depicts a polyrhythm in which 2 beats of one pulse have 

the same duration as 3 beats of a second pulse. The pulses 

that constitute a polyrhythmic structure may have a com-

mon faster subdivision with a beat duration longer than the 

perceptual threshold of 100ms, resulting in a type of 

grouping dissonance or polymeter [21].  

2.4 Polyrhythms as flexible spaces 

In principle, onsets are assumed to belong to one of the 

pulses of a polyrhythm, even if they are not perfectly 

aligned. However, it has been proposed that in music from 

the African diaspora, the intervals between the pulses of a 

16|12 polyrhythm define a flexible space [23]. Events oc-

curring between a beat from the 12-beat pulse and a beat 

from the 16-beat pulse may have a ‘mixed’ character, be-

longing at the same time to both pulses. Here, we extend 

this concept of ‘mixed’ character events to create non-

isochronous grids that combine the character of both 

pulses of a polyrhythm. In this way, we formalize (micro) 
timing deviations from isochrony as a structural element 

of musical rhythms rooted in polyrhythms.  

3. NON-ISOCHRONOUS GRIDS 

3.1 Definition and construction 

Non-isochronous pulses are constructed from two isochro-

nous pulses of different periods. We will refer to the con-

structed non-isochronous pulses as grids (NI grids) to bet-

ter distinguish them from isochronous pulses. The NI grid 

is formed by gradually changing the positions of the beats 

of one isochronous pulse towards a proximate beat of the 

other pulse. We call the first pulse the ‘formative’ pulse 
and the later pulse the ‘target’ pulse of the NI grid (Figure 

5). The new beat positions for the NI grid are determined 

by: 

 &# $ '# ( )# * +#$ , '#- (2) 

where i is the beat index of the formative pulse, '# is the 

formative’s beat time, #$  is the target’s proximate beat 

time and )# is the ‘shift’ as a fraction of the distance be-

tween the two beats taking values in the range [0, 1].  

In principle, each beat may be shifted independently to 

form an NI pattern with multiple durations. Here, we ex-

amine the case of a uniform shift, where all formative beats 

are shifted by the same parameter S towards the nearest 

beat of the target pulse. Then, as S goes from 0 to 1, the 

formative pulse is being ‘morphed’ into the target pulse. 
While the relative shift S is uniform, the individual beat 

displacements in time units (e.g. ms) will still have differ-

ent values as the distance between the beats of the two 

pulses is not the same for all beats. Furthermore, S can also 

exhibit dynamic variations. In this sense, it should be un-

derstood as analogous to tempo, which can serve as a uni-

form parameter within a given time span and can also ex-

hibit variations over the duration of a piece.   

NI grids constructed by a uniform shift consist of only 
two beat classes, which we refer to as Short and Long for 

simplicity. If "' is the period of the formative pulse and 

"# the period of the target pulse, then the two beat classes’ 

durations are: 

 "& $ ./ , )0 * "' ( ) * "# * 1 (3) 

where, k can take one of two values: 

 1%&'() $ 2"'"#3 $ 45 1*'+, $ 6"'"#7 $ 4 ( / 
(4) 

where 8 9 and : ; denote the floor and ceiling functions. 

The durations of the Short and Long beats are limited 

within a NI grid. For ) $ <, both the Short and Long beats 

have a duration equal to the period of the formative pulse=
"', which is the upper limit for the Short beats and the 

lower limit for the Long beats. Conversely, for ) $ /, the 

Short beats reach their shortest duration and the Long beats 

their longest duration which are=>?@ABAC=DEF@>GFAH=IJ=@KA=
LECM@>I?= IJ= @KA= GAC>IL= IJ= @KA= @MCBA@= GEFHA="# . When 

"' N "#, i.e. !- O !. , then 1%&'() $ < and  1*'+, $ / 

and therefore the Short beats can reach a duration of 0.=
By construction, the total number of beats of an NI grid 

is the same as the number of beats of the formative pulse.  

The number of Long beats of an NI grid can be calculated 

as the remainder of the division between the number of 

beats of the formative and target pulses: 
 !*'+, $ !.=P=!- (5) 

3.2 Maximal evenness in NI grids 

One of the key properties of the NI grids is that the Short 

and Long beats are evenly distributed; a direct conse-

quence of the underlying polyrhythmic pulses being isoch-

ronous and the shift S being uniform. Different alignments 

of the pulses result in different rotations of the Short-Long 

beat pattern.  

So far, we have examined shifts of the formative beats 

towards the nearest target beats. The above equations and 
the even distribution of the Short-Long beat classes also 

apply to shifts towards the next or previous target beat. Ar-

bitrary combinations of the shifts, e.g. some towards the 

nearest beat and others towards the next beat, may also re-

sult in an even distribution of the two beat classes. How-

ever, this is guaranteed only when all formative beats fol-

low the same rule. In Figure 6, the example of a 6 beat 

formative pulse and an 8 beat target pulse is shown. It fol-

lows from Eqn (5) that the number of Long beats in the 

resulting NI grid is 2, and the remaining 4 are Short. The 

different alignments of the formative and target pulses in 

Figure 6 produce the same Short-Long beat pattern but in 
different rotations.  

  Given a polyrhythm=!-%!.=and its total duration, Eqns 

(3 - 5) can be used to calculate the durations and number 

of Long and Short beats in the corresponding NI grid as a 

 

 

Figure 5: Construction of a non-isochronous grid by uni-

formly shifting the beats of a formative pulse towards the 

nearest beat positions of a target pulse.  
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function of the shift S. The NI grid can then be produced 

directly by the Euclidean algorithm as a maximally even 

distribution of the two beat classes [1, 41, 43]. 

NI grids can be represented as polyrhythms with the ad-

ditional parameter S: &Q.!-%!. 5 )0. However, in contrast 

to polyrhythms, the order that the two pulses appear in the 

NI grid definition is important. The formative and target 

pulses are not equivalent as can easily be seen from Eqn 

(5), where the  modulo operation is not commutative, and 

the fact that the number of beats of an NI grid is equal to 

the number of beats of the formative pulse, but not of the 

target pulse. 

As a consequence of the even distribution of the Long 

and Short beats, every Euclidean pattern can be con-

structed as a NI grid (see Figure 7 for an example taken 
from [43]). In fact, it follows directly from the construction 

of Euclidean patterns that Euclidean patterns are equiva-

lent to NI grids with a shift S = 1: 

 R.S5T0 $ &Q.S=%=T5 /0 (6) 

Since the levels of a metrical hierarchy are evenly dis-

tributed, they can be constructed from NI grids. For NI me-

ters, the process is similar to the construction of Euclidean 

patterns. However, typically, meters include isochronous 

pulses at all levels of their hierarchy and, therefore, these 
meters can be constructed from degenerate NI grids for 

which the Short and Long beats have the same duration.  

4. APPLICATION TO SAMBA PERFORMANCES  

Music events may be assigned to the beats of an NI grid. 

Similar to beat tracking, analyzing an observed durational 

pattern requires aligning event onsets with beats. As not all 

beats in an NI grid are necessarily articulated, there may 

be more than one NI grid that fits the rhythmic pattern. In-

formation about the polyrhythmic structures that may be 

expected for the music at hand can help reduce the search 

space and find meaningful solutions. Here, we demon-

strate the potential of the model in musical rhythm analysis 

by constructing NI grids that fit the durational patterns 
found in Brazilian samba.  

Various rhythmic patterns of samba recordings have 

been reported in the literature [9–11, 13]. They are consid-

ered a characteristic feature of the performances and an in-

tegral part of the style, although the degree of deviation 

from isochrony as well as the specific non-isochronous 

patterns measured vary between studies. In [10], the same 

Samba rhythm was recorded at three different tempi. From 

the recordings, mean durations of the four events that make 

up the basic repetitive pattern were calculated. The results, 

which are summarized in Table 1, show that all three tempi 

follow the same general Medium-Short-Medium-Long du-
rational pattern. The relative durations however are differ-

ent at each tempo, with the fast and preferred tempi show-

ing the most similarity and the slow tempo being more dis-

tinct and closer to isochrony with a characteristic length-

ened last event. Additionally, the two Medium events (1 

and 3) were reported to be significantly different between 

them, indicative of Medium-Short and Medium-Long du-

ration [10]. 

Here we hypothesize that the observed non-isochronous 

patterns of  Table 1 are the result of an underlying poly-

rhythmic structure and we attempt to reproduce them as: 
1) NI grids with a 4-beat formative pulse and 3-beat target 

pulse (section 4.1), and 2) NI grids with a 5-beat formative 

pulse and a binary target pulse (section 4.2). In section 4.3, 

we use the NI grids to propose potential explanations for 

the differences in the observed durations between the three 

tempi. 

4.1 The 4-beat formative pulse hypothesis 

Our first hypothesis is that the basic Samba pattern (Table 

1) emerges from an underlying 4|3 polyrhythm. From Eqn 

(5), it follows that the corresponding NI grid consists of 3 

 

Tempo - BPM 
Event number 

1 2 3 4 

Measured in ms  

Fast - 133 
121 

±7.1 

69  

±6.0 

112 

±5.1 

153 

±8.6 

Preferred - 100 
157 

±8.7 

110 

±8.4 

142 

±5.8 

196 

±9.0 

Slow - 69 
212 

±9.7 

198 

±12.4 

206 

±6.6 

256 

±9.5 

Measured in percent of the total duration 

Fast - 133 27 15 25 34 

Preferred - 100 26 18 24 33 

Slow - 69 24 23 24 29 

Table 1: Mean durations and standard deviations of the 

four events of the basic Samba pattern from [8, Tbl. 3].  

 

 

Figure 7: The Cuban cinquillo pattern is the Euclidean 

rhythm R.U5V0 and the NI grid &Q.U=%=V5 /0. 

 

 

Figure 6: Three different alignments of a formative pulse 

with 6 beats and a target pulse of 8 beats produce the same 

pattern of evenly distributed Short-Long (L/S) beats, but 

in a different rotation. In A and B, all formative beats are 

shifted towards the nearest target beats. In C, the formative 

beats are all shifted forward, i.e. always towards the next 

target beat. 
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Long beats and a single Short beat. Since the NI grid has 

the same number of beats as the number of events in the 
Samba pattern, all four beats coincide with an event 

(Figure 8) and the shortest event duration (event 2) is 

aligned to the Short beat of the NI grid. Then, S is chosen 

so that it minimizes the difference between the theoretical 

beat durations and the mean event durations for the three 

different tempi. The results are summarized in Table 2. 

The three different Samba patterns correspond to three 

different shifts S, so that events 1 and 2 of the Samba pat-

tern are well aligned to the NI grid at all three tempi. How-

ever, since the NI grids consist of only two beat classes, 

events 1, 3 and 4 are matched to beats with the same dura-

tion and therefore this model cannot capture the character-
istic longer 4th event and the difference in the durations of 

the two Medium events (1 and 3).  

4.2 The 5-beat formative pulse hypothesis 

Our second hypothesis is that the observed Medium-Short-

Medium-Long pattern stems from the superposition of  5-

beat and a binary pulse. Since only 4 of the 5 beats of the 

NI grid coincide with events, the two beat classes may pro-

duce three distinct event durations and in this way repro-

duce more accurately the event durations in the pattern 

(Figure 9, top). As in the previous hypothesis, the Short 

beat is aligned with event 2. The longer fourth event in this 

hypothesis spans two beats. 

In the fast and preferred tempi, the length of event 4 is 

roughly double of the 2nd event and therefore we hypothe-

size that it spans two Short beats. Consequently, NI grid 

consists of 3 Short beats and 2 Long beats and therefore it 

is derived from a 5|2 polyrhythm. In the slow tempo, the 
difference between the duration of event 4 and the rest of 

the events is smaller. Our hypothesis is that this longer 

event spans two beats but not of equal durations. Since the 

first 3 events have similar durations, we hypothesize that a 

NI grid based on a 5|4 polyrhythm can reproduce this pat-

tern, with the 3 Long beats aligned to the first 3 events. 

Finally, as previously, S is chosen to minimize the differ-

ence between the theoretical and observed mean durations. 

The results are summarized in Table 3. 

The 5-beat formative pulse hypothesis reproduces more 

accurately the observed Samba pattern. The differences 
between the theoretical and observed durations are below 

the respective standard deviations, except for event 2 and 

3 at the preferred tempo. This is indicative of the inability 

of the 5|2 model to capture the subtle difference between 

the two Medium events.  

Introducing a subdivision to the Formative and Target 

pulses can address the above shortcoming of the model. A 

 

 

Figure 8: Potential NI grids with a 4-beat formative pulse 

for the Samba patterns of Table 1. A hypothetical align-

ment between the target (T) and formative (F) pulses is 

shown. The NI grids are specified on the left. The four 

events from Table 1 and the corresponding mean durations 

are indicated by grey circles and the integer numbers at the 

top. 

Tempo  

NI grid 

Event number 

1 2 3 4 

Fast  

NI(4|3, 0.39) 

128.7 

(7.7) 

69 

(0.0) 

128.7 

(16.7) 

128.7 

(24.33) 

Preferred 

NI(4|3, 0.27) 

165.0 

(8.0) 

110.0 

(0.0) 

165.0 

(23.0) 

165.0 

(31.0) 

Slow 

NI(4|3, 0.09) 

224.7 

(12.7) 

198.0 

(0.0) 

224.7 

(18.7) 

224.7 

(31.3) 

Table 2: Theoretical durations in ms for the four samba 

events based on the NI grids of Figure 8. In parenthesis, 

the differences between the predicted durations and the ob-

served mean durations for the respective events are shown 
for comparison with the standard deviations reported in 

Table 1. Difference greater than the respective standard de-

viations are shown in bold.  

 

 

 

Figure 9: Potential NI grids with a 5-beat formative pulse 

(specified on the left) for the patterns in Table 1 (indicated 

here with grey circles) for the three different tempi. Two 

alternative NI grids are shown for the preferred and slow 

tempo duration patterns. 
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10|4 NI grid can reproduce the differences between the du-

rations of event 1 and 3 (Figure 9 and Table 3,  alternative 

NI grids). The period of the 10-beat Formative pulse at the 
this tempo is 61ms, which is below the perceptual thresh-

old mentioned in section 2.1 for metrical subdivisions. 

Nevertheless, it may still be a plausible hypothesis consid-

ering the shortest event duration in the pattern at hand is 

69ms. A similar hypothesis for the fast tempo would result 

in a period of 46ms for the Formative pulse, which was 

considered too fast within this context and was ommited. 

At the slow tempo, the alignment of the 10-beat Formative 

pulse is identical to the 5-beat one and thus offers no ad-

vantage.  

4.3 Tempo dependence 

The above hypotheses provide alternative explanations to 
those given in [10] for the tempo dependence of the basic 

samba pattern.  

In the 4-beat formative hypothesis, we reproduce the 

patterns by gradually changing the shift S, from an almost 

purely binary pattern at slow tempo to a mixed character 

pattern at faster tempi. As the tempo becomes faster, the 4-

beat pulse approaches the lower threshold for a metrical 

subdivision and events are pulled from their formative po-

sitions (period of 114ms) towards the ternary subdivision 

(period of 151ms), which is still significantly above the 

threshold. 
In the 5-beat formative hypothesis, the tempo depend-

ence is explained by the introduction of a subdivision in 

the target pulse at the slow tempo and change to the poly-

rhythmic structure from 5|2 to 5|4. At the preferred tempo, 

the small value of S indicates that events are mainly at-

tracted to the faster 5-beat pulse (period of 121ms) and to 

a lesser extend to the slower binary subdivision (period of 

303ms). As the tempo increases, S moves towards the bi-

nary pulse, possibly due to the 5-beat pulse crossing the 

100ms threshold (91ms period). At the slow tempo, the bi-

nary pulse is subdivided, resulting in pulses with moderate 

periods (174ms for the 5-beat pulse and 218ms for the 4-

beat pulse) and a more mixed character pattern. 

5. CONCLUSION 

In this paper, we formalize a novel model for non-isochro-

nous and micro-timing rhythmic patterns that departs from 

theoretical and cognitive models that emphasize the hier-

archical grouping of isochronous pulses prevalent in West-

ern classical music theories. Instead, our model is rooted 
in non-hierarchical polyrhythmic relationships, such as 

those found in African polyphony. By incorporating poly-

rhythmic structures consisting of two pulses, our approach 

integrates both the structural/macro level and the expres-

sive/micro level of musical rhythms, which are tradition-

ally treated as separate. The resulting construct of non-

isochronous (NI) grids unifies these levels within a novel 

framework. Non-isochronous groupings such as the Eu-

clidean rhythms are then a special case of the model. 

While, NI grids can model systematic timing deviations 

from isochrony, not all deviations from isochrony can be 

accounted for by NI grids, and expressive timing may in-
troduce micro-timing deviations to NI grids. 

Our model is a music-theoretical one and is not intended 

to represent cognitive processes directly. However, some 

of its predictions may be relevant to music cognition. For 

example, it has previously been argued that only two beat 

classes, Long and Short, are perceptually relevant and that 

Medium duration events must be understood as expressive 

variants of these two beat classes [48]. A subsequent study 

showed that this is indeed the case in Mali Drum Ensemble 

music [49]. Our model makes similar predictions about the 

existence of only two beat classes, albeit for different rea-
sons and with different implications for the observed pat-

terns. To assess the perceptual relevance of these predic-

tions, further analysis of musical performances and behav-

ioral experiments are needed. 

The potential of non-isochronous grids in music analy-

sis was demonstrated in the example of Brazilian Samba. 

We developed two concrete hypotheses for the basic 

Samba pattern reported in the literature [10], which model 

the most salient features of the measured event durations 

and offer alternative explanations and interpretations for 

their tempo dependence. Polyrhythmic interpretations of 
the non-isochronous patterns observed in Samba perfor-

mances have been hypothesized before, for example in [9]. 

However, such hypotheses are typically explored in a phe-

nomenological and abstract, conceptual form. Our model 

provides the basis for a formalized method of determining 

the details of the polyrhythmic and micro-timing character 

of the observed durational patterns. 

A future study will further test our preliminary hypoth-

eses and compare them with other accounts of samba pat-

terns. For example, we will investigate the possibility that 

some of the variation in measured durations may be due to 

a dynamic shift S that changes from one repetition of the 
pattern to the next. In addition, we will explore the devel-

opment and evaluation of automated methods for discov-

ering NI grids that can account for the durational patterns 

observed in music from various genres and music tradi-

tions. 

 

Tempo  

NI grid 

Event number 

1 2 3 4 

Fast  

NI(5|2, 0.18) 

115.7 

(5.3) 

74.5 

(5.5) 

115.7 

(3.7) 

149.0 

(3.9) 

Preferred 

NI(5|2, 0.16) 

150.8 

(6.2) 

101.2 

(8.8) 

150.8 

(8.8) 

202.3 

(6.3) 

Slow 

NI(5|4, 0.71) 

205.3 

(6.7) 

205.3 

(7.3) 

205.3 

(0.7) 

256.0 

(0.0) 

Alternative NI grids 

Preferred 

NI(10|4, 0.55) 

164.9 

(7.9) 

110.3 

(0.3) 

137.6 

(4.4) 

192.2 

(3.8) 

Slow 

NI(10|4, 0.71) 

205.3 

(6.7) 

205.3 

(7.3) 

205.3 

(0.7) 

256.0 

(0.0) 

Table 3: Theoretical durations in ms for the four samba 

events based on the NI grids of Figure 9. In parenthesis, 

the differences between the theoretical durations and the 

observed mean durations for the respective events are 

shown. Differences greater than the respective standard 

deviations are shown in bold.  
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ABSTRACT

We introduce CLaMP: Contrastive Language-Music Pre-

training, which learns cross-modal representations be-

tween natural language and symbolic music using a mu-

sic encoder and a text encoder trained jointly with a con-

trastive loss. To pre-train CLaMP, we collected a large

dataset of 1.4 million music-text pairs. It employed text

dropout as a data augmentation technique and bar patch-

ing to efficiently represent music data which reduces se-

quence length to less than 10%. In addition, we devel-

oped a masked music model pre-training objective to en-

hance the music encoder’s comprehension of musical con-

text and structure. CLaMP integrates textual information

to enable semantic search and zero-shot classification for

symbolic music, surpassing the capabilities of previous

models. To support the evaluation of semantic search and

music classification, we publicly release WikiMusicText

(WikiMT), a dataset of 1010 lead sheets in ABC notation,

each accompanied by a title, artist, genre, and description.

In comparison to state-of-the-art models that require fine-

tuning, zero-shot CLaMP demonstrated comparable or su-

perior performance on score-oriented datasets. Our mod-

els and code are available at https://github.com/

microsoft/muzic/tree/main/clamp.

1. INTRODUCTION

Symbolic Music Information Retrieval (MIR) is a field that

deals with the automatic analysis and retrieval of music

based on symbolic representations such as sheet music or

MIDI files. Symbolic MIR has numerous practical appli-

cations, including music genre classification [1, 2], auto-

matic music transcription [3, 4], and music recommenda-

tion systems [5]. However, traditional symbolic MIR ap-

proaches based on handcrafted features are often limited in

their ability to capture the complex nature of music.

Deep learning has become increasingly popular in sym-

bolic MIR [6–9] due to its ability to extract complex and

© S. Wu, D. Yu, X. Tan, and M. Sun. Licensed under a
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Figure 1. The architecture of CLaMP, including two en-

coders - one for music and one for text - trained jointly with

a contrastive loss to learn cross-modal representations.

abstract music features from large datasets. However, ob-

taining sufficient labelled data can be costly and time-

consuming, as most labelled symbolic music datasets are

small in size [10–12]. To address this issue, semantic

search and zero-shot classification techniques can be used

to retrieve and label extensive unlabelled data. These tech-

niques enable the search for music by a given open-domain

query (e.g., "upbeat music with a fast tempo"), or the auto-

matic identification of music characteristics based on cus-

tomized labels without the need for training data.

To enable semantic search and zero-shot classifica-

tion for symbolic music, it is necessary to establish a

connection between music and language. This can be

achieved through the use of contrastive learning [13–17]

and pre-training [18–20]. Contrastive learning trains mod-

els to learn a feature space where similar sample pairs

are grouped and dissimilar pairs are separated, while pre-

training involves training a model on a large dataset that

can be fine-tuned or directly applied to a specific task.

In this paper, we introduce a solution for cross-modal

symbolic MIR that utilizes contrastive learning and pre-

training. The proposed approach, CLaMP: Contrastive

Language-Music Pre-training, is inspired by the success

of vision-language models [13]. Unlike prior models that

rely solely on symbolic music [9, 12, 21], CLaMP learns

semantically rich representations of musical concepts from

both sheet music and natural language. The contributions

of this paper are as follows:
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Figure 2. Text dropout is a data augmentation technique that involves a process in which candidate texts are shuffled

randomly and then selected to form a concatenated text. In this example, three candidate texts were randomly selected and

concatenated to produce the input text.

• CLaMP is a cross-modal model for symbolic MIR,

which is pre-trained on WebMusicText (WebMT), a

dataset of 1.4 million music-text pairs. To the best of

our knowledge, this is the first model of its kind and

it achieves comparable or better performance than

existing state-of-the-art models without training.

• We propose multiple techniques to improve con-

trastive language-music pre-training. Our proposed

techniques include applying text dropout as a data

augmentation method, utilizing bar patching for ef-

ficient music representation, and implementing the

masked music model pre-training objective.

• The cross-modal pre-training empowers CLaMP to

perform tasks beyond the capabilities of unimodal

models. It possesses unique features such as seman-

tic search for desired music using open-domain text

queries and zero-shot classification for new music.

• To facilitate the evaluation of semantic search and

music classification, we release the WikiMusicText

(WikiMT) dataset, which consists of 1010 music-

text pairs sourced from Wikifonia and Wikipedia.

2. METHODOLOGY

This section presents CLaMP and its cross-modal sym-

bolic MIR abilities. Additionally, we describe the WebMT

dataset, which we created to pre-train our model.

2.1 Model Design

2.1.1 Contrastive Learning Objective

CLaMP jointly trains music and text encoders to represent

the structural and semantic aspects of both modalities in a

shared feature space. This is achieved using a batch con-

struction method and objective [22, 23], as illustrated in

Fig. 1, whereby the correct pairings of a batch of N music-

text pairs are predicted. The music and text encoders em-

ploy global average pooling to obtain corresponding fea-

tures from the last hidden states.

The objective of CLaMP is to minimize the distance be-

tween N paired music-text examples while maximizing the

distance between N2−N unpaired examples. We denote a

batch of N music-text pairs as (mi, ti)
N

i=1
, where mi and ti

represent the i-th music and text inputs, respectively. The

music and text encoders are represented as fm and ft. The

contrastive loss for (mi, ti)
N

i=1
is defined as follows:

LCL = −
1

2N

N∑

i=1

(log
exp(fm(mi) · ft(ti)/τ)∑N

j=1
⊮i ̸=j exp(fm(mi) · ft(tj)/τ)

+

log
exp(fm(mi) · ft(ti)/τ)∑N

j=1
⊮i ̸=j exp(fm(mj) · ft(ti)/τ)

),

(1)

where τ is a temperature hyper-parameter that controls the

sharpness of the softmax distribution, and ⊮i ̸=j is an in-

dicator function that equals 1 if i ̸= j, and 0 otherwise.

The two terms in Eq. 1 consider either music-to-text or

text-to-music logits.

2.1.2 Text Encoder

CLaMP includes a text encoder to extract musically rele-

vant features from the input text. To achieve optimal per-

formance, a pre-trained language model is used to initialize

the text encoder. Furthermore, text dropout is employed as

a data augmentation technique to prevent overfitting and

improve the generalization ability of the text encoder.

Pre-trained Language Model RoBERTa [24] is a

transformer-based language model pre-trained on a large

corpus of English text using the Masked Language Mod-

eling (MLM) objective [18]. This model is designed to be

fine-tuned on downstream tasks and has demonstrated ex-

cellent performance as a text encoder for the contrastive

language-audio pre-training [25]. To improve training

efficiency, we used DistilRoBERTa [26] instead, which

has fewer parameters (82M) compared to RoBERTa-base

(125M) while achieving comparable performance.

Text Dropout Text dropout is a data augmentation

technique that encourages models to learn robust features

from input texts. This technique involves using a dataset

consisting of multiple paired candidate texts from various

sources for each musical composition. Similar to [27], for

a given composition with L candidates, text dropout shuf-

fles the set of candidate texts and randomly selects K texts,

where K is uniformly and randomly sampled from integers

ranging from 1 to L. These selected texts are concatenated

to form a single input text for the text encoder, as shown in
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Table 1. The average number of tokens per lead sheet in

the WikiMT dataset with different encoding methods.

Encoding Bar Patching ABC Notation OctupleMIDI [9]

Tokens 47.07±21.60 749.16±379.56 469.09±256.43

Fig. 2. Text dropout offers a wider range of possible text

combinations and allows the model to learn more complex

and diverse textual features.

2.1.3 Music Encoder

The CLaMP music encoder is designed to understand the

complex musical structure and context within ABC nota-

tion. As a text-based format for symbolic music, ABC no-

tation incorporates a wide range of musical symbols com-

monly used in sheet music. To keep all musical informa-

tion while shortening sequence length, the encoding pro-

cess utilizes the bar patching technique. To optimize per-

formance, the music encoder is specifically designed for

symbolic music understanding based on bar patching.

Bar Patching The bar in musical notation groups

phrases by defining a fixed number of beats and each bar

can be read and played as a single unit. It is separated by

vertical lines, providing reference points for locating posi-

tions within a score.

Previous models [28–31] for ABC notation utilized

character-based tokenization, resulting in sequences that

are too lengthy to process efficiently. On the other hand,

MeasureVAE [32] demonstrated the feasibility of encoding

scores at the bar-level for music generation. To improve

the efficiency of processing, we proposed bar patching, in-

spired by patch-based techniques in computer vision [33].

Bar patching divides a score into several small segments

corresponding to bars or headers (i.e. meta-information)

in ABC notation. In our implementation, each patch is as-

signed a maximum of 64 characters, covering 98.8% of

the headers or bars in the pre-training dataset. We add an

[END] token at the end of each patch to indicate the end

of the sequence. Patches with fewer than 64 are padded

with [PAD] tokens, while those with over 64 characters

are truncated. For the vocabulary, 95 ASCII printable char-

acters and three special tokens (i.e., [PAD], [MASK], and

[END]) are considered, resulting in a total of 98 tokens.

Thus, each patch can be represented as a 64×98 matrix.

These patches are then flattened and projected into 768 di-

mensions embeddings and used as input tokens, as illus-

trated in Fig. 3.

Bar patching effectively reduces the average sequence

length of the encoded music to less than 10% of the origi-

nal ABC notation, as shown in Table 1. This technique im-

proves the efficiency of representing music and facilitates

faster computation while preserving all musical informa-

tion in the notation.

Masked Music Model The Masked Music Model

(M3) is a self-supervised model for symbolic MIR based

on bar patching representation. The primary concept of M3

is to introduce random noise to certain patches of the in-

put music, and then reconstruct the characters in the noise-

| : SP F SP

| : SP F SP |

L:1/8  M:4/4   K:Emin  |: F | CGGC G2 CG | G2 FG BGFE |]

L:1/8 M:4/4      K:Emin       F :| | CGGC G2 CG |        G2 FG BGFE |]

ABC Notation

Noise-added 

Bar Patches

0

Patch-level Transformer Encoder

Character-level Transformer Decoder

Position +

Patch Embeds

Patch Features

Shifted Outputs

Output Chars

L : 1 / 8

L : 1 / 8 END

|

END

Linear Projection of Flattened Bar Patches

1 2 3 4 5

Figure 3. The masked music model architecture, where

the encoder takes in a sequence of patches, and the decoder

reconstructs character information of noise-added patches.

added bar patches based on the context. This pre-training

enables M3 to learn from unlabelled musical data, making

it useful for initializing the CLaMP music encoder.

M3 is based on an asymmetric encoder-decoder archi-

tecture, similar to MAE [34], as shown in Fig. 3. It uses

an encoder to extract contextualized features of individual

patches, along with a decoder, which is lightweight and

autoregressively reconstructs the characters for each patch.

After pre-training, the decoder is discarded and the encoder

is used to initialize the music encoder of CLaMP.

The pre-training objective is inspired by MLM [18]. We

first randomly select M% of the bar patches in the input

music, and then the noise is added in three different ways:

• Masking: 80% of the selected bar patches are re-

placed with a special patch filled with [MASK] to-

kens. This encourages the model to learn to fill in

missing information and understand the relationship

between different musical elements.

• Shuffling: 10% of the selected bar patches are ran-

domly shuffled internally. For example, a bar patch

"|: F |" may be randomly shuffled to "F :|

|" as shown in Fig. 3. This forces the model to

learn the patterns and structures within bar patches.

• Unchanged: 10% of the selected bar patches are left

unchanged. This can narrow down the gap between

pre-training and fine-tuning.

M3 is trained to predict the original characters in the

noise-added bar patches based on contextualized patch fea-

tures. The model is optimized using the cross-entropy loss,

which compares the predicted characters with the ground

truth characters. The final objective is to minimize the

average loss over all the noise-added bar patches in the

training set. By denoising these bar patches, M3 learns to

capture the dependencies and relationships between differ-

ent musical elements and structures, allowing it to extract

meaningful features from ABC notation.
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Figure 4. The processes of CLaMP performing cross-modal symbolic MIR tasks, including semantic search and zero-shot

classification for symbolic music, without requiring task-specific training data.

2.2 Cross-Modal Symbolic MIR

CLaMP is capable of aligning symbolic music and natural

language, which can be used for various cross-modal re-

trieval tasks, including semantic search and zero-shot clas-

sification for symbolic music.

Semantic search is a technique for retrieving music

by open-domain queries, which differs from traditional

keyword-based searches that depend on exact matches or

meta-information. This involves two steps: 1) extracting

music features from all scores in the library, and 2) trans-

forming the query into a text feature. By calculating the

similarities between the text feature and the music fea-

tures, it can efficiently locate the score that best matches

the user’s query in the library.

Zero-shot classification refers to the classification of

new items into any desired label without the need for

training data. It involves using a prompt template

to provide context for the text encoder. For exam-

ple, a prompt such as "This piece of music is

composed by {composer}." is utilized to form in-

put texts based on the names of candidate composers. The

text encoder then outputs text features based on these in-

put texts. Meanwhile, the music encoder extracts the mu-

sic feature from the unlabelled target symbolic music. By

calculating the similarity between each candidate text fea-

ture and the target music feature, the label with the highest

similarity is chosen as the predicted one.

2.3 WebMusicText Dataset

To facilitate the learning of relationships between natu-

ral language and symbolic music, we developed a dataset

named WebMusicText (WebMT) by crawling an extensive

collection of music-text pairs from the web. Our dataset

comprises 1,448,750 pairs of music-text data, where all

music files are in score-oriented formats (e.g., MusicXML,

LilyPond, and ABC notation). To reduce the disparity be-

tween scores in different notations, we first converted all

music files to MusicXML and then to ABC notation 1 . In

addition, to avoid information leakage, we removed any

natural language (e.g., titles, composers, and lyrics) in

ABC notation. The text parts of each pair were obtained

1 https://wim.vree.org/svgParse/xml2abc.html

from corresponding meta-information (e.g., title and com-

poser) or user comments, and are all in English. WebMT

features diverse musical compositions, from monophonic

folk music to polyphonic orchestral music, which enables

the model to learn a wide range of musical information.

3. EXPERIMENTS

3.1 Settings

3.1.1 Models

• MusicBERT [9]: This model combines unsu-

pervised pre-training with supervised fine-tuning,

which achieved state-of-the-art results. MusicBERT

is available in two settings: MusicBERT-S/1024

(MusicBERTsmall), and MusicBERT-B/1024

(MusicBERTbase). MusicBERT-S/1024 consists

of 4 layers and was pre-trained on the small-scale

Lakh MIDI Dataset (LMD, 148,403 pieces) [35],

while MusicBERT-B/1024 has 12 layers and was

pre-trained on the large-scale Million MIDI Dataset

(MMD, 1,524,557 pieces). Both models have a max-

imum length of 1024.

• M3: Our proposed music encoder is used to com-

pare the performances of unimodal and multimodal

models trained on the same dataset (i.e., WebMT).

M3 comes with two settings: M3-S/512 and

M3-S/1024, with maximum lengths of 512 and

1024, respectively. In the following experiments,

both settings use the 6 encoder layers only.

• CLaMP: Several variants were tested to verify

the effectiveness of the proposed techniques for

improving contrastive language-music pre-training.

These include CLaMP-S/512 which is the full

model, CLaMP-S/512 (w/o TD) which re-

moves text dropout, CLaMP-S/512 (w/o M3)

which has a randomly initialized music encoder,

and CLaMP-S/512 (w/o M3, BP) which re-

moves both M3 and bar patching, and uses char-level

tokenization to encode raw ABC notation instead.

CLaMP-S/1024 was included to verify the effec-

tiveness of an extended maximum length.
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3.1.2 Pre-training

The text encoder was initialized using DistilRoBERTa

[26], with a maximum length of 128, and the music en-

coder was initialized using two settings: M3-S/512 and

M3-S/1024. A length of 512 resulted in truncating 17.29%

of compositions in WebMT, while a length of 1024 re-

duced truncation to 7.7%. Both models were trained for

40 epochs with 6 encoder layers and 3 decoder layers, an

embedding size of 768, and a noise ratio of 45%. Based

on these two M3 encoders, we developed CLaMP-S/512

and CLaMP-S/1024. Both of them were trained for 20

epochs, using the AdamW optimizer [36] with β1 = 0.9,

β2 = 0.999, ϵ = 10−8, and a weight decay coefficient

of 0.01. The batch size is set to 640, and the temperature

τ = 0.2. The training process was accelerated and mem-

ory was saved by using mixed precision [37].

3.1.3 Evaluation Datasets

We introduce WikiMusicText (WikiMT) 2 , a new dataset

for the evaluation of semantic search and music classifi-

cation. It includes 1010 lead sheets (melodies with har-

monies) in ABC notation sourced from Wikifonia, each

accompanied by a title, artist, genre, and description. The

title and artist information is extracted from the score,

whereas the genre labels are obtained by matching key-

words from the Wikipedia entries and assigned to one of

the 8 classes that loosely mimic the GTZAN genres [38].

The description is obtained by utilizing BART-large [39]

to summarize and clean the corresponding Wikipedia en-

try. Additionally, following WebMT, the natural language

information within the ABC notation is removed.

In addition to WikiMT, we use two other datasets to

evaluate music classification: VGMIDI and Pianist8. VG-

MIDI [11] includes 204 score-oriented MIDI arrange-

ments that were classified according to the valence-arousal

model. Pianist8 [12] contains symbolic piano perfor-

mances of 411 pieces from 8 composers with distinct

styles, which were automatically transcribed from audio

using a model presented in [8].

3.1.4 Metrics

We use the following three metrics to evaluate the effec-

tiveness of models in various downstream tasks:

• Mean Reciprocal Rank (MRR) is used to evaluate

ranking systems. This metric calculates the average

of the reciprocal ranks of the correct answers, which

measures the effectiveness of the ranking.

• Hit Ratio at K (HR@K) measures the accuracy of

the model by checking if the correct item is among

the top K recommendations, which is often used in

recommendation systems.

• F1-macro score is a metric that assesses the overall

effectiveness of a classification model. It is com-

puted using the arithmetic mean (i.e., unweighted

mean) of all the per-class F1 scores.

2 https://huggingface.co/datasets/sander-wood/

wikimt

Table 2. Semantic search performance of CLaMP on

WikiMT (1010 music-text pairs) under different settings.

Setting MRR HR@1 HR@10 HR@100

S/512 0.2561 0.1931 0.3693 0.7020

S/1024 0.2016 0.1436 0.3109 0.6554

S/512 (w/o TD) 0.1841 0.1248 0.2911 0.6188

S/512 (w/o M3) 0.1262 0.0802 0.1960 0.5119

S/512 (w/o M3, BP) 0.0931 0.0525 0.1584 0.4426

3.2 Results

3.2.1 Semantic Search

In the semantic search evaluation, we assessed different

versions of CLaMP for semantic search, aiming to test the

efficacy of contrastive language-music pre-training tech-

niques. The pre-training dataset WebMT and the evalu-

ation dataset WikiMT have no overlap, thus guaranteeing

the validity of our evaluation results. In addition, as seman-

tic search requires no additional training for this dataset, it

demonstrates the generalizability of CLaMP.

Table 2 shows that our full model (CLaMP-S/512) out-

performs all other models across all metrics. Interest-

ingly, we discovered that increasing the maximum se-

quence length to 1024 (CLaMP-S/1024) did not lead to

an improvement in performance. We attribute this to the

fact that all lead sheets in the WikiMT dataset, once en-

coded with bar patching, have a length smaller than 512,

which limits the potential advantages of the longer se-

quence length of CLaMP-S/1024. We also observed that

the removal of the proposed techniques from CLaMP had

a considerable negative impact on semantic search perfor-

mance. Notably, the removal of M3 pre-training had the

greatest effect on model performance, followed by text

dropout and bar patching.

In conclusion, our evaluation of CLaMP on WikiMT

shows that CLaMP-S/512 with all proposed contrastive

language-music pre-training techniques is the most effec-

tive for the semantic search task. This highlights the impor-

tance of these techniques for effective pre-training and se-

mantic search tasks. Additionally, increasing the sequence

length (CLaMP-S/1024) did not improve the model’s per-

formance. These results emphasize the significance of us-

ing appropriate pre-training techniques in language-music

models and suggest that a longer sequence length may not

necessarily result in better outcomes.

3.2.2 Music Classification

The goal of the classification evaluation is to assess how

well the zero-shot CLaMP models perform compared to

other fine-tuned models. In addition, to evaluate pre-

trained models, linear probes are used to train a linear clas-

sifier for the classification based on the features from pre-

trained models. Despite being less powerful and relying on

pre-trained model features, linear classifiers offer a valu-

able means of quantitatively assessing feature quality [40].
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Table 3. Classification performance of different models on three datasets: WikiMT (1010 pieces, 8 genres), VGMIDI (204

pieces, 4 emotions), and Pianist8 (411 pieces, 8 composers).

Model
WikiMT VGMIDI [11] Pianist8 [12]

F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy

Linear Probe MusicBERT-S/1024 0.2401 0.3507 0.4662 0.5350 0.8047 0.8102

Linear Probe MusicBERT-B/1024 0.1746 0.3219 0.5127 0.5850 0.8379 0.8413

Zero-shot CLaMP-S/512 0.2660 0.3248 0.5217 0.6176 0.2180 0.2512

Zero-shot CLaMP-S/1024 0.2248 0.3406 0.4678 0.5049 0.1509 0.2390

Linear Probe M3-S/512 0.2832 0.3990 0.5991 0.6667 0.6773 0.6909

Linear Probe M3-S/1024 0.3079 0.4020 0.5966 0.6522 0.6844 0.6958

Linear Probe CLaMP-S/512 0.3452 0.4267 0.6453 0.6866 0.7067 0.7152

Linear Probe CLaMP-S/1024 0.3449 0.4416 0.6345 0.6720 0.7271 0.7298

WikiMT was converted into the MIDI format using mu-

sic21 [41] to be compatible with MusicBERT. In contrast,

for VGMIDI and Pianist8, we employed MuseScore3’s

batch conversion tool 3 to convert the scores into the Mu-

sicXML format, which were then converted into ABC no-

tation for use with M3 and CLaMP.

We conducted 5-fold cross-validation with the same

folds to assess all linear probe models, using identical fine-

tuning settings and a batch size of 10 to ensure consistency,

given the limited size of the evaluation datasets. The linear

probe CLaMP models used the music encoder only, while

the text encoder was discarded. In the zero-shot classifi-

cation setting, CLaMP had no previous exposure to these

evaluation datasets during pre-training. We utilized manu-

ally designed prompts for the zero-shot CLaMP models.

The top half of Table 3 presents the comparison of the

performance between linear probe MusicBERT and zero-

shot CLaMP. The results found that the zero-shot CLaMP

models demonstrated comparable or even superior perfor-

mance compared to the linear probe MusicBERT mod-

els on WikiMT and VGMIDI datasets. Interestingly, the

smaller zero-shot CLaMP-S/512 outperformed the larger

linear probe MusicBERT-B/1024, indicating that the pre-

training of CLaMP has enabled it to learn more gener-

alizable features that are useful for zero-shot music clas-

sification. However, this trend was not observed on Pi-

anist8, where MusicBERT models performed much better

than zero-shot CLaMP models. This difference in perfor-

mance can be attributed to the source of the datasets, as

WikiMT and VGMIDI primarily focus on score informa-

tion, whereas Pianist8 contains performance MIDI data de-

rived from audio. Since both CLaMP and M3 were trained

exclusively on score information, they lack knowledge of

performance MIDI. However, we noticed that the perfor-

mances of linear probe CLaMP models on Pianist8 signif-

icantly improved after fine-tuning compared to the zero-

shot ones. This suggests that incorporating ABC notation

from performance MIDI into the pre-training of CLaMP

may enhance its ability to comprehend such data.

3 https://musescore.org/en/project/

batch-convert

The linear probe CLaMP models show better perfor-

mance compared to the linear probe M3 models, as in-

dicated in the bottom half of Table 3, despite being pre-

trained on the same dataset with the same architecture.

This is attributed to the use of contrastive learning, which

aligns the music encoder of CLaMP with the text modality,

thus implicitly introducing textual information to the mu-

sic encoder. Furthermore, we found that CLaMP-S/1024

performed better on Pianist8 than CLaMP-S/512, suggest-

ing that a larger maximum length is beneficial for models

to learn performance MIDI.

In summary, our evaluation demonstrates that zero-shot

CLaMP performs comparably to state-of-the-art models

in music classification. Furthermore, the incorporation of

contrastive learning and textual information enhances the

music encoder’s performance, resulting in better classifica-

tion accuracy when compared to M3 which employed the

same architecture. These results highlight the potential of

CLaMP as a pre-training framework for symbolic MIR.

4. CONCLUSIONS

This paper introduces CLaMP, a pre-trained model that

utilizes contrastive language-music pre-training techniques

to build cross-modal representations between natural lan-

guage and symbolic music. The model was trained on

a dataset containing 1.4 million music-text pairs and has

demonstrated unique abilities of semantic search and zero-

shot classification for symbolic music. Compared to

state-of-the-art models that require fine-tuning, zero-shot

CLaMP exhibits comparable or superior performance in

score-oriented music classification tasks without any train-

ing. However, the current version of CLaMP has limited

comprehension of performance MIDI, and still has room

for improvement. Future research will aim to expand its

capabilities by scaling it up and pre-training it on larger

datasets that incorporate a wider range of symbolic mu-

sic formats beyond score-oriented ones. We expect that its

cross-modal representations will facilitate research on new

topics in music analysis, retrieval, and generation, and pro-

vide a foundation for the development of innovative sys-

tems and applications that integrate music and language.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

162



5. REFERENCES

[1] I. Karydis, “Symbolic music genre classification

based on note pitch and duration,” in Advances

in Databases and Information Systems, 10th East

European Conference, ADBIS 2006, Thessaloniki,

Greece, September 3-7, 2006, Proceedings, ser.

Lecture Notes in Computer Science, Y. Manolopoulos,

J. Pokorný, and T. K. Sellis, Eds., vol. 4152.

Springer, 2006, pp. 329–338. [Online]. Available:

https://doi.org/10.1007/11827252_25

[2] C. Kofod and D. O. Arroyo, “Exploring the design

space of symbolic music genre classification using data

mining techniques,” in 2008 International Conferences

on Computational Intelligence for Modelling, Control

and Automation (CIMCA 2008), Intelligent Agents,

Web Technologies and Internet Commerce (IAWTIC

2008), Innovation in Software Engineering (ISE

2008), 10-12 December 2008, Vienna, Austria,

M. Mohammadian, Ed. IEEE Computer Society,

2008, pp. 43–48. [Online]. Available: https://doi.org/

10.1109/CIMCA.2008.223

[3] J. P. Bello, G. Monti, and M. B. Sandler, “Techniques

for automatic music transcription,” in ISMIR 2000,

1st International Symposium on Music Information

Retrieval, Plymouth, Massachusetts, USA, October

23-25, 2000, Proceedings, 2000. [Online]. Available:

http://ismir2000.ismir.net/papers/bello_paper.pdf

[4] C. Raphael, “Automatic transcription of piano music,”

in ISMIR 2002, 3rd International Conference on

Music Information Retrieval, Paris, France, October

13-17, 2002, Proceedings, 2002. [Online]. Available:

http://ismir2002.ismir.net/proceedings/02-FP01-2.pdf

[5] C. Walshaw, “A statistical analysis of the abc music

notation corpus: Exploring duplication,” 2014.

[6] C. Hawthorne, I. Simon, R. Swavely, E. Manilow, and

J. H. Engel, “Sequence-to-sequence piano transcription

with transformers,” in Proceedings of the 22nd

International Society for Music Information Retrieval

Conference, ISMIR 2021, Online, November 7-12,

2021, J. H. Lee, A. Lerch, Z. Duan, J. Nam,

P. Rao, P. van Kranenburg, and A. Srinivasamurthy,

Eds., 2021, pp. 246–253. [Online]. Available: https:

//archives.ismir.net/ismir2021/paper/000030.pdf

[7] J. Gardner, I. Simon, E. Manilow, C. Hawthorne,

and J. H. Engel, “MT3: multi-task multitrack music

transcription,” in The Tenth International Conference

on Learning Representations, ICLR 2022, Virtual

Event, April 25-29, 2022. OpenReview.net, 2022.

[Online]. Available: https://openreview.net/forum?id=

iMSjopcOn0p

[8] Q. Kong, B. Li, X. Song, Y. Wan, and Y. Wang,

“High-resolution piano transcription with pedals by

regressing onset and offset times,” IEEE ACM Trans.

Audio Speech Lang. Process., vol. 29, pp. 3707–3717,

2021. [Online]. Available: https://doi.org/10.1109/

TASLP.2021.3121991

[9] M. Zeng, X. Tan, R. Wang, Z. Ju, T. Qin, and T. Liu,

“Musicbert: Symbolic music understanding with

large-scale pre-training,” in Findings of the Association

for Computational Linguistics: ACL/IJCNLP 2021,

Online Event, August 1-6, 2021, ser. Findings of ACL,

C. Zong, F. Xia, W. Li, and R. Navigli, Eds., vol.

ACL/IJCNLP 2021. Association for Computational

Linguistics, 2021, pp. 791–800. [Online]. Available:

https://doi.org/10.18653/v1/2021.findings-acl.70

[10] A. Ferraro and K. Lemström, “On large-scale

genre classification in symbolically encoded music

by automatic identification of repeating patterns,”

in Proceedings of the 5th International Conference

on Digital Libraries for Musicology, DLfM 2018,

Paris, France, September 28, 2018, K. R. Page,

Ed. ACM, 2018, pp. 34–37. [Online]. Available:

https://doi.org/10.1145/3273024.3273035

[11] L. N. Ferreira and J. Whitehead, “Learning to generate

music with sentiment,” 2019.

[12] Y. Chou, I. Chen, C. Chang, J. Ching, and

Y. Yang, “Midibert-piano: Large-scale pre-training

for symbolic music understanding,” CoRR, vol.

abs/2107.05223, 2021. [Online]. Available: https:

//arxiv.org/abs/2107.05223

[13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,

S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,

G. Krueger, and I. Sutskever, “Learning transferable

visual models from natural language supervision,” in

Proceedings of the 38th International Conference on

Machine Learning, ICML 2021, 18-24 July 2021,

Virtual Event, ser. Proceedings of Machine Learning

Research, M. Meila and T. Zhang, Eds., vol. 139.

PMLR, 2021, pp. 8748–8763. [Online]. Available:

http://proceedings.mlr.press/v139/radford21a.html

[14] W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-

language transformer without convolution or region

supervision,” in Proceedings of the 38th International

Conference on Machine Learning, ICML 2021, 18-24

July 2021, Virtual Event, ser. Proceedings of Machine

Learning Research, M. Meila and T. Zhang, Eds.,

vol. 139. PMLR, 2021, pp. 5583–5594. [Online].

Available: http://proceedings.mlr.press/v139/kim21k.

html

[15] J. Li, D. Li, C. Xiong, and S. C. H. Hoi, “BLIP:

bootstrapping language-image pre-training for unified

vision-language understanding and generation,” in

International Conference on Machine Learning, ICML

2022, 17-23 July 2022, Baltimore, Maryland, USA,

ser. Proceedings of Machine Learning Research,

K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári,

G. Niu, and S. Sabato, Eds., vol. 162. PMLR,

2022, pp. 12 888–12 900. [Online]. Available: https:

//proceedings.mlr.press/v162/li22n.html

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

163



[16] B. Elizalde, S. Deshmukh, M. A. Ismail, and H. Wang,

“CLAP: learning audio concepts from natural language

supervision,” CoRR, vol. abs/2206.04769, 2022.

[Online]. Available: https://doi.org/10.48550/arXiv.

2206.04769

[17] Q. Huang, A. Jansen, J. Lee, R. Ganti, J. Y. Li,

and D. P. W. Ellis, “Mulan: A joint embedding

of music audio and natural language,” CoRR, vol.

abs/2208.12415, 2022. [Online]. Available: https:

//doi.org/10.48550/arXiv.2208.12415

[18] J. Devlin, M. Chang, K. Lee, and K. Toutanova,

“BERT: pre-training of deep bidirectional transformers

for language understanding,” in Proceedings of the

2019 Conference of the North American Chapter

of the Association for Computational Linguistics:

Human Language Technologies, NAACL-HLT 2019,

Minneapolis, MN, USA, June 2-7, 2019, Volume 1

(Long and Short Papers), J. Burstein, C. Doran,

and T. Solorio, Eds. Association for Computational

Linguistics, 2019, pp. 4171–4186. [Online]. Available:

https://doi.org/10.18653/v1/n19-1423

[19] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,

J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,

G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.

Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,

M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,

S. McCandlish, A. Radford, I. Sutskever, and

D. Amodei, “Language models are few-shot learners,”

in Advances in Neural Information Processing Systems

33: Annual Conference on Neural Information Pro-

cessing Systems 2020, NeurIPS 2020, December 6-12,

2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell,

M. Balcan, and H. Lin, Eds., 2020. [Online]. Avail-

able: https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[20] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,

M. Matena, Y. Zhou, W. Li, and P. J. Liu,

“Exploring the limits of transfer learning with a

unified text-to-text transformer,” J. Mach. Learn. Res.,

vol. 21, pp. 140:1–140:67, 2020. [Online]. Available:

http://jmlr.org/papers/v21/20-074.html

[21] Z. Wang and G. Xia, “Musebert: Pre-training

music representation for music understanding and

controllable generation,” in Proceedings of the 22nd

International Society for Music Information Retrieval

Conference, ISMIR 2021, Online, November 7-12,

2021, J. H. Lee, A. Lerch, Z. Duan, J. Nam,

P. Rao, P. van Kranenburg, and A. Srinivasamurthy,

Eds., 2021, pp. 722–729. [Online]. Available: https:

//archives.ismir.net/ismir2021/paper/000090.pdf

[22] K. Sohn, “Improved deep metric learning with multi-

class n-pair loss objective,” in Advances in Neural

Information Processing Systems 29: Annual Confer-

ence on Neural Information Processing Systems 2016,

December 5-10, 2016, Barcelona, Spain, D. D. Lee,

M. Sugiyama, U. von Luxburg, I. Guyon, and R. Gar-

nett, Eds., 2016, pp. 1849–1857. [Online]. Avail-

able: https://proceedings.neurips.cc/paper/2016/hash/

6b180037abbebea991d8b1232f8a8ca9-Abstract.html

[23] A. van den Oord, Y. Li, and O. Vinyals, “Repre-

sentation learning with contrastive predictive coding,”

CoRR, vol. abs/1807.03748, 2018. [Online]. Available:

http://arxiv.org/abs/1807.03748

[24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi,

D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and

V. Stoyanov, “Roberta: A robustly optimized BERT

pretraining approach,” CoRR, vol. abs/1907.11692,

2019. [Online]. Available: http://arxiv.org/abs/1907.

11692

[25] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick,

and S. Dubnov, “Large-scale contrastive language-

audio pretraining with feature fusion and keyword-

to-caption augmentation,” CoRR, vol. abs/2211.06687,

2022. [Online]. Available: https://doi.org/10.48550/

arXiv.2211.06687

[26] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distil-

bert, a distilled version of bert: smaller, faster, cheaper

and lighter,” ArXiv, vol. abs/1910.01108, 2019.

[27] S. Doh, M. Won, K. Choi, and J. Nam, “Toward uni-

versal text-to-music retrieval,” in ICASSP 2023 - 2023

IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2023, pp. 1–5.

[28] B. L. Sturm, J. F. Santos, O. Ben-Tal, and

I. Korshunova, “Music transcription modelling

and composition using deep learning,” CoRR,

vol. abs/1604.08723, 2016. [Online]. Available:

http://arxiv.org/abs/1604.08723

[29] C. Geerlings and A. Meroño-Peñuela, “Interacting

with gpt-2 to generate controlled and believable mu-

sical sequences in abc notation,” in NLP4MUSA, 2020.

[30] S. Wu and M. Sun, “Tunesformer: Forming tunes with

control codes,” CoRR, vol. abs/2301.02884, 2023.

[Online]. Available: https://doi.org/10.48550/arXiv.

2301.02884

[31] ——, “Exploring the efficacy of pre-trained

checkpoints in text-to-music generation task,”

in The AAAI-23 Workshop on Creative AI

Across Modalities, 2023. [Online]. Available:

https://openreview.net/forum?id=QmWXskBhesn

[32] A. Pati, A. Lerch, and G. Hadjeres, “Learning to

traverse latent spaces for musical score inpainting,”

in Proceedings of the 20th International Society

for Music Information Retrieval Conference, ISMIR

2019, Delft, The Netherlands, November 4-8, 2019,

A. Flexer, G. Peeters, J. Urbano, and A. Volk,

Eds., 2019, pp. 343–351. [Online]. Available: http:

//archives.ismir.net/ismir2019/paper/000040.pdf

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

164



[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-

senborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,

and N. Houlsby, “An image is worth 16x16 words:

Transformers for image recognition at scale,” in 9th

International Conference on Learning Representa-

tions, ICLR 2021, Virtual Event, Austria, May 3-7,

2021. OpenReview.net, 2021. [Online]. Available:

https://openreview.net/forum?id=YicbFdNTTy

[34] K. He, X. Chen, S. Xie, Y. Li, P. Dollár,

and R. B. Girshick, “Masked autoencoders are

scalable vision learners,” in IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR

2022, New Orleans, LA, USA, June 18-24, 2022.

IEEE, 2022, pp. 15 979–15 988. [Online]. Available:

https://doi.org/10.1109/CVPR52688.2022.01553

[35] C. Raffel, “Learning-based methods for comparing se-

quences, with applications to audio-to-midi alignment

and matching,” Ph.D. dissertation, PhD Thesis, 2016.

[36] I. Loshchilov and F. Hutter, “Decoupled weight decay

regularization,” in 7th International Conference on

Learning Representations, ICLR 2019, New Orleans,

LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[Online]. Available: https://openreview.net/forum?id=

Bkg6RiCqY7

[37] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos,

E. Elsen, D. García, B. Ginsburg, M. Houston,

O. Kuchaiev, G. Venkatesh, and H. Wu, “Mixed

precision training,” in 6th International Conference on

Learning Representations, ICLR 2018, Vancouver, BC,

Canada, April 30 - May 3, 2018, Conference Track

Proceedings. OpenReview.net, 2018. [Online]. Avail-

able: https://openreview.net/forum?id=r1gs9JgRZ

[38] B. L. Sturm, “An analysis of the GTZAN music genre

dataset,” in Proceedings of the second international

ACM workshop on Music information retrieval with

user-centered and multimodal strategies, MIRUM

’12, Nara, Japan, October 29 - November 02,

2012, C. C. S. Liem, M. Müller, S. K. Tjoa,

and G. Tzanetakis, Eds., 2012, pp. 7–12. [Online].

Available: https://doi.org/10.1145/2390848.2390851

[39] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-

hamed, O. Levy, V. Stoyanov, and L. Zettlemoyer,

“BART: denoising sequence-to-sequence pre-training

for natural language generation, translation, and

comprehension,” in Proceedings of the 58th An-

nual Meeting of the Association for Computational

Linguistics, ACL 2020, Online, July 5-10, 2020,

D. Jurafsky, J. Chai, N. Schluter, and J. R.

Tetreault, Eds. Association for Computational Lin-

guistics, 2020, pp. 7871–7880. [Online]. Available:

https://doi.org/10.18653/v1/2020.acl-main.703

[40] Y. M. Asano, C. Rupprecht, and A. Vedaldi, “A critical

analysis of self-supervision, or what we can learn from

a single image,” in 8th International Conference on

Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[Online]. Available: https://openreview.net/forum?id=

B1esx6EYvr

[41] M. S. Cuthbert and C. Ariza, “Music21: A toolkit

for computer-aided musicology and symbolic music

data,” in Proceedings of the 11th International

Society for Music Information Retrieval Conference,

ISMIR 2010, Utrecht, Netherlands, August 9-13,

2010, J. S. Downie and R. C. Veltkamp, Eds.

International Society for Music Information Retrieval,

2010, pp. 637–642. [Online]. Available: http:

//ismir2010.ismir.net/proceedings/ismir2010-108.pdf

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

165



GENDER-CODED SOUND: ANALYSING THE GENDERING OF MUSIC IN
TOY COMMERCIALS VIA MULTI-TASK LEARNING

Luca Marinelli György Fazekas Charalampos Saitis

C4DM, Queen Mary University of London, UK
{l.marinelli, c.saitis, george.fazekas}@qmul.ac.uk

ABSTRACT

Music can convey ideological stances, and gender is just
one of them. Evidence from musicology and psychol-
ogy research shows that gender-loaded messages can be
reliably encoded and decoded via musical sounds. How-
ever, much of this evidence comes from examining mu-
sic in isolation, while studies of the gendering of music
within multimodal communicative events are sparse. In
this paper, we outline a method to automatically analyse
how music in TV advertising aimed at children may be de-
liberately used to reinforce traditional gender roles. Our
dataset of 606 commercials included music-focused mid-
level perceptual features, multimodal aesthetic emotions,
and content analytical items. Despite its limited size, and
because of the extreme gender polarisation inherent in toy
advertisements, we obtained noteworthy results by lever-
aging multi-task transfer learning on our densely annotated
dataset. The models were trained to categorise commer-
cials based on their intended target audience, specifically
distinguishing between masculine, feminine, and mixed
audiences. Additionally, to provide explainability for the
classification in gender targets, the models were jointly
trained to perform regressions on emotion ratings across
six scales, and on mid-level musical perceptual attributes
across twelve scales. Standing in the context of MIR, com-
putational social studies and critical analysis, this study
may benefit not only music scholars but also advertisers,
policymakers, and broadcasters.

1. INTRODUCTION

The purpose of this study is to analyse gender-coding in
a context where music is secondary to other modalities
and serves a clear purpose, such as in advertisement. Our
aim is to investigate how music may be employed to re-
inforce traditional gender roles in toy commercials, and
we propose an automatic method for analyzing this phe-
nomenon. 1 Our overarching research objective is to pro-

1 https://github.com/marinelliluca/gender_coded_sound_ismir2023

© L. Marinelli, C. Saitis, and G. Fazekas. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: L. Marinelli, C. Saitis, and G. Fazekas, “Gender-coded
sound: Analysing the Gendering of Music in Toy Commercials via Multi-
task Learning”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

vide a basis for a theory of message production. Specifi-
cally, a theory of the effects that message producers, their
decision-making, or their unconscious gender biases have
on the selection and composition of sound and music in
toy adverts. For this goal, we propose an integrative ap-
proach combining content analytical (CA) variables, mu-
sic perceptual ratings, and multimodal affective ratings to
annotate toy commercials, and using multi-task learning
(Fig. 1) to analyse the gendering of their soundtracks.

1.1 Gendered music styles as cognitive schemas

Empirical studies have demonstrated that gender and sex
impact the perception and processing of music [1–3].
However, the idea that sex determines fixed differences in
brain structure has been questioned due to potential mis-
interpretations, overestimations, and publication bias [4].
Gender schemas, instead, are learned cognitive networks
of associations that guide an individual’s behavior by as-
similating or rejecting gender-appropriate ideas and activi-
ties [5,6]. Schemas guide an individual’s perception, infor-
mation processing, and memory retention, as they prevent
information overload by organising one’s perceptual expe-
rience into a coherent and intelligible whole [6, 7].

Popular music genres have been themselves theorised as
cognitive schemas containing extramusical concepts that
can be primed when a subject is exposed to the genre’s
music [8, 9]. Such schemas are formed through repeated
exposure to the multimodal discourse encompassing mu-
sic, which is to some extent globalised, but that also varies
from culture to culture as a result of glocalisation. 2 pro-
cesses [9] Schema theory has also been used in literary
reading and analysis to explain organised "bundles of in-
formation and features" [10, p. 106-7] such as literary gen-
res (e.g., science fiction, fantasy, horror).

While gendered language patterns in text and lyrics
[11] may be relatively more straightforward to interpret,
gender-coding in sound and music ensues from the histor-
ical sedimentation, in musical practice, of multimodal as-
sociations between gendered meanings in language, visual
images, and musical structures [12]. For example, instru-
ments have been consistently associated with masculinity
or femininity, even when their sound is presented in iso-
lation and not visually linked to the actual object [13, 14].
Sergeant and Himonides [15, 16] investigated whether in
Western art music individual sounds or their organization

2 A lexical blend of globalization and localism.
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Figure 1. Brief overview of the experimental pipeline.

within a composition could infer the sex or gender of the
performer or composer. Even though they found no cor-
relation between the gender of the composers or perform-
ers and the gendering of music, raters agreed on the gen-
dering of music, which was associated with features such
as tempo, minor/major key, and tonal weight or density.
Tagg [17] studied the reception of gendered meanings in
TV theme tunes and also found high agreement among
participants. Several musical dimensions, such as average
tempo, rhythmic and dynamic regularity, and presence of
active bass lines, may contribute to conveying gendered
meanings. In a subsequent investigation, Tagg and Clar-
ida [18] found that musical pieces linked to female char-
acters were more prone to be classified as quiet and calm.
Wang and Horvát [19] computationally extracted twelve
descriptors of musical parameters and perceptual features
for over 200k songs by more than 8k globally distributed
artists across a multitude of popular music genres. They
found statistically significant differences for eleven out of
twelve musical parameters with regard to the gender of the
composers, suggesting the existence of measurable, supra-
genre, gendered music styles in the global music industry.

Some of these studies appear to contradict each other, 3

while at the same time sharing the same fallacy, in that
feminine and masculine patterns in the performance and
composition of music should be considered on a par
with distinct gendered styles in spoken language, such as
Lakoff’s ‘women’s talk’ [20]. As such, these differences
should not be understood in terms of a causal relationship
between the gender of the artists and gendered musical pat-
terns. Individuals may have a tendency to use forms of
expression that they deem appropriate with regard to their
identity, but given the performative nature of gender we
cannot possibly generalise this behaviour (i.e., even strong
correlation is not causation), as this would end up reinforc-
ing gender stereotypes and their power relations.

Gender schemas therefore mediate our perception of
music, and this relationship appears to be bidirectional.
At the same time, music-primed schemas can alter our
perception of other people’s ethnicity, rural/urban back-
ground, age, expertise [8], and even gender [21, 22]. We
thus posit that not only gender roles and stereotypes can

3 [19] found significant correlations between the gender of the com-
posers and characteristics of their music, while [16] did not.

be understood in terms of schemas, but also that mascu-
line and feminine music styles can be viewed as music-

primed gender schemas, which to some extent overlap with
the former. We also presume that different music-primed
schemas might exist for other intersectional factors, such
as class.

1.2 Gendered toy marketing

Gender polarisation in TV advertising aimed at children
has been consistently found in a large body of studies
spanning over 40 years [23–25]. Differences in commer-
cials targeted at girls, boys, and mixed audience have been
found in terms of: sound (voices, background music and
sound effects), language, transitions and camera work, set-
ting, interactions and activities, and colours.

Specifically in terms of sound and music, Welch et al.
[23] noted that in general the sex of the voice-over matched
the target audience of the commercials, but that male nar-
rating voices also occurred more often in mixed audience
commercials, and subsequent research confirmed the same
trend [25]. They also found that commercials targeted at
boys had more noise, louder music, and more sound ef-
fects. Another study [24] conversely found that music
used in girls’ advertisements is generally softer and more
likely to have a sung narration style. Whereas, Johnson
and Young [26] identified what they called "gender exag-
geration:" male voice-overs tend to be exceedingly deep,
growl-like or aggressive, whereas female voice-overs are
often very high-pitched and singsong.

By interpreting music as an inherently multimodal dis-
course, a critical analysis of gender markers in children’s
TV adverts can help to investigate the relation between mu-
sic and hegemonic discourses on gender; and to promote
further research towards a commercial and contemporary
musical semiotics of gender. Analysing music in gendered
advertising aimed at children allows a privileged glance
into the birthplace of music-primed gender schemas.

1.3 Automatic discourse processing

Discourse analysis is an umbrella term that refers to ap-
proaches developed across diverse academic disciplines.
This includes disciplines that first developed models for
understanding discourse, such as linguistics, social semi-
otics and conversation analysis. But it also refers to other
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All Feminine Masculine Mixed
N = 606 N = 163 N = 149 N = 200

Type χ2(6, N = 512) = 89.02, p = .000
5.6% Sung 9.8% None 2.5%

18.8% Spoken and sung 36.8% 6.0% 17.0%
67.7% Spoken 52.8% 81.2% 75.5%
7.9% No voices 0.6% 12.8% 5.0%

Age χ2(6, N = 512) = 39.51, p = .000
79.5% Adults 76.7% 79.2% 83.0%
5.9% Children and adults 8.0% 6.0% 6.5%
6.6% Children 14.7% 2.0% 5.5%
7.9% No voices 0.6% 12.8% 5.0%

Gender χ2(6, N = 512) = 332.1, p = .000
39.8% Feminine 95.7% 2.0% 29.5%
46.9% Masculine 1.8% 83.9% 54.5%
5.4% Feminine and masculine 1.8% 1.2% 11.0%
7.9% No voices 0.6% 12.8% 5.0%

Gender exaggeration χ2(6, N = 512) = 243.6, p = .000
16.5% Exagg. feminine 44.8% None 8.0%
15.5% Exagg. masculine None 40.3% 7.0%
60.1% All normal sounding 54.6% 47.0% 80.0%
7.9% No voices 0.6% 12.8% 5.0%

Table 1. Contingency tables of voice-related content analytical variables with χ2 tests of independence. The column "All"
includes commercials without actors or presenter (94).

approaches that apply and extend these models of under-
standing to their particular academic field, such as cog-
nitive psychology, literary criticism and artificial intelli-

gence [27]. Research on discourse processing, an endeav-
our of natural language processing (NLP), is already at a
stage where machine learning approaches are able, for ex-
ample, to automatically detect social attitudes and political
stances in online news or social media [28, 29].

Beyond textual discourse and NLP, denotative mean-
ings in images and videos can be easily captured by ma-
chine learning techniques [30,31]. However, works that try
to address connotative meanings or the rhetoric of multi-
media content are still in their infancy and such approaches
are often not even framed as pertaining to discourse or
semiotic analysis. Dinkov et al. [32] predicted the politi-
cal ideological bias (left, centre, right) of media outlets us-
ing text, metadata, and audio (via speech processing tech-
niques) from YouTube channels, but not visual content. Ye
et al. [33] predicted the messages that image and video ad-
vertisements convey by explicitly modeling symbolic as-
sociations (e.g., gun for “danger”) and combining cues
from multiple modalities, including the loudness in video
soundtracks. Notably, none of these studies leveraged ap-
proaches and tools from music information retrieval.

1.4 Multi-task learning in MIR

In multi-task learning we train a single model to perform
multiple related tasks simultaneously, leveraging shared
information among tasks, which results in several benefits.
Böck et al. [34] simultaneously modelled tempo estima-

tion and beat tracking of musical audio, showing state-of-
the-art performance for both tasks. Wu et al. [35] com-
bined multi-task and self-supervised learning, resulting in
improved performance. Chowdhury et al. [36] proposed a
VGG-style deep neural network to predict emotional char-
acteristics of music based on mid-level perceptual features
(e.g., melodiousness and tonal stability) and found that the
loss in performance was negligible when compared to pre-
dicting emotions directly. Further improvements were ob-
tained by training jointly on the mid-level and emotion an-
notations, with the small loss in performance justified by
the gain in explainability of the predictions. Our study ex-
pands upon this foundation by incorporating emotions and
perceptual features, while also adding more granular struc-
ture to facilitate a comprehensive understanding of the gen-
dering of music in multimodal contexts.

2. DATASET

Our hierarchical data collection framework comprised CA
variables at the lower level, music-focused ratings from ex-
perts at the middle level, and multimodal affective ratings
at the highest level of subjectivity. Mid-level perceptual
features, which describe relevant and instantly identifiable
musical characteristics, exhibit high consistency across lis-
teners and can be predicted from the acoustic signal. These
features also correlate with music’s affective dimensions
[37]. The emotion ratings were collected from adults rather
than children because adults are better equipped to cap-
ture the commercials’ intended emotional impact. Fur-
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thermore, research indicates that children exhibit adult-like
emotion recognition capabilities by age 11 [38].

2.1 Sampling method

In March 2022, we collected a sample of 5614 videos from
the official YouTube channel of Smyths Toys Superstores,
a major UK toy retailer. To ensure comparability with pre-
vious studies [39,40], we selected only high-quality videos
intended for television and excluded those without audio,
formatted for mobile phones, or with substantial on-screen
text. Additionally, we excluded advertisements featuring
toddlers and pre-schoolers as these are actually targeted at
parents. To minimise duplicates, we removed videos with
the same title from our sample.

Given that we are interested in understanding the gen-
dering of sound and music in the toy industry at large, we
needed to enforce some balance across gender targets. We
thus performed a preliminary classification of 1778 com-
mercials based on their intended target audience (feminine,
masculine or mixed audience) using simple heuristics re-
garding the gender of the majority of presenters featuring
in the commercial, the colour coding of the video and ulti-
mately the category of the product. This resulted in 780
’feminine’, 509 ’masculine’, and 489 ‘mixed audience’
commercials. A final sample of 606 commercials, span-
ning over 10 years from 2012 to 2022, was obtained by
randomly sampling from each category 202 videos.

2.2 Content analysis (manual annotation)

The gender orientation (also target audience) of the
commercials was determined by the gender of the ac-
tors/presenters. Following [26], in order to account for
tokenism, whenever a presenter of the other gender was
included in the background or for just a few seconds, these
were considered token gender representations and not ex-
plicit market orientations. All fictional characters, even
when realistic (e.g. from a video game), were not con-
sidered as actors/presenters and the corresponding com-
mercials were coded as having no actors. Whenever com-
mercials featured exclusively character ‘dismemberment’
(e.g., showing only hands without a face or head) [41]
these were also coded as having no actors.

Four distinct items describing the sound of the voices
in the commercial were collected using a coding schema
based on Verna’s research [42]. But unlike the original
work, we coded for all voices in the commercial, both
diegetic and non-diegetic. The reason for this choice is
that there is no way to reliably distinguish between diegetic
and non-diegetic sounds purely based on the audio signal.
Commercials were coded in terms of type of voices ("Spo-
ken", "Sung", "Both spoken and sung", "No voices"), then
in terms of voices age ("Adults" which included young
adults, "Children", "Children and adults", "No voices"),
gender exaggeration of the voices ("All normal sound-
ing", "Exaggeratedly masc.", "Exaggeratedly fem.", "No
voices"), and finally in terms of voice gender ("Feminine",
"Masculine", "Feminine and masculine", "No voices"). In
order to determine the reliability of each variable, 15% of

the commercials was double-coded by two coders indepen-
dently. For all variables we obtained Krippendorff’s alpha
levels above .80 (with ‘gender orientation‘ and ‘gender of
the voices’ exceeding .90), and therefore met the standards
of reliability required for this type of analysis [43]. Out
of 606 commercials analyzed, 163 were targeted at a femi-
nine audience, 149 at a masculine audience, 200 at a mixed
audience and 94 featured no actors or presenters. Contin-
gency tables of the voice variables are shown in Table 1.

2.3 Music-focused and emotion ratings

Participants in our study were paid between £7 and £8 per
hour (depending on their completion time) on Prolific.co.
In order to minimise the effects of careless responding, a
low-effort metric was computed by summing the length of
all long strings for each participant, and those that scored
above two standard deviations from the average value were
screened out during data collection, as it was performed
in batches of 50 participants. For 600 of the videos, we
collected between five and six ratings on each music and
emotion scale. At an initial stage, the remaining 6 videos
were used as controls (i.e., were rated by all participants),
but we do not leverage them as such in the current study.

Musically trained participants (at least three years of
experience with an instrument) rated the soundtracks
of the commercials on 15 music-focused bipolar scales
[44, 45]: Electric/Acoustic, Distorted/Clear, Loud/Soft,
Many/Few instruments, Heavy/Light, High/Low pitch,
Punchy/Smooth, Wide/Narrow pitch variation, Harmo-
nious/Disharmonious, Clear melody/No melody, Com-
plex/Simple rhythm, Repetitive/Non-repetitive, Dense/
Sparse, Fast/Slow tempo, and Strong/Weak beat. We col-
lected a total of 4560 ratings from 152 participants from
the UK (75 M, 77 F, aged 40 ± 14). Given that our fo-
cus is on music, but soundtracks consist of speech, music
and sound effects, our question was formulated as follows:
"The following are a series of perceptual attributes of mu-
sic. You are asked to evaluate the music in the background

in terms of the adjectives on each side of the scale."
To annotate the perceived affect of videos, we drew

from the aesthetic emotions scale [46, AESTHEMOS],
which was devised from an extensive review of emotion
measures from different domains such as music, litera-
ture, film, painting, advertisements, design, and architec-
ture, and is thus ideal, in its flexibility, for our use with
multimodal stimuli. Given that our focus is on music and
sound, in a preliminary study we limited our choice to a
subset of 10 AESTHEMOS items that intersect with the
13 music emotions listed by Cowen et al. [47]. Of these,
we kept only seven scales which showed significant dis-
criminant capabilities: Happy or Delightful, Amusing or
Funny, Beauty or Liking, Calm or Relaxing, Energising
or Invigorating, Angry or Aggressive, and Triumphant or
Awe-inspiring. We used a single unipolar item for each
subscale, instead of two. We collected a total of 4530 rat-
ings from 151 participants from the UK (76 M, 75 F, aged
39 ± 13). Given that our aim is to analyse the intended
emotional profile, our question was formulated as follows:
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Target F1 Secon. F1 Avg. R2 emo Avg. r emo Avg. R2 mid Avg. r mid
Embeddings Voice

mfcc no .79 ± .08 .66 ± .07 .02 ± .17 .36 ± .11 .14 ± .16 .48 ± .09
mfcc yes .78 ± .10 .65 ± .07 .06 ± .16 .38 ± .11 .13 ± .15 .43 ± .10
msd no .87 ± .05 .66 ± .06 .25 ± .11 .54 ± .08 .35 ± .14 .62 ± .09
msd yes .95 ± .04 .79 ± .05 .26 ± .15 .56 ± .09 .30 ± .12 .58 ± .09
openl3_env no .91 ± .05 .72 ± .06 .34 ± .10 .61 ± .08 .41 ± .10 .66 ± .07
openl3_env yes .95 ± .04 .77 ± .05 .34 ± .13 .62 ± .08 .35 ± .12 .62 ± .08
openl3_music no .87 ± .09 .71 ± .06 .31 ± .16 .56 ± .19 .39 ± .16 .64 ± .15
openl3_music yes .91 ± .11 .76 ± .10 .29 ± .17 .56 ± .19 .31 ± .14 .59 ± .13

Table 2. Mean and standard deviation from 5x repeated 5-fold cross-validation. ’Target’ refers to the gender orientation of
ads (binary); secondary tasks involve voice-related content analytical variables. ’No’ represents models trained on voice-
separated accompaniments, while ’Yes’ indicates models trained on entire soundtracks.

"Toys commercials are targeted at an audience mainly con-
sisting of children and aim at evoking the following emo-
tions. Pay attention to both sound and images and rate each
intended emotion accordingly."

2.4 Between-targets ANOVA

We first performed between-targets (i.e., gender targets of
the commercials) one-way analyses of variance for each of
the music-focused and emotion scales. When ANOVA as-
sumptions were violated, we performed a Kruskal-Wallis
H-test instead. Highly significant polarisation (p < .001)
emerged for twelve of the mid-level music perceptual
scales, with stark contrasts observed between feminine
and masculine-targeted commercials, and commercials tar-
geted at mixed audiences generally registering in-between
values. Masculine adverts were more Electric than Acous-
tic, more distorted, disharmonious and with a less clear
melodic contour than feminine ones. They also were
more dense in terms of instrumentation, more Punchy, with
stronger beats, and therefore were generally louder and
heavier. Also in terms of rhythmic complexity, they were
more complex than feminine-targeted commercials. Thus
a clear picture emerges, as the soundtracks in boys’ adverts
are significantly more abrasive than those in girls’ ads.

Similarly, stark contrasts (p < .001) were observed be-
tween feminine and masculine-targeted commercials for
all affective scales, with commercials targeted at mixed au-
diences often registering in-between values. Commercials
targeted at boys were the least "Happy or delightful", the
least "Amusing or funny", "Calm or relaxing", and reg-
istered the lowest values on the scale "Beauty or liking".
They instead were the most "Energising or invigorating",
"Angry or aggressive", and "Triumphant or awe-inspiring".
Apart from the scale "Amusing or funny", which scored
the highest values within mixed audiences commercials,
adverts targeted at girls displayed an opposite behaviour
to those for boys. For example, they were the most
"Calm or relaxing" and the least "Angry or aggressive".
As previously highlighted with the music-focused scales,
masculine-targeted commercials appear again to be signif-
icantly more abrasive than the feminine ones.

We report a more in-depth analysis in an upcoming

publication. In this paper, we exclude "Amusing or
funny" from further analyses due to poor correlation with
the mid-level features. We also exclude the three non-
significant mid-level scales: Wide/Narrow pitch variation,
Repetitive/Non-repetitive, and Fast tempo/Slow tempo.

3. MACHINE LEARNING PIPELINE

Our machine learning framework is a multi-task learning
model implemented in PyTorch (Fig. 1). It was trained to
simultaneously learn mid-level features regression, emo-
tion regression, and all the CA variables (classes). These
tasks share an initial hidden layer with 128 units and then
branch out into separate sub-tasks. Each sub-task has its
own hidden layer with 128 units and an output layer with
dimensions corresponding to the specific task.

To avoid the jingle of the retailer in the last 5 sec-
onds of most soundtracks, we trimmed them accordingly.
Then with Spleeter [48] we separated voices and accom-
paniments. Features were extracted in non-overlapping
chunks across the trimmed soundtrack and then averaged
across the chunks. We computed 20-band MFCCs using
librosa [49], along with their delta and delta-deltas,
yielding 60-dimensional embeddings. A reimplementa-
tion of a state-of-the-art model trained on the million
song dataset (MSD) [50] provided 256-dimensional em-
beddings. OpenL3 features were computed using the pro-
vided conda package [51], generating 512-dimensional
embeddings for both environmental and music models.

The proposed model employs an equally weighted,
combined loss function, incorporating the mean squared
error for the mid-level features and emotion regression
tasks, and cross-entropy loss for the classification tasks.
The model was trained jointly on all tasks. We also used
a model checkpoint and early stopping with a patience
of 30 epochs (maximum of 200). Repeated 5-fold cross-
validation was performed (10% test, 10% validation, for
5 repetitions, i.e. 25 "folds", as the random seed was not
set) and utilised the AdamW optimizer instead of Adam for
regularization. Further optimising the network to surpass
the already remarkable results, as well as conducting abla-
tion studies to evaluate the various components and design
choices, is beyond the scope of our investigation.
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Target F1 Secon. F1 Avg. R2 emo Avg. r emo Avg. R2 mid Avg. r mid
Embeddings Voice

mfcc no .52 ± .05 .67 ± .06 .04 ± .16 .37 ± .11 .14 ± .14 .48 ± .09
mfcc yes .48 ± .04 .67 ± .05 .05 ± .15 .38 ± .11 .15 ± .14 .46 ± .09
msd no .62 ± .05 .67 ± .06 .23 ± .15 .54 ± .10 .36 ± .12 .64 ± .07
msd yes .67 ± .06 .80 ± .05 .29 ± .12 .57 ± .08 .33 ± .10 .60 ± .07
openl3_env no .59 ± .06 .72 ± .06 .30 ± .12 .59 ± .08 .42 ± .10 .66 ± .07
openl3_env yes .66 ± .07 .77 ± .06 .34 ± .11 .61 ± .07 .35 ± .10 .62 ± .07
openl3_music no .64 ± .07 .73 ± .06 .32 ± .12 .60 ± .08 .43 ± .11 .68 ± .07
openl3_music yes .67 ± .04 .78 ± .05 .35 ± .12 .61 ± .08 .37 ± .10 .63 ± .07

Table 3. Same as Table 2, but results refer to ternary ‘Target’ classification.

4. RESULTS

Tables 2 and 3 reveal once again stark differences between
the soundtracks of commercials designed for feminine and
masculine audiences (the value "no" corresponds to mod-
els trained on the voice-separated accompaniments). In
fact, the binary classification task on the soundtracks in-
cluding voice achieves an impressively high Target F1
score of .95 ± .04 using the MSD and OpenL3 env em-
beddings. It is also worth noting that even without voice,
the soundtracks still contain enough information to clas-
sify the commercials with a high degree of accuracy, with
the OpenL3 env embedding achieving a Target F1 score of
.91 ± .11. In a way, the dataset is so gendered that it can be
considered a toy dataset in all senses.

Upon closer examination of the R2 and r emotions met-
rics, we observe that they are relatively low across all ex-
periments compared to mid-level metrics. This contrasts
with previous research [36] where mid-level correlations
were lower than those of emotions, as in our case the R2

mid-level and r mid-level metrics are generally higher,
with the OpenL3 embeddings performing the best.

When comparing Tables 2 and 3, the high performance
of the MSD and both OpenL3 embeddings on the binary
task, suggests that there are no significant differences in
the soundtracks of mixed-audience commercials compared
to those targeted at feminine or masculine audiences. This
confirms the results from the analysis of variance and high-
lights the ability of these embeddings to perform simi-
larly across different target audiences. Overall, we found
that the OpenL3 embeddings performed better than others
across all tasks, indicating superior generalizability, as al-
ready shown in previous research especially in the context
of limited training examples [52]. However, the relatively
low R2 and r for emotions suggest that there is still room
for improvement, possibly through multimodal fusion.

It is noteworthy that human voice plays a critical role
in conveying higher-level connotations, as performance on
the classification tasks and especially the emotion regres-
sions generally improves when voices are present. Addi-
tionally, improvement in mid-level regressions on the ac-
companiments of the soundtracks (no voice) indicates that
participants in the data collection were able to focus on the
background of the soundtracks, as they were asked to.

Although the MFCCs are the worst performing, their

discriminative power on the target task and the decent per-
formance on the mid-level features regression highlight the
underlying "simplicity" of the task, in terms of the strong
collinearity due to the degree of gender-polarization inher-
ent in the dataset.

5. CONCLUSION

By examining the performance of different musical em-
beddings in classifying commercials targeted at different
audiences, and by providing explainable inference of the
target of the commercials, in terms of affective and of mu-
sic perceptual features, this study sheds light on the role of
music in gendered marketing strategies. Such approach has
significant implications for advertisers, policymakers, and
broadcasters, who recently faced a public backlash against
the gendered marketing of toys and other products. 4 Fur-
thermore, the study highlights the importance of consid-
ering the role of music when regulating marketing strate-
gies and developing more inclusive and diverse advertising
campaigns. Our results suggest that gendered music styles
in toy commercials emerge as a result of deliberate mar-
keting strategies, as such styles reflect gender stereotypes
that are "ludicrously old-fashioned and offensively out of
touch" [53] and still prevalent in the industry.

By bringing together music analysis, machine learning,
and critical analysis, this study illustrates the potential of
interdisciplinary approaches, contributing to the emerging
field of computational social studies. It highlights the im-
portance of considering the role of music, among other
modalities, in shaping societal norms and values and the
need for greater awareness and accountability in the use of
such affordances in marketing and other industries.

Future research can build on these findings by further
investigating the relationship between gendered music and
advertising strategies in different industries and contexts,
exploring the impact of gendered music on consumer be-
havior and societal perceptions of gender, and developing
new methodologies for creating more inclusive and diverse
marketing campaigns. The results also emphasise the po-
tential for the development of multimodal approaches to
enhance the models’ performance on these tasks.

4 https://www.bbc.co.uk/news/world-us-canada-46613032
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ABSTRACT

Nowadays, humans are constantly exposed to music,

whether through voluntary streaming services or incidental

encounters during commercial breaks. Despite the abun-

dance of music, certain pieces remain more memorable

and often gain greater popularity. Inspired by this phe-

nomenon, we focus on measuring and predicting music

memorability. To achieve this, we collect a new mu-

sic piece dataset with reliable memorability labels us-

ing a novel interactive experimental procedure. We then

train baselines to predict and analyze music memorabil-

ity, leveraging both interpretable features and audio mel-

spectrograms as inputs. To the best of our knowledge,

we are the first to explore music memorability using data-

driven deep learning-based methods. Through a series

of experiments and ablation studies, we demonstrate that

while there is room for improvement, predicting music

memorability with limited data is possible. Certain intrin-

sic elements, such as higher valence, arousal, and faster

tempo, contribute to memorable music. As prediction tech-

niques continue to evolve, real-life applications like music

recommendation systems and music style transfer will un-

doubtedly benefit from this new area of research.

1. INTRODUCTION

Music memorability is essential and has a wide range of

commercial applications. For instance, content creators

and marketing teams can use unique visual aids or au-

dio components to captivate target audiences and distin-

guish themselves from other information sources [1, 2].

Sound logos, such as Netflix’s iconic “ta-dum,” are de-

signed to engage listeners and promote brand recognition.

In the realm of cognition literature, numerous studies have

sought to understand the factors that contribute to music

memorability [3–6]. For instance, [5, 6] bridged the gap

between cognitive science and MIR by examining whether

implicit or explicit memory for a single tune is impacted by

© L.-Y. Tseng, T.-L. Lin, H.-H. Shuai, J.-W. Huang, and

W.-W. Chang. Licensed under a Creative Commons Attribution 4.0 In-

ternational License (CC BY 4.0). Attribution: L.-Y. Tseng, T.-L. Lin,

H.-H. Shuai, J.-W. Huang, and W.-W. Chang, “A dataset and Baselines

for Measuring and Predicting the Music Piece Memorability”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

the type of encoding task and variations in timbre, tempo

and structure.

However, music memorability remains a relatively un-

explored area, particularly from a data-driven standpoint.

Research related to music memorability includes the study

of involuntary musical imagery (INMI) [7, 8], also known

as “earworms,” which refers to the phenomenon where

fragments of music become mentally lodged on repeat. For

instance, Jakubowski et al. proposed a model that can de-

termine whether a piece of music may induce the INMI ef-

fect by using statistical analysis and a random forest model

[8]. However, the mechanism of INMI differs from music

memorability since the former is a passive process while

the latter can be active, e.g., everyone remembers how to

sing “Happy Birthday,” but the song may not qualify as

an earworm. Another line of prior studies [9–12] inves-

tigating the intrinsic memorability of multimedia content

have predominantly focused on computer vision, with their

findings suggesting that data-driven approaches can effec-

tively determine memorability levels. Motivated by these

studies, we break new ground in exploring music memora-

bility from a data-driven perspective by compiling a novel

dataset and employing machine learning techniques.

Specifically, to expand the scope of memorability detec-

tion and recognition in music information retrieval (MIR),

we establish a new research domain called music memora-

bility regression (MMR), which aims to predict a memo-

rability score for a given music piece. We create an ex-

perimental procedure as shown in Figure 1 to collect a

new dataset, the YouTube Music Memorability (YTMM)

dataset, where memorability scores are determined by the

percentage of participants who can recall the music piece

after a certain period. This dataset provides reliable and

consistent music memorability scores across all partici-

pants, paving the way for further research in the field.

We also propose several baseline approaches for predict-

ing music memorability, including feature engineering us-

ing hand-crafted music-related features and transfer learn-

ing techniques. These baselines not only demonstrate the

potential of machine learning in addressing music memo-

rability but also serve as a foundation for future work.

Despite the promise of machine learning in tackling

music memorability by predicting memorability scores, its

“black box” characteristics hinder the interpretation of ma-

chine decisions in MIR tasks. A straightforward approach

would be to compute correlations without relying on black-
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Figure 1. The music memory game, which allows data annotators to label music memorability scores reliably. The

experiment is divided into three stages, each with a 3-minute long break in between. Each 18-minute stage is composed of

multiple 5-second music pieces and short breaks.

box prediction models to glean insights about the relation-

ship between memorability and musical features. How-

ever, given the complexity of analyzing music memorabil-

ity, using a single feature results in an extremely low cor-

relation with memorability, leading to inconclusive find-

ings. One alternative would be to explore all possible fea-

ture combinations when calculating correlations, but the

sheer number of combinations, e.g., 220 − 1 for just 20

features, renders this approach impractical. A/B testing

could be used to determine which type of music is more

memorable, but it suffers from similar drawbacks, such as

being time-consuming and unable to account for all vari-

ables that may impact the experiment’s outcome. To make

machine learning models reveal their “black box” char-

acteristics, researchers are increasingly adopting explain-

able artificial intelligence (XAI) [13] for deeper insights.

Building on previous interpretability analyses in audio pro-

cessing [14, 15], we utilize Shapley Additive Explanations

(SHAP) [16], a game-theoretic approach that clarifies the

output of machine learning models, to identify the key

components of memorable music.

Our main contributions are as follows: first, we present

the new YTMM dataset with objective annotations of

memorability scores, which will be publicly available for

future research; second, we propose several deep learn-

ing baseline models for MMR; and finally, we explore

the potential characteristics of memorable music pieces

while providing interpretability for these deep learning-

based methods.

2. RELATED WORK

In addition to the cognition literature on music memora-

bility [5, 6], there are several related yet distinct terms,

such as Involuntary Musical Imagery (INMI) or "ear-

worms"—fragments of music that involuntarily come to

mind [7]. Studies have examined earworms through inter-

views, environmental and psychological conditions lead-

ing to INMI, and the impact of melodic features and song

popularity on spontaneous musical imagination [8]. Cru-

cial differences between INMI and music memorability in-

clude: 1) INMI involves uncontrollable mental repetition,

while memorability requires conscious recall; and 2) the

stimuli in [8] are highly familiar to participants, whereas

our study selects audios unfamiliar to most annotators to

mitigate the influence of individual listening histories on

memorability. Another related concept is hook catchi-

ness [17–20], which refers to the most easily recalled frag-

ment of a musical piece. However, our focus lies in pre-

dicting the memorability of different music pieces rather

than assessing the impact of various segments within the

same tune on catchiness prediction and recognition. Fur-

thermore, we ensure our stimuli consist solely of pure in-

strumental music clips to prevent any textual information

from lyrics influencing music memorability.

Moreover, while deep learning has achieved significant

success in supervised MIR tasks, it often demands large-

scale annotated data. However, collecting useful anno-

tations for MIR tasks can be costly, as it typically re-

quires expertise and domain knowledge [21]. To tackle this

challenge, various data augmentation and training strate-

gies have been proposed [21–24]. For instance, McFee

et al. [21] apply transformations such as pitch shifting,

time-stretching, and adding background noise to the orig-

inal waveform. Cubuk et al. [22] mask both time and

frequency content to expand the input space in automatic

speech recognition (ASR) and MIR tasks. To enhance

learning robustness with limited data, Wu et al. [23] ex-

tract general music representations using a multi-task pre-

trained encoder, inspired by speech processing research

[25, 26]. Similarly, Castellon et al. [24] employ trans-

fer learning from existing music generation architectures.

However, not all the aforementioned methods are simul-

taneously open-source, computationally inexpensive, and

interpretable. Therefore, in this paper, we focus on apply-

ing signal processing approaches like masking, with fur-

ther details provided in Section 4.

3. DATASET CONSTRUCTION FOR MUSIC

MEMORABILITY

In this section, we discuss the details of our dataset collec-

tion process and how music memorability is measured.

3.1 Audio Collection

To construct a dataset with objective music memorabil-

ity scores, we first ensure that the audio samples are un-

biased. We randomly select music by querying music-

related videos using the YouTube API with random query

keys, avoiding any specific music genre preference. Addi-

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

175



Task Type # of Audios # of Repetition (min) # of Repetition (max) # of Repetition (avg) # of Repetition (std)

Filler 65 - - - -

Vigilance 21 5 10 6.5 1.08

Short-Term Target 88 10 49 25.23 10.81

Medium-Term Target 41 61 131 110.33 16.32

Long-Term Target 20 155 276 222.05 36.64

Table 1. Details of different audio tasks in the music memory game.

Figure 2. Distributions of the audio published location and

the distributions of the audio views in the final dataset.

tionally, we manually filter the music to confirm that the

queried videos contain pure music content, excluding in-

strument tutorials or gadget unboxings. Next, we conduct a

pilot study to verify that the selected audios are unfamiliar

to most of the annotators in our target user group. Consid-

ering the annotators’ nationalities might not be as varied as

the music collection’s, and language can be a memorable

yet non-music-related element, we only use the intro part

of each song. This approach helps eliminate other potential

variables affecting music memorability. Also, the volume

across all audio clips is normalized to minimize any mem-

orable attributes unrelated to the music itself. Loudness

normalization ensures the music is remembered based on

its inherent qualities rather than its loudness.

We use only a segment of each audio for two reasons: i)

to better eliminate confounding factors, such as vocal tim-

bre, and ii) to shorten the period of annotations and prevent

fatigue. We achieve this by truncating audios into struc-

turally meaningful segments and applying proper time-

stretching to alter the duration of an audio signal to a fixed

length without distorting the audio. The segmentation pro-

cess is supervised by an expert with a professional music

education background. Note that time-stretching not only

reduces modeling complexity but also prevents annotators

from memorizing the audio based on its duration.

Ultimately, we collect 235 structurally meaningful 5-

second audios with labeled music memorability scores.

Our goal is to determine which types of music pieces are

more likely to be memorized, rather than focusing on en-

tire music clips, which are more complex and involve ad-

ditional factors. This research can facilitate various appli-

cations, such as Netflix’s iconic “ta-dum” sound. The col-

lected data can be found in the supplementary materials.

Figure 2 illustrates the distribution of the collected audios

concerning their published geographical locations and to-

tal views on YouTube, with view counts ranging from 10K

to 100M.

3.2 The Music Memory Game

To annotate the memorability of the collected musical data,

we follow the setting of image memory game [9] to de-

sign a novel music listening experiment. During the ex-

periment, the recruited data annotators are asked to listen

to 235 music pieces in total and answer whether the au-

dio is repeated in the experiment or not. From a cognitive

view, we define music memorability as long-term musical

salience and the extent to which a musical piece continues

to be remembered over time. In the music memory game,

music memorability is measured as the tendency to cor-

rectly recognize a music piece when encountering it again

in the experiment among all users. Specifically, let x
(i)
j de-

note whether the i-th music piece can be recalled by the

j-th data annotator, i.e., 1 if the annotator recognized the

i-th music piece. The memorability score of music i, de-

noted by m(i), is then calculated by:

m(i)
=

1

ni

ni∑

j=1

x
(i)
j , x

(i)
j ∈ {0, 1} (1)

where ni is the total number of data annotators for the i-th

music.

To make the ground truth unbeknownst to all partici-

pants, music excerpts are split into three task categories:

“vigilance”, “target”, and “filler”. Targets and vigilance

targets are both repeated in the experiment, while the for-

mer are collected to be the true labels and the latter is used

to make sure participants are attentive when labeling data.

Moreover, fillers are used to stuff the spacing between the

first and second repetition of a target and therefore is only

presented once. The overview of the music memory game

experimenting procedure is shown in Figure 1. The target-

vigilance-filler split details can be found in Table 1. Rig-

orous criteria are enforced to monitor the performances of

data annotators and preserve the quality of memorability

labels. Specifically, annotations from users who detect vig-

ilance repetition with an accuracy lower than 60% are au-

tomatically discarded. Furthermore, to prevent gathering

biased memorability, all annotators only engage in label-

ing once. We recruited a total of 218 users from cam-

pus, with 163 clearing the vigilance accuracy level, 17%

of passed annotators having professional music education

backgrounds, and over 98% being between the ages of 20

and 29.

Differing from previous works on image memorability,

our experiment is composed of three similar stages with

breaks inserted in between. The reasons for using stages

and breaks are two-fold. First, audios are sequential, there-

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

176



Figure 3. Memorability scores at various stages. The color

symbolizes the rank of short-term memorability, while the

lines represent stage relationships. The plot also shows

Spearman’s rank correlations ρ between memorabilities

measured at each stage.

fore it is more exhausting to label the memorability score

to audios as compared to static images. Second, it usu-

ally takes some time for the earworm phenomenon to hap-

pen when listening to music. Hence, we assume memo-

rability should be invariant even after encountering breaks

that probably would reset the memory. The results of re-

lations between repeat interval and memorability score are

shown in Figure 3, where the lines exhibiting memorabil-

ity scores across short-term, medium-term, and long-term

repeats. The results manifest that the memorability score

is indeed independent of the sequential context. Therefore,

it is easier to memorize truly memorable pieces of music

even after long breaks. The fact that Spearman’s rank cor-

relation [27] between short-term, medium-term, and long-

term are all greater than 0.64 also proves that the rank of

memorability score is preserved across variant repeat in-

tervals.

3.3 Labels and Consistency Analysis

To assure that collected labels are universal across all data

annotators, we evaluate the human consistency according

to previous work [9] by randomly splitting all participants

into 2 groups and examining how well the memorability

scores measured in the first groups matched the ones mea-

sured in the second group by averaging Spearman’s rank

correlation [27] between randomly separated two halves

of the participants 25 times. The average Spearman’s rank

correlation coefficient ρ is 0.83, indicating the consistency

of the collected data.

Figure 4 shows the scattering plot of music memorabil-

ity and repeat interval. The graph demonstrates that mu-

Figure 4. Relations between memorability score and target

repeat interval in log scale. The hue represents the level of

fatigue.

sic possesses a linear relation between memorability score

and log-scaled repeat interval. Please note that the fatigue

level is another factor in the plot that also contributes to

the memorability score of audio. The fatigue level, de-

fined as the amount of audios listened without a 3-minute

break, is a direct result caused by staging experiment and

participating in taking a break in the middle since listen-

ing to more music at one time without resting reduces par-

ticipants’ ability to identify repeated music pieces. The

setting of inserting audio to random positions in the exper-

iment procedure adds more context diversity to the process

of memorizing music, thus making the labeled memorabil-

ity scores more robust.

4. MUSIC MEMORABILITY PREDICTION

4.1 Learning with Handcrafted Features

Although feature extractions for deep learning models

can be data-driven without being handcrafted, leading to

a better result given sufficient training data, handcrafted

features provide interpretable information for more in-

sights. Therefore, we propose handcrafted features that

can more accurately depict the low-level acoustic features

or high-level semantic features of musical clips as shown

in Table 2. For the low-level acoustic features that can

be directly derived from the audio signal of music seg-

ments, we leverage the harmony, rhythm and timbre since

they are most easily recognizable fragments of a piece of

music [17] and describe the fundamental elements of a

tune. Moreover, zero crossings and zero crossing rate are

also extracted since they give the impressions into the fre-

quency content of a signal. On the other hand, high-level

semantic features are more abstract descriptions. Since the

previous works in Psychology [28,29] mention the link be-

tween music emotion and memory, we introduce valence

and arousal, which represent the mood of music pieces as

features.

Another high-level feature is genre, which describes
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Level Category Feature Implementation

Low-level

Harmony mean, std of 12 pitch class
Rhythm beat per minute (bpm)
Timbre mean, std of 4-tracks (Vocals,

Bass, Drums, Others)
Zero Crossing # of zero crossings & avg, me-

dian of zero crossings rate

High-level
Mood valence, arousal
Genre Music, Musical Instrument

Table 2. Explainable handcraft features.

how likely a clip is belong to a certain type of music.

Specifically, due to the unstable performance of exist-

ing algorithms for detecting sequences of chord labels,

we employ chromagram (chroma) [30] as a representa-

tion of harmony patterns. To extract timbre informa-

tion, the Mel-Frequency Cepstral Coefficient (MFCCs) is

widely utilized. Although MFCCs is representative for

timbre, its components are difficult to grasp intuitively.

As a result, we treat MFCCs as a raw feature and find

an alternative solution by first separating source audios

into four components using source separation software

Spleeter [31], and calculating their respective amplitudes

to represent the characteristics of different instruments and

frequency ranges. For the rhythmic pattern, although Tem-

pogram [32] captures the underlying rhythmic pattern of

raw audios, it is unable to provide precise insights to con-

cretely measure the audio’s groove. Therefore, we instead

utilize beat per minute (bpm) to represent general rhythm

characteristics. We also use static valence and arousal val-

ues to describe perceived music moods, which are pre-

dicted by using Support Vector Regression (SVR) with a

linear kernel trained on the PMEmo dataset [33]. For genre

features, we use the predicted music tagging and instru-

ments from the downstream task of PANN [34]. Finally,

SVR and Multilayer Perceptron (MLP) are employed as

predictors to link audio features to memorability scores.

4.2 End-to-End Deep Learning

Deep learning [35] is featured by its ability to directly learn

meaningful information from raw data, as opposed to us-

ing hand-crafted features. As a result, we also test end-

to-end models to find if their feature-learning process im-

proves performance. Our model uses spectrograms in Mel-

scale as inputs, similar to previous end-to-end MIR tasks.

Moreover, transfer learning [36], which applies previously

learned knowledge to new data, has been found to signif-

icantly increase learning performance by skipping costly

data-labeling procedures. Here, we use the self-supervised

pre-trained Audio Spectrogram Transformer (SSAST) [37]

since SSAST has been proved to achieve state-of-the-art

results on numerous audio tasks, including audio event

classification, keyword spotting, mood recognition, and

speaker identification, after being trained on a vast amount

of unlabeled data.

Method Corr. MSE MSE STD

chroma + MLP 0.1740 0.0326 -

MFCCs + MLP 0.1179 0.0353 -

convnet features [38] + MLP 0.1889 0.0314 -

EHC features + SVR 0.2988 0.0339 0.0128

EHC features + SVR + PS 0.2084 0.0391 0.0129

EHC features + MLP 0.2656 0.0263 0.0058

EHC features + MLP + PS 0.2388 0.0275 0.0059

mel-spectrograms + SSAST 0.0124 0.0298 0.0061

mel-spectrograms + SSAST + PS 0.2658 0.0265 0.0074

Table 3. Spearman’s rank correlation and MSE loss

between predicted and ground truth music memorability

score using different models. Note that EHC features stand

for explainable handcrafted features, PS stands for pitch

shift data augmentation, and Corr. represents Spearman’s

rank correlation.

5. EXPERIMENT RESULTS

Evaluation Metrics. Spearman’s rank correlation and

mean squared error (MSE) loss are used as the metrics to

evaluate the performance of music memorability predic-

tion. The former indicates the ability to rank the relative

memorability of different audios, while the latter indicates

the absolute error of the predicted results.

Different Baselines. Here, we leverage Chroma and

MFCCs along with their respective derivatives as two

hand-crafted feature representations and fit the ground

truth by Multilayer Perceptron (MLP) as two simple base-

lines. Moreover, we also use the convnet model as a base-

line since it is the most referenced and available work in

general music representation. The convnet model [38] uti-

lizes CNNs for music tagging in the pre-training stage, and

the extracted features serve as the representation for down-

stream tasks. Finally, Self-Supervised Audio Spectrogram

Transformer (SSAST) [37] is also used as the baseline,

which is a Transformer-based model with more parame-

ters as compared to CNNs. SSAST pretrains the model

with joint discriminative and generative masked spectro-

gram patch modeling.

Implementation Details. All the feature classifiers are

pretrained without finetuning on the self-collected dataset.

To handle the instability stemming from the limited la-

beled data, we normalize labels by subtracting the mean

value, i.e., predicting a relative value instead of an abso-

lute value. For MLP and SSAST models, the learning rates

are respectively set to 5e-5 and 5e-6 with the Adam opti-

mizer [39]. We also conduct additional feature selection on

the handcrafted features to improve the convergence of the

MLP/SVR model (only select 25 features) due the small

number of data samples. In addition, techniques includ-

ing frequency masking, band stop filtering, and reverbera-

tion [26] are used to augment data, together with the pitch

shifting augmentation. The results are reported by the av-

erage of the 10-fold outputs.

5.1 Prediction Results.

Table 3 compares the results of different prediction mod-

els, where SVR and MLP take explainable handcrafted
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Model Top-k feature selection Corr. MSE

MLP k = 40 (no feature selection) 0.2160 0.0272

MLP k = 35 0.2324 0.0270

MLP k = 25 0.2656 0.0263

MLP k = 20 0.2018 0.0271

SVR k = 40 (no feature selection) 0.2168 0.0324

SVR k = 35 0.2291 0.0340

SVR k = 25 0.2988 0.0339

SVR k = 20 0.2630 0.0354

Table 4. Spearman’s rank correlation and MSE loss for

MLP/SVR models with different top-k feature selection.

features as inputs, and SSAST takes mel-spectrograms as

inputs. The results indicate that chroma and MFCCs pro-

duce the worst results due to the ineffective feature extrac-

tion. For convnet features, the performance is better than

chroma and MFCCs due to the pretraining. However, the

amount of training data is too small to finetune the model

on the music memorability regression task. SSAST outper-

forms other baselines since it incorporates the prior knowl-

edge of spectrograms pre-trained by using advanced meth-

ods. Finally, Explainable Handcrafted Features (EHC)

method produces the best correlation results by combin-

ing both low- and high-level features that help improve

music memorability. These quantitative findings manifest

that data-driven MIR tasks are notably reliant on huge data

quantities to be resilient and general.

5.2 Ablation Study

Table 4 shows an ablation study on feature selection for

handcrafted features, indicating that selecting top-25 fea-

tures leads to the best overall correlation results. More-

over, Table 3 also shows an ablation study on extra pitch

shifting for data augmentations. Small pitch shifts (less

than 5 semitones) make the altered audio seem natural to

the human ear according to [40]. Therefore, we add semi-

tone shifts of -5 to 5 to our data. The results manifest that

pitch shifting is effective for the models that take sequence

information into account because applying mean pooling

across time on harmony features in non-sequential models

like SVR and MLP just forces the model to forecast the

same value using multiple static chroma information. This

may confuse the model on harmony characteristics. On the

other hand, models with sequential information, such as

SSAST, learn pitch-invariance after pitch shifting. The per-

formance of SSAST notably decreases without pitch shift

data augmentation, possibly due to its data-hungry nature

as a Transformer-based model, i.e. requiring more data for

optimal parameter tuning.

5.3 Interpretability

We attempt to gain insight into the intrinsic memory uti-

lizing XAI methodologies. One post-hoc strategy for ex-

pressing black box models in a human-interpretable man-

ner is SHAP [16]. Specifically, SHAP explanations are ob-

tained by perturbing a specific instance in the data and ob-

serving the impact of these perturbations on the black-box

Figure 5. SHAP summary of the SVR model with RBF

kernel [41]. The most important features are listed in de-

creasing order and the fact that feature value rises after the

SHAP value shows a positive relationship between the two.

model’s output. As such, SHAP allows us to explore the

factors that the model considers when determining memo-

rability. Figure 5 visualizes the directionality impact of the

top-5 features in SHAP, where the x-axis stands for SHAP

value and each point is a SHAP value of a sample for a fea-

ture. Red color and blue colors respectively indicate higher

and lower values of a feature. As such, we can observe the

feature directionality impact based on the distribution. For

example, the first row shows that a higher arousal value

leads to high memorability scores, while a lower arousal

value can lead to both high and low memorability scores.

The important factors for the predictor among the EHC

features include arousal, bpm, harmony (the feature "D

mean") and the timbre features extracted from the source

other than vocals, drums, and bass (the feature "other db

mean"). According to Psychology research [28], normal

individuals without brain damage find it easier to recog-

nize musical excerpts with high arousal. The melodies are

the main constituent elements of the source ”others” after

applying 4-stem Spleeter separation. This finding supports

our understanding that we often focus on the main melody

in music, and thus the chorus or hook of the song with out-

standing melody usually represents the entire song.

6. CONCLUSION AND FUTURE WORK

In this work, we explore the novel task of music memo-

rability regression (MMR) using a data-driven approach.

The consistency of our newly proposed YouTube Music

Memorability (YTMM) dataset supports our hypothesis

that music memorability indeed exists and can be pre-

dicted. Furthermore, we investigate the use of feature engi-

neering and self-supervised learning for predicting music

memorability, highlighting the importance of prior knowl-

edge and other training approaches, such as label normal-

ization, for improving results with limited data. We make

the dataset available online to encourage further research

and development in the field of MMR. In the future, we

plan to: 1) scale the dataset to better represent the mem-

orability of full music structures, 2) investigate the poten-

tial of transfer learning trained on music-oriented datasets

to enhance our current baselines, and 3) study the person-

alization issue since music memorability can be strongly

related to the past musical experience of individuals.
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ABSTRACT

Optical Music Recognition (OMR) is the field of research

that studies how to computationally read music notation

from written documents. Thanks to recent advances in

computer vision and deep learning, there are successful ap-

proaches that can locate the music-notation elements from

a given music score image. Once detected, these elements

must be related to each other to reconstruct the musical

notation itself, in the so-called notation assembly stage.

However, despite its relevance in the eventual success of

the OMR, this stage has been barely addressed in the liter-

ature. This work presents a set of neural approaches to per-

form this assembly stage. Taking into account the number

of possible syntactic relationships in a music score, we give

special importance to the efficiency of the process in order

to obtain useful models in practice. Our experiments, using

the MUSCIMA++ handwritten sheet music dataset, show

that the considered approaches are capable of outperform-

ing the existing state of the art in terms of efficiency with

limited (or no) performance degradation. We believe that

the conclusions of this work provide novel insights into

the notation assembly step, while indicating clues on how

to approach the previous stages of the OMR and improve

the overall performance.

1. INTRODUCTION

Optical Music Recognition (OMR) is the field of research

that enables the automatic reading of music notation from

scanned documents [1]. OMR has become increasingly

important due to its potential for a better preservation of

music archives, while also facilitating new data to the

wealth of Music Information Retrieval algorithms that rely

on symbolic formats [2, 3].

As in many other fields, deep learning brought about

a drastic change in the performance of the proposed ap-

proaches for OMR [4]. As we will mention in the next sec-

tion, tasks that used to be a difficult barrier are now feasible

© C. Penarrubia, C. Garrido-Munoz, J.J. Valero-Mas, and

J. Calvo-Zaragoza. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: C. Penarrubia, C.

Garrido-Munoz, J.J. Valero-Mas, and J. Calvo-Zaragoza, “Efficient No-

tation Assembly in Optical Music Recognition”, in Proc. of the 24th Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

and successful models are known, e.g., staff detection [5]

or the identification of musical symbols in the image [6].

However, although these tasks are the first obstacles of an

OMR system, they are not enough to complete the pro-

cess. Once the graphic elements have been identified, it is

necessary to reconstruct the musical notation itself by in-

ferring the syntactic relationships that exist between such

elements, namely notation assembly.

To account for all existing relations, the retrieval is usu-

ally performed in a pairwise fashion among all the identi-

fied graphic units. On this note, given the (typically large)

density of elements within music score images, the task

exhibits a high computational complexity that complicates

its integration in an end-user application. Therefore, in ad-

dition to accuracy, one must carefully take into account the

efficiency of this type of schemes.

This work addresses the efficient estimation of all the

syntactic relations among the elements of a music score us-

ing neural network. More precisely, we propose and assess

two approaches to address this task in an efficient manner:

one that is based on classifying each pair of elements em-

ploying a series of numerical features, while the other uses

asymmetric kernels [7], which can be computed with high

parallelization and provide results very fast. In our exper-

iments, using the well-known MUSCIMA++ corpus, we

will compare the trade-off between effectiveness and effi-

ciency that these methods provide and discuss the experi-

mental outcomes. In addition, assuming that the previous

stages of the process may contain errors, we also assess

the robustness of the assembly proposals by intentionally

degrading the estimations of these precedent phases. This

analysis is expected to provide useful insights for the ade-

quate design of notation assembly methods in OMR.

The remainder of the paper is as follows: in Section

2, we provide some background on the field of OMR; in

Section 3, we present the problem and the proposed ap-

proaches; in Section 4, the complete experimental setup is

described; in Section 5, results are reported and discussed;

and, finally, the main conclusions of the work are summa-

rized in Section 6.

2. RELATED WORK

Traditionally, OMR has been considered a multi-stage pro-

cess [8]. The legacy pipeline distinguishes four stages:
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(i) image preprocessing, including tasks such as binariza-

tion [9], distortion correction, or stave separation [10]; (ii)

music symbol detection, including steps such as staff-line

removal [11], connected-component search, and classifi-

cation [12]; (iii) notation assembly, where the independent

components are related to each other to reconstruct the mu-

sical notation [13]; and (iv) encoding, in which the recog-

nized notation is exported to a specific language that can be

stored and further processed by computational means [14].

With the rise of deep learning, many of these steps

have been reformulated as machine learning problems to

be solved by neural networks [15, 16]. Also, many stages

have been merged, giving rise to models that are capable

of locating and categorizing the musical elements of the

given image in a single step. This task has been the sub-

ject of extensive recent research [6, 17–19]. Alternatively,

the so-called holistic or end-to-end approaches that seek

to perform the entire pipeline in a single step have also

been proposed, often with some prior pre-processing such

as staff segmentation [14, 20, 21].

Although end-to-end approaches seem promising, so

far they have only been successfully implemented for

monodic music collections, where there is a clear left-to-

right reading order. This is useful in many of the histori-

cal music heritage, such as plainchant or mensural music,

where the different voices (if any) typically appear on dif-

ferent pages or sections, and staves are therefore monodic

in the graphical sense. However, to deal with the common

western modern notation, multi-stage OMR approaches

seem to be the only ones capable of dealing with such com-

plexity [4].

However, despite the aforementioned recent advances

in the detection of music symbols with deep learning, there

are hardly any proposals that complete the notation assem-

bly stage employing machine learning techniques. To our

knowledge, the only existing work that focuses on the re-

trieval of relationships using learning techniques is that of

Pacha et al. [22]. In such work, for each pair of nodes,

a single image is built with different channels: one that

depicts the area of the image that contains both nodes, an-

other that depicts the same region but only shows the first

node, and a last one that depicts also the region of inter-

est but only with the second node. A Convolutional Neural

Network (CNN) is then trained to recognize whether or not

there is a relationship between the nodes involved in this

three-channel image. Despite the reported good results,

the approach is tremendously inefficient, since it requires

the independent construction and classification of an image

for each pair of nodes. As we will see below, this scheme

entails a huge computational complexity that makes it in-

feasible to use in practice.

In this paper, we especially focus on providing a so-

lution to the notation assembly stage with a level of effi-

ciency that enables its use in a real system, while keeping

good accuracy figures.

3. METHODOLOGY

This paper follows the formulation proposed in previous

works [19, 22, 23], where it is assumed that the computa-

tional reading of a music score, in the context of OMR, can

be described by retrieving a graph structure from the im-

age. In this graph, the atomic notation elements (referred

to as “primitives”) represent nodes, while edges denote the

relationships between them. Here, we are particularly in-

terested in the retrieval of the edges, once the nodes have

been detected somehow (for instance, with the existing ap-

proaches mentioned in the previous section). Note that,

instead of relying on case-specific heuristics, we frame the

task within a learning-based formulation due to its inherent

capability of modeling any relationship among the primi-

tives as far as there exists a set of annotated reference data.

Therefore, the formulation is general and can be used as

long as there is a training set consistent with the envisioned

model for the music-notation graph.

3.1 Formulation

A graph is a mathematical structure that models pairwise

relationships between elements—referred to as nodes or

vertices—through its edges. Here, we aim to retrieve the

edges (relationships) between each pair of nodes in music

scores, where each node represents a music primitive—

e.g., a notehead, a stem, or an accidental. 1 The formal

definition of the problem is as follows.

We assume that for a given music score s there ex-

ists a graph gs that represents its symbolic music notation.

The graph is defined as a pair (V,E), where V denotes

the set of nodes and E denotes the set of edges. Two

nodes vi, vj ∈ V are connected if there exists an edge

ei,j = (vi, vj) ∈ E.

In the context of OMR, information about the set of

symbols V corresponds to the music symbol detection

stage of the OMR pipeline. Although they are still far from

perfect, there are approaches in the literature that address

this stage (cf. Sect. 2). Therefore, we here assume that

there exists a function that maps s onto set V . Typically,

each symbol vi ∈ V is further represented as a set of fea-

tures with, at least, the following information: primitive

class and coordinates within the image score. The problem

we address from now on is how to get the set E given V ,

which corresponds to the notation assembly stage of the

OMR pipeline.

The problem can be considered as a binary classifi-

cation task in which a model predicts the class between

each pair of nodes vi, vj present in the score. In this re-

gard, ei,j is labeled as a 1 if there is a relationship be-

tween vi and vj , and 0 otherwise. The prediction of

the relationship—henceforth, êi,j—can be represented as

a function ϕ(vi, vj) that takes the two nodes’ features as

input and computes the probability of connection, i.e.,

P(ei,j = 1). Figure 1 depicts a general outline of the

methodology adopted in this work.

1 Hereafter, we use the terms “node”, “symbol”, and “primitive” inter-
changeably: a graphical element placed in the music score with certain
attributes.
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Figure 1: General schema of the methodology for retriev-

ing the edges of the music notation graph.

3.2 Approaches

From the formulation given above, it is important to em-

phasize that the complexity of predicting each possible

edge belongs to O(|V |2). Therefore, the approaches to ϕ

must take into account the computational cost to make the

task feasible in practice. This is a driving criterion for our

approaches below since, with a sufficient number of prim-

itives in a score, no system depicting the aforementioned

complexity would be practical in a real-world scenario.

We here propose two shallow neural architectures that

take a pair of nodes and predict the class of the relation-

ship. These two neural architectures are: (i) a Multilayer

Perceptron (MLP) architecture that takes the input of each

node’s features concatenated; and (ii) an asymmetric ker-

nel model.

3.2.1 MLP architecture.

In this method, the features—attributes—of the nodes are

first concatenated, forming a single feature vector that con-

tains the entire information from the pair of nodes. Then,

this vector is passed through a series of layers of an MLP.

The final layer implements a function σ that models the

probability of the two input nodes being connected:

êi,j = σ(ϕMLP([vi, vj ]))

3.2.2 Asymmetric kernels.

In this second scheme, our proposed neural architecture

learns an asymmetric kernel (AsymK) function [7]. This

function is defined by k(v1, v2) = (⟨φk1
(v1), φk2

(v2)⟩),
where ⟨·, ·⟩ is the dot product of two N -dimensional points

in two Hilbert spaces—features spaces. In this work, we

use this asymmetric kernel as a similarity function between

the two mapped features to distinct Hilbert spaces as:

êi,j = σ(⟨φk1
(vi), φk2

(vj)⟩)

In this approach, φk1
(v1), φk2

(v2) are kernels imple-

mented as dense neural layers that map the initial node

features onto two different (asymmetric) spaces that suit

the task at hand. After computing the similarity score, a σ

function is applied to obtain probabilities between 0 and 1.

Note that, since the embeddings are calculated only

once per node, the scheme is remarkably efficiency. For

each possible relationship, it is only necessary to compute

the dot product between node embeddings and apply the σ

function. That is why the complexity is much lower than

the previous approach.

3.2.3 Loss function.

In both neural architectures proposed, the objective is to

minimize the binary cross-entropy (BCE) loss function

LBCE =
∑

ei,j∈E

ei,j log(êi,j) + (1− ei,j) log(1− êi,j)

(1)

where êi,j corresponds to the probability predicted by the

model and ei,j is the ground-truth data for the edge (1 for

a positive relationship, 0 otherwise).

4. EXPERIMENTS

In this section, we describe the experimental setup for eval-

uating the neural architectures proposed. More precisely,

the rest of the section presents the corpus considered for

the experiments, the contemplated figures of evaluation,

the implementation details of the two neural proposals, and

the feature descriptions used.

4.1 Data

The experiments were carried out using the MUSCIMA++

dataset [23]. This corpus provides 140 handwritten mu-

sic scores with manual annotations of the different musical

symbols—primitives defined by the symbol bounding box

and the corresponding class label—and existing relation-

ships among them. The dataset provides the direction of

the edges; in our work, however, an undirected edge is as-

sumed between two nodes that are connected regardless of

the specific direction (undirected graph). Figure 2 depicts

an example from this corpus.

Figure 2: Example of a music score extracted from the

MUSCIMA++ dataset.

Concerning the data partitioning, we follow a 5-fold

cross-validation scheme. At each iteration, 60% of the

dataset is used for training, 20% is used for validation, and

20% is used as test.

Finally, it must be highlighted that each music sheet de-

picts an average value of 734 primitives, which constitutes

a large number of relations to be modeled. Due to this,
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and as aforementioned, efficiency must be considered in

the design of practical notation assembly strategies.

4.2 Figures of merit

We consider a two-fold assessment of the proposed ap-

proaches, i.e., we evaluate their recognition capabilities as

well as efficiency rates. These criteria are now detailed.

In terms of recognition performance, as in previous

works considering the same evaluation corpus [22,23], we

resort to the F-measure (F1) metric. Note that, instead of

providing the average scores for the two classes, the fig-

ures reported exclusively refer to the positive relationships

with the aim of measuring the quality of the retrieval.

Concerning the efficiency assessment, we measure the

computation time in the prediction phase of the methods.

Since this metric depends on the computational capabili-

ties of the device used, all methods are run over the same

machine to avoid any possible bias. 2 Moreover, each ex-

periment is repeated 10 times, being the average process-

ing time the one reported as the efficiency score.

4.3 Neural architectures

Regarding the MLP architectures, we consider two imple-

mentations with a varying number of layers and weights

to balance the trade-off between efficiency and representa-

tional power:

• MLP64,512: A three-layered fully-connected net-

work comprising two hidden layers with 64 and 512,

respectively, with Rectifier Linear Unit (ReLU) acti-

vations and a single output unit to compute the score

of the binary classification.

• MLP32: A two-layered fully-connected network

comprising a 32-unit hidden layer and ReLu activa-

tion and a single unit as output.

Concerning the AsymK, φk1
, φk2

are implemented as

two different 4-layered MLP comprising 512, 1024, 512,

and 256 units, respectively, with ReLU activation. The

idea is to generate two 256-dimensional embeddings—two

points in different Hilbert spaces—to then compute the

similarity through the dot product.

In all cases, the last operation is implemented as a

sigmoid activation function to understand the output as a

probability of a positive relationship. This probability is

eventually thresholded considering a value of 0.5 to con-

vert it in an actual decision.

Regarding optimization, all models were trained for 200

epochs using the Adam optimizer [24] with a learning rate

of 10−3.

4.4 Feature description

As aforementioned, the music-object detection stage of an

OMR process retrieves, at least, the position (coordinates)

of the detected object in the image sheet together with its

2 The experiment was run over 8 cores of i7-7700K CPU at 4.20GHz
with 16 GB of RAM memory, with no explicit parallelization or GPU
speed-up.

estimated class label. For our relationship prediction ap-

proaches, we consider that each vertex (vi ∈ V ) is repre-

sented only by these features, being the inclusion of addi-

tional information left as future work.

Delving on the features considered, the spatial (posi-

tion) information is directly encoded using four normalized

values that denote the top-left and right-bottom corners of

the bounding box. Conversely, the class information is pro-

cessed by a 16-dimension learnable embedding layer to ob-

tain an adequate representation for the task. Therefore, ev-

ery single node is finally represented as a 20-dimensional

feature vector.

5. RESULTS

Having introduced the different neural proposals as well as

the experimental procedures, this section presents and dis-

cusses the results obtained. To establish a reference in the

effectiveness that can be obtained for this task, we include

the results of Pacha et al. [22], measured under the same

experimental conditions as the rest of the methods in the

work. 3

The rest of the section separately studies and analyzes

the two individual aspects considered, i.e., performance ef-

ficiency and the ability to retrieve syntactic relationships

between primitives.

5.1 Performance efficiency

Focusing first on the temporal aspect of the strategies,

Table 1 shows the per-page average execution time of

the contemplated notation assembly strategies. Note that,

since this evaluation disregards the correctness of the es-

timation but simply assesses its temporal cost, all experi-

ments are performed considering the ground-truth annota-

tions.

Table 1: Efficiency results in terms of the per-page abso-

lute execution time (in milliseconds) on the MUSCIMA++

corpus for the different notation assembly methods as-

sessed. Each value corresponds to the average execution

time obtained with 10 different iterations over all test sam-

ples.

AsymK MLP32 MLP64,512 CNN [22]

Execution

time (ms)
< 0.5 55 176 > 1.5 · 106

As can be observed, the existing CNN method [22]

proves to be the least efficient among the considered strate-

gies due to the large execution time it exhibits (roughly, 25

minutes per page). Such a point directly disables its possi-

ble integration in any practical system that comprises user

interaction.

3 All experiments have been run considering the Python language
(version 3.8), being the PyTorch (version 1.12.1) and PyTorch-lightning
frameworks (1.9.1) particularly contemplated for reproducing the archi-
tecture proposed in Pacha et al. [22].
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Oppositely, the different neural proposals presented in

the work remarkably outperform these low-efficiency fig-

ures, achieving execution times in the order of a few mil-

liseconds per page. More in detail, the AsymK stands as

the most efficient strategy of the proposed ones as it re-

ports figures several orders of magnitude faster than the

MLP32 and MLP64,512. Note that this is because AsymK

exploits the parallelization of the dot product operation and

the independent node processing while the two other pro-

posals require more computation because of the classifica-

tion framework they are based on.

It must be pointed out that the presented neural archi-

tectures depict execution times several orders of magnitude

faster than the reference state-of-the-art method. In this re-

gard, while the CNN strategy may be further optimized,

the difference with the AsymK case—the most efficient

strategy—must be considered as insurmountable.

5.2 Recognition capability

Let us now move to compare the estimation goodness of

the different notation assembly strategies. As aforemen-

tioned, these methods take as input the result from a given

framework that detects the primitives in the music score,

i.e., an object detection strategy.

Taking this into consideration, we will not consider any

existing object detection approach as starting point, since

other additional issues should be taken into account which

are outside the scope of this work—e.g., which object de-

tection strategy to use, what confidence level to actually

retrieve an object, or how to evaluate cases where a node is

missing or has been predicted with the wrong label. Note

that, since these questions are not related to the retrieval

of the relationships themselves, any decision in this regard

might bias the analysis of the models for the targeted nota-

tion assembly stage.

Nevertheless, to cover a greater number of possibil-

ities in an agnostic way to the considered music-object

detection step, we will simulate inaccuracies in the lo-

cation process of the nodes. Specifically, we will con-

sider a set of ranges for the Intersection over Union

(IoU) metric between the original objects—the ground-

truth annotations—and those generated for this experi-

ment. 4 For that, assuming that the MUSCIMA++ corpus

depict an IoU = 1 (ground-truth annotation), we will pro-

gressively perturb the location of the objects—i.e., altering

the coordinates of the bounding boxes—so that the over-

all IoU metric degrades to the range IoU ∈ [0.85, 0.95].
This range will decrease in steps of 0.1 (i.e., [0.75–0.85],

[0.65–0.75], ..., [0.05–0.15]) to simulate scenarios depict-

ing more limited symbol detection methods. In this way,

our study focuses on general advantages and limitations of

the notation assembly models, which can be then consid-

ered for developing more adequate pipelines for the previ-

ous stages. Figure 3 shows examples of how node loca-

tions are perturbed at some of the IoU levels considering

4 The IoU estimates the degree of overlap between two sets (in this
case, areas of two music-notation objects) as the ratio of their intersection
and their union.

the proposed strategy.

Considering this experimental set-up, Figure 4 shows

the recognition rates in terms of F1 achieved by the differ-

ent neural schemes contemplated with respect to increasing

IoU conditions (x-axis).

For the ideal scenario of perfect object-detection re-

trieval (IoU = 1), the reference CNN method [22] reports

the highest recognition rate among all the schemes, with a

value of F1 = 93.0%. However, the MLP64,512 proposal

shows slightly lower figures to the reference strategy—

F1 = 91.9%—thereby proving itself as a competitive al-

ternative to the CNN-based method in terms of accuracy.

In relation to the AsymK and MLP32 proposals, these two

strategies depict the least competitive results among the

ones studied. However, since the MLP32 case shows a

more competitive performance than the AsymK method,

the former may be deemed as an intermediate case among

the best-performing strategies—CNN and MLP64,512—

and the AsymK approach.

As the music-object detection becomes more realistic

(IoU < 1), the neural models (except for CNN, which

will be discussed below) do not degrade ostensibly but ex-

hibit certain robustness up to reasonable IoU cases (above

0.5). 5 Digging deeper into the curves, the most rele-

vant phenomenon is that, although at the higher ranges the

CNN approach maintains the best accuracy, it decays much

faster than the MLPs. Specifically, from IoU ∈ [0.75–

0.85], the MLP64,512 outperforms it in terms of F1, while

maintaining the clear advantage in efficiency reported in

the previous section. Furthermore, the rather shallow

MLP32 approach also outperforms the CNN from IoU ∈
[0.55–0.65], which are still likely values for music-object

detection. These results reflect the adequacy of the efficient

approaches proposed in this work, which are not only effi-

cient enough to be used in practice but also keep greater

robustness against very common distortions in previous

stages to that of notation assembly in the OMR pipeline.

In contrast, the AsymK shows a similar trend to the other

efficient approaches, so from the perspective of this exper-

iment it maintains the same advantages and disadvantages

already discussed above (even higher efficiency but very

poor retrieval).

As a last point, it must be noted that the results reported

in this work may be considered as a turning point for the

development of novel approaches to music-object detec-

tion in a complete OMR workflow. For example, using

the efficient approaches of this work, one can prioritize re-

trieving most of the objects at the cost of slightly losing

some location accuracy. An object that is not detected is

impossible to relate correctly, but if it is detected, even if

inaccurately it might connect successfully with other nodes

(see Fig. 4).

As a final note, the whole experiments clearly prove that

there is no single strategy capable of optimizing both con-

templated criteria at the same time: high recognition rates

imply large execution times (e.g., the CNN method [22],

5 While it is true that the models obtain very poor results for the lowest
ranges, this is not relevant in practice because 0.5 is the minimum IoU
threshold for most object detectors to consider a correct retrieval.
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(a) Simulated symbol detection performance of IoU ∈ [0.45− 0.55].

(b) Simulated symbol detection performance of IoU ∈ [0.85− 0.95].

Figure 3: Examples obtained with our proposal under different simulated symbol-detection scenarios based on the overall

IoU. The green and blue bounding boxes respectively denote the ground truth and the modified ones.
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Figure 4: Results in terms of the F1 metric for the com-

pared note assembly strategies for different object detec-

tion performance rates based on the IoU score.

which results impractical in real-world applications) while

faster strategies show more limited recognition rates (for

instance, the AsymK case). In this regard, the proposed

MLP-based architectures seem to provide an adequate bal-

ance between the two evaluation criteria, being particularly

relevant to the MLP64,512 one as it shows a remarkable

temporal efficiency with a slightly worse performance than

the highest attainable recognition results by the CNN case.

6. CONCLUSION

Optical Music Recognition (OMR) represents the re-

search field that studies how to computationally read mu-

sic notation from written documents. Generally, these

strategies comprise an initial phase in which the music-

notation elements from a given image are located—symbol

detection—followed by a notation assembly stage that esti-

mates the relations among these elements to reconstruct the

musical notation itself. However, while there exist a large

number of approaches that address the former process, the

latter one has been scarcely addressed in the related litera-

ture.

This work frames in this particular assembly stage.

Considering the high number of possible relationships in

a music score, this work proposes two neural architectures

to address this task in an efficient manner: (i) a strategy

based on a Multilayer Perceptron (MLP) scheme; and (ii)

a model based on asymmetric kernels. The results obtained

with the MUSCIMA++ benchmark corpus [23] show that

the MLP-based approach achieves recognition rates com-

parable to those of the reference strategy by Pacha et

al. [22] with considerably less computational cost. More-

over, the asymmetric kernel approach, while proven to be

extremely fast, exhibits a noticeable loss of accuracy with

respect to the highest attainable one. In addition, these re-

sults also prove MLP-based schemes as remarkably robust

when facing adverse symbol detection scenarios compared

to the state-of-the-art method.

Several avenues of future research are opened: on the

one hand, it would be important to estimate the relevance

of each error produced since it has not been yet studied

what errors—missing positive relationships or predicting

non-existing relationships—and what type of elements in-

volved cause the most impact on the eventual OMR sys-

tem. On the other hand, this work has considered the given

labeling of the MUSCIMA++; however, it has not been ex-

plored in depth whether this annotation scheme is actually

adequate for these learning algorithms. More consistent

or easy-to-learn annotations may be possible, as long as

the goal of correctly encoding music notation is still met.

Besides, just as the music-object detection step has been

integrated into a single process, it would be beneficial to

train end-to-end models that take into account both object

detection and notation assembly. In this way, the model

could leverage contextual and semantic information, pro-

vided by the notation assembly stage, when detecting ob-

jects that would be otherwise difficult or impossible. Fi-

nally, it would be also relevant to carry out user studies to

assess the usefulness of these efficient approaches in real-

world OMR scenarios.
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ABSTRACT

Synthesizer parameter inference searches for a set of patch

connections and parameters to generate audio that best

matches a given target sound. Such optimization tasks ben-

efit from access to accurate gradients. However, typical

audio synths incorporate components with discontinuities

– such as sawtooth or square waveforms, or a categorical

search over discrete parameters like a choice among such

waveforms – that thwart conventional automatic differen-

tiation (AD). AD libraries in frameworks like TensorFlow

and PyTorch typically ignore discontinuities, providing in-

correct gradients at such locations. Thus, SOTA parameter

inference methods avoid differentiating the synth directly,

and resort to workarounds such as genetic search or neu-

ral proxies. Instead, we adapt and extend recent computer

graphics methods for differentiable rendering to directly

differentiate the synth as a white box program, and thereby

optimize its parameters using gradient descent. We evalu-

ate our framework using a generic FM synth with ADSR,

noise, and IIR filters, adapting its parameters to match a va-

riety of target audio clips. Our method outperforms base-

lines in both quantitative and qualitative evaluations.

1. INTRODUCTION

Synthesizers provide musicians and sound designers with

flexibility for exploring sound with various audio char-

acteristics. However, the versatility of synths also poses

challenges in terms of control, because manually search-

ing over numerous parameters to seek a particular type of

sound requires expertise, time, and effort. Synth parame-

ter inference addresses these challenges by automating this

search process to find parameters that best match a given

target sound. Given a synth f with parameters θ and a tar-

get T , the search seeks the optimal parameters θ∗ to mini-

mize some loss L between the synth output and the target.

θ
∗ = argmin

θ
L(f(θ), T ) (1)

If the synth f can be expressed as a white box program, a

straightforward solution to Equation 1 would differentiate

L wrt the parameters θ, and then minimize L by gradi-

ent descent. However, in practice, typical synthesizers f

© Y. Yang, Z. Jin, C. Barnes, A. Finkelstein. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: Y. Yang, Z. Jin, C. Barnes, A. Finkelstein, “White

Box Search over Audio Synthesizer Parameters”, in Proc. of the 24rd Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

contain discontinuous oscillators, like square or sawtooth

waveforms, and discrete categorical parameters, such as

choosing different waveforms and modules, that thwart tra-

ditional automatic differentiation (AD).

Researchers have developed several workarounds to

avoid directly differentiating f . For example, genetic al-

gorithms [1, 2] approximately solve Equation 1 at the ex-

pense of greater computation and potential artifacts from

failures near local minima. Alternatively, Equation 1 may

be approximated as black box models using deep learning:

either the synthesizer can be approximated via a differen-

tiable neural proxy [3,4], or the entire argmin mapping can

be approximated by a parameter prediction network [5, 6].

Similarly, the parameter space can be mapped to a VAE la-

tent space for direct control [7]. However, the flexibility of

deep learning approaches is constrained, as data collection

and training are typically limited to specific synthesizers

with fixed parameter choices, making it impractical to di-

rectly apply trained models to arbitrary synthesizers.

Graphics researchers developed recent methods to ap-

proximate the gradient for discontinuous white box im-

age generation processes [8–10]. These generally integrate

over the discontinuous function f , and approximate the

gradient for the integral f̂ . This paper builds on Aδ [10],

which replaces the traditional calculus rules for AD to di-

rectly enable backpropagation on arbitrary discontinuous

programs. Our method relies on the key observation that

the discontinuous function will eventually be band-limited

and sampled at some rate (e.g. 48kHz). Each sample rep-

resents an integration over a time interval that may contain

a discontinuity. However, the band-limited function f̂ is

continuous so differentiation rules can be developed for it.

Our optimization framework differentiates a pre-filtered

white box synth, and solves Equation 1 via gradient de-

scent. We adapt and extend the math in Aδ [10] to differ-

entiate discontinuous and discrete synth components, and

also introduce heuristic methods for better convergence.

We evaluate on a FM synthesizer and our approach finds

parameters that better match the target than baselines qual-

itatively and quantitatively. Moreover, our framework al-

lows musicians to incorporate domain expertise to flexibly

modify and fine-tune synth modules. Because our white

box approach does not incur training overhead, our frame-

work can be flexibly applied to arbitrary synth programs.

2. RELATED WORK

Researchers have explored a variety of techniques to auto-

matically search for optimal synthesizer parameters with-
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out having to explicitly differentiate the synthesizer. Ge-

netic algorithm (GA) approaches [1, 2] mutate and cross

variants to search over the entire program space for ar-

bitrary synthesizers, but suffer from excessive computa-

tion and difficulty in accurately converging to local min-

ima without the guidance of the gradient. On the other

hand, deep learning models can be used to directly predict

the synthesizer parameters [5, 6, 11]. However, they heav-

ily rely on the annotated datasets of synthesizer presets,

therefore cannot be flexibly generalized to any synthesizer.

Similarly, each trained model can only be used for one par-

ticular synthesizer patching, greatly limiting the flexibil-

ity of the method. Unlike learning methods, our approach

does not rely on a dataset, and can flexibly differentiate any

white-box program, supporting finetuning and parameter

transfer between synthesizer patches. Our gradient-based

process also converges more robustly than GA.

Alternatively, synthesizers can be defined by differen-

tiable functions, therefore allowing optimal parameters to

be learned through gradient descent. For example, neural

audio synthesis methods use black-box neural networks to

generate audio samples [12, 13]. The neural proxies can

be combined with continuous synthesizer components as

well, such as DDSP methods that incorporate digital sig-

nal processing modules [4, 14], and DWTS methods with

learnable wavetables [15]. However, because these meth-

ods use continuous proxies, they usually do not match the

exact parameterization of complicated discontinuous syn-

thesizers, therefore cannot be flexibly used to control con-

ventional synthesizers. Moreover, the neural modules in-

troduce nontrivial inference overhead and are less efficient

than synthesizers. Unlike the differentiable neural prox-

ies, our method directly differentiates a white box program

that can be any desired synthesizer. Therefore, it optimizes

semantically meaningful parameters.

We leverage recent ideas from differentiable rendering

in computer graphics. Researchers developed compiler

frameworks to systematically differentiate arbitrary dis-

continuous programs [8, 10], and application-specific so-

lutions to efficiently differentiate specific types of discon-

tinuities in the rendering pipeline [9, 16]. Our method dif-

ferentiates synthesizer discontinuities by combining these

two approaches: we adapt the gradient rules from Aδ [10]

for use with discontinuous audio waveforms, and introduce

a specialized gradient rule for discrete categorical choices.

3. METHOD

This section describes our optimization pipeline for synth

parameter inference. Section 3.1 introduces our approach

to differentiating a synth. Section 3.2 considers loss func-

tion options. Finally Section 3.3 discusses how to explore

the multi-modality and avoid local minima.

3.1 Approximating the Gradient

We introduce a customized gradient, which includes dif-

ferentiating at discontinuities, avoiding plateaus with zero

gradient, and efficiently differentiating IIR filters. We first

FM
8 float (§3.1.1)

5 categorical (§3.1.2)

Equalizers &
Filters

15 float (§3.1.4)

ADSR
6 - 11 float 
(§ 3.1.3)

White Noise Eq & Filters ADSR

Out

Figure 1. Summary for our FM synthesizer and how they

are differentiated. Dashed boxes and arrows are optional

components whose connection is decided per target.

introduce Aδ’s [10] gradient rule for differentiating dis-

continuities and discuss its usage in audio synthesizers in

Section 3.1.1, followed by our novel synthesizer-specific

gradient rules in Sections 3.1.2 - 3.1.4.

3.1.1 Differentiating Discontinuous Waveforms

We view discontinuities as compositions of the Heaviside

step function H , which evaluates to 0 on the one side of

a discontinuity, and 1 on the other side. The discontinuity

can be differentiated using the gradient rules from Aδ [10].

The key idea is to approximate the gradient as if the discon-

tinuous function is first convolved with a 1D box filter φ(t)
along the time dimension t. As an example, if H is con-

trolled by a continuous function c, we can differentiate the

convolution of H(c(t, θ)) with φ(t) by applying the Dirac

delta’s scaling property at the discontinuity td.

∂

∂θ

∫

H(c(t′, θ))φ(t− t′)dt′ =

∫

δ(c)
dc

dθ
φ(t− t′)dt′

=

∫

δ(t′ − td)
dc
dθ

|dcdt |
φ(t− t′)dt′ = φ(t− td)

dc
dθ

|dcdt |
|td

This can be approximated with two samples corresponding

to two ends of the box kernel φ, denoted as t+ and t−. The

box kernel φ(t−td) either evaluates to 0 or 1
t+−t− , depend-

ing on whether H(c(t, θ)) evaluates to the same or differ-

ent values at t+ and t−. Because c is continuous, dc/dθ
can be computed with AD, and its evaluation on either t+

or t− approximates that of td because Lipschitz continu-

ous functions are locally bounded. Finally, dc/dt is ap-

proximated by finite difference:
c(t+,θ)−c(t−,θ)

t+−t− . Because

the audio signal already samples at a regular interval along

the time dimension (e.g. 48kHz), we conveniently set

the support of the box kernel to straddle the current sam-

ple and its neighbor. While the mathematical correctness

in [10] is derived assuming a single discontinuity in the

neighborhood, empirically the approximated gradient also

works well for signals with sparse multi-discontinuities,

such as when both the carrier and FM modulation waves

are square. However, if the sampling rate is too low and

causes aliasing, the Aδ rule is unable to correctly approxi-

mate the gradient as if the signal was antialiased.

Discontinuous waves such as square and sawtooth can

be constructed as periodic compositions of H . These

discontinuities are differentiated using the gradient rules

introduced in Aδ [10] that are analogous to the equa-

tion above, where θ might e.g., be the frequency of a

square wave. The gradient for the synthesizer parame-

ters are obtained by differentiating the loss term (Sec-

tion 3.2) using Aδ gradient rules, which reduce to tradi-

tional AD for continuous parameters, combined with our
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customized gradients (Sections 3.1.2 - 3.1.4). This ap-

proach is more accurate than differentiating a discontinu-

ity naively smoothed with arbitrary linear or sigmoid tran-

sitions, especially when discontinuities are composited –

for example, the composition of discontinuous modulation

and carrier signals in an FM synthesizer.

3.1.2 Differentiating Discrete Categorical Choices

Section 3.1 discusses a simple scenario where the disconti-

nuity can be sampled along the time dimension. However,

the challenge remains for the discrete categorical choices,

because for fixed parameterization, the corresponding dis-

continuity H evaluates to a constant for any time t, there-

fore the discontinuity cannot be easily sampled.

This section proposes a stochastic approach to differen-

tiate the discrete parameters. We define a categorical node

g as taking input from a discrete parameter x with potential

choices A,B, ..., and outputs to a floating point value:

g(x;θ) =











gA(θ) if x == A

gB(θ) if x == B,

...

(2)

gA, gB are floating point functions associated with choices

A,B respectively, such as sine or square wave equations.

Our stochastic approach views the discrete parameter

x as a discrete random variable X with different samples

X at different time steps. Therefore g(X ;θ) is a random

variable as well. Throughout this section, we will use low-

ercase (e.g. x) for the synth parameters that need to be

optimized, calligraphic (e.g. X ) for its corresponding ran-

dom variables, and regular uppercase (e.g. X) for sam-

pled values from the random variable. Note when X has

close to zero variance, it consistently samples the same

choice for every time step, therefore X can be viewed as

a constant identical to x. We further model g(X ;θ) sim-

ilarly to an argmax operator, where each potential choice

A,B, ... is associated with a “score” random variable, and

the output of g corresponds to the choice with the highest

“score”. Specifically, the “score” for choice A is modeled

as YA = µA + σA · U , where µA, σA are the mean and

standard deviation, and U is a uniform random variable

with zero mean and unit variance. For any two neighboring

samples with disagreeing categorical choices A and B, we

view the inconsistency as a discontinuous branching con-

ditioned on whether the sampled “score” Y for choice A
is greater than B or not: g = select(YA > YB , gA, gB).
By forming the discontinuity this way, the gradient wrt

µA/B , σA/B can be easily computed with the Aδ gradient

rules on the time domain. At convergence, the variance to

every “score” variable should be reduced to a small value

such that the categorical choice is sampled consistently.

The stochastic gradient rule works best when there is

a high correlation between the functions associated with

each choice gA, gB , etc. Intuitively, this allows gA, gB ,

... to form a smaller convex hull for the sampled output

g(X;θ), therefore reducing the variance of the gradient es-

timation. Therefore when differentiating categorical wave-

form choices, we align the phase of the wave functions

such that their correlation is maximized.

3.1.3 Avoiding Zero Gradient in Plateaus

Many synthesizer parameters have constraints on their val-

ues, such as the period for ADSR stages should be nonneg-

ative, and the filters’ cutoff frequencies should be within a

range to avoid singularities. A typical strategy for optimiz-

ing these constrained parameters in an unconstrained prob-

lem is to clamp the parameters: taking the min and max

against their upper and lower bounds. However, clamping

introduces another challenge for optimization: once the pa-

rameter clamped, the gradient wrt the parameter becomes

zero across an entire “out of bounds” plateau in the loss

function. For example,
∂max(θ,0)

∂θ = 0 whenever θ < 0.

We propose a heuristic workaround that avoids con-

strained parameters getting stuck at out-of-bound values,

via a customized gradient for the min (or max) operator f :

f =min(θ, C)

∂L

∂θ
=select(θ < C,

dL

df
,max(

dL

df
, 0)) (3)

Here the min operator compares with constant C, and we

assume the gradient wrt f is already computed as dL/df .

Note only the blue term in Equation 3 is different from

traditional AD. The gradient for the max operator is sim-

ilar to Equation 3, but < and max are replaced by > and

min respectively. Note this is only a heuristic workaround

for reverse-mode AD, and can not be used for forward-

mode because it computes dL/df before differentiating f .

Intuitively, our customized gradient will push the out-of-

bound θ back to its valid range whenever the gradient wrt

f wishes to bring the clamped value back to valid. We only

apply this workaround when constraining parameter values

against a constant, and generic min/max comparisons be-

tween two non-constants are still differentiated by AD.

3.1.4 Efficient IIR Filter Back-propagation

Infinite impulse response (IIR) filters are widely used in

synths to flexibly control the timbre. However, differenti-

ating the IIR filter introduces performance challenges be-

cause each output value at a certain time step recurrently

depends on every input/output value in previous steps, and

naively unrolling the gradient in the time domain is com-

putationally expensive. We, therefore, avoid the complex

dependency in the time domain by applying the filter in the

frequency domain similar to [3]. During optimization, we

only differentiate the multiplication between the unfiltered

spectrogram and the frequency response of the filters. Be-

cause most popular filters (e.g. Biquad, Butterworth) used

in synthesizers already have closed-form solutions for their

frequency responses, requiring a frequency domain proxy

does not restrict the expressiveness of this approach.

3.2 Loss Function

Unlike supervised deep-learning methods that could rely

on losses in the parameter space at the cost of collecting

the preset dataset, our optimization pipeline can only rely
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on spectral and time domain losses. However, finding the

ideal loss that is consistent with human perception is chal-

lenging for several reasons. Firstly, standard losses such

as L2 on the (log mel) spectrogram only work well when

distances between two signals are smaller than just notice-

able difference (JND); but this is rarely the case during

our optimization, as we start with random initial guesses,

and the synthesizer may never even approach JND to an

out-of-domain target. Furthermore, although deep percep-

tual metrics have been developed for speech signals (e.g.,

[17]), they do not generalize well to music synths.

We propose a heuristic combination of several differ-

ent losses to approximate the perceptual similarity. The

intuition is that the gradient to the majority of the losses

should agree with human perception even if a few of them

are noisy. In addition to standard losses, we also include

the 1D Wasserstein distance [18] along the frequency di-

mension because of its wide applicability in matching dis-

tributions. Our final optimization loss is a weighted com-

bination of the Wasserstein distance, L2, log mel L2, and

a deep feature distance from the wav2clip model [19]. The

weights are chosen such that each component has a rel-

atively equal contribution. For the losses that work on a

spectrogram (L2, log mel L2, and Wasserstein), we use

three different window sizes (512, 1024, 2048) with 75%

overlap between windows. The deep feature loss also uses

the same window and hop sizes, but for efficiency, we

stochastically evaluate the model using one of the window

sizes per iteration. Additionally, because the deep feature

model takes time domain signal as input, we need to apply

inverse STFT to the spectrogram because of the frequency

domain IIR approximation described in Section 3.1.4.

3.3 Identifying Perceptually Similar Results

Gradient-based optimizations may converge to a variety of

local minima with different perceptual similarities to the

target. Our framework runs multiple random restarts to

avoid getting stuck at local minima. However, we are not

aware of a quantitative metric that reliably characterizes

the perceptual similarity for synthesizers [20, 21]. While

we use our weighted loss in Section 3.2 to provide a gradi-

ent for the optimization, its absolute value does not pre-

cisely correspond to perceptual similarity: perceptually

dissimilar results sometimes have lower loss than similar

results. Thus, manual selection is needed to choose the

best results. We also implement early termination to avoid

wasting compute at local minima, and also a mechanism to

identify good quality results after convergence.

Our early termination strategy is a generalization to the

intuition that good initializations have a higher probability

of good convergence. We generalize the heuristic to arbi-

trary iterations within the optimization, and terminate the

ones with bad results at the end of a sequence of predeter-

mined iterations. Additionally, because the weighted loss

in Section 3.2 cannot reliably characterize perceptual simi-

larity, we rely on the Pareto ranking [22] on multiple losses

to identify bad results. We terminate optimizations whose

Pareto rank on every non-deep-learning loss in Section 3.2

Figure 2. MOS listening test preference distribution.

is higher than ceil(0.5max_rank), where max_rank is the

maximum Pareto rank for the current population. Our im-

plementation checks for early termination every 100 iter-

ations, starting at iter 200, and we run every optimization

until full convergence and simulate the early termination.

We also note that when the optimization result is already

close to the target at convergence, its loss metrics calcu-

lated from a larger window size better resemble perceptual

similarity. Specifically, large L2 errors are usually bad. We

therefore further omit any converged result whose L2 loss

on the spectrogram with window size 2048 is 2x higher

than the lowest among all results, and finally rank the re-

maining results based on the weighted sum of Wasserstein,

L2, and log mel L2 on the same spectrogram.

4. VALIDATION

This section validates our proposed framework by optimiz-

ing the parameters of an FM synthesizer to match various

audio signals for musical instruments and special sound ef-

fects. All the targets are downloaded from the web and are

therefore out of domain. We first describe our FM synthe-

sizer in Section 4.1 and evaluation setup in Section 4.2,

then compare our method with two baselines through a

user study (Section 4.3). Section 4.4 also shows the op-

timization convergence. Finally, Section 4.5 demonstrates

the flexibility of our framework with a case study that mod-

ifies the synthesizer modules for better quality result.

4.1 Synthesizer Model

We choose an FM synthesizer as in Figure 1 following

the recommendation from a synthesizer expert, because it

is simple yet expressive enough to approximate most of

our target signals. It has one carrier signal modulated by

the weighted sum of four different signals. Each signal

is parameterized with a categorical choice from the four

base waveforms: sin, square, triangle, and sawtooth. Each

modulation signal is also parameterized by ratio and in-

dex, which controls the frequency and the magnitude of the

modulation. The FM signal will further be filtered by three

Biquad equalizers (low/high shelf, peak) parameterized by

their cutoff frequency, resonance and gain, and a pair of

Butterworth low/high pass filters parameterized by their

cutoff, bandwidth, and attenuation. After that, the filtered

signal is multiplied by an ADSR parameterized with the

duration of each stage, overall volume and that of sustain,

the starting time of the attack, and optionally the exponen-

tial decay of the release as well as the scale, frequency, and

phase to an optional AM envelope applied to attack, decay,

and sustain. Finally, filtered white noise can be optionally

added either by sharing the original ADSR or with a differ-
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Figure 3. MOS listening test ratings (higher is better) for each of 16 target clips, grouped in 6 categories. Error bars corre-

spond to 2SEM (standard error of mean). To save space we shorten names: Marim(ba), Xylo(phone), and Count(down).

ent ADSR. Optional configurations are included based on

audio characteristics. For example, sustained sounds such

as woodwind and brass uses the AM envelope for ADSR,

and shorter sound such as percussion includes a filtered

white noise with separate ADSR. The overall model in-

cludes 40 (e.g. oboe) - 70 (e.g. crotale) parameters.

We implement the FM synthesizer in PyTorch to lever-

age its AD framework. The gradient discussed in Sec-

tion 3.3 is implemented as the cutomized backward pass,

and AD is used for the rest of the computation (e.g. ADSR,

STFT). Note this could also be generated by a compiler for

arbitrary synthesizers similar to Aδ [10].

4.2 Evaluation Setup

We compare with two baselines: traditional AD and zeroth

order optimization with genetic algorithm NSGA-II. AD

baseline uses the same optimization framework described

in Section 3, except that the gradient described in Sec-

tions 3.1.1 - 3.1.3 is replaced by traditional AD. The zeroth

order baseline does not require any gradient, and instead

uses the genetic algorithm NSGA-II [23] to search over

the parameter space. Because NSGA-II is multi-objective,

it directly finds Pareto optimal solutions to the various loss

functions in Section 3.2 without having to compute their

weighted sum as in gradient-based optimization.

We use 16 different target sounds, including 12 musical

instruments and 4 special sound effects listed in Figure 3.

For ours and AD, we run the experiment with 100 random

restarts for a maximum of 2000 iterations per restart. Note

that because of the early termination described in Sec-

tion 3.3, the actual number of iterations per restart varies.

We additionally supply the NSGA-II with a reasonable

sample range to the parameters, and run the algorithm with

100 population size and 2000 generations.

4.3 MOS Listening Test

As mentioned in Section 3.2, we have no perceptually-

accurate loss for comparing synth output to target audio.

Therefore, we rely on a Mean Opinion Score (MOS) test to

qualitatively compare results for our method and baselines.

For each method and target sound, we use the top 4 results

based on the Pareto ranking from Section 3.3 for testing,

resulting in 12 samples across 3 methods: ours, AD, and

NSGA-II. These clips may be heard in our supplemental

material.

Workers on Amazon Mechanical Turk (AMT) rate how

similar each result is to the target on a scale of 1 (bad) - 5

(identical). They are “master” workers, English-speakers

in the US, and are paid $20 per hour. Each worker is asked

to rate all 12 samples for two different targets. We further

embed four validation tests to filter out careless ratings:

two that are intentionally corrupted from the two targets to

be worse than any of the 12 samples to be rated, and two

that are identical to targets randomly chosen from all 16

targets. Therefore each worker rates 2× 12+4 = 28 sam-

ples for each assigned task called HIT (Human Intelligence

Task). In the end we collected 240 valid HITs where each

audio sample gets 30 ratings from 30 different workers.

We compute a preference score for each worker and

each instrument: we calculate a mean rating for each

method over the 4 rated samples. If Method 1 has a higher

score than Method 2, we say that Method 1 is preferred by

this worker. Figure 2 shows the preferences among pairs of

methods aggregated across all workers. Our method out-

performs both baselines by a larger margin, but AD is pre-

ferred more than NSGA-II. We compute the p-value for the

hypothesis: our average rating per user per instrument is

higher than that of the baseline. The p-value for the AD

baseline is 2e-8, and for the NSGA-II baseline is 3e-61.

We additionally report in Figure 3 the rating for each

target. Ours performs best when the FM synth is a good

emulation of the underlying instrument , such as for wood-

wind or brass. AD has similar ratings to ours more fre-

quently than NSGA-II, which is consistent with Figure 2.

Note in all cases when baselines have similar or higher rat-

ings than ours, the rating difference is always within the

error bar, indicating the preference is not statistically sig-

nificant. We characterize the cases where ours and base-

lines have similar ratings into two scenarios. The first one

is when the target is less challenging, and can be easily re-

constructed by various local minimums, such as Pop1 and

Pop2. The second scenario is when the FM synth cannot

nicely emulate the instrument, such as for Piano. There-

fore none of the methods can converge close enough to the

target, resulting in similarly low ratings.

4.4 Optimization Convergence

This section discusses the optimization convergence to

demonstrate how frequently each method converges in the

optimization. Figure 4 demonstrates two representative re-

sults: Horn for ours outperforms baselines and Xylophone

for ours performs similarly to baseline AD. In both plots,

all 100 populations for NSGA-II converge similarly be-

cause bad results are removed at the end of each genera-

tion. Unlike genetic algorithms, the 100 optimizations for

both ours and AD have diverging performances because

gradient-descent only explores the local parameter space

and may be stuck at a local minimum. The early termina-

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

194



W
ei

gh
te

d 
Lo

ss

Simulated Time

Figure 4. Comparing the convergence of ours and base-

lines for the 100 random restarts of two tasks. The x-axis

reports simulated time: the number of function evaluations

scaled with the actual runtime for each method. The y-axis

reports the weighted loss for the optimization. For ours

and AD, each transparent line corresponds to a restart. For

NSGA-II, each transparent line plots the loss for the kth

population at each generation (k ∈ [1, 100]). The median

within all runs at a given time is shown as the solid line.

tion described in Section 3.3 conservatively removes some

of the local minimums, but more importantly reduces the

number of evaluations toward the end of the optimization

because fewer restarts are still active. Typically, the con-

vergence plot is consistent with the listening test result in

Figure 3, but with the exception of Oboe, where NSGA-

II converges to the lowest error, but its listening test per-

forms worse than ours. But this is simply due to the choice

of weights that combine multiple losses into one scalar:

NSGA-II converges to lower Wasserstein and higher L2

and log mel L2, thus it is not Pareto superior to ours.

4.5 Case Study: Modify Synthesizer Modules

This section uses the Xylophone target as a case study

to demonstrate that our white box method can be flexi-

bly combined with user expertise to modify the synthesizer

components to improve the quality of generated audio.

Similar to other targets, Xylophone is initially approxi-

mated by the synth model described in Section 4.1. It uses

filtered white noise with independent ADSR to model the

strike at the start of the sound. However, the optimization

result is not ideal, specifically, the beginning of the audio

sounds very different from the target. This can be verified

by Figure 5, which compares the spectrogram for the first

0.07s of the sound between the target (a) and the optimiza-

tion(b): the optimization has a longer attack stage.

We ask a synthesizer expert to identify the potential

cause of the inconsistency: instead of using filtered white

noise, the beginning of the audio may be better approxi-

mated by an impulse with IIR filters. We, therefore, use

the following impulse component to replace the original

filtered white noise. We first manually calibrate the starting

time of the Xylophone within the target audio, and set the

impulse at that location. Similar to the white noise, the im-

pulse is also filtered by three Biquad equalizers (low/high

shelf and peak) and a pair of low/high-pass Biquad fil-

ters. Because the impulse is not static, we have to opti-

mize the IIR parameters in the time domain rather than the

frequency domain as in Section 3.1.4. Therefore we avoid

using any Butterworth filters mentioned in Section 4.1 for

a faster backward pass. Because the original optimization

Figure 5. Visualizing the spectrogram for the Xylophone

target (a), original optimization (b) using filtered white

noise described in Section 4.1, and finetune result (c) using

an impulse module described in Section 4.5. The spectro-

gram is computed with window size 512 and hop size 128.

nicely approximates the target except at the beginning, we

only compute the loss for the first 2048 samples, and keep

all the FM-related parameters fixed to only optimize the

newly added IIR parameters, the scale of the impulse, and

the original ADSR parameters that are initialized with their

previously optimized values. To better characterize the fil-

tered impulse signal, we use smaller spectrogram window

sizes: 128, 256, and 512 with 75% overlap. Figure 5(c)

shows the spectrogram of the finetune result that indeed

better matches the attack stage of the target. Perceptually

it also sounds better: please refer to supplemental material.

Note the finetuning process described in this section

cannot be supported by deep learning methods without re-

collecting a new dataset and re-training the model for any

change in the synthesizer design. Because our method di-

rectly optimizes the white-box programs, we can flexibly

add the synthesizer components and reuse any parameters

from previous optimizations.

5. CONCLUSION AND FUTURE WORK

This paper proposes to find synthesizer parameter settings

that best match a given target sound by directly differen-

tiating the white-box synthesizer program. We adapt and

extend recent methods from differentiable rendering to dif-

ferentiate the discontinuous and discrete components of the

synthesizer, and design an optimization pipeline to solve

the problem through gradient descent. We validate our

method through user studies on Mechanical Turk, where

our result is preferred over baselines by a large margin.

We further demonstrate the benefit of differentiating white-

box programs through a case study, where we can flexibly

modify and finetune synthesizer components.

This work suggests several directions for future re-

search. Our framework only searches for synthesizer pa-

rameters, and leaves patch connections fixed. Neverthe-

less, the gradient rules described in Section 3.1 provide a

potential solution. It could be easily extended to optimize

binary connection decisions, therefore the general patch

connection could be optimized if viewed as compositions

of binary choices. Additionally, because no perceptually

accurate loss exists for music, our framework relies on a

combination of various loss terms (Section 3.2) together

with a Pareto rank based early termination strategy to im-

prove convergence. Future work on perceptual similarity

could simplify and improve our process.
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ABSTRACT

Brain decoding allows the read-out of stimulus and men-

tal content from neural activity, and has been utilised

in various neural-driven classification tasks related to the

music information retrieval community. However, even

the relatively simple task of instrument classification has

only been demonstrated for single- or few-note stimuli

when decoding from neural data recorded using functional

magnetic resonance imaging (fMRI). Here, we show that

drums, instrumentals, vocals, and mixed sources of nat-

uralistic musical stimuli can be decoded from single-trial

spatial patterns of auditory cortex activation as recorded

using fMRI. Comparing classification based on convolu-

tional neural networks (CNN), random forests (RF), and

support vector machines (SVM) further revealed similar

neural encoding of vocals and mixed sources, despite vo-

cals being most easily identifiable. These results highlight

the prominence of vocal information during music percep-

tion, and illustrate the potential of using neural represen-

tations towards evaluating music source separation perfor-

mance and informing future algorithm design.

1. INTRODUCTION

The goal of brain decoding is to infer mental states and

perceptual information from neural activity [1, 2]. Com-

mon neuroimaging techniques such as functional mag-

netic resonance imaging (fMRI) and electroencephalogra-

phy (EEG) allow data acquisition in a non-invasive man-

ner, which has resulted in rapid developments in brain-

computer interfaces (BCI) [3, 4].

Although fMRI- and EEG-based models both make use

of neural activity for decoding, the form of information

retrieved is substantially different. That is because fMRI

offers (sub-)millimetre spatial resolution at the cost of low

© V.K.M. Cheung, L. Okuma, K. Shibata, K. Tsukuda, M.

Goto, and S. Furuya. Licensed under a Creative Commons Attribution

4.0 International License (CC BY 4.0). Attribution: V.K.M. Cheung,

L. Okuma, K. Shibata, K. Tsukuda, M. Goto, and S. Furuya, “Decoding

drums, instrumentals, vocals, and mixed sources in music using human

brain activity with fMRI”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

Figure 1. We compared the decoding performance of

convolutional neural networks (CNN), random forests

(RF), and support vector machines (SVM) in classifying

drums, instrumentals, vocals, and mixed naturalistic mu-

sical sources based on human auditory cortex activation

(highlighted in green) as recorded using fMRI.

temporal resolution, whilst EEG provides a millisecond-

level temporal resolution at the expense of poor spatial

resolution [2, 5]. Consequently, fMRI-based decoders typ-

ically rely on spatial representations of neural activation as

features, whilst EEG-based decoders exploit the temporal

dynamics of neural activity.

In the context of music information retrieval (MIR),

both fMRI- and EEG-based decoders have been employed

for a variety of classification/estimation tasks, such as

genre [6–9], pitch [6, 10–12], rhythm [13, 14], musical

emotion classification [15–21], song identification [22–

25], music composition [26], beat and note onset detec-

tion [27,28], and acoustic feature extraction [29], as well as

reconstruction from heard and imagined melodies [30–35].

However, a problem that has remained under-studied is

the decoding of different instruments within a song based

on brain activity. This is despite its intimate relation to the

standard MIR task of music source separation, which seeks

to decompose a musical sound mixture into a linear sum of

instrumental sources [36, 37]. Although music and speech

source separation share the same goals, the key difference

is that sound sources from multiple musical instruments

are more correlated in music than in speech [36].

The most relevant literature on neural-driven music

source separation is the work by Cantisani et al. [38, 39].

Their initial work showed that EEG can be used to decode

listeners’ attention deployment to a particular instrument
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from naturalistic polyphonic music mixtures [38]. The

approach was to first record listeners’ EEG as they were

presented with solo instrumental sources. A temporal re-

sponse function was then trained to reconstruct the solo

instrumental sources from EEG. This response function

was later applied to the EEG signal when subjects listened

to the polyphonic mixtures. The attended instrument was

identified as the one that showed the highest correlation

with the reconstructed source. In their subsequent work

[39], they showed that the reconstructed sources from their

EEG attention decoding model can be used as contrastive

priors to inform a non-negative matrix factorisation-based

source separation model.

On the other hand, relevant work based on fMRI data

seems to be lacking. While existing studies have identi-

fied the role of the auditory cortex in processing timbre

[40, 41] via correlational approaches, even the relatively

simple task of decoding musical instrument category has

only been restricted to single- or few-note stimuli [19, 42].

In this paper we address this gap by showing that dis-

tinct musical sources, namely drums, instrumentals, and

vocals from naturalistic musical stimuli, as well as their

mixtures, can be decoded from spatial representations of

neural activation recorded using fMRI on the single-trial

level. We report that decoding performance was the high-

est when detecting the presence of vocal information in the

auditory stimulus, and we explain our model decisions in

terms of patterns of neural activations. Importantly, un-

like most existing decoding studies which have relied on a

single classification algorithm, we additionally compared

performance across three decoders, convolutional neural

networks (CNN), random forests (RF), and support vec-

tor machines (SVM), to enhance the generalisability of our

findings. In the last section of this paper, we also discuss

how brain activity could be used in the future to evaluate

music source separation and inform algorithm design.

2. METHODS

2.1 Experimental stimuli

Experimental stimuli consisted of 15-second musical audio

excerpts derived from the beginning of the chorus section

of 24 unreleased pop and rock songs within an in-house

music dataset created by professional musicians.

Four versions of each song—drums, instrumentals, vo-

cals, and mixed—were compiled, resulting in a total of

96 stimuli. The versions were produced by first separat-

ing the original song into bass, drums, other, and

vocals using a state-of-the-art music source separation

model, Demucs-v4 [43]. Due to the frequency response of

MRI-compatible noise-isolating earphones (Sensimetrics

S15), bass and other were linearly combined to form

an instrumentals version. A 100-ms fade-out was then ap-

plied to the drums, instrumentals, and vocals versions, fol-

lowed by loudness normalisation to the EBR U 128 stan-

dard. Finally, the normalised drums, instrumentals, and

vocals versions of each song were linearly combined to

form the mixed version, which was also normalised for

loudness. We chose to use the mixed version rather than

the original song to ensure that decoding was not biased

by differences in loudness from the underlying versions.

We made sure that each song actually included drums, vo-

cals, and other instruments before source separation, and

we checked our resulting stimuli after source separation to

ensure that they were free from audible artefacts and sep-

aration errors, and that they did not contain silences at the

start and end that would shorten the stimuli.

2.2 Data acquisition

Data were collected from 24 healthy, normal-hearing

adults aged between 19-34 with their written informed

consent. The 96 music stimuli were presented over

eight runs whilst functional gradient echo planar images

(TR/TA/TE = 2/2/0.025 s, voxel size = 3×3×3 mm3, 33

slices, flip angle = 77◦, 188 volumes per run) were ac-

quired using a Siemens Prisma 3T MRI scanner. Each run

lasted approximately 6 minutes, and was separated by a

short break of around one minute. Stimulus presentation

was counter-balanced across runs, with the constraint that

each run contained three samples of the four versions, all

stimuli came from different songs, and that each song (re-

gardless of version) appeared only once every other run.

Stimulus presentation within a run was randomised. To

maintain attention, subjects were also asked to rate their

preference on a 1-9 scale within a 4-second time window

using a button box after each stimulus presentation. Our

study was approved by the Ethics Committee at RIKEN.

2.3 fMRI data preprocessing

Functional MRI data for each subject were preprocessed

using fMRIprep [44]. Functional images were first cor-

rected for slice-timing differences, motion artefacts, and

susceptibility distortions, then co-registered to subjects’

anatomical image, and then normalised to standard MNI-

space using the ICBM 152 Nonlinear Asymmetrical tem-

plate. Next, for each subject, we fitted a general linear

model in each voxel to estimate the blood oxygen level-

dependent (BOLD) response on the single-trial level using

SPM [45] following a ‘least-squared all’ approach [46]:

each stimulus was modelled as a separate regressor in the

design matrix, and a parametric modulator that varied by

subjects’ stimulus rating was also added to control for dif-

ferences in preference. Another regressor was included

to account for variance during the rating period. These

regressors were modelled as boxcar functions and con-

volved with the canonical haemodynamic response func-

tion (HRF). Six motion, one cardiac, and one respiratory

regressors were further added to the design matrix to con-

trol for motion- and physiology-induced artefacts. Model

parameters were estimated using restricted maximum like-

lihood, and the resulting parameter estimates at each voxel

provided a spatial representation (i.e., beta maps) of neural

activations for each stimulus separately, which we used for

subsequent decoding.

As we were interested in stimulus differences in the

neural-perceptual level, we considered voxels in the hu-
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Figure 2. Architecture of our CNN-based decoder.

man auditory cortex (see Figure 1) as decoding features.

These were obtained by applying a mask to the bilateral

early-auditory and auditory-associative

regions in the HCP-MM1 brain atlas [47,48], and then flat-

tened into a 1D-vector using nilearn [49].

2.4 Decoding analyses

We performed two decoding analyses. The first was a four-

way classification task, whose goal was to classify which

of the four versions a stimulus belonged to based on sub-

jects’ brain activation as summarised by its beta map. The

second was a binary recognition task, whose goal was to

detect the presence of drums, instrumentals, or vocals in

the stimulus from brain activation. As an example, for

drum-recognition, drums and mixed versions would be as-

signed a positive label, whilst instrumentals and vocals

versions would be assigned a negative label.

We also examined whether decoding performance de-

pended on neural information encoded in the left, right, or

both auditory cortices. This was motivated by neurosci-

entific findings suggesting a right-lateralised hemispheric

dominance to musical stimuli [50], and that the left audi-

tory cortex may be more sensitive to rapid temporal fea-

tures in an auditory stimulus whilst the right may be more

sensitive towards spectral features [51].

To enhance the generalisability of our findings, we per-

formed leave-one-subject-out cross-validation, where each

decoder was trained on data from 23 subjects and tested

on 1 remaining subject. Note that brain decoding between

subjects is generally harder than decoding within subjects,

because the decoder must additionally overcome individ-

ual differences in structural and functional organisation of

the brain when predicting on an unseen subject [52].

2.5 Implementation

We trained three types of classifiers—convolutional neural

networks (CNN), random forests (RF), and support vec-

tor machines (SVM)—for our two decoding tasks. While

classical approaches such as SVMs and RFs remain pop-

ular [53], CNNs have also been recently used to decode

visual objects [54], vocal emotions [55], and musical pitch

[10] from fMRI data. We implemented CNN decoders on

TensorFlow2, whilst RF and SVM were implemented on

scikit-learn 1 .

Training data were first put through a variance thresh-

old to remove features that gave identical outputs (e.g., at

1 For data, code, and Supplementary Information, please refer to
https://github.com/vkmcheung/neuromusic-decoding/

the boundary of the brain), and then scaled using a robust

scaler, before decoders were fitted.

Our CNN decoders (see Figure 2) were inspired by

ConvNeXt [56], which is a family of purely convolu-

tional neural networks that recently achieved state-of-the-

art performance in image classification. Input features

first passed through a 1D-convolution layer (96 units, ker-

nel size = 4), and a ConvNeXt-like residual block. This

block comprised a 1D-convolution layer (96 units, kernel

size = 7), followed by layer normalisation, 1D-convolution

(384 units, kernel size = 1), GELU activation, another 1D-

convolution (96 units, kernel size = 1), and a residual con-

nection layer followed by ReLU activation. Outputs of

the residual block then passed through three dense layers

(1024, 512, and 256 units, respectively), a flattening layer,

and finally a dense layer with softmax output. All convo-

lution layers had a stride length of 1 (except for the first,

which had a length of 4) and same-padding. Each model

was trained to minimise categorical entropy loss for 200

epochs, and early-stopped if validation performance did

not improve after 25 epochs (with best weights restored).

Data from two random subjects (∼10%) in the training set

were held-out for validation, and we selected a batch size

of 512, and an AdamW optimiser [57] with learning rate =

0.001 and weight decay = 0.0001 for training.

RF decoders were trained with bootstrapping using 100

trees in the forest, at least 1 sample per leaf, and 2 samples

per split. Quality of split was assessed with Gini impurity.

SVM decoders were trained using regularisation param-

eter of 1 with squared-L2 penalty and a linear kernel for a

maximum of 10,000 iterations.

3. RESULTS AND DISCUSSION

3.1 Four-way classification

Table 1 and Figure 3 show the leave-one-subject-out cross-

validation performance of CNN, RF, and SVM decoders in

classifying whether a stimulus belonged to drums, instru-

mentals, vocals, or mixed versions of a song, given audi-

tory cortex activation. To test the statistical significance

of our results (see Table 2), we fitted linear mixed models

with the interaction between classifier and hemisphere (and

lower order terms) as fixed effects and a maximal random

effects structure with subject as a grouping factor.

All classifiers showed significantly above-chance per-

formance (all p < 2.2×10−16, see Supplementary Infor-

mation 1 ) in decoding accuracy and Area Under the Re-

ceiver Operating Characteristic Curve (ROC AUC), sug-

gesting that despite the slow temporal resolution of fMRI,

correlated sources of the same song can be decoded and

classified from spatial representations of brain activation.

For all classifiers, accuracy and ROC AUC were highest

when decoding from the bilateral auditory cortex, followed

by the right and left hemispheres. Resolving significant in-

teraction effects between classifier and hemisphere for ac-

curacy and ROC AUC furthermore revealed that accuracy

was significantly worse when decoding from the left com-

pared to the right and bilateral auditory cortices for CNN,
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CNN RF SVM
acc auc acc auc acc auc

Four-way classification

l AC .506 .799 .523 .802 .524 .810
r AC .588 .858 .536 .817 .563 .843

l+r AC .604 .863 .554 .824 .597 .863
l+r PV .301 .560 .319 .554 .253 .510
l+r SM .304 .547 .332 .550 .276 .554

Drums recognition

l AC .595 .638 .603 .637 .550 .559
r AC .622 .677 .586 .638 .559 .591

l+r AC .630 .683 .599 .655 .553 .601
l+r PV .507 .505 .528 .533 .526 .531
l+r SM .517 .544 .530 .545 .490 .500
Instrumentals recognition

l AC .656 .726 .638 .688 .615 .679
r AC .642 .723 .666 .727 .627 .687

l+r AC .680 .762 .657 .712 .652 .703
l+r PV .577 .593 .585 .611 .495 .509
l+r SM .558 .576 .580 .600 .517 .553
Vocals recognition

l AC .794 .891 .799 .913 .746 .847
r AC .816 .926 .841 .937 .836 .936

l+r AC .839 .946 .829 .936 .843 .950
l+r PV .527 .527 .525 .541 .495 .502
l+r SM .516 .544 .563 .581 .516 .552

Table 1. Mean brain decoding performance with leave-

one-subject-out cross-validation. acc = accuracy; auc =

ROC AUC; l/r/l+r = left/right/bilateral; AC = auditory, PV

= primary visual, SM = somatosensory-motor cortices.

Figure 3. Box plots showing four-way classification per-

formance when decoding from voxels in the left and/or

right auditory cortex using CNN, RF, and SVM. Light cir-

cles indicate test performance on each held-out subject.

Filled circles indicate mean. Dashed lines indicate chance.

and compared to the right for SVM. Likewise, ROC AUC

was significantly lower when decoding from the left com-

pared to the bilateral auditory cortex for all classifiers, and

compared to the right for CNN and SVM. Although these

results corroborate previous findings (e.g., [50]) that sup-

port a dominant role of the right auditory cortex in pro-

cessing musical stimuli, they nevertheless show that both

auditory cortices were engaged and provided useful infor-

mation for decoding.

Four-way classification χ
2 df p

Accuracy

hemisphere 37.3 2 8.08×10−9 ***
classifier 6.81 2 .0331 *
hemisphere:classifier 14.6 4 .00551 **

ROC AUC

hemisphere 55.3 2 9.58×10−13 ***
classifier 11.8 2 .00278 **
hemisphere:classifier 14.3 4 .00625 **

Recognition task χ
2 df p

Accuracy

hemisphere 3.30 2 .192
classifier 14.5 2 .000720 ***

task 59.9 2 9.78×10−14 ***
hemisphere:classifier 3.60 4 .463
task:classifier 9.76 4 .0447 *
hemisphere:task 2.90 4 .574
hemisphere:classifier:task 11.3 8 .184

ROC AUC

hemisphere 4.89 2 .0866
classifier 13.6 2 .00114 **

task 94.2 2 < 2.2×10−16 ***
hemisphere:classifier 2.07 4 .722
task:classifier 10.9 4 .0275 *
hemisphere:task 2.68 4 .612
hemisphere:classifier:task 9.54 8 .299

Table 2. ANOVA table evaluating the statistical signifi-

cance of hemisphere and classifier in four-way classifica-

tion and recognition task performance. * = p < .05; ** = p

< .01; *** = p < .001.

Confusion matrices in Figure 4(A) provide further in-

sight on decoding performance. We notice that across the

three decoders trained on both hemispheres, recall was the

highest for drums and the lowest for mixed. The high re-

call for drums could be because they were the most tem-

porally regular and had limited pitch possibilities. Further-

more, mixed and vocals, as well as drums and instrumen-

tals, were often misclassified as the other. These suggest

a similar neural representation between mixed and vocals,

as well as drums and instrumentals. Whether this pairing

is contingent on the stimulus set, the part of a song used

(here, our stimulus excerpts were taken from the begin-

ning of the chorus section), and the experimental design

remains to be verified in future studies.

3.2 Neural representations

To explain the impact of each voxel towards classification,

we turned to SHapley Additive exPlanations (SHAP) [58].

SHAP decomposes a model prediction into the additive

contribution of each feature from the mean using game the-

ory. Figure 4(B) shows the mean-averaged contribution of

voxels in the bilateral auditory cortex towards classifying a

stimulus as belonging to the four versions in Subject 4 us-

ing a CNN. We notice that the pattern of contributions were

quite similar for mixed and vocals, which could explain the

misclassification of the two labels observed above. Fur-

thermore, there were substantial contributions from both

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

200



Figure 4. (A) Confusion matrix (normalised along rows) for each decoder when trained on the bilateral auditory cortices,

pooled across all subjects. Notice that drums recall was highest, and a consistent misclassification between mixed and

vocals, as well as drums and instrumentals. (B) Mean additive contribution of each voxel in the bilateral auditory cortex

towards classifying a given label for one subject using a CNN decoder derived using SHAP [58].

auditory cortices, again indicating a bilateral engagement

during music processing.

3.3 Recognition task

We next tested whether decoding performance in recognis-

ing the presence of drums, vocals, or instrumentals varied

from the left and/or right auditory cortex. Results from

leave-one-subject-out cross-validation are summarised in

Figure 5 and Tables 1 and 2.

Resolving significant main effect of tasks for accuracy

and ROC AUC revealed substantially higher decoding per-

formance across CNN, RF, and SVM in recognising vocals

compared to drums and instrumentals (see Supplementary

Information 1 ). That the presence of vocal information

was most robustly encoded from neural activation patterns

is very interesting, as it suggests that listeners show an en-

hanced sensitivity towards perceiving human voice in mu-

sic. This finding is in line with the view that singing vo-

cals play a prominent and powerful role in communicating

and expressing meaning and emotion during music listen-

ing [59, 60]. We speculate that the presence of vocal in-

formation might have additionally engaged neural popula-

tions involved in language processing, which consequently

increased its dissimilarity amongst other labels.

Significant main effects of classifier for accuracy and

ROC AUC also indicated superior performance of CNN

and RF over SVM when averaged across recognition

tasks. However, significant task-by-classifier interactions

for both measures suggest that performance varied accord-

ing to recognition task. Resolving the interaction revealed

significantly lower accuracy and ROC AUC for SVM com-

pared to CNN and RF in drums recognition. Significantly

higher ROC AUC was also observed for CNN compared to

SVM in recognising instrumentals. Nevertheless, we were

not able to detect any meaningful differences in laterality

across tasks or classifiers.

3.4 Feature-encoding specificity

Thus far, we relied on neural activations in the auditory

cortex as input features for our decoding models. To as-

sess the specificity of information encoding, we repeated

the above analyses in two other sensory processing brain

regions, namely the bilateral primary-visual, and the

somatosensory-and-motor regions as derived from

the HCP-MM1 brain atlas [47,48]. As before, we assessed

the statistical significance of decoding performance using

linear mixed models. However, rather than comparing the

effects of hemisphere within the auditory cortex, we now

compare performance across the bilateral auditory, primary

visual, as well as somatosensory-motor cortices.

In the four-way classification task, we observe in Table

1 and the Supplementary Information 1 that decoding from

the bilateral auditory cortex resulted in significantly higher

accuracy and ROC AUC compared to the two other sensory

cortices across all classifiers (all p < 2.2×10−16).

Interestingly, decoding accuracy and ROC AUC were

also significantly above chance when CNNs and RFs were

trained using features from the visual and somatosensory-

motor regions (with no significant differences between

these two regions). Furthermore, resolving signifi-
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Figure 5. Box plots comparing performance in recognising the presence of drums, instrumentals, or vocals in a musical

stimulus using left and/or right auditory cortex activation as decoding features. Significantly higher decoding performance

was detected in the vocals recognition. Dashed lines indicate chance performance.

cant cortex-by-classifier interactions showed significantly

lower accuracy and ROC AUC when decoding from the

primary visual cortex using SVM compared to CNN and

RF, and from the auditory cortex using RF compared to

CNN, as well as lower accuracy when decoding from the

somatosensory-motor cortex using SVM compared to RF.

A similar picture could be seen in recognition per-

formance. Significant main effects of cortex for recog-

nition accuracy and ROC AUC indicate superior perfor-

mance when decoding from the auditory compared to

visual or somatosensory-motor regions. Resolving sig-

nificant cortex-by-task interactions further revealed that

the significantly higher performance in recognising vocals

compared to drums or instrumentals was specific to the au-

ditory cortex. By contrast, accuracy and ROC AUC for

instrumentals were significantly higher than drums in the

auditory and somatosensory-motor areas, as well as in the

primary visual cortex (ROC AUC only).

Engagement of the primary visual cortex during music

has been suggested to be related to mental imagery [61,62],

which is thought to be an important way through which

music evokes emotions [63]. Likewise, the somatosensory

cortex has been said to encode the emotional percept or

feeling states associated with music [15], whilst auditory-

motor interactions during music perception is thought to be

related to the integration and updating of hierarchical pre-

dictions of the musical beat [64, 65]. Combined with the

substantially higher performance observed when decoding

from the auditory cortex, these suggest that while musical

sources could be decoded from visual and somatosensory-

motor regions, the information encoded is unlikely to be

related to the auditory content itself. Rather, such repre-

sentations might encode affective or metrical information

from associated cognitive processes that arise when per-

ceiving the four different musical sources.

4. CONCLUSION AND FUTURE PERSPECTIVES

In this paper, we demonstrated that drums, instrumentals,

vocals, and mixed sources of naturalistic music can be

decoded from human auditory cortex fMRI data on the

single-trial, between-subject level. While decoding per-

formance was the highest for CNN, performance across

all classifiers—CNN, RF, and SVM—were above chance

and suggested similar neural representations for vocals and

mixed sources. An especially high performance in vocals

recognition across all classifiers further pointed towards an

enhanced perceptual sensitivity towards vocal information

during music listening. Taken together, our results show

that despite the low temporal resolution of fMRI, the high

spatial resolution it offers could still provide relevant in-

formation for decoding in neural-driven MIR tasks.

Although our specificity analyses highlighted the au-

ditory cortex in encoding stimulus-relevant information

compared to other sensory areas, the perception of dif-

ferent musical sources is a hierarchical process that en-

gages higher-order brain regions in the prefrontal cortex

via dorsal and ventral pathways [66, 67]. Future work

could examine differences in representations along these

two pathways to shed light on neural mechanisms involved

in auditory-object processing.

In the context of music source separation, one future

possibility is to use neural data for evaluation. While cur-

rent subjective evaluation of music source separation algo-

rithms typically rely on explicit ratings such as MUSHRA

or mean opinion scores, ratings are known to be prone to

response biases [68–70] and might consequently fail to ad-

equately reflect subjects’ perception. This could be over-

come by directly evaluating performance on the neural-

perceptual level. Future work could, for example, com-

pare the neural representations of source-separated stimuli

from different algorithms or hyperparameters. Separation

quality could be determined by identifying the algorithm

that maximises dissimilarity in neural activation across the

different sources. Another possibility is to assess sensitiv-

ity to each instrument by examining neural activation in

response to different mixing proportions. This would pro-

vide perceptual priors that could be used to constrain the

parameter space in future music source separation algo-

rithms. While these prospects may seem too challenging

at this time, we envision that our work will help pave the

way in that direction.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

202



5. ACKNOWLEDGMENTS

This work was supported in part by JST CREST Grant

Number JPMJCR20D4 and JSPS KAKENHI Grant Num-

ber JP21H04917, Japan.

6. REFERENCES

[1] N. Kriegeskorte and P. K. Douglas, “Interpreting en-

coding and decoding models,” Current Opinion in Neu-

robiology, vol. 55, pp. 167–179, 2019.

[2] B. Kaneshiro and J. P. Dmochowski, “Neuroimaging

methods for music information retrieval: Current find-

ings and future prospects,” in Proceedings of the 16th

International Society for Music Information Retrieval

Conference, ser. ISMIR 2015, 2015, pp. 538–544.

[3] M. Zhuang, Q. Wu, F. Wan, and Y. Hu, “State-of-the-

art non-invasive brain–computer interface for neural

rehabilitation: A review,” Journal of Neurorestoratol-

ogy, vol. 8, no. 1, pp. 12–25, 2020.

[4] R. Sitaram, A. Caria, R. Veit, T. Gaber, G. Rota,

A. Kuebler, and N. Birbaumer, “fMRI brain-computer

interface: a tool for neuroscientific research and treat-

ment,” Computational Intelligence and Neuroscience,

vol. 2007, 2007.

[5] B. He and Z. Liu, “Multimodal functional neuroimag-

ing: Integrating functional MRI and EEG/MEG,” IEEE

Reviews in Biomedical Engineering, vol. 1, pp. 23–40,

2008.

[6] M. A. Casey, “Music of the 7ts: Predicting and

decoding multivoxel fMRI responses with acoustic,

schematic, and categorical music features,” Frontiers

in Psychology, vol. 8, p. 1179, 2017.

[7] T. Nakai, N. Koide-Majima, and S. Nishimoto, “En-

coding and decoding of music-genre representations in

the human brain,” in Proceedings of the 2018 IEEE In-

ternational Conference on Systems, Man, and Cyber-

netics, ser. SMC 2018, 2018, pp. 584–589.

[8] T. Nakai, N. Koide-Majima, and S. Nishimoto, “Corre-

spondence of categorical and feature-based representa-

tions of music in the human brain,” Brain and Behav-

ior, vol. 11, no. 1, p. e01936, 2021.

[9] J. S. Rahman, T. Gedeon, S. Caldwell, and R. Jones,

“Brain melody informatics: Analysing effects of music

on brainwave patterns,” in Proceedings of the 2020 In-

ternational Joint Conference on Neural Networks, ser.

ICJNN 2020, 2020, pp. 1–8.

[10] V. K. Cheung, Y.-P. Peng, J.-H. Lin, and L. Su, “De-

coding musical pitch from human brain activity with

automatic voxel-wise whole-brain fMRI feature selec-

tion,” in Proceedings of the 2023 IEEE International

Conference on Acoustics, Speech and Signal Process-

ing, ser. ICASSP 2023, 2023.

[11] K. Tsekoura and A. Foka, “Classification of EEG sig-

nals produced by musical notes as stimuli,” Expert Sys-

tems with Applications, vol. 159, p. 113507, 2020.

[12] V. De Angelis, F. De Martino, M. Moerel, R. Santoro,

L. Hausfeld, and E. Formisano, “Cortical processing of

pitch: Model-based encoding and decoding of auditory

fMRI responses to real-life sounds,” NeuroImage, vol.

180, pp. 291–300, 2018.

[13] P.-C. Chang, J.-R. Chang, P.-Y. Chen, L.-K. Cheng, J.-

C. Hsieh, H.-Y. Yu, L.-F. Chen, and Y.-S. Chen, “De-

coding neural representations of rhythmic sounds from

magnetoencephalography,” in Proceedings of the 2021

IEEE International Conference on Acoustics, Speech

and Signal Processing, ser. ICASSP 2021, 2021, pp.

1280–1284.

[14] S. Stober, D. J. Cameron, and J. A. Grahn, “Classifying

EEG recordings of rhythm perception,” in Proceedings

of the 15th International Society for Music Information

Retrieval Conference, ser. ISMIR 2014, 2014, pp. 649–

654.

[15] S. Koelsch, V. K. Cheung, S. Jentschke, and J.-D.

Haynes, “Neocortical substrates of feelings evoked

with music in the acc, insula, and somatosensory cor-

tex,” Scientific Reports, vol. 11, no. 1, p. 10119, 2021.

[16] M. E. Sachs, A. Habibi, A. Damasio, and J. T. Kaplan,

“Decoding the neural signatures of emotions expressed

through sound,” NeuroImage, vol. 174, pp. 1–10, 2018.

[17] V. Putkinen, S. Nazari-Farsani, K. Seppälä, T. Kar-

jalainen, L. Sun, H. K. Karlsson, M. Hudson, T. T.

Heikkilä, J. Hirvonen, and L. Nummenmaa, “Decoding

music-evoked emotions in the auditory and motor cor-

tex,” Cerebral Cortex, vol. 31, no. 5, pp. 2549–2560,

2021.

[18] I. Daly, D. Williams, F. Hwang, A. Kirke, E. R. Mi-

randa, and S. J. Nasuto, “Electroencephalography re-

flects the activity of sub-cortical brain regions during

approach-withdrawal behaviour while listening to mu-

sic,” Scientific Reports, vol. 9, no. 1, p. 9415, 2019.

[19] S. Paquette, S. Takerkart, S. Saget, I. Peretz, and P. Be-

lin, “Cross-classification of musical and vocal emo-

tions in the auditory cortex,” Annals of the New York

Academy of Sciences, vol. 1423, no. 1, pp. 329–337,

2018.

[20] X. Cui, Y. Wu, J. Wu, Z. You, J. Xiahou, and

M. Ouyang, “A review: Music-emotion recognition

and analysis based on EEG signals,” Frontiers in Neu-

roinformatics, vol. 16, p. 997282, 2023.

[21] D. S. Naser and G. Saha, “Influence of music liking

on EEG based emotion recognition,” Biomedical Sig-

nal Processing and Control, vol. 64, p. 102251, 2021.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

203



[22] S. Hoefle, A. Engel, R. Basilio, V. Alluri, P. Toiviainen,

M. Cagy, and J. Moll, “Identifying musical pieces from

fMRI data using encoding and decoding models,” Sci-

entific Reports, vol. 8, no. 1, pp. 1–13, 2018.

[23] D. Sonawane, K. P. Miyapuram, B. Rs, and D. J. Lo-

mas, “Guessthemusic: Song identification from elec-

troencephalography response,” in Proceedings of the

3rd ACM India Joint International Conference on Data

Science & Management of Data (8th ACM IKDD

CODS & 26th COMAD), ser. CODS-COMAD ’21,

2021, pp. 154–162.

[24] P. Pandey, G. Sharma, K. P. Miyapuram, R. Subra-

manian, and D. Lomas, “Music identification using

brain responses to initial snippets,” in Proceedings in

the 2022 IEEE International Conference on Acous-

tics, Speech and Signal Processing, ser. ICASSP 2022,

2022, pp. 1246–1250.

[25] R. S. Schaefer, J. Farquhar, Y. Blokland, M. Sadakata,

and P. Desain, “Name that tune: decoding music from

the listening brain,” NeuroImage, vol. 56, no. 2, pp.

843–849, 2011.

[26] D. Wu, C. Li, Y. Yin, C. Zhou, and D. Yao, “Mu-

sic composition from the brain signal: Representing

the mental state by music,” Computational Intelligence

and Neuroscience, vol. 2010, 2010.

[27] S. Stober, T. Prätzlich, and M. Müller, “Brain beats:

Tempo extraction from EEG data.” in Proceedings of

the 17th International Society for Music Information

Retrieval Conference, ser. ISMIR 2016, 2016, pp. 276–

282.

[28] I. Sturm, M. Treder, D. Miklody, H. Purwins, S. Dähne,

B. Blankertz, and G. Curio, “Extracting the neural rep-

resentation of tone onsets for separate voices of en-

semble music using multivariate EEG analysis.” Psy-

chomusicology: Music, Mind, and Brain, vol. 25, no. 4,

p. 366, 2015.

[29] N. Gang, B. Kaneshiro, J. Berger, and J. P. Dmo-

chowski, “Decoding neurally relevant musical features

using canonical correlation analysis,” in Proceedings

of the 18th International Society for Music Informa-

tion Retrieval Conference, ser. ISMIR 2017, 2017, pp.

131–138.

[30] I. Daly, “Neural decoding of music from the EEG,” Sci-

entific Reports, vol. 13, no. 1, pp. 1–17, 2023.

[31] L. May, A. R. Halpern, S. D. Paulsen, and M. A. Casey,

“Imagined musical scale relationships decoded from

auditory cortex,” Journal of Cognitive Neuroscience,

vol. 34, no. 8, pp. 1326–1339, 2022.

[32] S. Ntalampiras and I. Potamitis, “A statistical inference

framework for understanding music-related brain ac-

tivity,” IEEE Journal of Selected Topics in Signal Pro-

cessing, vol. 13, no. 2, pp. 275–284, 2019.

[33] G. M. Di Liberto, G. Marion, and S. A. Shamma,

“Accurate decoding of imagined and heard melodies,”

Frontiers in Neuroscience, vol. 15, p. 673401, 2021.

[34] S. Stober, A. Sternin, A. M. Owen, and J. A. Grahn,

“Towards music imagery information retrieval: Intro-

ducing the OpenMIIR dataset of EEG recordings from

music perception and imagination.” in Proceedings of

the 16th International Society for Music Information

Retreival Conference, ser. ISMIR 2015, 2015, pp. 763–

769.

[35] A. Ofner and S. Stober, “Modeling perception with

hierarchical prediction: Auditory segmentation with

deep predictive coding locates candidate evoked po-

tentials in EEG,” in Proceedings of the 21th Interna-

tional Society for Music Information Retrieval Confer-

ence, ser. ISMIR 2020, 2020, pp. 566–573.

[36] E. Cano, D. FitzGerald, A. Liutkus, M. D. Plumbley,

and F.-R. Stöter, “Musical source separation: An intro-

duction,” IEEE Signal Processing Magazine, vol. 36,

no. 1, pp. 31–40, 2019.

[37] E. Manilow, P. Seetharman, and J. Salamon, “Open

source tools & data for music source separation,”

2020. [Online]. Available: https://source-separation.

github.io/tutorial

[38] G. Cantisani, G. Trégoat, S. Essid, and G. Richard,

“MAD-EEG: an EEG dataset for decoding auditory at-

tention to a target instrument in polyphonic music,” in

Proceedings of the Speech, Music and Mind (SMM),

Satellite Workshop of Interspeech 2019, 2019.

[39] G. Cantisani, S. Essid, and G. Richard, “Neuro-steered

music source separation with eeg-based auditory at-

tention decoding and contrastive-nmf,” in Proceedings

of the 2021 IEEE International Conference on Acous-

tics, Speech and Signal Processing, ser. ICASSP 2021,

2021, pp. 36–40.

[40] E. J. Allen, M. Moerel, A. Lage-Castellanos,

F. De Martino, E. Formisano, and A. J. Oxenham, “En-

coding of natural timbre dimensions in human auditory

cortex,” NeuroImage, vol. 166, pp. 60–70, 2018.

[41] V. Alluri, P. Toiviainen, I. P. Jääskeläinen, E. Glerean,

M. Sams, and E. Brattico, “Large-scale brain networks

emerge from dynamic processing of musical timbre,

key and rhythm,” NeuroImage, vol. 59, no. 4, pp. 3677–

3689, 2012.

[42] M. Ogg, D. Moraczewski, S. E. Kuchinsky, and

L. R. Slevc, “Separable neural representations of sound

sources: Speaker identity and musical timbre,” Neu-

roImage, vol. 191, pp. 116–126, 2019.

[43] S. Rouard, F. Massa, and A. Défossez, “Hybrid trans-

formers for music source separation,” in Proceedings

of the 2023 IEEE International Conference on Acous-

tics, Speech and Signal Processing, ser. ICASSP 2023,

2023.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

204



[44] O. Esteban, C. J. Markiewicz, R. W. Blair, C. A.

Moodie, A. I. Isik, A. Erramuzpe, J. D. Kent,

M. Goncalves, E. DuPre, M. Snyder, H. Oya, S. S.

Ghosh, J. Wright, J. Durnez, R. A. Poldrack, and

K. J. Gorgolewski, “fmriprep: a robust preprocessing

pipeline for functional MRI,” Nature Methods, vol. 16,

no. 1, pp. 111–116, 2019.

[45] W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel,

and T. E. Nichols, Statistical parametric mapping: the

analysis of functional brain images. Elsevier, 2011.

[46] J. A. Mumford, T. Davis, and R. A. Poldrack, “The im-

pact of study design on pattern estimation for single-

trial multivariate pattern analysis,” NeuroImage, vol.

103, pp. 130–138, 2014.

[47] M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D.

Hacker, J. Harwell, E. Yacoub, K. Ugurbil, J. Anders-

son, C. F. Beckmann, M. Jenkinson, S. M. Smith, and

D. C. Van Essen, “A multi-modal parcellation of hu-

man cerebral cortex,” Nature, vol. 536, no. 7615, pp.

171–178, 2016.

[48] A. Horn, “HCP-MMP1.0 projected on MNI2009a

GM (volumetric) in NIfTI format,” 2016. [Online].

Available: https://figshare.com/articles/dataset/

HCP-MMP1_0_projected_on_MNI2009a_GM_

volumetric_in_NIfTI_format/3501911

[49] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais,

A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, and

G. Varoquaux, “Machine learning for neuroimaging

with scikit-learn,” Frontiers in Neuroinformatics, p. 14,

2014.

[50] S. Koelsch, “Neural substrates of processing syntax

and semantics in music,” Current Opinion in Neuro-

biology, vol. 15, no. 2, pp. 207–212, 2005.

[51] R. J. Zatorre, P. Belin, and V. B. Penhune, “Structure

and function of auditory cortex: music and speech,”

Trends in Cognitive Sciences, vol. 6, no. 1, pp. 37–46,

2002.

[52] Y. Zhang, H. Ruan, Z. Yuan, H. Du, X. Gao, and

J. Lu, “A learnable spatial mapping for decoding the

directional focus of auditory attention using eeg,” in

Proceedings of the 2023 IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, ser.

ICASSP 2023, 2023.

[53] A. Floren, B. Naylor, R. Miikkulainen, and D. Ress,

“Accurately decoding visual information from fMRI

data obtained in a realistic virtual environment,” Fron-

tiers in Human Neuroscience, vol. 9, p. 327, 2015.

[54] T. Horikawa and Y. Kamitani, “Generic decoding of

seen and imagined objects using hierarchical visual

features,” Nature Communications, vol. 8, no. 1, p.

15037, 2017.

[55] Y.-T. Wu, H.-Y. Chen, Y.-H. Liao, L.-W. Kuo, and

C.-C. Lee, “Modeling perceivers neural-responses us-

ing lobe-dependent convolutional neural network to

improve speech emotion recognition.” in Proceed-

ings of the 18th Annual Conference of the Interna-

tional Speech Communication Association, ser. IN-

TERSPEECH 2017, 2017, pp. 3261–3265.

[56] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell,

and S. Xie, “A convnet for the 2020s,” in Proceedings

of the IEEE/CVF conference on computer vision and

pattern recognition, 2022, pp. 11 976–11 986.

[57] I. Loshchilov and F. Hutter, “Decoupled weight decay

regularization,” in Proceedings of the 7th International

Conference on Learning Representations, ser. ICLR

2019, 2019.

[58] S. M. Lundberg and S.-I. Lee, “A unified approach

to interpreting model predictions,” in Proceedings of

the 31st International Conference on Neural Infor-

mation Processing Systems, ser. NIPS’17, 2017, p.

4768–4777.

[59] E. J. Humphrey, S. Reddy, P. Seetharaman, A. Kumar,

R. M. Bittner, A. Demetriou, S. Gulati, A. Jansson,

T. Jehan, B. Lehner, A. Krupse, and L. Yang, “An intro-

duction to signal processing for singing-voice analysis:

High notes in the effort to automate the understanding

of vocals in music,” IEEE Signal Processing Magazine,

vol. 36, no. 1, pp. 82–94, 2018.

[60] C. Gupta, H. Li, and M. Goto, “Deep learning ap-

proaches in topics of singing information processing,”

IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, vol. 30, pp. 2422–2451, 2022.

[61] W. Trost, T. Ethofer, M. Zentner, and P. Vuilleumier,

“Mapping aesthetic musical emotions in the brain,”

Cerebral Cortex, vol. 22, no. 12, pp. 2769–2783, 2012.

[62] S. Koelsch and S. Skouras, “Functional centrality of

amygdala, striatum and hypothalamus in a “small-

world” network underlying joy: An fmri study with

music,” Human Brain Mapping, vol. 35, no. 7, pp.

3485–3498, 2014.

[63] P. N. Juslin, “From everyday emotions to aesthetic

emotions: Towards a unified theory of musical emo-

tions,” Physics of Life Reviews, vol. 10, no. 3, pp. 235–

266, 2013.

[64] R. J. Zatorre, J. L. Chen, and V. B. Penhune, “When

the brain plays music: auditory–motor interactions in

music perception and production,” Nature reviews neu-

roscience, vol. 8, no. 7, pp. 547–558, 2007.

[65] C. L. Gordon, P. R. Cobb, and R. Balasubramaniam,

“Recruitment of the motor system during music listen-

ing: An ale meta-analysis of fmri data,” PloS ONE,

vol. 13, no. 11, p. e0207213, 2018.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

205



[66] J. K. Bizley and Y. E. Cohen, “The what, where and

how of auditory-object perception,” Nature Reviews

Neuroscience, vol. 14, no. 10, pp. 693–707, 2013.

[67] V. K. M. Cheung and S. Sakamoto, “Separating uncer-

tainty from surprise in auditory processing with neu-

rocomputational models: Implications for music per-

ception,” Journal of Neuroscience, vol. 42, no. 29, pp.

5657–5659, 2022.
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ABSTRACT

Music Emotion Recognition (MER) refers to automatically

extracting emotional information from music and predict-

ing its perceived emotions, and it has social and psycholog-

ical applications. This paper proposes a Dual Attention-

based Multi-scale Feature Fusion (DAMFF) method and

a newly developed dataset named MER1101 for Dy-

namic Music Emotion Recognition (DMER). Specifical-

ly, multi-scale features are first extracted from the log

Mel-spectrogram by multiple parallel convolutional block-

s. Then, a Dual Attention Feature Fusion (DAFF) module

is utilized to achieve multi-scale context fusion and cap-

ture emotion-critical features in both spatial and channel

dimensions. Finally, a BiLSTM-based sequence learning

model is employed for dynamic music emotion prediction.

To enrich existing music emotion datasets, we develope-

d a high-quality dataset, MER1101, which has a balanced

emotional distribution, covering over 10 genres, at least

four languages, and more than a thousand song snippets.

We demonstrate the effectiveness of our proposed DAMF-

F approach on both the developed MER1101 dataset, as

well as on the established DEAM2015 dataset. Compared

with other models, our model achieves a higher Consisten-

cy Correlation Coefficient (CCC), and has strong predic-

tive power in arousal with comparable results in valence.

1. INTRODUCTION

With the rising demand for music consumption and the ex-

plosive growth of music content, Music Emotion Recog-

nition (MER) demonstrates its critical position in music

understanding and applications. It has been widely used

in personalized music recommendation [1], music thera-

py [2], music education [3], music generation [4], etc.

To portray human emotions, two main types of models

were differentiated in the past [5]: discrete emotion mod-

el [6, 7] and dimensional emotion model [8–11]. The dis-

crete emotion model describes human emotion as categor-

c© L. Zhang, X. Yang, Y. Zhang, J. Luo. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: L. Zhang, X. Yang, Y. Zhang, J. Luo, “Dual Attention-

based Multi-scale Feature Fusion Approach for Dynamic Music Emotion

Recognition”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

ical adjectives, such as happiness, anger, sadness, joy, etc.

However, limited words cannot adequately describe human

emotions, different emotions are better described on a con-

tinuous scale than as a set of discrete values. In Russel-

l’s two-dimensional valence-arousal (V-A) emotional mod-

el [12], emotions are described as points on the plane that

is spanned by the arousal and valence axes. This turns the

problem of emotion prediction into a two-dimensional re-

gression issue based on Russell’s emotion model. This pa-

per is focused on the study of Dynamic Music Emotion

Recognition (DMER), which predicts the emotion of mu-

sic using continuous V-A values at a short interval.

Among the existing studies, Long Short-Term Memory

(LSTM) has received extensive attention in the DMER due

to its superiority in sequence modeling [8, 13–15]. Convo-

lutional Neural Network (CNN) is used to extract features

in many fields. Researchers have recently focused on im-

proving emotion recognition accuracy using a combination

of CNN and Recurrent Neural Network (RNN) [9,16–18].

However, LSTM-based models still use handcrafted fea-

tures as input, and some widely used handcrafted feature

operations will lose high-level features. The CNN-RNN-

based model mainly uses a fixed-scale CNN. Due to its

fixed receptive field, the learned CNN features are limit-

ed, and the emotional crucial features of different fields of

view are not extracted. Moreover, various problems exist

in existing music emotion datasets, which also hinder the

progress of DMER.

This paper proposes a novel Dual Attention-based

Multi-scale Feature Fusion (DAMFF) model and devel-

ops the music emotion dataset MER1101 for DMER. On

the one hand, our model first utilizes multi-scale convo-

lution to extract features at different temporal-frequency

spans from the log Mel-spectrogram. Then, we propose

a Dual Attention Feature Fusion (DAFF) module for fus-

ing multi-scale context features from spatial and channel

dimensions to enhance the expressive ability of CNN. Fi-

nally, the BiLSTM model processes these features and pre-

dicts V-A emotional labels. On the other hand, we develop

a high-quality dataset named MER1101. Compared with

the existing publicly available datasets in the MER domain,

MER1101 contains 1101 music snippets from 16 genres

with richer languages, more extensive size, and more bal-

anced emotion label distribution. We evaluate our method

using the MER1101 dataset and DEAM2015 [19] dataset.
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Figure 1. DAMFF model architecture. The input is 2D spectrogram. The architecture combines temporal-frequency multi-

scale feature extraction, dual attention feature fusion, and sequence learning to achieve dynamic emotion prediction for

music.

On the MER1101 dataset, we achieve a Consistency Corre-

lation Coefficient (CCC) of 0.4223 for arousal and 0.1115

for valence. On the DEAM2015 dataset, we achieve a C-

CC of 0.4203 for arousal and 0.0151 for valence. Exper-

imental results show our method outperforming a number

of baseline and SOTA models in DMER, by means of an

improved CCC metric.

2. RELATED WORK

Researchers have made many efforts in the DMER in the

past few years. In the early days, RNN made a break-

through in this field due to their advantages in sequence

processing. In the “Emotion in Music” task at MediaEval

from 2013 to 2015, LSTM-based methods achieved state-

of-the-art performance [20]. Li et al. [8] pointed out that in

music composition, performance, and annotation, the emo-

tion in music is related to the previous and future contexts.

Therefore, they chose Bidirectional LSTM (BiLSTM) as

the regression model and proposed a multi-scale fusion

method based on an Extreme Learning Machine (ELM)

to improve the performance of the BiLSTM model. But

the LSTM-based models mentioned above use suboptimal

hand-crafted features as input, making it difficult to im-

prove emotion recognition.

Later, researchers began to employ CNN for high-level

invariant features extracted from raw music data [21–23].

Pons et al. [24] discussed how convolution filters with dif-

ferent shapes are suitable for specific musical concepts and

experimentally proved that the size of CNN filters can be

interpreted in both the temporal and frequency dimensions

of the spectrogram. Researchers have combined CNN and

RNN to improve the accuracy of emotion recognition, Ma-

lik et al. [16] proposed a two-dimensional V-A space con-

tinuous emotion prediction method composed of stacked

convolution and recurrent neural network. Compared to

using BiLSTM [15] only, this method achieved better re-

sults with fewer parameters; Dong et al. [9] replaced the

connection between the input layer and the hidden layer of

the RNN with a CNN to adaptively learn the sequential-

information-included affect-salient features from the spec-

trogram; Zhang et al. [25] extracted MFCCs and Cochlea-

grams from raw music data as input features, and adopted

an audio feature fusion method based on the combination

of CNN and BiLSTM to predict the emotional V-A values

in music. However, CNN-RNN-based models still have

problems with limited convolutional receptive fields. For

MER, due to the limited size of the convolution kernel, the

convolution is mainly biased towards learning local infor-

mation, which is insufficient for learning the correlation

between the spatial and channel axes.

Various attention mechanisms are devised to solve the

above problem in speech emotion recognition [21, 26, 27].

Guo et al. [26] proposed a representation learning method

with spectral-temporal channel (STC) attention, which was

integrated with CNN to improve representation learning a-

bility; Zhang et al. [21] applied multi-scale region attention

in deep convolutional neural networks to focus on emo-

tional features at different granularities; Zhang et al. [27]

implemented an attention layer on the arousal, valence,

and dominance tasks and completed multi-task prediction-

s to capture the contribution of different parts of each

task. Nonetheless, the attention mechanism is currently

not widely applied in the field of DMER.

In this paper, we propose a novel attention module, the

Spatial Channel Attention Module (SCAM), which consid-

ers spatial and channel dimensions to capture the relative

importance of features and integrates multi-scale convo-

lutions for enhanced representation learning. We aim to

build an attention mechanism that extracts salient informa-

tion from multiple dimensions and can fuse contextual in-

formation.

J. S. Gómez-Cañón et al. [28] summarized existing

MER datasets. But they have some problems, for exam-

ple, some datasets have insufficient number of music, and

some datasets have no dimension labels. After our com-
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prehensive comparison, the three datasets CH818 [29], P-

MEmo [30] and DEAM [19] are relatively suitable for the

DMER task. However, all three datasets have some dis-

advantages. The songs in the CH818 dataset only contain

Chinese pop songs and are not public, while PMEmo only

Western pop songs; The annotators and annotating times

of the training set and evaluation set in the DEAM2015

dataset are different, resulting in a discrepancy in perfor-

mance [19]. To enrich existing musical emotion datasets,

we develop a high-quality dataset, MER1101. MER1101

contains 1101 music snippets, which is better than most

datasets in the MER domain in terms of genre, language,

number of music, and has more balanced distributed emo-

tion annotations.

3. METHODOLOGY

The proposed DMER processing method consists of three

phases. Firstly, we build a Temporal-Frequency Multi-

scale Convolution network using three different shapes of

convolutional filters. Secondly, we propose a Dual Atten-

tion Feature Fusion network to focus more on the channel

and spatial with important information and fuse multi-scale

convolutional features in different dimensions. And finally,

we employ BiLTSM, building a map from emotion-crucial

features to emotional space. The specifics are as follows.

3.1 Temporal-Frequency Multi-scale Convolution

CNN has been proven effective at tackling various visu-

al tasks [31, 32]. In vision tasks, the filter dimension has

spatial meaning, and the audio spectrogram filter dimen-

sion corresponds to temporal and frequency [24]. We de-

sign a temporal-frequency multi-scale convolution module

with three types of filters to capture various musical fea-

tures. From the musical point of view, the temporal filter

(1-by-n) can learn temporal dependence in music; the fre-

quency filter (m-by-1) can learn pitch and timbre, and the

square filter (m-by-n) can learn different musical features

according to the size of m and n. As shown in Figure 1,

we extract features through three layers of parallel con-

volutional blocks in the Temporal-Frequency Multi-scale

Convolution module.

Firstly, we take the 30-second log Mel-spectrogram as

input and perform distinct convolution operations on each

0.5-second segment to keep the individual properties at

each moment. Secondly, the first layer introduces 3×1 and

1×5 filters to capture features along the temporal and fre-

quency axes, and their outputs are concatenated along the

time dimension. Finally, the concatenated results of the

first layer are put into consecutive parallel convolutional

layers with kernel sizes 3×3 and 5×5. The output of the

second layer is concatenated along the channel dimension,

while the output of the third layer is fed into a dual atten-

tion feature fusion module for feature fusion. After each

convolutional layer, batch normalization [33], the ReLU

function [34] and max pooling are applied.
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Figure 2. SCAM model architecture.

3.2 Dual Attention Feature Fusion

To further enhance the representation ability of CNN and

capture the important information, we design a Dual Atten-

tion Feature Fusion (DAFF) module to focus more on the

channel and spatial with important information for fusing

multi-scale convolutional features. As shown in Figure 1,

the DAFF module includes the Spatial Channel Attention

Module (SCAM). By element-wise summing the output-

s of 3×3 and 5×5 convolutions, we get a feature map

X ∈ RC×H×W as input to SCAM, which is then fed into

the spatial and channel attention modules, respectively. In

Sections 3.2.1 and 3.2.2, we describe the proposed SCAM

in detail.

3.2.1 Channel Attention Module

We convert a single channel into 64 channels through the

Temporal-Frequency Multi-scale Convolution, strengthen-

ing the temporal correlation between distinct channels. In

this case, we use the channel attention mechanism, which

focuses on what the essential features are. While tradi-

tional attention mechanisms only focus on temporal struc-

tures, channel attention can learn the importance of differ-

ent channels to deactivate features that do not contribute

much to emotion. Figure 2 shows the channel attention

module, similar to the Squeeze-and-Excitation block [35].

The module is mainly divided into two parts: squeeze and

excitation operations. Specifically, given an input feature

X ∈ RC×H×W , we first use Global Average Pooling in-

dependently for each channel to aggregate spatial informa-

tion and generate a channel attention map C ∈ RC×1×1.

Next, we perform an excitation operation using two point-

wise convolutions to enable cross-channel interaction. Fi-

nally, the channel attention map C ∈ RC×1×1 is obtained.

In short, the channel attention map is calculated as follows:

C = β(Conv2d2(δ(β(Conv2d1(Pool2d(X)))))) (1)

where δ and β denote the ReLU function and batch nor-

malization, respectively, and Pool2d and Conv2d repre-

sent the global average pooling2d and point-wise convolu-

tion2d, respectively.

3.2.2 Spatial Attention Module

We propose the spatial attention model, which exploits the

spatial relationship between features to generate a spatial
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attention map. Spatial attention focuses on where the im-

portant features are and supplements channel attention.

The spatial attention module obtains the spatial atten-

tion map in four phases. First, the input feature through

view operation is converted into a spatial feature map

S′ ∈ R(H×W )×C . Second, a global pooling operation is

applied along the channel axis to compress the channels

to obtain spatial-level features. Third, we use two point-

wise convolutions to execute excitation operations and get

feature weights at distinct positions. Finally, the resulting

spatial attention map is translated into S ∈ R1×H×W . In

short, the spatial attention map is calculated as follows:

S = β(Conv1d2(δ(β(Conv1d1(Pool1d(X)))))) (2)

where δ and β denote the ReLU function and batch nor-

malization, respectively, and Pool1d and Conv1d repre-

sent the global average pooling1d and point-wise convolu-

tion1d, respectively.

After that, we perform an element-wise sum opera-

tion on the output of the dual attention and through the

sigmoid function to obtain a new attention weight map

X ′ ∈ RH×W×C .

X ′ = Sigmoid(S ⊕ C) (3)

3.2.3 Feature Fusion Strategy

In order to effectively aggregate multi-scale context infor-

mation, we introduce the fusion strategy in [36], as shown

by Dual Attention Feature Fusion in Figure 1. The output

of SCAM is represented as X ′, 1−X ′ by the solid line and

dotted line, respectively. Based on the SCAM, the multi-

scale feature fusion can be expressed as:

Z = X ′
⊗A+ (1−X ′)⊗B (4)

where A and B represent the outputs of 3×3 and 5×5 con-

volutions respectively, Z ∈ RC×H×W is the fused feature.

3.3 Sequence Learning

Through the DAFF module, we get emotion-crucial fea-

tures from multi-scale convolutional features. After reduc-

ing dimension, the features of the entire 30s of music snip-

pet are input into the Bidirectional LSTM (BiLSTM) for

long-term sequence learning. Finally, the emotional fea-

tures are mapped to the emotional space with the help of a

fully connected layer.

4. EXPERIMENTS

4.1 Dataset

We conduct our experiments on the DEAM2015 [19]

dataset and our newly developed dataset MER1101. The

details of each dataset are given below.

DEAM: This dataset was developed in the “Emotion

in Music” (EiM) task [37] of the MediaEval benchmark.

We utilized the DEAM2015 dataset, with the training set

consisting of 431 30-second samples and the evaluation

set consisting of 58 full-length songs. This dataset is the

most commonly used benchmark in dynamic music emo-

tion recognition, but Cronbach’s α of the evaluation set

is 0.29±0.94 for valence, which is relatively low [19].

Furthermore, due to the different spatio-temporal environ-

ments and annotators of the emotion annotation process

of the training set and the evaluation set [19], the perfor-

mance derived from the training and evaluation set shows

a non-negligible discrepancy, especially in the valence di-

mension.

MER1101 1 : Similar with DEAM, MER1101 is also

based on Russell’s valence-arousal emotion model. It con-

tains 1101 music snippets gathered from the internet, with

each ranging in duration from 16.5 seconds to 125.5 sec-

onds. The dataset has both discrete and dimensional label-

s. Every song in the dataset has been annotated by three

music experts and ten college students. The annotators lis-

tened to the song once and annotated the emotional adjec-

tives of the song. After they were familiar with the song,

they listened to it twice and annotated the V-A values. An-

notators were only paid the full fee after their work had

been reviewed. Student-labeled Cronbach’s α arousal is

0.6295 ± 0.3574, 0.5624 ± 0.3766 for the valence. Expert-

labeled Cronbach’s α arousal is 0.3556 ± 0.3442, 0.2420

± 0.3148 for the valence.

Compared with other music datasets, the MER1101

dataset has the following four advantages: 1) The dataset

contains more genres (16 genres), including pop, DJ dance,

chinoiserie, electronic, hip-hop, etc.; 2) It contains richer

language, meeting the ratio of nearly 5:3:1:1 for Chinese,

English, Japanese and Korean, and other languages; 3) The

samples in our dataset distribute more balanced in the emo-

tional quadrants and there are no more than three songs by

the same artist in each V-A quadrant; 4) The size of our

dataset is relatively larger than the current music datasets.

Our dataset can be used for a variety of music tasks,

such as music genre classification, music generation with

emotion, music emotion recognition, etc.

4.2 Evaluation Metrics

We use the Concordance Correlation Coefficient (CCC),

Pearson Correlation Coefficient (PCC), and Root Mean

Square Error (RMSE) as evaluation metrics. Each metric

is computed by the ground-truth and predicted V-A values

for each song and averaged across songs. The CCC com-

bines the characteristics of PCC and RMSE to evaluate not

only the trend of emotional changes but also the dispari-

ty between predictions and ground-truth. As a result, we

consider CCC to be the most important evaluation metric.

4.3 Experimental Setup

Since DEAM2015 predefines the training and evaluation

set configuration, we only describe the dataset division for

MER1101 here. Firstly, we choose 925 songs lasting more

than 30 seconds from the MER1101 dataset and randomly

split them into a training set (80% of the data) and an eval-

uation set (20% of the data). Then, we split each song in

1 See https://ismir-2023.github.io/MER1101/ for details.
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Figure 3. The CCC, PCC, and RMSE of arousal and valence with different hop sizes on the MER1101 dataset.

the training set into 30-second segments and kept complete

songs for the evaluation set. The final training set contain-

s 1526 30-second music snippets, and the evaluation set

contains 185 complete songs. The DEAM dataset uses the

official training and evaluation sets. To obtain a more ac-

curate comparison and minimize accidental errors, we use

5-fold cross-validation on both datasets.

The log Mel-spectrogram is extracted using librosa

[38], where the Mel band is 128, the sampling rate is

44100Hz, and the window size and hop size are 60 ms

and 10 ms, respectively. The size of the convolution k-

ernel is shown in Figure 1. We utilize the Adam optimizer

for training, with learning rate of 0.0003, training epoch

of 100, and batch size of 32. To prevent overfitting, we

adopt the early stopping strategy. In addition, we use C-

CC and RMSE as loss functions for arousal and valence,

respectively.

4.4 Experimental Results

4.4.1 Hop Size Selection of Sliding Window

For the MER1101 dataset, we train the model with music

snippets of fixed duration, while the durations of the mu-

sic snippets are variable during the test. Thus, we could

not directly predict the emotion of the whole music. We

propose a sliding window-based testing scheme to address

this issue and ensure the continuity of the predicted V-A

curves. During testing, we utilize the window size of T

seconds and the hop size of t seconds. Each T second of

audio in the window is input to the model, and the corre-

sponding T seconds V-A curves are predicted. The first

window takes the prediction result of T seconds, and each

subsequent window only takes the result of the last t sec-

onds.

We investigate the impact of hop size on the results of

music emotion recognition on the MER1101 dataset. We

set the window size to 30s, the same as the training set

sample duration. Figure 3 shows the experimental results,

CCC and PCC change significantly and show a downward

trend with increasing hop size, and the change in RMSE

is not obvious. We observe that with the increase of the

hop size, the emotion prediction effect decreased signif-

icantly, demonstrating that the shorter hop size performs

better. During listening to music, the user’s emotion at a

certain moment is an accumulation of previous music con-

tent. Therefore, providing the model with as much con-

text as possible benefits emotion recognition. A shorter

hop size can provide more context for the model to pre-

dict the current musical mood. In the experiments on the

MER1101 dataset below, we adopt hop sizes of 2.5s and

0.5s for arousal and valence, respectively.
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Figure 4. Five CNN architectures.

Model
Arousal Valence

CCC ↑ PCC∗↑ RMSE∗↓ CCC ↑ PCC ↑ RMSE ↓

Hybrid CNN 0.4223 0.6856 0.1494 0.1115 0.2004 0.2595

T-F CNN 0.4120 0.6787 0.1478 0.0846 0.1363 0.2684

Square CNN 0.4130 0.6894 0.1439 0.0732 0.1343 0.2703

T-S CNN 0.4090 0.6881 0.1458 0.1085 0.1959 0.2542

F-S CNN 0.4150 0.6804 0.1562 0.1046 0.1640 0.2800

* The result of the significance test (Student’s t test) show that there is
no significant difference between the results of this metric.

Table 1. Experimental results of different CNN architec-

tures on the MER1101 dataset.

4.4.2 Impact of CNN filters

In this section, we compare the influence of different CNN

architectures on the experimental results of the MER1101

dataset. In this paper, we adapt three types of convolu-

tion: temporal filters (1-by-n), frequency filters (m-by-1),

and squared filters (m-by-n). Convolution filters of dif-

ferent shapes have different musical concepts. We com-

bined them into five architectures. In Figure 4(a), the CN-

N architecture used here is a “Hybrid CNN” architecture.

Figure 4(b) uses the temporal filters and frequency filter-

s, and we call it the “T-F CNN” architecture. Figure 4(c)

only uses a square filter, so we call it “Square CNN” archi-

tecture. Figure 4(d) and Figure 4(e) are referred to as “T-S

CNN” and “F-S CNN”, respectively. The experimental re-

sults are shown in Table 1, which show that the “Hybrid C-

NN” architecture has better expressiveness on the DMER
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MER1101 dataset DEAM2015 dataset

Model
Arousal Valence Arousal Valence

CCC ↑ PCC ↑ RMSE ↓ CCC ↑ PCC↑ RMSE ↓ CCC ↑ PCC ↑ RMSE ↓ CCC ↑ PCC↑ RMSE ↓

CRNN [16] 0.2798 0.5177 0.1625 0.0573 0.1033 0.2721 0.3488 0.5885 0.2197 0.0053 -0.0292 0.3542

BCRSN [9] 0.1741 0.3770 0.3063 0.0660 -0.0647 0.4143 0.3168 0.5148 0.2397 0.0125 -0.0171 0.2914

DNN [17] 0.0529 0.0903 0.2372 0.0118 0.0017 0.2734 0.2757 0.4282 0.2483 0.0075 0.0031 0.3353

MCRNN [18] 0.0564 0.0918 0.2401 0.0155 0.0028 0.2752 0.2700 0.4396 0.2428 0.0137 0.0126 0.3135

DAMFF 0.4223 0.6856 0.1494 0.1115 0.2004 0.2595 0.4203 0.6866 0.2401 0.0151 0.0366 0.3403

Table 2. Compared with the existing results.

task. It is shown that extracting them simultaneously is

beneficial to obtain music emotion information from dif-

ferent perspectives, and the PCC and RMSE changes of

Arousal are not significant.

4.4.3 Comparison with the Existing Models

We compare the DAMFF to other DMER methods [9, 16–

18] published in recent years. They differ from us in that

[18] takes DEAM2014 [39] as the dataset, which consists

of 744 songs. [16–18] take RMSE as the evaluation met-

rics, and [9] translates numerical-type V-A values to binary

representation and independently predict emotion for each

0.5s.

In this paper, we reproduce the models mentioned above

on the DEAM2015 and MER1101 datasets. All models’

performance is evaluated with the same experimental con-

figurations, i.e., the same dataset, evaluation metrics, and

metric calculation method. Table 2 shows the results of the

experiments. On the MER1101 dataset, our model is supe-

rior to the others in all three metrics. On the DEAM2015

dataset, our model shows powerful recognition ability for

arousal, but the valence slightly outperforms the previous

models, which may stem from the less consistent valence

annotations [15]. We believe predicted valence values on

the DEAM2015 dataset are relatively incapable of evaluat-

ing DMER since the predicted CCC value number in va-

lence driven from all models is near zero. Experiments

show that our model can perform well in emotion recogni-

tion on different datasets, especially in the arousal dimen-

sion. Overall, valence values are more impoverished in

both datasets than arousal values, indicating that predict-

ing valence is more challenging. This is also consistent

with the conclusions of most works.

Model
Arousal Valence

CCC ↑ PCC∗↑ RMSE∗↓ CCC ↑ PCC ↑ RMSE ↓

DAMFF 0.4223 0.6856 0.1494 0.1115 0.2004 0.2595

w/o Fusion Strategy 0.4097 0.6869 0.1563 0.1074 0.1722 0.2707

w/o Channel Attention 0.4061 0.6740 0.1494 0.1071 0.1904 0.2650

w/o Spatial Attention 0.4177 0.6819 0.1518 0.1009 0.1874 0.2720

w/o DAFF 0.3982 0.6813 0.1562 0.0977 0.1693 0.2670

* The result of the significance test (Student’s t test) show that there is
no significant difference between the results of this metric.

Table 3. Ablation experiments of arousal and valence on

the MER1101 dataset.

4.4.4 Ablation Study

To investigate the role of various modules, we construct-

ed four ablation modules. Among them, “w/o Fusion S-

trategy” directly inputs the result of the SCAM module

into BiLSTM, which explores the role of fusion strate-

gy. In addition, the influence of dual attention is studied

using “w/o Channel Attention”, “w/o Spatial Attention”,

and “w/o DAFF”. Table 3 shows the experimental results

on the MER1011 datasets. The results show that: 1) the

non-linear fusion strategy of the attention mechanism bet-

ter aggregates the multi-scale context and performs better;

2) the attention mechanism increases the weights of emo-

tional features, which is helpful for emotion recognition.

At the same time, dual attention is better than single at-

tention, indicating that spatial and channel attention mech-

anisms learn and emphasize what and where affect-salient

features, effectively improving CNN features. In summary,

we conclude that fusing multi-scale convolutional features

from spatial and channel dimensions is more conducive to

capturing key emotional features, which is more evident on

the CCC metric.

5. CONCLUSION

This paper proposes a novel Dual Attention-based Multi-

scale Feature Fusion (DAMFF) network, which extracts

multi-scale convolutional features from spectrograms and

exploits the dual-attention mechanism to capture impor-

tant channel and spatial information. The network adopt-

s the fusion mechanism that aggregates multi-scale con-

text information, effectively improving CNN features’ ex-

pressive ability. The music emotion dataset MER1101 we

developed contains 1101 music audio with 16 genres, 5

languages and a balanced distribution of emotion labels.

Experimental results show that our model outperforms the

comparison methods on the CCC metric on both MER1101

and DEAM2015 datasets. Furthermore, our model has

substantial prediction capabilities in terms of arousal and

comparable results in terms of valence.

The prediction of the valence dimension is still chal-

lenging in DMER. In the future, we will focus on develop-

ing more effective techniques, such as pre-training audio

features for improving the recognition performance of va-

lence.
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ABSTRACT

Taking long-term spectral and temporal dependencies into

account is essential for automatic piano transcription. This

is especially helpful when determining the precise onset

and offset for each note in the polyphonic piano content.

In this case, we may rely on the capability of self-attention

mechanism in Transformers to capture these long-term de-

pendencies in the frequency and time axes. In this work,

we propose hFT-Transformer, which is an automatic mu-

sic transcription method that uses a two-level hierarchical

frequency-time Transformer architecture. The first hier-

archy includes a convolutional block in the time axis, a

Transformer encoder in the frequency axis, and a Trans-

former decoder that converts the dimension in the fre-

quency axis. The output is then fed into the second hi-

erarchy which consists of another Transformer encoder in

the time axis. We evaluated our method with the widely

used MAPS and MAESTRO v3.0.0 datasets, and it demon-

strated state-of-the-art performance on all the F1-scores of

the metrics among Frame, Note, Note with Offset, and Note

with Offset and Velocity estimations.

1. INTRODUCTION

Automatic music transcription (AMT) is to convert music

signals into symbolic representations such as piano rolls,

Musical Instrument Digital Interface (MIDI), and musical

scores [1]. AMT is important for music information re-

trieval (MIR), its result is useful for symbolic music com-

position, chord progression recognition, score alignment,

etc. Following the conventional methods [1–15], we esti-

mate the frame-level metric and note-level metrics as fol-

lows: (1) Frame: the activation of quantized pitches in

each time-processing frame, (2) Note: the onset time of

each note, (3) Note with Offset: the onset and offset time

of each note, and (4) Note with Offset and Velocity: the

onset, offset time, and the loudness of each note.

© K. Toyama, T. Akama, Y. Ikemiya, Y. Takida, W. H. Liao,

and Y. Mitsufuji. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: K. Toyama, T. Akama,

Y. Ikemiya, Y. Takida, W. H. Liao, and Y. Mitsufuji, “Automatic Piano

Transcription with Hierarchical Frequency-Time Transformer”, in Proc.

of the 24th Int. Society for Music Information Retrieval Conf., Milan,

Italy, 2023.

For automatic piano transcription, it is important to an-

alyze several harmonic structures that spread in a wide

range of frequencies, since piano excerpts are usually poly-

phonic. Convolutional neural network (CNN)-based meth-

ods have been used to aggregate harmonic structures as

acoustic features. Most conventional methods apply multi-

layer convolutional blocks to extend the receptive field in

the frequency axis. However, the blocks often include

pooling or striding to downsample the features in the fre-

quency axis. Such a downsampling process may reduce

the frequency resolution [6]. It is worth mentioning, many

of these methods use 2-D convolutions, which means the

convolution is simultaneously applied in the frequency and

time axes. The convolution in the time axis works as a pre-

emphasis filter to model the temporal changes of the input

signals.

Up to now, recurrent neural networks (RNNs), such as

gated recurrent unit (GRU) [16] and long short-term mem-

ory (LSTM) [17], are popular for analyzing the temporal

sequences of acoustic features. However, recently some of

the works start to use Transformer [18], which is a pow-

erful tool for analyzing sequences, in AMT tasks. Ou

et al. [2] applied a Transformer encoder along the time

axis and suggested that using Transformer improves ve-

locity estimation. Hawthorne et al. [3] used a Transformer

encoder-decoder as a sequence-to-sequence model for es-

timating a sequence of note events from another sequence

of input audio spectrograms. Their method outperformed

other methods using GRUs or LSTMs. Lu et al. [19] pro-

posed a method called SpecTNT to apply Transformer en-

coders in both frequency and time axes and reached state-

of-the-art performance for various MIR tasks such as mu-

sic tagging, vocal melody extraction, and chord recogni-

tion. This suggests that such a combination of encoders

helps in characterizing the broad-scale dependency in the

frequency and time axes. However, SpecTNT aggregates

spectral features into one token, and the process in its

temporal Transformer encoder is not independent in the

frequency axis. This inspires us to incorporate Trans-

former encoders in the frequency and time axes and make

the spectral information available for the temporal Trans-

former encoder.

In addition, we usually divide the input signal into

chunks since the entire sequence is often too long to be
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Figure 1. hFT-Transformer (N: number of frames in each processing chunk, M: length of margin, F: number of frequency

bins, P: number of pitches)

dealt at once. However, this raises a problem that the es-

timated onset and offset accuracy fluctuates depending on

the relative position in the processing chunk. In our obser-

vation, the accuracy tends to be worse at both ends of the

processing chunk. This motivates us to incorporate extra

techniques during the inference time to boost the perfor-

mance.

In summary, we propose hFT-Transformer, an auto-

matic piano transcription method that uses a two-level hi-

erarchical frequency-time Transformer architecture. Its

workflow is shown in Figure 1. The first hierarchy con-

sists of a one-dimensional (1-D) convolutional block in the

time axis, a Transformer encoder in the frequency axis, and

a Transformer decoder in the frequency axis. The second

hierarchy consists of another Transformer encoder in the

time axis. In particular, the Transformer decoder at the

end of the first hierarchy converts the dimension in the

frequency axis from the number of frequency bins to the

number of pitches (88 for piano). Regarding the issue of

the location dependent accuracy fluctuation in the process-

ing chunks, we propose a technique which halves the stride

length at inference time. It uses only the result of the cen-

tral part of processing chunks, which will improve overall

accuracy. Finally, in Section 4, we show that our method

outperforms other piano transcription methods in terms of

F1 scores for all the four metrics.

A PyTorch implementation of our method is available

here 1 .

2. RELATED WORK

Neural networks, such as CNNs, RNNs, generative adver-

sarial networks (GANs) [20], and Transformers have been

dominant for AMT. Since Sigtia et al. [4] proposed the

first method to use a CNN to tackle AMT, CNNs have

been widely used for the methods of analyzing the spec-

tral dependency of the input spectrogram [2, 6–10, 12–15].

However, it is difficult for CNNs to directly capture the

harmonic structure of the input sound in a wide range of

frequencies, as convolutions are used to capture features

in a local area. Wei et al. [5] proposed a method of us-

ing harmonic constant-Q transform (CQT) for capturing

the harmonic structure of piano sounds. They first ap-

plied a 3-Dimensional CQT, then applied multiple dilated

convolutions with different dilation rates to the output of

1 https://github.com/sony/hFT-Transformer

CQT. Because the dilation rates are designed to capture

the harmonics, the performance of Frame and Note accu-

racy reached state-of-the-art. However, the dilation rates

are designed specifically for piano. Thus, the method is

not easy to adapt to other instruments.

For analysis of time dependency, Kong et al. [6] pro-

posed a method that uses GRUs. Howthorner et al. [7],

Kwon et al. [8], Cheuk et al. [9], and Wei et al. [5] pro-

posed methods that use bi-directional LSTMs for analysis.

Ou et al. [2] used a Transformer encoder to replace the

GRUs in Kong et al.’s method [6], and showed the effec-

tiveness of the Transformer. Usually, the note onset and

offset are estimated in each frequency and time-processing

frame grid, then paired as a note for note-level transcrip-

tion by post-processing algorithms such as [6]. How-

ever, compared to heuristically designed algorithms, end-

to-end data-driven methods are often preferred. For exam-

ple, Keltz et al. [10] applied a seven-state hidden Markov

model (HMM) for the sequence of attack, decay, sustain,

and release to achieve note-level transcription. Kwon et

al. [8] proposed a method of characterizing the output of

LSTM as a five-state statement (onset, offset, re-onset, ac-

tivate, and inactivate). Hawthorne et al. [3] proposed a

method of estimating a sequence of note events, such as

note pitch, velocity, and time, from another sequence of

input audio spectrograms using a Transformer encoder-

decoder. This method performs well in multiple instru-

ments with the same model [11]. Yan et al. [12] proposed

a note-wise transcription method for estimating the interval

between onset and offset. This method shows state-of-the-

art performance in estimating Note with Offset and Note

with Offset and Velocity. However, the performance in es-

timating Frame and Note is worse than that of Wei et al.’s

method [5].

3. METHOD

3.1 Configuration

Our proposed method aims to transcribe N frames of the

input spectrogram into N frames of the output piano rolls

(frame, onset, offset, and velocity) as shown in Figure

1, where N is the number of frames in each processing

chunk. Each input frame is composed of a log-mel spec-

trogram having size (F , M + 1 + M ), where F is the

number of frequency bins, and M is the size of the for-

ward margin and that of the backward margin. To obtain
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Figure 2. Model architecture of hFT-Transformer

the log-mel spectrogram, we first downmix the input wave-

form into one channel and resample them to 16 kHz. Then,

the resampled waveform is transformed into a mel spectro-

gram with transforms.MelSpectrogram class in

the Torchaudio library [21]. For the transformation, we

use hann window, setting the window size as 2048, fast-

Fourier-transform size as 2048, F as 256, padding mode

as constant, and hop-size as 16 ms. The magnitude of the

mel spectrogram is then compressed with a log function.

3.2 Model Architecture and Loss Functions

The model architecture of our proposed method is shown

in Figure 2. We first apply a convolutional block to the

input log-mel spectrogram, the size of which is (B, N , F ,

M+1+M ) where B is the batch size. In the convolutional

block, we apply a 1-D convolution in the M + 1 + M

dimension. After this process, the data are embedded with

a linear module.

The embedded vector is then processed with the first

Transformer encoder in the frequency axis. The self-

attention is processed to analyze the dependency between

spectral features. The positional information is designated

as [0, 1, ..., F − 1]. These positional values are then em-

bedded with a trainable embedding. These are processed

in the frequency axis only, thus completely independent to

the time axis (N dimension).

Next, we convert the frequency dimension from F to

the number of pitches (P ). A Transformer decoder with

cross-attention is used as the converter. The Transformer

decoder calculates the cross-attention between the output

vectors of the first Transformer encoder and another train-

able positional embedding made from [0, 1, ..., P−1]. The

decoded vectors are then converted to the outputs of the

first hierarchy with a linear module and a sigmoid function

(hereafter, we call these outputs output_1st).

Regarding the loss calculation for the outputs, frame,

onset, and offset are calculated with binary cross-entropy,

and velocity is calculated with 128-category cross-entropy.

The losses can be summarized as the following equations:

L<m>
bce =

N−1∑

n=0

P−1∑

p=0

lbce(y
<m>
n,p , ŷ<m>

n,p ), (1)

Lvelocity
cce =

N−1∑

n=0

P−1∑

p=0

lcce(y
velocity
n,p , ŷvelocityn,p ), (2)

L = Lframe
bce + Lonset

bce + Loffset
bce + Lvelocity

cce , (3)

where < m > is the placeholder for each output (frame,

onset, and offset), lbce and lcce denote the loss function for

binary cross-entropy and categorical cross-entropy, respec-

tively, and y and ŷ denote the ground truth and predicted

values of each output (frame, onset, offset, and velocity),

respectively. Although it is intuitive to apply the mean

squared error (MSE) for velocity, we found that using the

categorical cross-entropy yields much better performance

than the MSE from a preliminary experiment.

Finally, the output of the converter is processed with

another Transformer encoder in the time axis. The self-

attention is used to analyze the temporal dependency of

features in each time-processing frame. A third positional

embedding made from [0, 1, ..., N −1] is used here. Then,

similar to the first hierarchy, the outputs of the second hier-

archy are obtained through a linear module and a sigmoid

function. We call these outputs of the second hierarchy as

output_2nd hereafter. The losses for the output_2nd are

evaluated in the same way as those for output_1st. These

losses are summed with the coefficients α1st and α2nd as

follows:

Lall = α1stL1st + α2ndL2nd. (4)

Although both outputs are used for computing losses dur-

ing training, only output_2nd is used in inference. As Chen

et al. [22] suggested that the performance of their method

of calculating multiple losses outperformed the method

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

217



0 20 40 60 80 100 120
n

6

7

8

er
ro
r_
n

×10 3 frame

0 20 40 60 80 100 120
n

3.0

3.2

3.4

er
ro
r_
n

×10 4 onset

0 20 40 60 80 100 120
n

7.5

8.0

8.5

er
ro
r_
n

×10 4 offset

0 20 40 60 80 100 120
n

4.0

4.1

4.2

4.3

er
ro
r_
n

×10 4 velocity

Figure 3. Estimation error (Eqn (5)) on location in each

time-processing frame

that uses single loss only, it hints us that utilizing both

output_1st and output_2nd in training has the potential to

achieve better performance.

3.3 Inference Stride

As mentioned in Section 1, chunk-based processing is re-

quired because the input length is limited due to system

limitations, such as memory size and acceptable process-

ing delay. We found that the estimation error tends to in-

crease at certain part within each processing chunk. This

can be demonstrated by evaluating the error for each in-

stance of time n within the chunks:

error
<m>
n =

1

IP

I−1∑

i=0

P−1∑

p=0

(y<m>
i,n,p − ŷ<m>

i,n,p )2, (5)

where < m > is the placeholder for each output (frame,

onset, offset, and velocity), and I is the number of pro-

cessing chunks over the test set. The result using our pro-

posed model trained using the MAESTRO training set (de-

scribed in Section 4) is shown in Figure 3. Here, the error

error
<m>
n is calculated using the MAESTRO test set. In

the figure, we observe a monotonic decrease for frame and

a similar but much weaker trend for onset and offset. How-

ever, for velocity, no such trend can be observed. This hints

us to use only the middle portion of a processing chunk as

the output to reduce the error rate. We call this as the half-

stride strategy, since a 50% overlap is required for process-

ing chunks, as shown in Figure 4 (B).

4. EXPERIMENTS

4.1 Datasets

We use two well-known piano datasets for the evaluation.

The MAPS dataset [23] consists of CD-quality recordings

and corresponding annotations of isolated notes, chords,

and complete piano pieces. We use the full musical

pieces and the train/validation/test split as stated in [4, 7].

The number of recordings and the total duration in hours

in each split are 139/71/60 and 8.3/4.4/5.5, respectively.

The MAESTRO v3.0.0 dataset [13] includes about 200

hours of paired audio and MIDI recordings from ten years

of the International Piano-e-Competition. We used the

(A) Full stride

(B) Half stride

N N

N N

N

N
N

N

N/4N/4 N/2

N/4 N/2 N/4

N/4N/4 N/2

N/4N/4 N/2

Figure 4. Inference stride: (A) full stride, (B) half stride

train/validation/test split configuration as provided. In

each split, the number of recordings and total duration in

hours are 962/137/177 and 159.2/19.4/20.0, respectively.

For both datasets, the MIDI data have been collected by

Yamaha Disklaviers concert-quality acoustic grand pianos

integrated with a high-precision MIDI capture and play-

back system.

4.2 Model Configuration

Regarding our model architecture depicted in Figure 2, we

set N as 128, M as 32, F as 256, P as 88, the CNN chan-

nels (C) as 4, size of the CNN kernel (K) as 5, and embed-

ding vector size (Z) as 256. For the Transformers, we set

the feed-forward network vector size as 512, the number

of heads as 4, and the number of layers as 3. For training,

we used the following settings: a batch size of 8, learn-

ing rate of 0.0001 with Adam optimizer [24], dropout rate

of 0.1, and clip norm of 1.0. ReduceLROnPlateu in

PyTorch is used for learning rate scheduling with default

parameters. We set α1st and α2nd as 1.0, which were de-

rived from a preliminary experiment (see Section 4.6).

We trained our models for 50 epochs on MAPS dataset

and 20 epochs for MAESTRO dataset using one NVIDIA

A100 GPU. It took roughly 140 minutes and 43.5 hours to

train one epoch with our model for MAPS and MAESTRO,

respectively. The best model is determined by choosing the

one with the highest F1 score in the validation stage.

In order to obtain high-resolution ground truth for onset

and offset, we followed the method in Kong et al. [6]. We

set J , the hyper-parameter to control the sharpness of the

targets, to 3. Also, the label of velocity is set only when an

onset is present. We set the threshold as 0.5, which means

if the onset is smaller than 0.5, the velocity is set as 0.

4.3 Inference

At inference time, we use output_2nd as the final output.

We set the threshold for frame as 0.5. For note-wise events

(onset, offset, and velocity), the outputs in each pitch-frame

grid are converted to a set containing note-wise onset, off-

set, and velocity following Kong et al.’s Algorithm 1 [6] in

five steps shown below:

Step 1. onset detection: find a local maximum in onset

with a value at least 0.5. Then calculate the precise onset

time using the values of the adjacent three frames [6].

Step 2. velocity: If an onset is detected in Step 1, extract

the velocity value at the frame. If the value is zero, then
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Method
half

Params
Frame Note Note w/ Offset Note w/ Offset&Velocity

stride P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Onsets&Frames [7] 26M 88.53 70.89 78.30 84.24 80.67 82.29 51.32 49.31 50.22 35.52 30.80 35.59
ADSR [10] 0.3M 90.73 67.85 77.16 90.15 74.78 81.38 61.93 51.66 56.08 - - -

hFT-Transformer 5.5M 83.36 82.00 82.67 86.63 83.75 85.07 67.18 65.06 66.03 48.75 47.21 47.92
hFT-Transformer ✓ 5.5M 83.68 82.11 82.89 86.72 83.81 85.14 67.51 65.36 66.34 49.05 47.48 48.20

Table 1. Evaluation results on MAPS test dataset (P: precision, R: recall, bold: best score, underline: second best score)

Method
half

Params
Frame Note Note w/ Offset Note w/ Offset&Velocity

stride P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

Seq2Seq [3] 54M - - - - - 96.01 - - 83.94 - - 82.75
HPT-T [2] - - - 90.09 97.88 96.72 96.77 84.13 82.31 83.20 82.85 81.07 81.90

Semi-CRFs [12] 9M 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42 89.78 85.51 87.44
HPPNet-sp [5] 1.2M 92.79 93.59 93.15 98.45 95.95 97.18 84.88 82.76 83.80 83.29 81.24 82.24

hFT-Transformer 5.5M 92.62 93.43 93.02 99.62 95.41 97.43 92.32 88.48 90.32 91.21 87.44 89.25
hFT-Transformer ✓ 5.5M 92.82 93.66 93.24 99.64 95.44 97.44 92.52 88.69 90.53 91.43 87.67 89.48

Table 2. Evaluation results on MAESTRO v3.0.0 test dataset

②61

③4.043

④4.064

①4.003

0 0 61 61 61 0 0 0 0 0velocity

0.00 0.29 0.65 0.93 0.75 0.40 0.05 0.00 0.00 0.00onset

0.00 0.00 0.01 0.11 0.51 0.80 0.86 0.70 0.31 0.25offset

0.00 0.00 0.01 0.97 1.00 1.00 0.75 0.20 0.01 0.00frame

3.952 3.968 3.984 4.000 4.016 4.032 4.048 4.064 4.080 4.096time [sec]

{onset: 4.003, offset: 4.043, velocity: 61}

Figure 5. Example of conversion from grid-wise values to

note-wise values

discard both onset and velocity at this frame.

Step 3. offset detection with offset: find a local maxi-

mum in offset with a value at least 0.5. Then calculate the

precise offset time using the values of the adjacent three

frames [6].

Step 4. offset detection with frame: choose the frame

that is nearest to the detected onset which has a frame value

below 0.5.

Step 5. offset decision: choose the smaller value between

the results of Step 3 and 4.

An example is shown in Figure 5. The onset is 4.003,

and the velocity is 61. For offset, the direct estimation from

offset is 4.043, and that estimated via frame is 4.064. Thus,

we choose 4.043 as offset. Finally, we obtain a note with

{onset: 4.003, offset: 4.043, velocity: 61} in the output.

4.4 Metrics

We evaluate the performance of our proposed method with

frame-level metrics (Frame) and note-level metrics (Note,

Note with Offset, and Note with Offset & Velocity) with the

standard precision, recall, and F1 scores. We calculated

these scores using mir_eval library [25] with its default

settings. The scores were calculated per recording, and the

mean of these per-recording scores was presented as the

final metric for a given collection of pieces, as explained

in Hawthorne et al. [7].

4.5 Results

Tables 1 and 2 show the scores on the test sets of

MAPS and MAESTRO datasets. The numbers of pa-

rameters in these Tables are referred from [5, 10]. For

the MAPS dataset, our proposed method outperformed

the other methods in F1 score for all metrics. For the

MAESTRO dataset, our proposed method outperformed

the other methods in F1 score for Note, Note with Off-

set, and Note with Offset & Velocity. Furthermore, our

method with the half-stride strategy which is mentioned in

3.3 outperformed other methods in all metrics. In contrast,

the two state-of-the-art methods for MAESTRO, which are

Semi-CRFs [12] and HPPNet-sp [5], performed well only

on a subset of the metrics.

The results suggest that the proposed two-level hierar-

chical frequency-time Transformer structure is promising

for AMT.

4.6 Ablation Study

To investigate the effectiveness of each module in our pro-

posed method, we trained various combinations of those

modules using the MAPS training set and evaluated them

using the MAPS validation set. The variations are shown

in Table 3. In this study, we call our proposed method

1-F-D-T, which means it consists of the 1-D convolution

block, the first Transformer encoder in the Frequency axis,

the Transformer Decoder, and the second Transformer en-

coder in the Time axis. Table 4 shows evaluation results

for each variation.

Second Transformer encoder in time axis. To verify

the effectiveness of the second Transformer encoder, we

compared the 1-F-D-T and the model without the second

Transformer encoder (1-F-D-N). For the 1-F-D-N model,

we use output_1st in both training and inference stages as

the final output. The result indicates that the second Trans-

former encoder improved Note with Offset performance, in

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

219



Model
1st-Hierarchy 2nd-Hierarchy

Output
Convolutional block 1st Transformer encoder Converter 2nd Transformer encoder

1-F-D-T† 1-D (time axis) Frequency axis Transformer Decoder Time axis output_2nd
1-F-D-N 1-D (time axis) Frequency axis Transformer Decoder n/a output_1st
2-F-D-T 2-D Frequency axis Transformer Decoder Time axis output_2nd
1-F-L-T 1-D (time axis) Frequency axis Linear Time axis output_2nd

Table 3. Model variations for ablation study (†: the proposed method, hFT-Transformer)

Model Params
Frame Note Note w/ Offset Note w/ Offset&Velocity

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

1-F-D-T† 5.5M 93.61 88.71 91.09 98.81 94.81 96.72 86.18 82.81 84.42 77.47 74.55 75.95
1-F-D-N 3.9M 92.85 87.49 90.09 99.01 93.24 95.95 82.67 78.06 80.23 73.89 69.90 71.78
2-F-D-T 6.1M 75.49 61.08 67.52 97.03 19.68 31.10 64.07 13.28 20.88 42.11 8.57 13.50
1-F-L-T 3.4M 93.71 88.42 90.99 99.11 92.90 95.79 85.77 80.56 82.98 71.66 67.32 69.34

Table 4. Evaluation results of ablation study on MAPS validation dataset

which the F1 score is 84.42 for 1-F-D-T and 80.23 for 1-

F-D-N. This shows the effectiveness of the second Trans-

former encoder as it provides an extra pass to model the

temporal dependency of acoustic features, which is pre-

sumably helpful in offset estimation.

Compelxity of convolutional block. To investigate

how the complexity of the convolutional block affects the

AMT performance, we compared the 1-F-D-T model and

the model that replaces the 1-D convolutional block with

a 2-D convolutional block (2-F-D-T). Surprisingly, the re-

sult shows that the performance of the 2-F-D-T model is

significantly worse than that of the 1-F-D-T model. This is

probably because the two modules working on the spectral

dependency do not cohere with each other. The 2-D convo-

lutional block may over aggregate the spectral information

thus resulting into an effectively lower frequency resolu-

tion. Then, the Transformer encoder can only evaluate the

spectral dependency over an over-simplified feature space,

causing the performance degradation.

Converter. We used a Transformer decoder to convert

the dimension in the frequency axis from F to P . In con-

trast, almost all of the existing methods used a linear mod-

ule to achieve this. We compared the performance of the

1-F-D-T model to a model with the Transfomer decoder

replaced with a linear converter (1-F-L-T). The result in-

dicates that the 1-F-D-T model outperformed the 1-F-L-T

model in F1 score for all four metrics. Especially, the dif-

ference in Note with Offset and Velocity is large (75.95 for

the 1-F-D-T model and 69.34 for the 1-F-L-T model in

F1 score). This suggests that using a Transformer decoder

as converter is an effective way of improving the perfor-

mance, although the side effect is the increase of model

size.

We also investigated how the coefficients for the loss

functions, α1st and α2nd in Eqn (4), affect the perfor-

mance. We investigated six pairs of coefficients of loss

functions (α1st, α2nd) in Eqn (4), i.e., (1.8, 0.2), (1.4, 0.6),

(1.0, 1.0), (0.6, 1.4), (0.2, 1.8), and (0.0, 2.0), for the 1-F-

D-T model. Figure 6 shows the F1 scores of frame, onset,

offset, and velocity evaluated on the MAPS validation set

in each epoch. These results indicate that the (1.0, 1.0) pair

10 20 30 40 50
epoch

0.85

0.90

F1

Frame

(1.8,0.2)
(1.4,0.6)
(1.0,1.0)
(0.6,1.4)
(0.2,1.8)
(0.0,2.0)

10 20 30 40 50
epoch

0.85

0.90

0.95

F1

Note

(1.8,0.2)
(1.4,0.6)
(1.0,1.0)
(0.6,1.4)
(0.2,1.8)
(0.0,2.0)

10 20 30 40 50
epoch

0.75

0.80

0.85

F1

Note w/ Offset

(1.8,0.2)
(1.4,0.6)
(1.0,1.0)
(0.6,1.4)
(0.2,1.8)
(0.0,2.0)

10 20 30 40 50
epoch

0.60

0.65

0.70

0.75

F1

Note w/ Offset&Velocity

(1.8,0.2)
(1.4,0.6)
(1.0,1.0)
(0.6,1.4)
(0.2,1.8)
(0.0,2.0)

Figure 6. Performance of 1-F-D-T model trained with six-

pairs of coefficients of loss functions

yields the best score. It also shows that the training con-

verges faster when α1st is larger than α2nd. Importantly,

if we omit the output_1st, which is the case when training

with the pair (0.0, 2.0), the training loss did not decrease

much. Therefore, the F1 score stays around 0% and thus

cannot be seen in Figure 6. This suggests that it is cru-

cial to use both losses, output_1st and output_2nd in our

proposed method.

5. CONCLUSION

In this work, we proposed hFT-Transformer, an automatic

piano transcription method that uses a two-level hierarchi-

cal frequency-time Transformer architecture. The first hi-

erarchy consists of a 1-D convolutional block in the time

axis, a Transformer encoder and a Transformer decoder in

the frequency axis, and the second hierarchy consists of a

Transformer encoder in the time axis. The experiment re-

sult based on two well-known piano datasets, MAPS and

MAESTRO, revealed that our two-level hierarchical archi-

tecture works effectively and outperformed other state-of-

the-art methods in F1 score for frame-level and note-level

transcription metrics. For future work, we would like to ex-

tend our method to other instruments and multi-instrument

settings.
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ABSTRACT

A descriptive transcription of a violin performance re-
quires detecting not only the notes but also the fine-grained
pitch variations, such as vibrato. Most existing deep learn-
ing methods for music transcription do not capture these
variations and often need frame-level annotations, which
are scarce for the violin. In this paper, we propose a
novel method for high-resolution violin transcription that
can leverage piece-level weak labels for training. Our
conformer-based model works on the raw audio waveform
and transcribes violin notes and their corresponding pitch
deviations with 5.8ms frame resolution and 10-cent fre-
quency resolution. We demonstrate that our method (1)
outperforms generic systems in the proxy tasks of violin
transcription and pitch estimation, and (2) can automati-
cally generate new training labels by aligning its feature
representations with unseen scores. We share our model
along with 34 hours of score-aligned solo violin perfor-
mance dataset, notably including the 24 Paganini Caprices.

1. INTRODUCTION

Automatic music transcription (AMT) is a core task in Mu-
sic Information Retrieval that aims to convert a musical
performance into some form of symbolic notation. While
general-purpose AMT systems have recently seen substan-
tial progress with deep learning [1–5], instrument-specific
systems usually perform better, e.g., for piano [6–9], vo-
cals [10, 11], guitar [12–14], and drums [15–17]. Despite
the prominence of the violin in Western classical music and
other traditions, a specialized high-precision violin tran-
scription system that applies the recent advances in deep
learning does not exist. In this paper, we aim to tran-
scribe violin performances into a descriptive music nota-
tion [18]. As opposed to a prescriptive transcription, whose
aim would be to produce an easily understandable score
from which a musician can perform according to stylistic
conventions of Western classical music writing, a descrip-

© Nazif Can Tamer, Yigitcan Özer, Meinard Müller, Xavier
Serra. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Nazif Can Tamer, Yigitcan Özer,
Meinard Müller, Xavier Serra, “High-Resolution Violin Transcription us-
ing Weak Labels”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.
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Multi-Stream Conformer

Figure 1: Our method transcribes violin recordings sam-
pled with 44.1 kHz waveform into MIDI with a 5.8ms
time- and 10-cent frequency-resolution pitch bends.

tive transcription has an analytical purpose, aiming at no-
tating high-precision pitch modulations along the notes.

Most typical AMT systems employ audio-to-MIDI tran-
scription where each note event is represented with semi-
tone resolution in the 12-tone equal temperament (12-
TET). However, cognitive studies show that even the West-
ern classical violinists heavily deviate from the 12-TET
in favor of Pythagorean tuning and just intonation [19,
20]. Furthermore, the violin also plays a central role in
many other traditions that do not employ the Western 12-
TET [21]. Considering playing styles such as the vibrato
and glissando that involve pitch modulations, a higher
frequency resolution than the conventional 12-TET is re-
quired for violin transcription. An important step towards
transcription outside the 12-TET was introduced by Bittner
et al. [1] with an instrument-agnostic AMT system, which
employs MIDI pitch bends to represent performances with
33-cent frequency resolution. However, adapting their ap-
proach to violin transcription remains to be a challenge
since 33-cent frequency resolution is still too high com-
pared to a violinist’s intonation precision [20].

A further main challenge in violin transcription is the
lack of frame-level annotated training data. To cope
with the absence of frame-level annotations, Weiß and
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Peeters [22] employ sequence-level targets and a variant
of the Connectionist Temporal Classification (CTC) loss
for multipitch estimation. However, this strategy is sensi-
tive to the segment duration (stable until segment lengths
of 60 seconds) and, therefore, still requires some form of
weak alignment. While some works explore data aug-
mentation for frame-level supervised models through ad-
ditional unlabeled [4] or pseudo-labeled [5] data, recent
AMT methods are mostly trained using frame-level anno-
tations [1, 3, 8, 9]. In some cases, obtaining such annota-
tions is feasible through electronic music instruments, e.g.,
Disklavier. For example, the MAESTRO [23] dataset, with
200 hours of virtuoso piano performances and respective
note labels captured with 3ms frame resolution, enabled
significant improvements for piano transcription.

In case electronic music instruments are unavailable, a
common approach for obtaining automatic frame-level an-
notations is employing audio-to-score alignment (ASA),
which found application in score following [24, 25]. ASA
itself is not a technology developed for creating training
datasets for AMT systems, and it has been reported that in-
accurately aligned datasets may even worsen the result [2].
The intertwined nature of ASA and transcription can also
be viewed from another aspect. For example, Kwon et
al. [26] showed that frame and onset features of an AMT
system work as robust feature representations for ASA. To
our knowledge, the only deep-learning-based transcription
system that integrates ASA into AMT is the recent work by
Maman and Bermano [2], which utilizes ASA with chroma
representations obtained from AMT frames.

As the main contribution of this paper, we propose a
novel AMT system specifically tailored for descriptive vi-
olin transcription 1 regarding two crucial aspects: 1) We
represent pitch deviations such as vibrato, glissando, or
intonation choice by incorporating fine-grained pitch rep-
resentations into the transcription. While borrowing our
note postprocessing system and the MIDI pitch bend rep-
resentations from Bittner et al. [1], we build a conformer-
based model that works on the raw audio waveform and
further improves the pitch bend estimation through note-
constrained Viterbi pitch tracking. 2) We acquire frame-
level annotations for violin transcription by considering si-
multaneous transcription and alignment in a joint frame-
work, similar to the work by Maman and Bermano [2].
Following the findings from the music synchronization lit-
erature, we also incorporate activation-function-based fea-
tures in the alignment [27, 28].

In order to benchmark our descriptive violin transcrip-
tion method, we consider the proxy tasks of transcription
and pitch estimation and compare our model with general-
purpose baselines. As a side contribution, we also release
a 34-hour dataset of solo violin recordings, with automat-
ically aligned MIDIs and note-constrained multi-f0 tracks
obtained using our descriptive violin transcription system.

The remainder of this paper is organized as follows:
in Section 2, we introduce our MUlti-Stream Conformer
(MUSC) model for AMT that processes an audio wave-

1 https://github.com/MTG/violin-transcription/
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Figure 2: The Multi-Stream Conformer architecture con-
verts raw audio sampled with 44.1 kHz into four feature
representations with a frame rate of 5.8ms.

form into four musical representations. In Section 3, we
describe our strategy for learning without frame-level an-
notations. In Section 4, we introduce how we simultane-
ously annotate a novel violin transcription dataset while
training our model. In Section 5, we compare our descrip-
tive violin transcription model against general-purpose
transcription and pitch estimation baselines. Finally, we
conclude in Section 6 with prospects on future work.

2. MULTI-STREAM CONFORMER

We propose a MUlti-Stream Conformer (MUSC) that pro-
cesses the raw audio waveform into four streams that es-
timate onset, offset, semitone-level pitch frames (denoted
as frames as in the AMT literature), and high-resolution
f0 frames as shown in Figure 2. The raw audio waveform
sampled with 44.1 kHz is converted into 256-dimensional
features with a hop size of 5.8ms through duplex CNNs.
Then, these features pass through the Conformer blocks to
estimate the four representations. The resulting represen-
tations can be either used for MIDI transcription with pitch
bends as in Figure 1, or for frame-level dataset annotation
for training (see Section 3).

2.1 Duplex CNNs

We borrow the basic CNN structure from the first two lay-
ers of the CREPE [29] pitch estimator, except for zero
padding. We remove the zero padding in the convolutional
layers so that the duplex CNNs can access to the infor-
mation at the borders of the window with varying recep-
tive fields. With the raw audio in 44.1 kHz as the input,
the duplex CNNs independently summarize the waveform
into 128-dimensional frames with a hop length of 5.8ms.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

224



Figure 3: A closer look at the Duplex CNNs.

The standard CNN (shown in red in Figure 3) analyzes the
frame with the CREPE configuration, resulting in a recep-
tive field of 26ms. The dilated CNN (depicted in yellow
within Figure 3) incorporates double the number of dila-
tions and strides per layer, ultimately leading to a receptive
field of 118ms. Thanks to the dilations and strides, the
sampling rate for the dilated CNN is subsequently reduced
to 22.05 kHz, and 11 kHz. Thus, it effectively analyzes
a smoother version of the signal. The 128-dimensional
outputs of the individual CNNs are then stacked into a
256-dimensional representation and pass through a simple
fully-connected layer before the main Conformer stream.

2.2 Conformer Blocks

Due to the direct analogy between music transcription and
speech recognition, we adopt the Conformer [30], a state-
of-the-art automatic speech recognition (ASR) model, as
the base block of MUSC. We directly employ conformer
blocks from the Conformer encoder (M version) as de-
scribed by Gulati et al. [30], i.e., with four attention heads,
a depthwise convolution size of 32, and an encoder dimen-
sion of 256. For the main stream, we repeat the conformer
blocks 16 times as in Conformer (M). Then, we employ
separate conformer blocks for each of the onset, offset,
frame, and f0 streams with four conformer blocks per rep-
resentation. The total number of conformer blocks we uti-
lize in the multi-stream conformer architecture is 32.

2.3 Feature Representations

Our method is based on transforming weak labels into
frame-level features that are used both as training targets
and alignment features. The feature representations en-
compass the violin pitch range from F♯3 to E8, i.e., 58
bins for the onsets, offsets, and note frames, which work
on semitone resolution, and 580 bins for the f0s, which
work on 10-cent resolution. More precisely, we use a fixed
sequence duration of three seconds and convert the audio
waveform into 512 × 58 dimensional onset, offset, and
(note) frames, and 512× 580 dimensional f0 frames.

tonset toffset

fMIDI

fMIDI + 100c

fMIDI - 100c

Viterbi Constraint Region

Figure 4: Constraint region for the Viterbi pitch tracking.

We train the model to predict strong onset, offset, and
frame labels that are generated from iterative score align-
ments. We employ Gaussian label smoothing for onset,
offset, and f0 features. For the onsets and offsets, we
smooth the feature representations with a standard devi-
ation of 4ms. Following Kim et al. [29], we also blur the
f0 features with a 12-cent standard deviation.

Note that the high-precision f0 features are not included
in the score, hence cannot be inferred from the alignment.
For the f0 features, we train the model to predict pseudo-
labels generated by the TAPE model [31] in the first iter-
ation. Then, we use our model’s predictions as pseudo f0
labels. The polyphonic multipitch information are also en-
coded in the f0 representations. We employ constrained
Viterbi pitch estimation (see Section 2.5) for generating
pseudo-f0 labels for the polyphonic segments.

2.4 Note postprocessing

In the original Conformer paper [30], which is designed
for ASR, the output of the encoder is proceeded by a de-
coder that uses an external language model to generate the
word sequence. A natural adoption of this strategy to our
scenario would require onsets, offsets, and frames to be
fed into a language model that is specialized in the vio-
lin repertoire. However, employing a decoder is not viable
since violin repertoire remains a low-resource language,
and training decoders with such limited data is prone to
overfitting. Instead, we experiment with postprocessing
techniques from open-source AMT libraries and adopt the
one 2 from Bittner et al. [1]. We leave improving the post-
processing stage as an open question for further studies.

2.5 Constrained Viterbi Pitch Estimation

Previous studies have shown that score information [32]
and the continuity principle of pitch perception [33] can be
used for refining the f0 estimation. We apply continuity
constraints within note sections to detect the pitch bends
with higher accuracy. First, we define the constraint region
on the f0 matrix from the note onset, offset, and 200 cents
around the note frequency as shown in Figure 4. We calcu-
late the Viterbi path within the note boundaries by utiliz-
ing the constraint region as observation probabilities and
f0 transition probability matrix S ∈ R

21×21 covering the

2 https://github.com/spotify/basic-pitch/blob/

main/basic_pitch/note_creation.py
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Figure 5: The proposed high-resolution violin transcrip-
tion model only requires piece-level labels for learning as
it can generate frame-wise labels using its own onset, off-
set, and frame feature representations.

200 cents around the note frequency. For each consecutive
time instant, S allows smooth transitions with a Gaussian
standard deviation of 25 cents, i.e., 2.5 f0 states:

sij =

exp

(

− 1
2

(

j−i
(25/10)

)2
)

(25/10)
√
2π

,

for i, j ∈ [1 : 21], where sij denotes the state transition
probabilities in the 10-cent resolution f0 matrix.

Since Viterbi algorithm has a complexity of O(n2), ap-
plying the pitch tracking within the constrained region also
improves the runtime speed compared to Viterbi without
note constraints. Moreover, applying Viterbi within note
constraints allow detecting multiple f0s.

After per-note Viterbi paths are calculated, the frame-
wise pitch predictions are obtained through the regional
weighted averaging method from Kim et al. [29] to deter
the f0 estimates through further interpolations.

3. LEARNING FROM WEAK LABELS

Our proposed method enables learning from weak labels,
which involve pairs of violin recordings and their publicly-
available scores. The learning procedure consists of four
phases. First, we create initial audio-score alignments us-
ing music synchronization techniques. Second, we use
the aligned audio-score pair for the first round of train-
ing. Third, we recompute the alignment using the esti-
mated features. Fourth and finally, we finetune our model
using the finer features learned by the model.

To create the initial audio-score alignments, we use dy-
namic time warping (DTW), which is a well-known tech-

nique for music synchronization [34–36]. Conventional
methods for music synchronization typically use DTW
and chroma features as the input representation [32, 37],
whereas the integration of additional activation functions,
e.g., onsets, beats, downbeats, has proven to enhance the
synchronization accuracy [27, 28]. Since we deal with vi-
olin transcription in this paper, we follow the alignment
method in [28], which deals with a similar scenario, i.e.,
audio-to-audio synchronization of string quartets. Inspired
by their combined synchronization approach, we first in-
corporate beat, downbeat, and onset activation functions
alongside chroma features to generate the initial audio-
score alignments. The inclusion of activation functions re-
sults in a grid-like structure in the DTW cost matrix, which
guides the alignment through activation cues that point to
note onsets or other musical events. At the same time,
chroma features account for the harmonic and melodic in-
formation.

Following the setting in [28], we use a sample rate of
22.05 kHz and a feature rate of 50Hz to create the align-
ments. As this feature rate (20ms) is coarser than the
model’s frame resolution (5.8ms), we apply linear inter-
polation to create labels. Note that we cannot evaluate the
synchronization accuracy of the training data since we do
not have any annotations for these. Using these target la-
bels obtained from the initial alignment, which can possi-
bly be inaccurate, we train our model for one epoch in the
first training phase.

Following the first training phase, we obtain the
four learned representations, onset, offset, semitone-level
frames, and high-resolution f0 frames for each audio-score
pair. To acquire finer and more accurate labels, we run a
novel synchronization stage. We recompute the alignment
with the refined features, estimated semitone-level frame
representations, and the activation with the stacked onset
and offset features (see Section 2.3). Note that the feature
rate we use in the alignment is the same as the MUSC fea-
tures (hop size of 5.8ms). Using the labels obtained from
synchronization, we finetune our model using early stop-
ping.

Our iterative training strategy resembles the approach
by Maman and Bermano [2]. Their approach starts with
training the transcription model with synthetic data and
then creating the initial alignments with the features esti-
mated by this model and involves three training iterations:
first on synthetic data and two more iterations to finetune
the model on the target dataset. In contrast, we start from
a robust ASA and complete the training process in two it-
erations.

4. DATASET AND TRAINING

In this section, we describe our dataset that we use for the
training and our training procedure. The weakly-labeled
dataset consists of 120 scores and 34 hours of solo vio-
lin performances. We also provide automatic score align-
ments and frame-level pitch bends that are generated by
our joint data curation and training process.
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#s #p #r dur

Paganini, Op. 1 24 10 235 13:00
Wohlfahrt, Op. 45 60 6 506 11:36

Kayser, Op. 20 36 8 280 09:48
Total 120 22 1021 34:24

Table 1: Dataset statistics. #s: number of scores, #p:
number of distinct players, #r: number of recordings, dur:
total recording duration in hh:mm.

4.1 Dataset Statistics

Our dataset comprises public scores of 96 etudes which are
included in the Violin Etudes dataset [38], i.e., Wohlfahrt
Op. 45, and Kayser Op. 20. We also extend these scores
with additional 24 etudes/caprices by Paganini Op. 1. In
contrast to the Violin Etudes dataset, which only includes
monophonic recordings, the recordings in our dataset in-
clude a mix of monophonic and polyphonic etudes. We
collect multiple versions of these etudes from YouTube and
automatically match and align them using the method de-
scribed in Section 3. For the Paganini Op. 1 score, we no-
ticed that performers do not always follow the repeat signs.
To ensure better alignments, we automatically expand each
repetition pattern individually and select the one that best
matches the recording based on the alignment distance. As
the most extreme case, we found four different repetition
patterns for the Paganini Op. 1 No. 23, which we label as
Op01-23, Op01-23-a, Op01-23-b, and Op01-23-c in the
dataset, respectively.

The dataset we provide includes original YouTube links,
annotated start and end timestamps, and aligned MIDI
files containing multi-pitch bends. These resources can be
utilized to generate expressive performances featuring vi-
brato. Moreover, for each etude and caprice, we provide
at least five performances, which can be utilized for audio-
to-audio synchronization and comparative studies. Table 1
summarizes the dataset statistics.

4.2 Training Details

Using Adam optimizer and a learning rate of 1e−3, we
train the model to minimize the binary cross entropy (BCE)
loss for the onset, offset, frame, and f0s:

L = Lonset + Loffset + Lframe +
Lf0

10
.

In addition to Gaussian label smoothing as described in
Section 2.3, we weight positive onset and offsets with 9
to balance the sparse matrices. Furthermore, we also ob-
serve that weighting the Lf0 by 1/10 helps in increasing
the stability of the training.

Since our dataset includes several versions per piece,
we do not employ further data augmentations. We train
the model using a batch size of 16 and a fixed sequence
duration of three seconds (512 frames). We employ (80−
20) train–validation splits and consider each sample with
the etude no ≡ 3 (mod 5) for the validation set.

After training for one epoch on the dataset obtained
with initial alignments and pseudo f0 labels, we realign

the dataset with the model’s onset, offset, and frame fea-
tures and apply constrained Viterbi tracking for the f0 la-
bels. Using the new labels estimated by the model, we train
the model further, applying early stopping.

5. EXPERIMENTS

While we aim at the task of descriptive violin transcription
with high-resolution pitch bends, there is no previous work
on which we can directly compare with. Therefore, we
compare our model with general-purpose baselines for the
closely-related proxy tasks of transcription and pitch esti-
mation. We provide our experimental results on the violin
tracks of two manually-annotated and corrected datasets,
i.e., URMP [39] and Bach10 [40].

5.1 Test Datasets

The URMP dataset [39] is a multimodal dataset that in-
cludes 44 performances in various chamber ensemble set-
tings. The dataset was annotated with the help of the
Tony melody transcription software [41], which utilizes the
pYIN [33] algorithm for the initial f0 estimates and applies
a hidden Markov model for note quantization. The note on-
sets, offsets, and f0s are then manually corrected. For our
evaluation, we use all the violin tracks from the URMP
dataset. We note that one of our transcription baselines,
the MT3 [3] model, was trained using this dataset. Since
we employ our tests in the entirety of the violin tracks, the
tests include the training samples of the MT3.

Our second test dataset, Bach10 [40], comprises 10
four-part chorales played by a violin, clarinet, tenor sax-
ophone, and bassoon quartet. The ground-truth f0 annota-
tions in the dataset were estimated first using the YIN [42]
algorithm and then corrected manually. The dataset also
includes note annotations derived from the beat times that
are manually-annotated by musicians. However, the man-
ual correction for offset times is not included in the dataset.
For our evaluation, we use all the violin tracks from the
Bach10 dataset. We note that the Bach10 dataset was in-
cluded in the training of one of our baselines in pitch esti-
mation, i.e., CREPE [29].

5.2 Evaluation Metrics

As a proxy to descriptive violin transcription, we evalu-
ate our method’s transcription and pitch estimation perfor-
mance separately using the common mir_eval metrics,
and compare with general-purpose baselines. For the tran-
scription, we provide our results with Precision P, Recall
R, F1-score F1, and F1-score without offset F1no using
the default thresholds. Namely, for P, R, and F1, a note
is considered correct its pitch is within 50 cents, the onset
is within 50ms and the offset is within 20% of the note’s
duration. We also include an additional measure, F1no,
where a note is considered correct if the onset is within
50ms without considering the offset. For the pitch estima-
tion experiments, we used the Raw Pitch Accuracy (RPA)
metric with two thresholds: the standard RPA50 metric,
which considers the estimate accurate if it is within 50
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URMP Bach10
P R F1 F1no P R F1 F1no

MUSC 86.5 83.1 84.6 93.0 65.0 64.8 64.8 77.0
MT3 79.1 87.1 82.2 88.9 54.2 51.5 52.7 62.0
BP 58.8 67.9 62.8 83.3 33.6 43.2 37.6 57.5

Table 2: Violin transcription results (%) comparing MUSC
with two general-purpose AMT methods. Tests are con-
ducted on all violin stems from the datasets. Bach10 repre-
sents the fair evaluation in a dataset unseen to all models.
URMP was involved in the training dataset of the MT3,
whereas it is unseen to both BP and MUSC.

URMP Bach10
P R F1 F1no P R F1 F1no

Iter1 84.6 82.5 83.6 92.9 63.1 63.5 63.2 75.3
Iter2 86.5 83.1 84.6 93.0 65.0 64.8 64.8 77.0

Table 3: Violin transcription results (%) before (Iter1) and
after (Iter2) fine-tuning the proposed MUSC model with
the iterative alignment.

cents, and the RPA10 metric, which has a more strict 10-
cent threshold.

5.3 Results

We compare MUSC with two recent general-purpose
AMT baselines: Our first baseline is the Basic Pitch [1]
(BP), which is a lightweight model for instrument-agnostic
AMT. The postprocessing method of BP is optimized for
F1no, and MUSC also shares the same postprocessing
script with their default parameters. The second baseline
we consider for transcription is the MT3 [3], which is a
multi-instrument transcription model that predicts instru-
ment labels alongside transcription. Since we only test on
violin recordings, we combine their output without the in-
strument labels for fair evaluation.

Table 2 summarizes the results for the transcription ex-
periments. At a first glance, the proposed violin-specific
model MUSC outperforms MT3 and BP on both datasets,
indicating that it is a more effective method for violin tran-
scription. Even though the training set of MT3 included the
test samples in the URMP dataset, MUSC yields the best
F1-score value among the three AMT systems. Further-
more, the performance gap between MUSC and MT3 is
greater for the Bach10, which was not included the training
set of any method. The results indicate that the all the mod-
els yield rather poor scores on the Bach10 dataset when
evaluated using the conventional P, R, and F1 metrics.
Since the offsets in the Bach10 dataset are not manually-
corrected, the F1no scores can be viewed as a better indi-
cator of the transcription performance for this dataset.

We also compare our model’s transcription performance
before and after fine-tuning with alignments generated us-
ing its own feature representations. The Table 3 shows that
some of the improvements in our model’s transcription per-
formance can be attributed to the iterative training strategy.

For the pitch estimation experiments, we compare
MUSC with four well-known pitch estimators: the pre-

URMP Bach10
RPA50 RPA10 RPA50 RPA10

MUSC 98.3 89.0 98.3 86.9
vMUSC 98.6 89.4 98.4 87.0
CREPE 96.4 87.2 98.6 88.1
vCREPE 97.3 88.4 98.6 88.1
YIN 95.3 88.4 97.1 81.7
pYIN 97.2 88.6 97.4 80.3
SWIPE 97.2 89.3 97.7 84.3

Table 4: Violin Raw Pitch Accuracy (RPA, %) results.
Note that the training set of CREPE involved the Bach10
dataset. vMUSC and vCREPE contain an additional
Viterbi decoding stage.

trained CREPE model [29] from its official repository 3 ,
pYIN [33], and YIN [42] from librosa 4 , and SWIPE [43]
from the libf0 library 5 . We use the same F♯3 (min) to E8
(max) frequency range for a fair evaluation.

Table 4 summarizes the pitch estimation results. First,
all the pitch estimators achieve high accuracies on both
datasets. For the URMP dataset which is unseen to all
the models, vMUSC (MUSC with Viterbi decoding) out-
performs the common state-of-the-art pitch estimators in
terms of RPA50 and RPA10. For the Bach10 dataset,
which is included in the training samples of the pre-trained
CREPE model, the CREPE expectedly yields the best RPA
values. Note that even though our model was not trained
with these test samples from Bach10, MUSC remains to be
competitive (e.g., 98.4% versus 98.6% RPA50 in Bach10).

6. CONCLUSION

In this paper, we introduced MUSC, an AMT system tai-
lored for violin transcription through high-precision pitch
bend estimation, and the capability of learning from piece-
wise weak labels. We showed that, by only utilizing 120
scores, we were able to obtain state-of-the-art transcription
and pitch estimation results for the violin. We also shared
our descriptive violin transcription dataset to the MIR com-
munity. In the future, we will focus on improving the note
postprocessing and alignment stages of the MUSC in or-
der to specialize better for the string repertoire, and use
it as a large-scale dataset curation tool for strings music,
ethnomusicology, and music education research. We be-
lieve that the descriptive music transcription capabilities of
the MUSC will accelerate the research in music education,
ethnomusicology, and expressive performance generation.
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ABSTRACT

We propose Polyffusion, a diffusion model that generates

polyphonic music scores by regarding music as image-

like piano roll representations. The model is capable of

controllable music generation with two paradigms: inter-

nal control and external control. Internal control refers to

the process in which users pre-define a part of the music

and then let the model infill the rest, similar to the task

of masked music generation (or music inpainting). Ex-

ternal control conditions the model with external yet re-

lated information, such as chord, texture, or other features,

via the cross-attention mechanism. We show that by us-

ing internal and external controls, Polyffusion unifies a

wide range of music creation tasks, including melody gen-

eration given accompaniment, accompaniment generation

given melody, arbitrary music segment inpainting, and mu-

sic arrangement given chords or textures. Experimental re-

sults show that our model significantly outperforms exist-

ing Transformer and sampling-based baselines, and using

pre-trained disentangled representations as external condi-

tions yields more effective controls. 1

1. INTRODUCTION

Diffusion models [1, 2], as a new class of generative mod-

els, have been successful in generating high-quality sam-

ples of image data and beyond. They achieve state-of-the-

art sample quality on a number of image generation bench-

marks [3, 4], and also show strong results for the genera-

tion of various media such as audio [5,6], video [7–9], and

text [10, 11].

Symbolic music generation, a task very different from

audio generation, has highly discrete outputs and is of-

ten described in terms of constraint optimization problems

[12, 13]. Despite the improvement of deep music genera-

1 Demo page: https://polyffusion.github.io/. Code
repository: https://github.com/aik2mlj/polyffusion

© L. Min, J. Jiang, G. Xia, and J. Zhao. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: L. Min, J. Jiang, G. Xia, and J. Zhao, “Polyffusion: A

Diffusion Model for Polyphonic Score Generation with Internal and Ex-

ternal Controls”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

Figure 1: The forward and reverse process of the proposed dif-
fusion model trained on piano roll representations. The red dot at
the front of each note denotes its onset; the green bar following
it denotes its sustain. Notice that the image axes are swapped for
proper visualization.

tive modeling [14,15], symbolic music generation still suf-

fers from the lack of controllability and consistency at dif-

ferent time scales [16]. In our study, we experiment with

the idea of using diffusion models to approach controllable

symbolic music generation.

Inspired by the high-quality and controllable image

generation that diffusion models have achieved in com-

puter vision, we devise an image-like piano roll format as

the input, and used a UNet-based diffusion model to step-

wise denoise a randomly sampled piano roll, as illustrated

in Figure 1. We show in our experiments and demos that

our design provides excellent generation results.

Besides unconditional generation, the model also ac-

cepts two categories of controls, namely internal control

and external control:

• Internal Control (Inpainting): By masking out part of

the given piano roll, we can specify the remaining area to

be generated, thus implicitly conditioning the generation

to fit in the masked part. We regard this strategy as a

generalized music inpainting method.

• External Control (Conditional Generation): By

adopting the cross-attention mechanism of Latent Dif-

fusion [17], we can explicitly control the music genera-

tion on given external conditions such as chords and tex-

tures. They are first encoded into latent representations

using pre-trained, disentangled variational autoencoders

(VAEs), and then fed into the backbone UNet of the dif-

fusion model to condition the denoising process. We

show that the generated music complies with the given

conditions well. We also add classifier-free guidance to

control the variance of the generation.
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These controls of diffusion models enable us to unify a

wide spectrum of creative music tasks that previously re-

quire separate modeling and training. In this paper, we

showcase the following scenarios:

• Melody generation given accompaniment by genera-

tion with the accompaniment part being masked out.

• Accompaniment generation given melody by genera-

tion with the melody part being masked out.

• Arbitrary music segment inpainting by generation

with any time segments being masked out.

• General music arrangement given chords or textures

by conditioning on external chord or texture signals.

2. RELATED WORK

We review three realms of related work: 1) music inpaint-

ing, which is related to our internal control method, 2)

conditioned music generation with external signals, which

is related to our external control method, and 3) recent

progress on diffusion-based modeling in the music domain.

2.1 Music Inpainting

Music inpainting is a controlled music generation task

that regulates the generation with pre-defined musical con-

texts. We see various studies on polyphonic music in-

painting. For example, DeepBach [18] develops a context-

aware recurrent neural network (RNN) capable of inpaint-

ing missing notes for chorales in the style of Bach. Co-

conet [19] uses blocked Gibbs sampling to repeatedly

rewrite a masked music score. Chang et al. [20] achieve

variable-length music score inpainting. Music Sketch-

Net [21] and MusIAC [22] introduce various controls to the

inpainting task under VAE-based and Transformer-based

framework respectively. Comparatively, diffusion models

naturally possess the inpainting ability via masked genera-

tion [23], and there is no need to train or fine-tune a task-

specific model for inpainting.

Though the current inpainting tasks mostly apply masks

over a continuous period of time, the inpainted area, in

theory, can be any note in the score (any area of a piano

roll). In this study, we show that our image-like repre-

sentation enables both part-wise and time-wise inpainting.

The former refers to inpainting melody or accompaniment

part given the other part, while the latter refers to infilling

notes falling in arbitrary time segments.

2.2 Music Generation Conditioned on External

Signals

External control signals are also one of the mainstream

methods to control the music generation process. Com-

mon scenarios include generating music given chords [18,

24–26], lyrics [27], and other relevant features such as note

density and voicing numbers [28].

Our study focuses on polyphonic score generation con-

trolled by external chords and textures. In particular, the

Figure 2: The model structure with an additional condition mod-
ule for external control. Each UNet unit ϵθ applies one denoising
step during the reverse process. External condition signals are
encoded by pre-trained encoders and fed into the cross-attention
layers, which are represented by the yellow squares in the UNet
unit.

“control by texture” task has great practical value in both

music arrangement and composition style transfer [29],

while very few existing models could realize this function.

2.3 Diffusion Models for Music Generation

Recently, we have seen several attempts to introduce dif-

fusion models to symbolic music tasks. Mittal et al. [30]

generate monophonic music by training a diffusion model

on the latent representations learned by MusicVAE [31].

Cheuk et al. [32] brings diffusion models to the music tran-

scription task by adapting the piano roll format into the

DiffWave [5] structure. It is relevant to our study as the

model can also output piano rolls. However, the model fo-

cuses on transcription instead of generation by relying on

a ground-truth spectrogram as its control. In general, for

symbolic music generation, conditioning diffusion models

on external controls is still an area to be explored.

3. METHODS

3.1 Data Representation

Our image-like piano roll representation is a 2-channel bi-

nary tensor x ∈ R
2×T×P . The generation task targets 8-

bar (32-beat) long music segments, with 1/4 beat as the

time step, resulting in T = 128 time steps per sample. We

use a MIDI pitch range 0...127, resulting in P = 128 pitch

bins. Each entry x(c, t, p) represents whether there is a

note onset (for c = 0) or sustain (for c = 1) at time step t

and MIDI pitch p.

3.2 Diffusion Model

Diffusion models [1, 2] are latent-variable models com-

prised of a forward (diffusion) process which gradually

disrupts the structure of data x0 and a reverse (denoising)

process that learns to recover the original data x0 from the

noisy input. In our study, x0 denotes the clean piano roll.

The forward process iteratively adds Gaussian noise in N

diffusion steps:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

q(x1:N |x0) =
N
∏

t=1

q(xt|xt−1) (2)
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where β1, β2, . . . , βN are a series of variance scheduling

parameters. The reverse process requires the model to pa-

rameterize a Markov chain that iteratively reconstructs the

piano roll x0 from a corrupted input xN ∼ N (0, I).

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)) (3)

pθ(x0:N ) = p(xN )
N
∏

t=1

pθ(xt−1|xt) (4)

During training, we optimize the model parameters ϵθ
by minimizing the following target:

L(θ) = Ex0,ϵ,t

[

∥

∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)
∥

∥

2
]

(5)

where t is uniformly sampled from [1, N ] and ϵ ∼ N (0, I),
αt := 1 − βt, ᾱt :=

∏t

s=1
αs. As shown in Figure 2, our

unconditional model structure is based on [2], an image-

oriented diffusion model using a 2-D UNet as its backbone

ϵθ.

3.3 Internal Control (Inpainting)

Internal control refers to the use of the music notes them-

selves to regulate and influence the generation process, and

we regard music inpainting as a means of internal control.

Specifically, we denote the given piano roll sample as s

and the mask as m. At each step t during inference sam-

pling, the fixed area of the image is diffused with the for-

ward process q(st|s) = N (st;
√
ᾱts, (1 − ᾱt)I) and put

together with the denoising sample st−1. Algorithm 1 [23]

shows the detailed implementation of this inpainting pro-

cess.

Algorithm 1 Inpainting Process

Input: inpainting mask m, original sample s, xN ∼
N (0, I)

1: for t = N, . . . , 1 do

2: ϵ1, ϵ2 ∼ N (0, I) if t > 1, else ϵ1 = ϵ2 = 0
3: y =

√
ᾱts+

√
1− ᾱtϵ1 if t > 1, else s

4: xt−1 = µθ(xt, t) + σθ(xt, t)ϵ2
5: xt−1 = xt−1 ⊙ (1−m) + y ⊙m

6: end for

7: return x0

3.4 External Control (Conditional Generation)

External control means using external signals to condition

the generation process. We aim to incorporate a general

strategy that does not place strong assumptions on the for-

mat of input control signals. To this end, we use the cross-

attention mechanism [33] for conditional generation intro-

duced by Latent Diffusion [17] since it is insensitive to the

dimension of the condition signals. We also adopted the

strategy used by Rombach et al. [17], which augments the

backbone UNet structure with cross-attention layers that

map condition signals into the UNet intermediate latent

representations.

Formally, to preprocess the external musical signal c,

we introduce a corresponding encoder τ that projects c to a

latent representation τ(c). The encoder τ is pre-trained and

fixed during diffusion model training. The cross-attention

layers then map τ(c) to the intermediate layers of the UNet

(as shown in Figure 2). The conditional training objective

is

Lcond(θ) := Ex0,c,ϵ,t

[

∥

∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t, τ(c)

)∥

∥

2
]

(6)

We use classifier-free guidance (CFG) [34] to enable

both conditioned and unconditioned generation by control-

ling the intensity of the condition signals during sampling.

We refer readers to [34] and [35] for details on CFG.

4. CONTROLLABLE MUSIC GENERATION

In this section, we present four general musical applica-

tions our model empowers with internal and external con-

trols: 1) melody generation given accompaniment, 2) ac-

companiment generation given melody, 3) arbitrary mu-

sic segment inpainting, and 4) music arrangement given

chords or textures. For each application, we provide non-

cherry-picked generated samples as a case study. We also

refer readers to our demo page for more examples.

4.1 Melody Generation Given Accompaniment

This task is achieved by internal control — to pre-define

the accompaniment part and let the model infill the up-

per melody. Figure 3(a) shows an example of pop song

melody generation given the accompaniment. We see that

the melody is consistent with the underlying chords of the

given accompaniment, and maintains an overall consistent

rhythmic pattern, except for a 16th-note jump at the begin-

ning of the 3rd bar.

4.2 Accompaniment Generation Given Melody

Similarly, given a lead melody, we can inpaint its corre-

sponding lower accompaniment. Figure 3(b) shows an ex-

ample, in which we see that the generated chord sequence

suits the key (E minor) of the melody well, realized by a

consistent arpeggio texture. The generated counter-melody

also fills in the gaps between melody onsets well.

4.3 Arbitrary Music Segment Inpainting

The common scenario of music inpainting, also called mu-

sic infilling [20], is to generate a music segment that fills

in the gap between given past and future contexts. For our

model, this task can be fulfilled by masking out the full

pitch range of selected bars for inpainting.

Figure 3(c) shows an example of the inpainting process

of the 3rd, 4th, 5th, and 7th bars, given the rest as fixed

contexts. In the example, the model is capable of generat-

ing a full cadence connecting the 7th and the 8th bar, and

also a nice applied chord in the non-diatonic progression

Gm-Adim-BZm connecting the 5th and the 6th bar.

We also extend the problem setup and let the diffusion

model generate long-term music by iteratively inpainting
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(a) An example of melody generation given accompaniment.



                                

   



 

     
      











   


 

 


    




(b) An example of accompaniment generation given melody.




                   
      

  
    


  


   

  


  
 

    
    


      

 



     

 








   






 
 



 




(c) An example of arbitrary segment inpainting.
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(d) An example of iterative inpainting for long-term music generation.
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(e) An example of chord-conditioned generation. Chords (annotated above) are used as external condition signals.

      
                    





  

              


              
   




   
    

        




   




 



 






 

 
   

(f) An example of texture-conditioned melody generation. The texture of a given melody (the staff above) is used as external condition signals.

Figure 3: Generated samples in various tasks of controllable music generation. The generated parts are marked in blue. These examples
have corresponding hearable demos on the demo page.

the future given the past. Figure 3(d) shows an example of

a 24-bar generation based on a 4-bar prompt. The model

generates 4 bars during each inference and finishes the pro-

cess with five iterations. We see that the generated music

contains a smooth chord progress, with a key modulation

towards the end. The long-term textural structure is coher-

ent, however lacking a consistent music theme.

4.4 Music Arrangement Given Chords or Textures

Inspired by the chord-texture disentanglement work [13,

29], we choose these two factors as the external condition

signals for polyphonic generation. In our context, chords

refer to the harmonic information, and textures refer to the

rhythmic information. The latent chords and textures are

encoded using pre-trained VAEs and cross-attended with

the backbone UNet.

Beat-wise chords are first extracted by rule-based meth-

ods [36, 37], in which we adopted a 36-D chord represen-

tation consisting of a 12-D one-hot root encoding, a 12-D

one-hot bass encoding and 12-D multi-hot chroma encod-

ing. We then use a chord VAE [13] to extract a 512-D

representation for each 8-bar chord sequence. For texture

conditioning, we encode each 2-bar segment with the pre-

trained texture encoder in [13] and then concatenate four

encoded 256-D representations into a 1024-D vector as an

8-bar texture representation.

Figure 3(e) demonstrates an example of polyphonic mu-

sic generation conditioned on chords. In the example, the

accompaniment and the melody are mostly chord notes,

with a certain degree of non-chord passing and neighbor-

ing tones that increase the interestingness of the song.

To show the complex combinations of conditions that

the model can handle, we showcase a “texture-specified

melody generation” for a given accompaniment segment

as an example of the combination of internal and external

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

234



controls. As shown in Figure 3(f), We generate the melody

part of a given accompaniment segment conditioned on

the encoded texture representations of a given melody line.

The result preserves a similar rhythmic pattern and fits the

tonality of the new accompaniment.

5. EXPERIMENTS

5.1 Dataset and Training

We train our model using the POP909 dataset [38], a pop

song dataset containing around 1K MIDI files. We only

keep the pieces with 2/4 and 4/4 meters and cut them into

8-bar music segments with 1-bar hopping size, which re-

sults in 64K samples in total. The dataset is randomly split

into the training set (90%) and validation set (10%) on a

song level. The training samples are randomly transposed

to all 12 keys for data augmentation.

The classifier-free guidance technique stated in Sec-

tion 3.4 combines unconditional and conditional train-

ing. We adopt the implementation of DDPM and cross-

attention layers in [39]. With 1K total diffusion steps, the

model converges around 50 epochs (200K steps) on Adam

Optimizer [40] with a constant learning rate 5e-5.

To turn the generated 2-channel piano roll representa-

tions into MIDI files, we round them to {0, 1} and neglect

notes without an onset. In practice, the generation process

of 160 8-bar samples report zero invalid notes.

5.2 Evaluation

To validate the generation quality and control effectiveness

of our model, we conducted both objective and subjec-

tive evaluations on 5 tasks: (1) unconditional generation,

(2) accompaniment generation, (3) segment inpainting, (4)

chord-conditioned generation, and (5) texture-conditioned

generation. Tasks 2-3 focus on the evaluation of internal

controls, and tasks 4-5 focus on external controls. Table 1

summarizes the evaluation method for each task.

5.2.1 Evaluation Metrics

Objective metrics: To objectively measure the music

quality for all 5 tasks, we use the averaging overlapped

area of pitch distribution (DP) and duration distribution

(DD) from [41], which measure the distribution similarity

of pitch and duration between the generated samples and

ground truth. Additionally, we introduce chord distance

(CD) [41] and onset distance (OD) to evaluate the efficacy

of external control. These metrics measure the ℓ2 distance

of chord (for task 4) and onset distribution (for task 5) be-

tween the generated samples and the chord/texture condi-

tion.

Subjective metrics: Subjective metrics include creativ-

ity (C), naturalness (N), and musicality (M), which provide

a perceptive evaluation complementing the objective musi-

cal quality metrics. To demonstrate the efficacy of internal

control, we pick accompaniment generation as an exam-

ple and add a fitness (F) metric to evaluate how well the

generated parts fit in with the given melody.

5.2.2 Baseline models

We use two types of models as our baselines:

Transformer models: As suggested in the polyphonic

representation disentanglement study [13], applying a

Transformer on disentangled latent codes yields better re-

sults than raw token predictions. Following [13], we train

a Transformer to predict the chord and texture representa-

tions from melody representations. For unconditional gen-

eration (task 1), we sample the latent spaces of the first

2-bar melody and then predict its accompaniment and the

following content. For accompaniment generation (task 2)

and external conditioning (tasks 4-5), the melody (task 2),

chord (task 4), or texture (task 5) latent representation is

directly encoded as the condition for the Transformer. We

adopt the XLNet-based model proposed in [20] for the mu-

sic segment inpainting task (task 3).

Sampling-based models: We adopt the VAE-based dis-

entanglement model in [13] and generate music segments

by sampling the latent spaces. For unconditional genera-

tion (task 1), we sample from the chord and texture latent

spaces of the first and the last 2 bars, then linearly inter-

polate the middle latent codes to form a coherent 8-bar

segment. For inpainting (task 3), we also use linear in-

terpolation on latent codes to infill the missing bars. For

external conditioning (tasks 4-5), the chord (task 4) or tex-

ture (task 5) latent component is directly encoded from the

given condition.

5.3 Comparative Results

We calculate the average of each objective metric on

160 generated samples for each task. As shown in Ta-

ble 2, Polyffusion and its variations achieve the high-

est objective scores in tasks 1-4. For controllability, our

model yields competitive results on segment inpainting and

chord-conditioned generation. For the texture-conditioned

generation task, our model does not perform as well as the

baseline but is capable of preserving the general musical

texture, since the baseline model is explicitly trained on

texture reconstruction targets, while the texture condition

of our model only serves as a hint for the generation.

We also show the effectiveness of classifier-free guid-

ance in Table 2. With a guidance scale of 5, the model

(Polyffusion-S5) shows improved controllability on both

chord conditioning and texture conditioning. Notably,

a large guidance scale for chord conditions negatively

impacts the DD metric. We speculate that this is be-

cause notes regular in length provide clearer chord context,

which can be noticed in the guidance demos.

For subjective evaluation, we invite participants to rate

the generation quality via a double-blind online survey.

Our survey consists of 4 groups of samples of uncondi-

tional generation and accompaniment generation, respec-

tively. Each group contains a ground-truth piece, gener-

ated samples by Polyffusion and all baselines with random

orders. 36 participants completed our survey. Each par-

ticipant rated 4 random groups on average based on a 5-

point scale. The evaluation results are shown in Figure 4

and 5. The height of each bar represents the mean rating,
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(1) Uncond. Gen. (2) Acc. Gen. (3) Seg. Inp. (4) Chord Cond. (5) Texture Cond.

Objective Metrics DP, DD DP, DD DP, DD DP, DD, CD DP, DD, OD

Subjective Metrics C, N, M C, N, M, F N/A N/A N/A

Generative Length 8 bars 8 bars 4 bars 8 bars 8 bars

Transformer Baselines Wang Wang Chang Wang Wang

Sampling Baselines Wang N/A Wang Wang Wang

Table 1: Specifications of the evaluation tasks and the baseline models. C, N, M, F in subjective metrics mean creativity, naturalness,
musicality, and fitness respectively. Wang refers to the Transformer models (for Transformer baselines) and VAE-based models (for
sampling baselines) in [13]; Chang refers to the XLNet-based model in [20].

Uncond. Gen. Acc. Gen. Seg. Inp. Chord Cond. Texture Cond.

DP ↑ DD ↑ DP ↑ DD ↑ DP ↑ DD ↑ DP ↑ DD ↑ CD ↓ DP ↑ DD ↑ OD ↓
Polyffusion 0.89 0.93 0.89 0.96 0.90 0.93 0.90 0.96 0.75 0.88 0.98 1.85

Polyffusion-S5 0.89 0.93 0.89 0.96 0.90 0.93 0.92 0.81 0.51 0.87 0.97 1.75

Polyffusion-A 0.89 0.93 0.89 0.96 0.90 0.93 0.90 0.94 0.79 0.95 0.98 4.37

Transformer 0.78 0.84 0.88 0.89 0.90 0.83 0.87 0.88 0.56 0.84 0.93 0.13

Sampling 0.86 0.90 N/A N/A 0.89 0.91 0.86 0.90 0.70 0.91 0.93 0.20

Table 2: The objective evaluation and ablation study results. The statistics of generation, accompaniment generation and segment
inpainting are identical for three Polyffusion models (hence gray-out for the latter two models) since they share the same internal control
method.

Creativity Naturalness Musicality1.0

2.0

3.0

4.0
GT
Polyf.

Trf.
Samp.

Figure 4: Subjective evaluation for unconditional generation.

and the error bars are MSEs computed by within-subject

ANOVA [42]. We report a significantly better performance

(p-value < 0.05) of Polyffusion than baseline models in

naturalness and musicality for both tasks and in fitness

for accompaniment generation. Interestingly, Polyffusion

even outperforms the ground truth on the creativity metric.

5.4 Ablation Study

We perform an ablation test on the use of VAE encoders

for condition signals. For both chord conditioning and

texture conditioning, we remove the corresponding pre-

trained encoders. The ablated model of chord condition-

ing uses concatenated 36-D chord vectors as the condition

signals. The ablated model of texture conditioning uses a

modified piano roll representation [13]. Both models are

trained with the same settings as the proposed model. Ta-

ble 2 shows that the ablated models (Polyffusion-A) per-

form worse than the proposed models on the controllabil-

ity metrics (CD & OD), showing the advantage of using

disentangled latent representations as condition signals for

diffusion models.

Creativity Naturalness Musicality Fitness1.0

2.0

3.0

4.0

GT
Polyf.

Trf.

Figure 5: Subjective evaluation for accompaniment generation.

6. CONCLUSION AND FUTURE WORK

In this paper, we propose a diffusion model for polyphonic

symbolic music generation. We show that an image-like

piano roll representation is effective for modeling the mu-

sical context for a high-quality score generation. We spec-

ify two methods for controllable generation: internal con-

trol via masked generation, and external control via condi-

tioning using cross-attention. Experiments show that our

method achieves higher quality and controllability com-

pared to the Transformer and sampling-based baselines on

both internal and external control tasks.

We regard the diffusion framework as a prospective di-

rection for future work on controllable music generation,

since it achieves fine-grained controls over high-quality

generation and enables a wide spectrum of arrangement

applications. Currently, our generation is limited to quan-

tized music scores without performance features. We

plan to extend this methodology to expressive performance

modeling. Several new controls can also be introduced to

facilitate human-AI co-creation of symbolic music, e.g.,

hierarchical structure controls (e.g., music segment labels)

and multimodal controls (e.g., text descriptions).

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

236



7. REFERENCES

[1] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan,

and S. Ganguli, “Deep unsupervised learning us-

ing nonequilibrium thermodynamics,” in International

Conference on Machine Learning. PMLR, 2015, pp.

2256–2265.

[2] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion

probabilistic models,” Advances in Neural Information

Processing Systems, vol. 33, pp. 6840–6851, 2020.

[3] P. Dhariwal and A. Nichol, “Diffusion models beat

gans on image synthesis,” Advances in Neural Infor-

mation Processing Systems, vol. 34, pp. 8780–8794,

2021.

[4] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi,

and T. Salimans, “Cascaded diffusion models for

high fidelity image generation.” J. Mach. Learn. Res.,

vol. 23, pp. 47–1, 2022.

[5] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catan-

zaro, “Diffwave: A versatile diffusion model for audio

synthesis,” arXiv preprint arXiv:2009.09761, 2020.

[6] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi,

and W. Chan, “Wavegrad: Estimating gradi-

ents for waveform generation,” arXiv preprint

arXiv:2009.00713, 2020.

[7] R. Yang, P. Srivastava, and S. Mandt, “Diffusion proba-

bilistic modeling for video generation,” arXiv preprint

arXiv:2203.09481, 2022.

[8] J. Ho, T. Salimans, A. Gritsenko, W. Chan,

M. Norouzi, and D. J. Fleet, “Video diffusion models,”

arXiv preprint arXiv:2204.03458, 2022.

[9] W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach,

and F. Wood, “Flexible diffusion modeling of long

videos,” arXiv preprint arXiv:2205.11495, 2022.

[10] X. L. Li, J. Thickstun, I. Gulrajani, P. Liang, and T. B.

Hashimoto, “Diffusion-lm improves controllable text

generation,” arXiv preprint arXiv:2205.14217, 2022.

[11] S. Gong, M. Li, J. Feng, Z. Wu, and L. Kong, “Dif-

fuseq: Sequence to sequence text generation with

diffusion models,” arXiv preprint arXiv:2210.08933,

2022.

[12] F. Pachet and P. Roy, “Musical harmonization with

constraints: A survey,” Constraints, vol. 6, no. 1, pp.

7–19, 2001.

[13] Z. Wang, D. Wang, Y. Zhang, and G. Xia, “Learning in-

terpretable representation for controllable polyphonic

music generation,” arXiv preprint arXiv:2008.07122,

2020.

[14] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford,

and I. Sutskever, “Jukebox: A generative model for

music,” arXiv preprint arXiv:2005.00341, 2020.

[15] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel,

M. Verzetti, A. Caillon, Q. Huang, A. Jansen,

A. Roberts, M. Tagliasacchi et al., “Musiclm:

Generating music from text,” arXiv preprint

arXiv:2301.11325, 2023.

[16] J.-P. Briot and F. Pachet, “Deep learning for music gen-

eration: challenges and directions,” Neural Computing

and Applications, vol. 32, no. 4, pp. 981–993, 2020.

[17] R. Rombach, A. Blattmann, D. Lorenz, P. Esser,

and B. Ommer, “High-resolution image synthesis

with latent diffusion models,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, 2022, pp. 10 684–10 695.

[18] G. Hadjeres, F. Pachet, and F. Nielsen, “Deepbach: a

steerable model for bach chorales generation,” in Inter-

national Conference on Machine Learning. PMLR,

2017, pp. 1362–1371.

[19] C.-Z. A. Huang, T. Cooijmans, A. Roberts,

A. Courville, and D. Eck, “Counterpoint by con-

volution,” arXiv preprint arXiv:1903.07227, 2019.

[20] C.-J. Chang, C.-Y. Lee, and Y.-H. Yang, “Variable-

length music score infilling via xlnet and musi-

cally specialized positional encoding,” arXiv preprint

arXiv:2108.05064, 2021.

[21] K. Chen, C.-i. Wang, T. Berg-Kirkpatrick, and S. Dub-

nov, “Music sketchnet: Controllable music generation

via factorized representations of pitch and rhythm,”

arXiv preprint arXiv:2008.01291, 2020.

[22] R. Guo, I. Simpson, C. Kiefer, T. Magnusson, and

D. Herremans, “Musiac: An extensible generative

framework for music infilling applications with multi-

level control,” in International Conference on Compu-

tational Intelligence in Music, Sound, Art and Design

(Part of EvoStar). Springer, 2022, pp. 341–356.

[23] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Tim-

ofte, and L. Van Gool, “Repaint: Inpainting using de-

noising diffusion probabilistic models,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2022, pp. 11 461–11 471.

[24] I. Simon, D. Morris, and S. Basu, “Mysong: automatic

accompaniment generation for vocal melodies,” in Pro-

ceedings of the SIGCHI conference on human factors

in computing systems, 2008, pp. 725–734.

[25] Y.-S. Huang and Y.-H. Yang, “Pop music transformer:

Generating music with rhythm and harmony,” arXiv

preprint arXiv:2002.00212, 2020.

[26] C. Donahue, H. H. Mao, Y. E. Li, G. W. Cot-

trell, and J. McAuley, “Lakhnes: Improving multi-

instrumental music generation with cross-domain pre-

training,” arXiv preprint arXiv:1907.04868, 2019.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

237



[27] Z. Ju, P. Lu, X. Tan, R. Wang, C. Zhang, S. Wu,

K. Zhang, X. Li, T. Qin, and T.-Y. Liu, “Telemelody:

Lyric-to-melody generation with a template-based

two-stage method,” arXiv preprint arXiv:2109.09617,

2021.

[28] J. Zhao and G. Xia, “Accomontage: Accompaniment

arrangement via phrase selection and style transfer,”

arXiv preprint arXiv:2108.11213, 2021.

[29] S. Dai, Z. Zhang, and G. G. Xia, “Music style transfer:

A position paper,” arXiv preprint arXiv:1803.06841,

2018.

[30] G. Mittal, J. Engel, C. Hawthorne, and I. Simon, “Sym-

bolic music generation with diffusion models,” arXiv

preprint arXiv:2103.16091, 2021.

[31] A. Roberts, J. Engel, C. Raffel, C. Hawthorne, and

D. Eck, “A hierarchical latent vector model for learning

long-term structure in music,” in International confer-

ence on machine learning. PMLR, 2018, pp. 4364–

4373.

[32] K. W. Cheuk, R. Sawata, T. Uesaka, N. Murata,

N. Takahashi, S. Takahashi, D. Herremans, and Y. Mit-

sufuji, “Diffroll: Diffusion-based generative music

transcription with unsupervised pretraining capability,”

arXiv preprint arXiv:2210.05148, 2022.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

“Attention is all you need,” Advances in neural infor-

mation processing systems, vol. 30, 2017.

[34] J. Ho and T. Salimans, “Classifier-free diffusion guid-

ance,” arXiv preprint arXiv:2207.12598, 2022.

[35] S. Dieleman, “Guidance: a cheat code for diffusion

models,” 2022. [Online]. Available: https://benanne.

github.io/2022/05/26/guidance.html

[36] B. Pardo and W. P. Birmingham, “Algorithms for

chordal analysis,” Computer Music Journal, vol. 26,

no. 2, pp. 27–49, 2002.

[37] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,

O. Nieto, D. Liang, D. P. Ellis, and C. C. Raffel,

“Mir_eval: A transparent implementation of common

mir metrics.” in Proceedings of the 15th International

Conference on Music Information Retrieval, 2014.

[38] Z. Wang, K. Chen, J. Jiang, Y. Zhang, M. Xu, S. Dai,

X. Gu, and G. Xia, “Pop909: A pop-song dataset

for music arrangement generation,” arXiv preprint

arXiv:2008.07142, 2020.

[39] N. W. Varuna Jayasiri, “labml.ai annotated paper

implementations,” 2020. [Online]. Available: https:

//nn.labml.ai/

[40] D. P. Kingma and J. Ba, “Adam: A method for stochas-

tic optimization,” arXiv preprint arXiv:1412.6980,

2014.

[41] Y. Ren, J. He, X. Tan, T. Qin, Z. Zhao, and T.-Y. Liu,

“Popmag: Pop music accompaniment generation,” in

Proceedings of the 28th ACM international conference

on multimedia, 2020, pp. 1198–1206.

[42] H. Scheffe, The analysis of variance. John Wiley &

Sons, 1999, vol. 72.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

238



THE COORDINATED CORPUS OF POPULAR MUSICS (COCOPOPS): A
META-CORPUS OF MELODIC AND HARMONIC TRANSCRIPTIONS

Claire Arthur

Georgia Institute of Technology
School of Music

claire.arthur@gatech.edu

Nathaniel Condit-Schultz

Georgia Institute of Technology
School of Music

natcs@gatech.edu

ABSTRACT

This paper introduces a new corpus, CoCoPops: The Co-

ordinated Corpus of Popular Musics. The corpus can be

considered a “meta corpus” in that it both extends and com-

bines two existing corpora—the widely-used McGill Bill-

board corpus the and RS200 corpus. Both the McGill Bill-

board corpus and the RS200 contain expert harmonic an-

notations using different encoding schemes and each rep-

resent harmony in fundamentally different ways: Billboard

using a root-quality representation and the RS200 using

Roman numerals. By combining these corpora into a uni-

fied format, using the well-known **kern and **harm

representations, we aim to facilitate research in computa-

tional musicology, which is frequently burdened by cor-

pora spread across multiple encoding formats. The format

will also facilitate cross-corpus comparison with the large

body of existing works in **kern format. For a 100-song

subset of the CoCoPops-Billboard collection, we also pro-

vide participant ratings of continuous valence and arousal

ratings, along with the RMS (Root Mean Square) signal

level and associated timestamps. In this paper we describe

the corpus and the procedures used to create it.

1. INTRODUCTION

In 2011, Burgoyne et al. [1] introduced a dataset that

would have a lasting influence in the ISMIR community:

the McGill Billboard corpus, a set of expert harmonic

analyses of commercial pop songs. This dataset—and

the Harte [2] standard for encoding chord symbols that

it adopted—has become a standard in the MIR commu-

nity, for example, being used as training and testing data

in the MIREX competition for Audio Chord Estimation

since 2008. Around the same time, Trevor de Clercq and

David Temperley independently created another rock mu-

sic dataset—the RS200 corpus—which would ultimately

consist of 200 harmonic and melodic transcriptions [3, 4];

Though perhaps less well known in the MIR community,

their corpus has been the basis for several computational

© C. Arthur and N. Condit-Schultz. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: C. Arthur and N. Condit-Schultz, “The Coordinated Corpus of

Popular Musics (CoCoPops): A Meta-Corpus of Melodic and Harmonic

Transcriptions”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

musicology papers [4]. While other datasets of popular-

style music harmony have been released (e.g., Isophon-

ics [2]), the Billboard and RS200 datasets stand out for

their use of experts to encode the annotations, the rigor of

their sampling methodologies, and the detail of their pro-

cedural documentation.

The field of computational musicology suffers from

perennial data scarcity [5]; What few symbolic corpora

exist are largely biased towards Western classical music

[6], which is relatively easy to digitize due to its basis

in notated scores. Unlike classical music, popular music

must generally be transcribed from audio recordings, with

melody transcription being a particularly time-consuming

task. Although more open-source data can be found (e.g.,

crowd-sourced arrangements from www.musescore.com)

and MIR algorithms for tasks such as source separation and

automatic transcription are improving, both procedures are

prone to high levels of error that is undesirable for either

computational music analysis or training machine learning

models [6]. The RS200 is still the only major corpus of

expert melodic transcriptions of popular music; the pair-

ing of these melodic transcriptions with harmonic analyses

affords sophisticated analysis of tonality in popular music.

In this paper we present a corpus which extends the Bill-

board corpus to include expert-transcribed melodies for a

sizable subset of the original corpus (214 songs presently).

By adding melodic transcriptions to an existing corpus of

harmonic annotations (the Billboard corpus), we create a

dataset fully comparable to the RS200. We also trans-

late both the Billboard and RS corpora into humdrum data

formats, creating two comparable datasets which together

form a super-corpus we call the Coordinated Corpus of

Popular Music (CoCoPops). In addition to melodic and

harmonic transcriptions, CoCoPops includes entirely new

annotations of rhyme schemes in both subcorpora and con-

tinuous valence and arousal ratings in a 100-song subset.

Like the When In Rome project [7], CoCoPops aims to fa-

cilitate musicological and MIR research by making a large

body of data available in a consistent, standard format. In

the sections that follow, we describe in detail the original

two datasets that CoCoPops is built on, the procedures we

used to generate new data, and the content of CoCoPops.
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Figure 1. Sample annotation file from the original McGill

Billboard corpus (“Honky Tonk Woman,” The Rolling

Stones).

2. BACKGROUND

2.1 The McGill Billboard Corpus

The McGill Billboard [1] corpus contains annotations of

739 1 unique songs, all sampled from the Billboard Hot

100 charts between 1958 (when Billboard magazine be-

gan publishing this chart) and 1991. The authors used a

stratified sampling procedure to gather as representative a

sample as possible, sampling a (roughly) equal number of

songs from each of three “eras” (60s, 70s, 80s) while also

accounting for chart position (1–100).

The McGill Billboard transcription process involved

a team of more than two dozen people, included “audi-

tions to identify musicians with sufficient skill to transcribe

reliably and efficiently,” and cost upwards of $20,000

[1]. The process included creating manual annotations of

the chords, formal sections (e.g., verse, chorus), phrases

(loosely defined), key(s), and meter in each sampled song,

conducted by two independent annotators. A third “meta-

annotator” compared the two versions for differences and

combined them into a single, final transcription.

The McGill Billboard chord annotations are encoded

using the representation scheme proposed by Harte in 2005

[8] and later expanded and revised in 2010 [2]. This rep-

resentation uses a syntax that is common in popular music

lead sheets, where chords are represented as a root note

with a set of intervals above the root, with the most com-

mon chord types given a list of shorthand symbols (e.g.,

C:maj, A:7). The McGill annotations are encoded in

plain-text files with line breaks representing new phrases,

each line tagged with the dominant instrument (or vocals)

in that phrase. An example of an original file from the

McGill Billboard corpus is shown in Figure 1. 2

2.2 The RS200 Corpus

The Rolling Stone corpus was first described in a paper

published in 2011 [3], initially dubbed the RS5x20 cor-

1 Note that a small subset has been withheld from the public to serve
as testing data for the MIREX competition.

2 A separate set of mirex text-files includes only the chords, but with
a timestamp for every chord.

pus. This original 100-song corpus (RS5x20) contained

harmonic annotations of the top 20 songs listed, for each of

five decades from the 1950s through the 1990s, on Rolling

Stone magazine’s list of the “500 Greatest Songs of All

Time” (as first published in 2004). The corpus was later

expanded to 200 songs (the RS200 corpus), and also added

melodic transcriptions for each song [4], making it the first

public corpus of expert melodic transcriptions of popular

music. Since the remaining 400 songs on Rolling Stone’s

list were not chronologically balanced, the second set of

100 songs was chosen based on rank position alone. While

the Billboard charts are based on commercial sales, the

Rolling Stone list was based on votes from experts (specif-

ically, “172 rock stars and leading authorities”). Although

one may suspect that these two corpora would substantially

overlap, in fact there are only fifteen songs in common.

The RS200 annotations are spread over multiple sep-

arate files per song: one with the timestamps, two with

the harmonic analyses (one per annotator), another with

the melody transcription, and (for an 80-song subset) a

fifth with lyrics. Unlike the Billboard corpus, the RS200

chords are annotated using Roman numerals; Similarly, the

melody transcriptions are encoded as scale-degree annota-

tions, with direction markers to clarify octave and contour.

Rhythmic durations are not encoded at all, only the timing

of note onsets: each measure of music is divided into regu-

lar steps representing metric positions, with notes placed at

steps indicating onsets and dots representing empty steps.

The number of steps per measure is dynamic, depending

on the meter and the lowest metric position needed to rep-

resent onsets in that measure. For instance, a measure that

contains only one note that arrives on the second half of the

first beat (e.g., the “and of 1”) requires division into eighth

notes, so that measure will have eight steps with only a

note at the fourth step and the rest dots. However, a mea-

sure with only a single note that lands on the downbeat can

be represented with just one token. Sample files from the

RS200 corpus can be seen in Figure 2.

2.3 Related Work

The most closely-related work to ours is another extension

to the McGill Billboard corpus by Christopher White et

al. [9], which adds timbral and textural annotations to the

entire Billboard corpus. Annotators of this corpus listened

to the songs and notated “all moments of change” within

each track according to three broad categories: the “do-

main” of change (such as the instrument group, harmony,

lyrics, texture, etc.); the “genera” of each change within the

relevant domain (such as a change to “solo” within a tex-

ture category); and an “event type” which solely denotes

one of three options: a change, entry, or exit. We intend to

work with the authors for a future release of CoCoPops to

incorporate this textural and timbral information as well.

A major drawback of both the Billboard and Rolling

Stone samples is their overwhelming bias towards music

from before 1991. Two recent projects have sought to right

this imbalance by creating corpora of more modern pop-

ular music to complement the Billboard sample: White et
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Figure 2. Sample annotation files from the RS200 corpus (“Whole Lotta Love,” Led Zeppelin). The image shows three

files overlaid on top of each other from left to right: timestamps of each measure, key and chord annotations, and melody

transcription.

al. [10] introduce the “Millenial corpus,” a dataset of expert

melodic transcriptions of twenty five popular songs written

between 2015 and 2019. Beach and Arthur [6] created a

much larger corpus of popular songs with annotations, al-

though their annotations are derived algorithmically from

the audio, and are quite noisy.

Our aim to combine two existing corpora into a single,

homogeneous dataset is inspired by Mark Gotham’s “when

in Rome” project [7], which merges and reformats several

existing classical corpora with Roman numeral annotations

into a single collection in a common format. Our project

to gather valence and arousal data for the Billboard sam-

ple was similarly inspired by the DEAM dataset: a dataset

containing dynamic annotations of valence and arousal for

1,809 non-copyrighted (Creative Commons license) songs

and song excerpts [11]. The majority of these annota-

tions are of short excerpts (≈ 45s) across numerous mu-

sical styles (folk, world, jazz, instrumental, pop); however,

the dataset also includes ratings for 56 complete songs,

which provide the most valuable information, according

to the creators [11]. In addition, the quality of the audio

recordings (and the musical content) in the DEAM sam-

ple is highly variable, as these recordings do not represent

professionally published works. Our valence- and arousal-

ratings for 100 complete, successful, commercial record-

ings will serve as a useful complement to the DEAM sam-

ple.

3. CORPUS OVERVIEW

The CoCoPops corpus consists of two collections: the Bill-

board and RS200 subcorpora. Each collection contains one

file per song. In the CoCoPops-Billboard collection, all

739 of the original McGill Billboard files have an equiv-

alent humdrum file. The contents of each file, however,

vary: All 739 files contain all the originally encoded infor-

mation (chords, keys, formal section labels, timestamps,

phrase information) from the original McGill dataset, but

all converted to humdrum format, and with a significant

number of corrections (see Section 5). At present, 214 out

of the 739 files include new expert melodic and lyric tran-

scriptions, as well as an encoding of the rhyme scheme;

100 of those 214 songs also contain continuous user rat-

ings of valence and arousal, as well as rolling RMS (root

mean square) amplitude values of the audio, to approxi-

mate the changing sound level of the music—both sam-

pled at a rate of 2Hz . A sample CoCoPops-Billboard file

is shown in Figure 3. In the CoCoPops-RS200 collec-

tion, each file contains the information originally spread

over separate files—e.g., melody, harmony, time stamps,

lyrics—in a single humdrum file. Unlike the original Bill-

board annotations which used Harte’s encoding scheme

(i.e., root+quality), the RS200 were originally annotated

with Roman numerals. To facilitate analysis, we provide

both types of harmonic annotations in both collections. In

addition, since the original RS200 contained two indepen-

dent transcriptions of the harmony, each CoCoPops-RS200

file includes two Roman numeral annotations (i.e., two

**harm spines) side-by-side. Eighty of the files also in-

clude lyrics and syllable stress information.

The humdrum syntax is a plain-text format for repre-

senting musical information, organized into tab-delineated

columns—called “spines”—representing different streams

of data [12] (see www.humdrum.org for more informa-

tion). Within the general humdrum syntax, various spe-

cific representation schemes can be defined 3 : Two of the

most common representation schemes include the widely-

known **kern representation of pitch information, the

**silbe representation of lyrics, and the **harm repre-

sentation of harmonic information in Roman-numeral for-

mat. Other relevant representations for the present collec-

tions include **harte—a humdrum representation for

root+quality-style harmonic annotations (near-identical to

the original annotation scheme used in the McGill Bill-

board corpus. This scheme is based on the syntax proposed

by Chris Harte [2, 8] and the humdrum representation is

described in Arthur et al. [13]); and **rhyme—a repre-

sentation for rhyme schemes [14].

In the following sections we describe our procedures

for gathering new data (e.g., melodic transcriptions), and

3 Chapter 18 of the Humdrum User Guide illustrates how to create new
humdrum representations.
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Figure 3. Sample file from the CoCoPops corpus. This file (“Sweet Nothins,”, Brenda Lee) includes the original McGill

Billboard information alongside new melody and lyric information. Files in the valence and arousal subset (see Section 6)

include three additional spines.

how we converted the preexisting datasets into humdrum

formats.

4. MELODY TRANSCRIPTION

In the early stages of our project, we worked with four col-

laborators 4 to define transcription guidelines which could

be applied consistently. We elected to transcribe only vo-

cal parts, with focus on the “lead” vocal melody in each

song—however, we agreed to encode important vocal har-

monies or other “backing” vocals as needed. The vo-

cal performances in the sample are often challenging to

transcribe, including unpitched or quasi-pitched vocals,

“blue” notes, glissandi, loose rhythms, and syncopation.

Our goal was to create readable transcriptions using con-

ventional musical syntax (beat positions, durations, notes)

rather than mechanical, empirical terms (milliseconds, F0,

etc.). This requires significant interpretation and quantiza-

tion; However, we took care to not over-simplify melodies

such that they became melodic reductions. Our transcrip-

tions generally interpret rhythms using a 16th-note grid,

but triplets and 32nd-notes are used sparingly at slow tem-

pos; Similarly, pitches are encoded in standard western

pitch categories (e.g., C#5, B4), ignoring most glissandi

and blue notes. However, many vocal performances sim-

ply cannot be faithfully represented in traditional score cat-

egories: as such, we included provisions for indicating, as

needed, unpitched or approximate pitch, “free” or approxi-

mate rhythms, glissandi, and blue notes—the complete de-

tails of these encodings are documented directly in the Co-

CoPops repository.

Ultimately, ten individuals contributed to our 214

melodic transcriptions: 94 transcriptions by the authors; 40

transcriptions by our four early collaborators, all graduate

students in music performance or theory; 10 transcriptions

by three (paid) undergraduate music students; and 70 tran-

4 Thanks to Hubert Léveillé Gauvin, Gary Yim, Dana DeVlieger, Lissa
Reed.

scriptions by one (paid) professional jazz performer, also

a graduate student in jazz performance at the time. When

transcribers were uncertain of their transcriptions, a sec-

ond transcriber would collaborate on the final version. We

gave our paid transcribers detailed instructions and have

personally vetted and edited all transcriptions for consis-

tency. The complete transcription guidelines are provided

in the supplementary materials.

The exact audio files used for the original McGill tran-

scriptions are not publicly available; for our transcriptions

we accessed targeted songs via YouTube, taking care to

confirm that each recording was the correct Billboard Hot

100 single. Unfortunately, some of the original McGill

transcriptions do not match the targeted single, instead

matching an album version, live version, or some other

version of the same song; In a few cases, we could not find

any recording that clearly matched the transcription. To

improve consistency, we elected to modify the harmonic

transcriptions for sixteen tracks to match the correct, sin-

gle version from the Hot 100 chart. In most cases, these

versions were very similar but slightly longer or shorter; in

a few cases, the alternate version was in a different key or

contained other significant differences. For these sixteen

altered versions, the original timestamps were discarded

and replaced with corrected timestamps in the correct sin-

gle version, as available on YouTube. The CoCoPops

repository includes files with links to each song’s reference

recording on YouTube, as well as MusicBrainz MBIDs for

our 214-song melodic transcription subset.

5. CONVERTING EXISTING DATA

To create the new data, we converted the preexisting Bill-

board and RS data into humdrum format. During this pro-

cess, we noted some errors in the Billboard transcriptions,

which we corrected in our new data. Our expertise (edu-

cation/credentials) in music performance and analysis are

comparable to the original transcribers’. Most of these er-
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rors are unambiguous—for instance, a measure of music

missing or a clear change of key that is not indicated. In

only a few cases our “corrections” might by considered de-

batable. All errors and corrections are documented in our

corpus repository. Each file in CoCoPops also includes

a wealth of meta-data, including track information—title,

original artist, release date, etc.—and sampling informa-

tion, like the rank on the Rolling Stone 500 list and chart

position on the Billboard Hot 100.

5.1 Billboard Data

We created a custom R script to convert the

original Billboard corpus files (available at

ddmal.music.mcgill.ca/research) into a humdrum rep-

resentation. The harmonic annotations are encoded in a

**harte spine with the timestamps in a **timestamp

spine. Along with the **harte representation, we

also include a **harm spine in each file: the humdrum

standard for representing Roman numerals. Whereas

the original harmonic transcriptions focus on the literal

pitch-content played by rhythm-section instruments (ig-

noring vocal parts), Roman numerals represent harmony

at a higher level of abstraction, incorporating the broader

tonal context. This means that, for example, open-fifth

“power chords” are interpreted as major or minor triads

(numerals) based on the key, context, and vocal melody.

For illustration, the original transcription of the track “I’m

Going Down,” by Bruce Springsteen, consists entirely

of two repeated patterns: A:5-E:5-F#:5-D:5 and

A:maj-E:maj-F#:min-D:maj. We interpret both of

these patterns as I-V-vi-IV. To create this **harm

information, we wrote an R script to parse each file and

replace under-specified chords (like C5) with the full triad

expected given the key-signature and/or explicit triads

indicated on the same root in the same song. This process

was effective in the vast majority of cases; however, for

songs with ambiguous modality we identified the triad

manually. The harmonic rhythm is also indicated in

the **harm spine using standard humdrum rhythmic

duration tokens.

The original McGill data includes two, parallel, formal

encodings: named sections (e.g., verse, chorus) and ab-

stract letters (e.g., AABA). These parallel encodings are

not redundant, as the transcribers used letters to indicate

more abstract repetition (mainly of chord progressions)—

for example, a guitar solo section which reuses the chord

progression from the verse will be labeled “solo”, but use

the same letter designation (e.g., A) as the verse. We en-

code both formal representations, independently, in hier-

archical https://www.humdrum.org/guide/ch20/: Abstract

formal labels are encoded in interpretation records of the

form *>Letter>A; formal names are encoded in sep-

arate records of the form *>Label>Verse. Phrases

in the music (originally represented with line breaks) are

indicated by the presence of the token newline in a

**phrase spine, with a parallel **leadinstrument

spine for lead-instrument annotations.

Transcribers worked in music notation software of

their choice (e.g., Musescore, Sibelius) transcribing pitch,

rhythm, and lyrics. The transcription was then exported

into musicXML format. We wrote a Haskell program to

parse musicXML scores into humdrum notation (**kern

for pitch/rhythm, and **silbe for lyrics), and align this

information with the already generate humdrum data de-

scribed in the previous paragraphs. When transcribers in-

cluded more than one vocal part for a song, each part ap-

pears as a separate pair of spines(**kern and **silbe)

in the humdrum file.

5.2 Rolling Stone Data

The RS200 dataset is available at rockcorpus.midside.com,

with data for each song encoded in four or five sepa-

rate files—Figure 1 shows three such files. In addition,

David Temperley provided us with files indicating the

hierarchical structure built into their original transcrip-

tions, which can be interpreted as formal labels. We

created a Haskell program to parse these files and gen-

erate a single humdrum-syntax file for each track. 5 In

some cases, we had to correct inconsistencies between

harmonic and melodic transcriptions—e.g., music notated

as 4/4 in the harmonic analysis but 12/8 in the melodic

transcription. Each humdrum file created includes two

**harm spines, representing Temperley and de Clercq’s

separate harmonic transcriptions, labeled with comment

tokens ‘!D.T.’ or ‘!T.d.C’ respectively. The RS200’s origi-

nal step-sequencer-like approach to rhythm transcription is

faithfully encoded using humdrum’s “timebase” function

where *tb interpretations indicate the duration of each

step. For the 80-song subset with lyrics, a **silbe spine

indicates the lyric alongside a **stress spine to indicate

three levels of lexical/prosodic stress.

The original RS200 transcriptions indicate only tonal

center (tonic), not mode, which can be ambiguous in pop-

ular music [3]. For consistency with the Billboard data,

the key in each **harm spine is indicated as either major

or minor, depending on what would be the most likely in-

terpretation. The RS200 melodic transcriptions do include

key-signature-like indications of raised/lowered scale de-

grees. Using these scale indications and the humdrumR

package [16], we were able to convert the original scale-

degree representation to **kern in the final dataset.

6. VALENCE AND AROUSAL SUBSET

In addition to the musical data itself, we gathered

continuous-response ratings of perceived valence and

arousal, in a 100-song subset of the Billboard data. Va-

lence and arousal are the two core dimensions of Russel’s

circumplex model of affect [17], and, while perhaps lim-

iting [18, 19], has been used widely in both music per-

ception research [18, 20] and music emotion recognition

(MER) [21–23]. We focused on valence and arousal due

to their simplicity (i.e., only two variables) and ubiquity

5 Though the music21 Python library [15] includes a parser for the
RS200 harmonic transcriptions, it was easier to assure consistency and
alignment between melodic, harmonic, lyrical, and formal information
by using a single custom parser.
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Figure 4. Left: distribution of absolute pitches in each corpus. Middle: distribution of 15 most common scale degrees in

each corpus. Right: distribution of ten most common functional harmonies in each corpus (11 in total), sorted by rank in the

Billboard data. (Only Temperley’s harmonic annotations are counted; Immediate repetitions of a chord are not counted.)

in the literature, though it is acknowledged that there are

likely additional, overlooked dimensions such as tension

and power [24]. Since arousal is highly correlated with

sound level, we also include the rolling RMS values for

each track in an **rms spine.

6.1 Perceptual Data

Perceptual data was gathered in a human-subject exper-

iment, approved by Georgia Tech’s Institutional Review

Board (protocol H22086). Eighty participants took part

in our experiment, each paid $15 for their time. All par-

ticipants were students at Georgia Tech, and were mainly

non-music majors. Experiments took place in person, in

a sound-attenuated booth using professional-quality loud-

speakers set at the same fixed sound-level for all partici-

pants. Participants used a physical slider (Monogram Cre-

ative) to make their continuous ratings, with the slider po-

sition sampled every 500ms.

The concepts of valence and arousal were explained to

each participant in simple terms: arousal being how calm-

energetic they perceived the music to be at any given mo-

ment, and valence being the polarity (negative-positive) of

the music [25]. Participants were instructed to rate what

they perceived the music to express, not necessarily what

they themselves felt. Since continuously tracking valence

and arousal simultaneously is challenging, we had partic-

ipants rate each independently—the same approach taken

for the DEAM dataset [11]. The authors of the DEAM

project also reported an increase in the usability (i.e. vari-

ation) [11] of the ratings when they used full songs as op-

posed to shorter clips; Accordingly, participants in our ex-

periment listened to the full songs. To encourage sustained

engagement and attention throughout the experiment, we

had each participant rate only ten songs. Participants were

randomly assigned to rate valence in five songs and arousal

in the other five, with the order of tasks counterbalanced.

Ultimately, each of the 100 songs was independently rated

for valence and arousal by eight different participants (four

for valence and four for arousal). The full experiment took

approximately forty minutes.

Files in the 100-song subset include independent

**valence, **arousal, and **rms spines. The four

independent arousal and valence ratings are encoded in the

same spine, in space-separated humdrum sub-tokens.

7. SUMMARY

The CoCoPops corpus includes complete melodic and har-

monic data for 398 unique popular songs released be-

tween 1949 and 2002. 95% of songs (379) come from

the years 1956–1991 with more than half (203) from the

years 1965–1980. The corpus includes 145,822 note on-

sets (86,215 in the Billboard subset), 37,010 chord changes

(19,682 in the Billboard subset), and 63,809 words in the

lyrics (48,018 in the Billboard subset). Figure 4 shows

the distributions, in each subcorpus, of three fundamental

pitch parameters—absolute pitch height, scale degree, and

the ten most frequent Roman numerals. Though the two

subcorpora originate in data generated by different sam-

pling criteria and different measurement/encoding proce-

dures (see Section 5), these distributions are nonetheless

broadly similar, highlighting the potential value of treating

these two separate subcorpora as a single united corpus.

The CoCoPops dataset is hosted at

github.com/Computational-Cognitive-Musicology-

Lab/CoCoPops, shared under a CC-BY-4.0 license. Many

further methodological and encoding details are included

in the repository files, as well as our recommendations

about the usage, distribution, and citation of the data.
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ABSTRACT

The research field of music therapy has witnessed a rising

interest in recent years to develop and employ computa-

tional methods to support therapists in their daily practice.

While Music Information Retrieval (MIR) research has

identified the area of health and well-being as a promising

application field for MIR methods to support health pro-

fessionals, collaborations with experts in this field are as of

today sparse. This paper provides an overview of potential

applications of computational music analysis as developed

in MIR for the field of active music therapy. We elaborate

on the music therapy method of improvisation, with a par-

ticular focus on introducing therapeutic concepts that relate

to musical structures. We identify application scenarios for

analysing musical structures in improvisations, introduce

existing analysis methods of therapists, and discuss the po-

tential of MIR methods to support these analyses. Upon

identifying a current gap between high-level concepts of

therapists and low-level features from existing computa-

tional methods, the paper concludes further steps towards

developing computational approaches to music analysis for

music therapy in an interdisciplinary collaboration.

1. INTRODUCTION

The use of music technology in the context of health and

well-being is becoming increasingly important, in line with

a growing interest in eHealth in medicine. Music’s affor-

dances such as emotion regulation [1], motor coordina-

tion [2], and social interaction [3], enable a broad range

of therapeutic applications. They feed into research on de-

veloping music technology for various contexts of music

therapy (MT) such as for supporting motor and cognitive

rehabilitation through musical biofeedback [4] and through

music-based applied games [5, 6], or through digital musi-

cal instruments developed for specific patient groups [7].

For a broad overview on different use cases of music tech-

nology for music therapy we refer to [8].

One of the main application fields envisioned for music

technology in the context of health and well-being is the
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support of data analysis from therapeutic sessions, includ-

ing analysis and visualizations of musical structures. The

computational analysis of musical structures has been one

of the main research topics of music information retrieval

(MIR) over the past decades. While MIR has identified the

health context as one of its future challenges [9], there exist

only few attempts to employ MIR methods for the analysis

of musical structures in the context of MT to date [10–15].

The goal of this paper is to provide an introduction and

overview on how MIR methods for computational music

analysis can be of use for active music therapy (employing

music making), specifically for analysing musical improvi-

sations from therapy sessions to support music therapists.

The contributions of this paper are threefold: First, it

provides an overview of the different contexts in which

music therapists analyse musical material from improvisa-

tions, and of their analytical approaches (Section 2). Sec-

ond, it identifies and describes different scenarios in MT

which can benefit from computational methods on music

analysis. (Section 3). Third, it identifies a current gap be-

tween high-level concepts of therapists and low-level fea-

tures of current computational approaches, and concludes

collaboration perspectives for MIR and MT researchers on

developing computational approaches to musical structure

analysis of clinical improvisations (Section 4).

2. OVERVIEW ON MUSIC THERAPY

2.1 What is music therapy?

The American Music Therapy Association describes mu-

sic therapy (MT) as "the clinical and evidence-based use

of music interventions to accomplish individualized goals

within a therapeutic relationship by a credentialed profes-

sional who has completed an approved music therapy pro-

gram" [16]. In a music intervention, therapists create musi-

cal experiences in a holistic manner involving the patient’s

cognition, emotion, movement and social interaction, to

approach issues faced by their patients. Music therapists

theorize that musical processes are correlated with psy-

chological processes [17, 18]: a musical change can indi-

cate a change in the patient’s inner state or in the interre-

lation between the patient and others. For instance, if a

patient with ADHD learns to focus during MT, or a patient

with Parkinson learns to have more control over their body

while playing music, these improvements can be generaliz-

able to other areas in their lives, because of the interdepen-

dence of human functioning [17]. For an overview on the
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Figure 1. Main forms and methods of music therapy with application areas for computational music analysis. This paper

focuses on the areas depicted by coloured blocks.

various affordances of music for therapeutic use, and clini-

cal and non-clinical contexts of music intervention see [8].

2.2 Active music therapy

MT is divided into active (music making) and receptive

(music listening) MT [19], see Figure 1. A common re-

ceptive method is called Guided Imagery and Music (GIM)

[20], in which the patient listens to music in a relaxed state.

The therapist guides the patient in bringing up the imagery

that emerges from their inner process in response to the

music, to explore their inner conflicts.

In active MT, creative methods such as improvisation,

composition and songwriting are employed, as well as

recreative methods such as singing an existing song. Cre-

ative methods are used to unravel underlying psychological

patterns [21]. For instance, if the patient acts mainly as the

follower in the interaction with the therapist during a musi-

cal improvisation (i.e. only the therapist initiates changes

in the music), this behaviour can help to unravel interac-

tion patterns and corresponding associations in daily life

interactions of the patient.

In improvisation methods, the patient plays or sings mu-

sic that they are creating themselves, either alone, with the

therapist or in a group. This paper focuses on the setting

of therapist and patient playing together. During a MT ses-

sion, the therapist is focused on creating the music together

with the patient (and the verbal evaluation of it), using mu-

sical interventions, such as changes in one or more musical

parameters like timbre, dynamics, or timing, to encourage

changes in the playing style of the patient. After the ses-

sion, the therapist listens to the recording of the session

and seeks to answer questions such as: In what way does

the patient interact? Where did it feel like we were in a

flow together (instead of the patient just playing for them-

selves) and what type of intervention caused this? In which

musical parameters is the patient very rigid and what inter-

ventions change that? The therapist then seeks to draw

parallels to other aspects of the patient’s life and could ask

the patient in the next session if the way they interact and

react to the music is the same in other situations in their

life. After this verbal reflection, these habits can be further

explored when improvising again. In this way, therapist

and patient try to slowly break out of typical habits in the

process of consecutive MT sessions.

In composition methods, the patient uses their impro-

visations to subsequently compose music. This could be

done for example by starting with a musical improvisation,

then selecting from the improvisations the parts or motifs

the patient finds most interesting to use in a composition,

then improvising again using these motifs, and so forth,

hence employing an iterative approach. This fosters inter-

personal trust through a joint process working towards an

explicit artistic product [22]. In song writing, the use and

analysis of lyrics is important, in composition the focus is

on using musical parameters and structure.

2.3 Analysis of music therapy improvisations

There exist many different approaches to analyse MT ses-

sions. In some of them, therapists analyse only the be-

haviour of the patient, and not the created music. Ap-

proaches that do analyse musical structures are called

music-centered approaches, such as the Nordoff-Robbins

method [23, 24]) and the so-called psychodynamic ap-

proach [25]. This paper focuses on the psychodynamic

approach, which suggests that producing music can help

accessing the unconscious mind such that the patient’s un-

derlying issues will surface within a musical improvisa-

tion. While analysing musical structures can be useful in

all MT methods and approaches, e.g. in receptive methods

pattern discovery could be helpful to investigate whether

specific patterns contribute to what patients prefer to lis-

tening to in specific contexts, we will focus in this paper

on active, creative MT methods (see Figure 1).

Bruscia, one of the pioneers for analysis of MT improvi-

sations (MTI), created the so-called Improvisation Assess-

ment Profiles (IAPs) [26], for which the therapist fills out

questionnaires based on their observations. The IAP con-

sists of six different profiles (called Autonomy, Integration,

Tension, Variability, Salience and Congruence). For exam-

ple, the Autonomy profile explores the intermusical rela-

tionship between patient and therapist, which could show

that the patient is a leader or a follower, where the patient

does or does not initiate changes in the music when playing

together. The therapist can observe this relationship in dif-

ferent musical dimensions, such as in rhythm, melody, or

harmony, but also in lyrics [27]. The Tension profile shows

how much tension is created through different aspects of

the music, relating to questions such as: is the tempo or

modality calm, or tense [28]? For a detailed description of

Variability, Salience, and Congruence, we refer to [17,28].
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Therapists typically do not use all profiles and dimen-

sions, but focus on one profile and fill out the questionnaire

for all musical dimension or analyse one musical dimen-

sion in all six profiles [10]. They choose the profile and

parameters based on the context: for instance, with MT

for a child with ADHD, it could be relevant to analyse the

presence of hyper-activity and how this changes over time,

for which the therapist could use the Tension profile.

The profiles describe high-level concepts from Brus-

cia [17] that require fine-grained descriptions on how they

might relate to concepts of musical structure for MIR re-

searchers. For instance, when can a tempo be described

as tense? According to [10, 29, 30], there exists a variety

of other methods for analysing MTI, see e.g. [24, 31–33],

which all address various high-level MT concepts (such as

autonomy or tension). In general, these analyses are car-

ried out by the therapist after the MT session by listening

to the recorded music, using different analytical methods

and the implicit musical knowledge of the therapist. There

exists no systematic research on how music therapists use

the different music analysis methods in their practice, as

music analysis methods in MT are a particularly under-

researched area according to [34].

3. APPLICATION AREAS OF COMPUTATIONAL

MUSIC ANALYSIS IN MT IMPROVISATIONS

Computational methods for music analysis can be em-

ployed for several areas within the MT domain. In this

section, we describe for the creative methods within active

MT (namely improvisation, composition and songwriting)

the following different application areas: initial clinical

assessment; monitoring process; finding of so-called Mo-

ments of Interests; and enhancing the creative potential of

patients within composition processes.

3.1 Psychological Assessment

Psychological assessment is the collection and analysis of

information of a patient, resulting in hypotheses about the

nature and causes of a patient’s personality, condition, re-

sources and potentials. In the context of MTI, the informa-

tion includes musical data.

Initial clinical assessment. Hypotheses which are

formed in the psychological assessment are used to deter-

mine an effective treatment program [10], considering the

skills the patient currently has and what kind of therapy

would fit them. Data gathered in the psychological assess-

ment during the first therapy session is used to determine

if the patients’ symptoms are consistent with the diagnos-

tic criteria for a specific mental disorder [35]. Computa-

tional analyses of the improvisations in the first therapy

session can support the initial clinical assessment. For in-

stance, computationally analysing musical timing param-

eters of clinical improvisations can be promising in diag-

nosing Borderline Personality Disorder [14].

Monitoring process. Therapists use the data gathered

with psychological assessment in later stages of the ther-

apy for monitoring the process of the patient during treat-

ment, such as for detecting any form of progress or devel-

opment of the patient. One existing approach for assessing

this process is the so-called microanalysis [30] which fo-

cuses on small changes in social, musical, and emotional

behaviour and experiences within one MT session. A com-

putational tool could assist in performing the microanalysis

on the musical content on aspects such as identifying mu-

sical dimensions of the patient’s improvisations that, for

instance, contain many repetitions for assessing the degree

of rigidity in the playing style; identifying aspects of in-

terventions of the therapist that caused changes in the pa-

tient’s playing style on a micro level; determining the di-

mensions which had the greatest influence on the musical

change observed in the improvisation. Gathering these in-

sights over different sessions helps to establish what is typ-

ical of a patient’s improvisational style and how it changes

over time as a result of the therapeutic interventions.

Moments Of Interest. Effects of MT are often seen

in specific moments within one musical improvisation ses-

sion. When carrying out psychological assessment, ther-

apists seek to identify these specific moments which can

be turning points in the development of a patient. The fo-

cus of the therapist’s analysis is to identify the so-called

Moments of Interest (MOIs) [21], though there exist many

other terms for MOIs, such as meaningful moments [36],

pivotal moments [37], and present moments [38].

MOIs are chosen by therapists based on what they

recognise as an important change [30]. It could be a

mistake (e.g. patient accidentally plays an unintentional

note), a mis-attunement between therapist and patient (e.g.

patient does not listen to the therapist’s playing which

leads to unsynchronized notes), a refreshing new harmonic

chord, etc. The musical events right after this moment are

also of interest, since the therapist notices if the change

leads indeed to something new within the improvisation

(e.g. if a moment of interaction occurs between patient

and therapist where they dissolve the mistake or continue

on the new chord). MOIs are not described by one single

form of musical change, different musical elements could

be of importance in the identification of MOIs for individ-

ual diseases and patients. For instance, for patients with

psychosis it could be an important change if they stop play-

ing repetitively [39], and for borderline patients it could be

an important change if they start alternating between lead-

ing and following the therapist in the improvisation [40].

3.1.1 Case study: playing styles for psychosis patients

A specifically interesting example for the potential applica-

tion of computational music structure analysis, is the iden-

tification of different playing styles within MTI of patients

with psychosis, including the finding of specific MOIs,

namely Moments of Synchronicity (MOS). The spectrum

of different playing styles as identified in [41] ranges from

so-called sensorial play to complete musical form. In be-

tween arise Moments of Synchronicity.

Sensorial play describes a style consisting of repetitive

and monotonous, or chaotic and fragmented play, with a

lack of phrasing, silences and dynamics. This style is typ-
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ical for patients with psychosis who are perceptually and

emotionally detached from their improvisation and are not

really engaging in the music, leading to an absence of in-

teraction between patient and therapist. Typical character-

istics of sensorial play are, e.g., random playing (tonal and

atonal), and a significant lack of variation.

Musical form denotes a playing style that is situated on

the other end of the range of observed playing styles in pa-

tients with psychosis compared to sensorial play. It arises

from an inter-subjective phenomenon between patient and

therapist, where both engage in a musical interaction. They

experience being autonomous and equal, and are able to in-

troduce their own new musical ideas to the improvisation.

It is characterized as an improvisation where dynamical

differentiation, pulse, phrasing, pauses, repetition, varia-

tion, rhythmic and melodic themes, and especially interac-

tion between players can be observed. A clear beginning,

ending and development can be identified.

Moments of Synchronicity (MOS). For patients with

psychosis, the goal is to progress from sensorial play to

musical form during several therapy sessions. In between,

MOS between patient and therapist need to be established.

These are short moments where both players have a shared

feeling of an autonomous and free playing style, consti-

tuting a moment of musical interaction. Often MOS are

fuelled by interventions from the therapist. In these mo-

ments, attunement/synchronicity in the musical parameters

of the patient and therapist can be observed and some vari-

ation, dynamics and phrasing emerge. A pulse, combined

with accents in the meter, are shared. MOS enrich the ther-

apeutic relationship, creating moments of trust, which en-

able the patient to take more risks in the music playing,

which in turn leads to changes in the patient. MOS are

the most basic form of a MOI; after these first interactions,

new interactions can emerge (see [41,42] for a detailed de-

scriptions of the playing styles and MOS).

In sum, MOS denote specific MOIs for patients with

psychosis, marking their transition from sensorial play to

musical form. Recognizing these different playing styles

identified by the extent as to how much musical structures

are present in a MTI, delivers an interesting case study for

MIR on musical structure analysis and pattern discovery.

3.2 Enhancing the creative potential for composing

The composition methods for enhancing the creative po-

tential of patients as part of active music therapy (see Fig-

ure 1) offer a particularly interesting field of application for

automatic pattern discovery. For creating compositions,

patients start with improvising music. Afterwards, the pa-

tient and therapist listen to the music together and seek to

find parts that the patient would like to use for composing

their own musical piece. The therapist writes down the mo-

tifs they hear in musical notation, which can be time con-

suming. A pattern discovery tool could be used to identify

and highlight all moments where the patient repeated their

motifs, and preferably these motifs could be automatically

transcribed to musical notation so that in the next phase of

the composition these motifs could be used immediately.

4. DEVELOPING MIR METHODS FOR MT

4.1 Existing Computational Approaches in MT

A number of computational approaches have been devel-

oped to support psychological assessment in MTI, which

we summarize in this section. According to [10,12], Com-

puter Aided Music Therapy Analysis System (CAMTAS)

was the first attempt to organize and analyse audio and

video data specifically from MT. Developed during the

mid-90s, it was used for uploading recorded data and play-

ing back audio and video files simultaneously. Another an-

notation tool, the so-called Music Therapy Analysing Par-

titura (MAP) [29], helps to annotate events in MT based on

therapist’s manual transcriptions. The therapist can anno-

tate the auditory material from a session, including the mu-

sic itself, but also e.g. talking, silence, crying, and laugh-

ing, using a visual format with fixed graphical codes, al-

lowing the therapist to view the content of one improvisa-

tion or over a whole session. Both CAMTAS and MAP

rely on manual work by the therapist without any auto-

matic detection of events from music recordings, hence us-

ing these tools is rather time-consuming [10].

Computational tools for MTI which analyse the musical

content are the Music Therapy Logbook [12] and the Mu-

sic Therapy Toolbox (MTTB) for MatLab [15,27,43]. The

Music Therapy Logbook was developed in collaboration

between MIR and MT researchers. It can be used to gather

evidence of changes in a patient‘s and therapist‘s use of

music over time for psychological assessment. In a proof-

of-concept study using simulated MTI where one expert

would improvise in the role of the patient and the other as

the therapist [12], existing MIR techniques e.g. for the de-

tection of tempo changes or the identification of rhythmic

patterns, have been employed. It was tested whether com-

putational methods can assist in evaluating whether ther-

apist’s tempo changes are effective in increasing the pa-

tient’s tempo flexibility. While it was possible to identify,

for instance, call and response type of play between ther-

apist and patient, it was concluded that addressing higher-

level concepts about musical interactions with computa-

tional means has yet to be fully explored in the future.

The MTTB tool takes MIDI files of therapist and patient

as input and automatically extracts musical features, which

it outputs into graphs depicting both the therapist and pa-

tient over time. The musical features in the MTTB are

based on the Autonomy profile of the IAP [27] described

in section 2.3. For instance, the density graph is calcu-

lated by averaging the number of notes played in a given

time window. Since theory suggests that increasing musi-

cal density is a sign of increased arousal and therefore in-

creased emotional and physiological density [44], density

should be clinically relevant [43]. By manually reading

and interpreting the two graphs of the therapist and patient,

the role-relationship can be determined for the feature. A

pilot study [45] investigated how the MTTB could support

clinical assessment from improvisations when combined

with subjective experiences of the participants, delivering

first insights on how this tool might be used in the future
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for investigating Bruscia’s improvisation techniques, such

as imitation and synchronisation through specific musical

parameters. The MTTB is still under development.

For monitoring the process of patients over several ther-

apy sessions with computational methods, the concept of

Musical Profiling was introduced in [10], comprising three

parts: Typical Performance for establishing a patient’s in-

dividual typical playing style, Temporal Evolution for mea-

suring the changes in different features in the improvisa-

tions over some time or over different sessions, and In-

dividual Tendencies, measuring relations between features

that are specific to that patient. In a case study with 6 par-

ticipants, they used e.g. averages of the features of dura-

tion, note count, tempo, pulse clarity, dynamic centroid,

and pitch centroid, to characterize a typical performance.

The Musical Profiling concept is intended to contribute to

establishing a systematic method of measuring and repre-

senting musical processes in improvisations in order to for-

malize assessment methods. To the best of our knowledge,

this concept has not yet been set into practice.

In sum, there exist promising first steps in developing

computational approaches to support the psychological as-

sessment of the therapist when analysing clinical improvi-

sations. They are not yet ready for use in clinical practice.

Linking high-level MT concepts (such as moments of in-

terest, tension, salience) to elements of the musical struc-

ture that can be extracted with computational features from

the music, is as of today not a solved problem (see [11,46]

for studies on linking computational features to clinical

improvisations). Moreover, from the perspective of their

practical use, tools like MATLAB are not easy to use for

all music therapists, and while MIDI is useful in the MT

research context, most clinical contexts work with audio.

4.2 Musical structure analysis and pattern discovery

For analysing the musical content of clinical improvisa-

tions, MIR methods for musical structure analysis [47–51]

as well as pattern discovery [52–64] could be of potential

use in the different application fields within MT described

in section 3. Techniques to identify coherent segments us-

ing concepts such as homogeneity, novelty, repetition, or

regularity, developed in music structure analysis [47, 48],

might be useful for describing structures emerging in clin-

ical improvisations. Pattern discovery methods could sup-

port the identification of different playing styles such as

sensorial play or musical form, taking into account the

amount and kind of repetition and variation in musical pat-

terns identified. However, these methods have been devel-

oped for different scenarios and styles, such as for popular

music, jazz, classical music or folk songs. It needs to be

explored in how far these techniques need to be adapted for

improvisations in the MT context; e.g. in [13] it has been

shown that repeated musical patterns identified in MTI

were rather different from patterns typically investigated

in musicological analyses of compositions and corpora.

Apart from the difference in the musical material, the

analysis process of music therapists differs from musi-

cological investigations of compositions. Typically, the

therapist has participated in the improvisation and analy-

ses afterwards the recorded musical material, taking into

account their own experience during the improvisation,

which might already steer the attention to certain elements

of the structure. This is different from a musicological

analysis of musical material that has been produced by

other musicians (or musical novices).

For adapting MIR methods to the context of MT, the

typical high-level concepts addressed by music therapists

need to be investigated and deconstructed collaboratively

in order to establish how these concepts are manifested

in musical features and structures that can be described

by computational means. Proof-of-concept studies such

as [10, 12] provide a promising start into applying MIR

features for analysing MTI. Yet, in order to develop mean-

ingful computational features for the working context of

therapists, their implicit knowledge employed in analysing

clinical improvisations needs to be made more explicit.

One example is given in [34] employing interviews with

therapists to determine implicit and explicit knowledge in

music analysis of MTI. Working towards the explicating of

this implicit knowledge through collaboration would also

contribute to establish how much agreement exists between

different therapists using the same terminology and analy-

sis methods. This constitutes an important step not only

for developing computational methods, but also in devel-

oping assessment methods that support the development of

evidence-based methods in MT.

4.3 Collaboration perspectives for computational

approaches to musical structure in MT improvisations

In MIR, there exists a strong tradition of collaboration

with domain experts on investigating specific musical con-

cepts for enabling computational modeling, such as on

Leitmotifs [65–67], on cadences [68–70], on similarity

of folk songs belonging to a tune family [71, 72], or on

melodic schemata and patterns of a certain musical style

[54, 55, 72–74]. The establishment of data sets and an-

notations of experts regarding these concepts has been a

crucial factor for enabling collaboration. We expect this to

be a necessary step also for developing computational ap-

proaches to music analysis for MTI. In the following we

indicate examples for the envisioned collaboration for the

applications described in section 3.

Initial clinical assessment. For developing computa-

tional methods for the analysis of improvisations within

the initial clinical assessment, data sets and descriptions of

typical playing styles for specific patient groups need to be

established. For instance, an overview of which profiles

and musical dimensions therapists typically select for spe-

cific patient groups within their manual assessment using

IAPs, could serve as a starting point for explicating thera-

pists’ knowledge on how to describe playing styles using

musical features. In the future, once computational meth-

ods have been established, they could support therapists to

initially scan all profiles with the help of computation, in-

stead of manually selecting a few, ensuring that nothing has

been overlooked before concentrating on selected aspects.
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Monitoring process. Comparing improvisations from

different sessions in order to monitor the therapeutic pro-

cess requires a data-rich approach to musical structure for

which computational methods are specifically apt. The

concept of Temporal Evolution within Musical Profiling

[10] is a first step to monitor process, using low-level mu-

sical features such as note count or pitch centroid. For get-

ting closer to the MT practice, the high-level concepts of

music analysis in MT need to be connected to appropri-

ate models in MIR, such as identifying recurring patterns

and the amount of repetitiveness and variation observed in

these patterns, and the comparison of features over time.

Finding MOIs and identifying playing styles. For an

overview on envisioned steps in the collaboration between

MIR and MT researchers on identifying MOIs as impor-

tant changes in the therapeutic process, we refer to the dis-

cussion in [8] on the creation of datasets and annotations,

and the use of automatic pattern discovery and informa-

tion theory. For the specific case of MOS as a progress

from sensorial play to musical form (see Section 3.1.1),

the identification of emerging synchronicity in the musi-

cal parameters of patient and therapist requires the model-

ing of musical structure as emerging from an interaction.

For instance, MIR models on rhythm and meter could be

adapted for detecting the establishment of a shared pulse

in MOS, requiring a data collection with improvisations

exhibiting different degrees of stability and variability in

temporal structures with annotations on MOS as identified

by therapists. For distinguishing different playing styles,

such as sensorial play and musical form as described in

section 3.1.1, computational methods for identifying mu-

sical structure, repetition and variation along different mu-

sical dimensions, can be employed.

Enhancing the creative potential of patients for com-

posing. Automatic pattern discovery has been success-

fully employed in MIR for the automatic generation of

music [75, 76]. For supporting the composition method

as part of active MT, pattern discovery could assist in en-

hancing the creativity of the patient in the iterative process

of generating a composition from improvisations. For dis-

covering appropriate motifs in the patient’s improvisations,

the methods need to be able to find non-exact matches

that might be perceptually meaningful. Appropriate visu-

alization methods for displaying identified matches could

support patients in choosing which matches they consider

meaningful to work with. Automatic music generation sys-

tems such as [77] could be used to explore whether they

might support enhancing the patient’s creativity in MT (see

the discussions in [78] on AI and musical creativity, and [8]

on automatic music generation specifically for MT).

We conclude the following steps for establishing the

collaboration between MIR and MT on developing com-

putational methods for music analysis of improvisations:

• Investigate music analysis methods of therapists and cre-

ate data sets with clinical improvisations and music ana-

lytic annotations from therapists. Using simulated ther-

apy sessions as in [12, 45] letting therapists imitate typi-

cal playing styles of patients is a first step, yet its useful-

ness is limited by providing only stereotypical examples.

• Establish a catalogue of typical intervention methods of

therapists in clinical improvisations as a first step on

finding appropriate musical features for developing an-

alytical methods to musical interactions in MTI.

• Explore computational approaches from MIR for the

automatic detection of musical structures in MTI; start

with assessing existing MIR features, and determine

suitable adaptations for supporting therapists’ analytical

concepts. Taking into account the granularity of music

information required, determine in which contexts sym-

bolic and/or audio formats are appropriate.

• Initiate case studies: For exploring the emergence of

musical structures in MTI, identifying different playing

styles of patients with psychosis as in Section 3.1.1 can

provide a particular interesting starting point for collab-

oration once datasets are established, since these playing

styles are well described in the MT literature.

• Assess how much therapists (dis)agree in their individual

intervention and analysis styles. Investigating the agree-

ment between therapists requires the building of dedi-

cated annotation tools and methods to measure agree-

ment between annotators, such as in [79–82].

• Assess how the intuitive knowledge of the music thera-

pist on their subjective experience in the improvisation

can be combined with and enhanced by the objective

analysis of the musical material through computation,

to support therapists in their daily work, and to further

establish evidence-based treatments in MT.

• Consider aspects of usability, including considerations

from HCI, for developing appropriate tools for the daily

practice of therapists; see [8, 42] for some general con-

siderations on developing tools for MT.

5. CONCLUSION

Clinical improvisation from music therapy provide inter-

esting and novel musical data for developing MIR methods

for music structure analysis and pattern discovery, aim-

ing to support therapists in their daily work. Interdisci-

plinary efforts between MIR and MT researchers need to

be invested to close the gap between high-level concepts

of music analysis used by therapists, and low-level fea-

tures of current computational approaches to analyse MTI.

Investigating music analysis methods employed by thera-

pists, including the explication of therapists’ implicit mu-

sical knowledge and the assessment of the agreement be-

tween different therapists, constitutes a crucial step for de-

veloping computational tools for MT. Specifically impor-

tant herein is the establishing of data sets with clinical im-

provisations for different application areas, such as for ini-

tial clinical assessment, including different patient groups

and catalogues of typical interventions of therapists. Cre-

ating these data sets through interdisciplinary efforts will

not only prepare the ground for the appropriate computa-

tional modeling of music structures in MTI, but also to a

better understanding of music analysis methods in MT, ul-

timately contributing to ongoing research on establishing

evidence-based methods in MT.
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ABSTRACT

Timbre transfer techniques aim at converting the sound of

a musical piece generated by one instrument into the same

one as if it was played by another instrument, while main-

taining as much as possible the content in terms of musical

characteristics such as melody and dynamics. Following

their recent breakthroughs in deep learning-based gener-

ation, we apply Denoising Diffusion Models (DDMs) to

perform timbre transfer. Specifically, we apply the recently

proposed Denoising Diffusion Implicit Models (DDIMs)

that enable to accelerate the sampling procedure. Inspired

by the recent application of DDMs to image translation

problems we formulate the timbre transfer task similarly,

by first converting the audio tracks into log mel spectro-

grams and by conditioning the generation of the desired

timbre spectrogram through the input timbre spectrogram.

We perform both one-to-one and many-to-many timbre

transfer, by converting audio waveforms containing only

single instruments and multiple instruments, respectively.

We compare the proposed technique with existing state-of-

the-art methods both through listening tests and objective

measures in order to demonstrate the effectiveness of the

proposed model.

1. INTRODUCTION

Timbre is an extremely important perceptual aspect of mu-

sic, yet it is hard to both model and define. The concept of

musical timbre can be defined as the perceived character-

istics of a musical sound that are different from pitch and

amplitude contours [1].

Timbre Transfer concerns the task of converting a musi-

cal piece from one timbre to another while preserving the

other music-related characteristics. While this operation

is not trivial, it is of extreme interest for several applica-

tions, from the development of plugins to be used in Digi-

tal Audio Workstations (DAW) to enabling the possibility

of playing sounds corresponding to not widely available

musical instruments.

© L. Comanducci, F. Antonacci, and A. Sarti. Licensed un-

der a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: L. Comanducci, F. Antonacci, and A. Sarti, “Timbre

Transfer using Image-to-Image Denoising Diffusion Implicit Models”, in

Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

In this paper, we present DiffTransfer, a technique for

timbre transfer which is tested both between single and

multiple instruments and is based on a continuous De-

noising Diffusion Implicit Model (DDIM) with determin-

istic sampling [2], a modified version of Denoising Diffu-

sion Probabilistic Models (DDPMs) that are trained using

the same procedure, but allow for faster sampling times.

Specifically, in [2] it was empirically shown that DDIMs

allow for 10×−50× faster wall-clock time performances

with respect to DDPMs.

In order to be able to convert one timbre into another,

we use a procedure similar to the recently proposed image-

to-image technique Palette [3]. Specifically, we use as in-

put to the diffusion model the noise and condition it with

the chosen input timbre spectrogram, then, through the de-

noising procedure, the model learns to reconstruct spec-

trograms of the desired timbre. We consider the scenario

where the timbre-transfer task is paired, which means

that the desired and input spectrograms have the same

melodic/harmonic content, but differ in terms of timbre.

We experiment both with the possibility of convert-

ing between tracks containing only single instruments and

also mixtures of instruments, with no prior separation step,

while making no modifications to the model in order to

take into account both configurations.

In order to demonstrate the effectiveness of the pro-

posed model, we compare DiffTransfer with state-of-

the-art techniques, both through objective measures and

by performing a user-based listening test. The source

code and audio excerpts can be found at https://

lucacoma.github.io/DiffTransfer/.

2. RELATED WORK

Several types of timbre Transfer techniques have been pro-

posed in the literature. In [4] a CycleGAN [5] is applied in

order to perform an unpaired transfer using the Constant-

Q transform and the audio is then recovered through a

WaveNet [6] model. In [7] an attention-based architecture

is applied in order to convert mel spectrograms, which are

then inverted through a MelGAN architecture [8]. Gaus-

sian mixture-based variational autoencoders are applied [9]

in order to learn a latent space where pitch and timbre rep-

resentations are disentangled.

Another class of methods, instead, extracts musical pa-

rameters such as pitch and loudness from the input audio

tracks and performs the transfer by resynthesizing sound
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Figure 1: Training scheme of the proposed DiffTransfer technique. The target instrument spectrogram is summed with

noise following a simplified cosine schedule. The decoder, conditioned on the conditioning instrument spectrogram and

on the sinusoidal embedding representing the current time instant estimates the added noise. The decoder parameters are

estimated by computing the L1 loss between the ground truth and the estimated diffusion noise.

through a network that has learned to generate tracks with

the desired timbre. The most known example of these

techniques is the Differentiable Digital Signal Processing

(DDSP) [10] model. Other similar techniques were pro-

posed such as [11], where a hierarchical model is used

in order to reconstruct the signal at increasing resolu-

tions. Recently there have been proposed also models

that directly work on the audio waveform such as [12],

where music pieces are translated to specific timbre do-

mains. The only model that, to the best of our knowl-

edge and except for the one proposed in this paper, is

tested on multi-instrument timbre transfer without any

source separation pre-processing is the Music-STAR net-

work, presented in [13]. In Music-STAR a WaveNet au-

toencoder [14] is trained by applying teacher-forcing [15]

to the decoders in order to recover the desired timbre.

Denoising Diffusion Probabilistic Models (DDPMs)

[16] have recently become the latest state-of-the-art for

what concerns deep learning-based generation fastly re-

placing Generative Adversarial Networks (GANs) [17] and

Variational Autoencoders [18], due to their easier training

procedure and increased quality of the produced results.

DDPMs have been successfully applied to a wide va-

riety of image-related tasks such as generation [19] and

translation [3].

More recently, DDPMs have been also used for audio-

related tasks. In [20] a diffusion model is applied in order

to convert midi tracks to spectrograms, while in [21] a text-

to-music diffusion model is proposed. DDPMs have also

been applied to symbolic music generation [22], speech

synthesis [23] and singing voice extraction [24].

While DDPMs have extremely powerful generation ca-

pabilities they suffer from slow sampling times. To amelio-

rate this issue, recently Denoising Diffusion Implicit Mod-

els (DDIMs) [2], which allow for faster sampling times and

were recently applied to image inpainting [25].

3. PROPOSED MODEL

In this section, we describe the proposed DiffTransfer tech-

nique for timbre transfer. Instead of working directly with

raw audio signals, we convert them into log mel-scaled

spectrograms, due to their easier handling by deep learn-

ing models. We then propose a model that, given as input

the spectrogram corresponding to the conditioning instru-

ment, generates the corresponding target spectrogram that

would have been obtained by playing the same piece of

music with the target instrument. Operatively we achieve

this through a conditional continuous-time DDIM, which

learns to denoise the target instrument spectrogram, while

conditioned on the input instrument spectrogram, as de-

picted in Fig. 1. At inference time, the model is fed with

the input conditioning instrument concatenated with Gaus-

sian noise and generates the corresponding target spectro-

gram. We retrieve the audio signal by applying to the log

mel spectrograms the SoundStream 1 model [26], provided

by [20] where it was trained on a custom music dataset.

In the following, we’ll provide a brief overview of the

DDIM framework and notation used in this paper, in order

to make the tractation as compact as possible, for addi-

tional and more thorough formulations, we refer the reader

to [2] and [3]. We aim at giving a general overview of the

process and we’ll use a slight abuse of notation to describe

the diffusion process using the continuous time framework,

1 https://tfhub.dev/google/soundstream/mel/

decoder/music/1
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in order to make it more similar to the more common liter-

ature regarding DDPMs and DDIMs.

3.1 Diffusion Decoder

We adopt a procedure similar to the Palette [3] image-to-

image translation technique in order to train the timbre

transfer decoder as a Denoising Diffusion Implicit Model

(DDIM) [2]. Broadly speaking, DDIMs work by learn-

ing how to generate data from noise in a two-part pro-

cedure. The first part is denoted as the forward process,

where Gaussian noise γ ∼ N (0, 1) is subsequently added

to the input until it is indistinguishable from the former.

The second part consists of the reverse process where a de-

coder learns how to invert the forward process, effectively

reconstructing data from the noise. DDIMs can be seen as

a generalization of DDPMs that shares the same training

procedure, however, they differ in the modeling of the re-

verse process, by using a non-markovian diffusion process,

which allows for faster generation times.

3.1.1 Forward Process

Let us define X and Y as the log mel spectrograms cor-

responding to the conditioning and target instruments, re-

spectively. We choose a continuous diffusion time [27–

29]in order to be able to change the number of desired

sampling steps. If we consider T steps, then the diffusion

time can be defined as t ∈ {0, 1}, where consecutive times

are separated by ∆t = 1/T . Then, the forward process is

defined similarly to the case of DDPMs by subsequently

adding noise to the target spectrogram for T steps

q(Yt|Yt−∆t
) = N (Yt,

√

(αt)Yt−∆t
, βtI),

q(Y1:T |Y0) =
T
∏

t=1

q(Yt−∆t
)

(1)

where α and β are parameters defined by a simplified co-

sine schedule [30].

3.1.2 Reverse Process

In the case of DDIMs, the reverse diffusion process is op-

erated by introducing an additional distribution pθ, where

a sample Yt−∆t can be generated from a sample Yt as

Yt−∆t =
√

βt−∆t

(

c−√
βtγ

(t)
θ (Yt,X)

√

(αt)

)

+

√

1− αt−∆t
· γ(t)

θ (Yt,X),

(2)

, where γ is the noise estimated by a network with param-

eters θ. The noise at time t γ
(t)
θ is estimated by a network

that is conditioned also on the input timbre spectrogram X,

similarly to the formulation proposed in Palette [3].

3.1.3 Training Procedure

The denoising process is operated through a U-Net archi-

tecture which is conditioned on X and trained to predict

the added noise in order to minimize the L1 loss

E = ||γ(t)
θ (Yt,X)− γ||11, (3)

where γ is the true perturbation, while γ
(t)
θ (Yt,X) is the

estimate of the noise added to the target spectrogram at

time t, conditioned on the input spectrogram X.

3.2 Architecture

The decoder architecture is based on a U-Net model. The

building element is made of residual blocks, in each of

these the input is processed by (i) a 2D convolutional layer

with swish activation, followed by batch normalization and

by (ii) a convolutional layer with no activation. Both con-

volutional layers have kernel size 3. The output of this

procedure is then summed with the residual, which is ob-

tained by processing the input with a convolutional layer

with kernel size 1.

The encoder part of the network consists of 3 downsam-

pling blocks, each consisting of 4 residual blocks having

filter sizes 64, 128, 256. The output of each downsampling

block is followed by average pooling, with pool size 2 in

order to compress the dimension of the spectrograms. The

last block of the encoder is followed a self-attention block.

The bottleneck obtained through the encoder is pro-

cessed by a residual block with 512 filters and is then pro-

cessed by the decoder, which is a specular version of the

encoder. The only difference lies in the use of transposed

convolutions in order to create upsampling layers needed

to increase the dimension of the features.

The last downsampling layer of the encoder, the bot-

tleneck and the first upsampling layer of the decoder are

followed by self-attention.

3.3 Deployment

The proposed model takes as input spectrograms of a fixed

size, therefore audio tracks longer than the ones used for

training need to be sliced accordingly.

The decoder takes as input the conditioning spectro-

gram X and the diffusion noise and retrieves an estimate of

the latter, which can then be subtracted in order to obtain

an estimate of the desired output timbre spectrogram Ŷ.

The output waveform y can then be obtained by feeding

the pre-trained SoundStream model with Ŷ.

4. EXPERIMENTS

In this section, we describe experiments performed with

the aim of demonstrating the capabilities of the proposed

DiffTransfer technique both in the single-instrument and

multi-instrument application scenarios.

In Fig. 3 we show an example of input, generated and

ground-truth spectrograms, obtained via the DiffTransfer

model when converting from a Clarinet to Strings.

4.1 Dataset

In order to train the model we considered the StarNet

dataset [31], which contains a set of tracks that are

played with two timbre-domains, namely strings-piano and

vibraphone-clarinet. The dataset consists of roughly 22

hours of audio. We used the reduced version of the dataset,
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Figure 2: Deployment scheme of the proposed DiffTransfer technique. The decoder is fed with Gaussian noise and with the

conditioning instrument spectrogram. The noise estimate provided by the decoder is then subtracted from the input noise

in order to provide an estimate of the desired target spectrogram, from which the audio is estimated via the SoundStream

model [20, 26].

where tracks are resampled to 16000 Hz and converted

them to mono. In order to perform the evaluation, we use

the same ten tracks considered in [13], in order to ease the

comparison with their model.

4.2 Techniques Under Comparison

We consider two baselines in order to compare the per-

formances of the proposed DiffTransfer architecture. For

what concerns the single-instrument timbre transfer task,

we consider the Universal Network [12] fine-tuned on the

StarNet dataset as done in [13]. For what concerns the

multi-timbre task, we consider the mixture-supervised ver-

sion of the Music-STAR network proposed in [13]. We

perform three different types of timbre transfer tasks: sin-

gle, where only single instruments are converted, sin-

gle/mixed where the separate conversions of single instru-

ments are mixed in order to create the desired mixture

track and mixture, where the mixture is directly converted.

These nomenclatures are used just to ease the presentation

of the results, we would like to point out that, for what con-

cerns the DiffTransfer architecture, no specific changes are

required for the various types of applications, except for

the choice of desired input data.

4.3 Experiment Setup

The Universal Network and Music-STAR architectures are

trained with the procedure described in [13]. The Diff-

Transfer network is trained for 5000 epochs using a batch

size of 16, with the AdamW optimizer [32] with learning

rate 2e− 5 and weight decay 1e− 4. The epoch that min-

imizes the L1 noise prediction loss is chosen in order to

retain the model used to compute the results. We train a

total of six models, performing the following timbre trans-

fer conversions: vibraphone to piano, piano to vibraphone,

clarinet to strings, strings to clarinet vibraphone/clarinet to

piano/strings and piano/strings to vibraphone/clarinet.

The network input features are computed by first apply-

ing the Short-Time Fourier Transform (STFT) with a Hann

window of size 0.020 s and 50% overlap to normalized

audio tracks. Then the log mel spectrogram is computed

over 128 bins corresponding to the range of 0− 16000 Hz.

We do not feed the entire audio tracks as input to the net-

work, instead, during each epoch we extract 128 frames

from the log mel spectrogram, corresponding to ≈ 2 s.
Each spectrogram slice is normalized between −1 and 1
before being given as input to the network and the out-

put spectrograms are denormalized before being fed to the

SoundStream model in order to recover the audio wave-

form. Since the tracks considered for the test are of length

10 s and the model gets as input a fixed 128 frames spectro-

gram we slice the conditioning spectrogram before feed-

ing into the model and we keep the input noise fixed for

all slices, in order to ensure consistency in the generation.

All spectrogram slices are normalized in the range [−1, 1]
and denormalized before being fed to the SoundStream de-

coder.

4.4 Objective Evaluation

We evaluate the model objectively in order to analyze the

perceptual similarity and content preservation capabilities

of the generated tracks with respect to the ground truth au-

dio.

In order to evaluate the perceptual similarity, we com-

pute the Fréchet Audio Distance (FAD) [33] using the VG-

Gish embeddings [34], through a PyTorch implementa-

tion 2 . FAD is a reference-free metric for music enhance-

2 https://pypi.org/project/

frechet-audio-distance/
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Figure 3: Example of Timbre Conversion log mel Spectro-

grams using the DiffTransfer architecture, obtained when

converting Clarinet (a) to Strings (b). The ground truth

Strings spectrogram is shown in (c).

ment algorithms, which views the embeddings as a conti-

nous multivariate Gaussian and is computed between the

real and generated data as

FAD = ||µr − µg||2 + tr(Σr + µg − 2
√

ΣrΣg), (4)

where (µr,Σr) and (µg,Σg) are the mean and covariances

of the embeddings corresponding to the real and generated

data, respectively. Similarly to [20], we compute FAD in

order to analyze the perceptual similarity between the gen-

erated audios with respect to the ground truth one, corre-

sponding to the original StarNet dataset.

To understand the content-preservation capabilities of

the model, following [35], we compute how the pitch con-

tours of generated ground truth audio tracks are dissimilar,

by calculating the mismatch between two sets of pitches A
and B through the Jaccard Distance

JD(A,B) = 1− |A ∩B|
|A ∪B| , (5)

where a lower value corresponds to a lower mismatch and

thus to a higher degree of similarity between the gener-

ated pitch contours. Pitch contours are computed using a

multi-pitch version of the MELODIA [36] as implemented

in the Essentia library [37], rounding pitches to the nearest

semitone. We report the values obtained by computing the

metrics on the test dataset in Table 1.

Objective Evaluation

Method FAD ↓ JD ↓
Universal Network (single) 7.09 0.53

DiffTransfer (single) 2.58 0.28

Universal Network (single/mixed) 10.47 0.64

DiffTransfer (single/mixed) 4.73 0.46

Music-STAR (mixture) 8.93 0.57

DiffTransfer (mixture) 4.37 0.38

Table 1: Objective Evaluation of the proposed DiffTrans-

fer Method compared to the baselines, in terms of Fréchet

Audio Distance (FAD) and Jaccard Distance (JD). Results

are averaged over all participants and over all the tracks

considered for each part of the test.

4.5 Subjective Evaluation

In order to evaluate subjectively the timbre transfer capa-

bilities, we perform a listening test with 18 human partici-

pants. The web page of the test is available at 3 . The test

was split into two parts corresponding to the single and

multiple instrument application scenarios, respectively.

During the single instrument part of the test, the users

listened to four tracks, corresponding to the four types of

conversions performed, namely: clarinet to strings, strings

to clarinet, piano to vibraphone, vibraphone to piano. Each

example consisted of two conditions, one obtained via the

DiffTransfer model and the other through the Universal

Network.

In the second part of the test, concerning multiple in-

strument timbre transfer, a total of four tracks were consid-

ered, two for the conversion from vibraphone/strings to pi-

ano/strings waveforms and two for the reverse conversion.

Each example consisted of four conditions, namely DiffS-

tar (single/mix), Universal Network (single/mix), DiffStar

(mixture) and Music-STAR (mixture).

Both the order of conditions and the order of examples

in each separate part of the test were randomized.

The participants were asked to rate the conditions in

terms of similarity with respect to the reference track on

a 5 elements Likert scale where 1 corresponds to bad and

5 to excellent. We report the results obtained through the

listening test in Table 2.

4.6 Discussion

By briefly inspecting both the objective and subjective re-

sults, reported in Table 1 and 2, respectively, it is clear how

the proposed DiffTransfer model outperforms the Univer-

sal Network and Music-STAR baselines both for what con-

cerns the single and multiple timbre transfer tasks.

When considering single timbre results, DiffTransfer is

able to achieve significantly better performances in terms

of FAD, Jaccard Distance and Perceived Similarity, with

respect to the Universal network. The gap between the two

methods becomes even more evident when considering the

3 https://listening-test-ismir-ttd.

000webhostapp.com/
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Subjective Evaluation

Method Similarity

Universal Network (single) 1.82

DiffTransfer (single) 3.68

Universal Network (single/mixed) 1.69

DiffTransfer (single/mixed) 3.78

Music-STAR (mixture) 2.89

DiffTransfer (mixture) 3.80

Table 2: Objective Evaluation of the proposed DiffTrans-

fer Method compared to the baselines, in terms of per-

ceived similarity with respect to the ground truth on a Lik-

ert scale from 1 (Bad) to 5 (Excellent). Results are aver-

aged over all test tracks.

single/mixed case, i.e. when single timbre transfer tracks

are mixed in order to form the desired mixture audio.

For what concerns the Music-STAR method, the gap

with respect to DiffTransfer remains high in terms of FAD,

but becomes less noticeable when considering JD and the

perceived subjective similarity.

5. CONCLUSION

In this paper, we have presented DiffTransfer a technique

for both single- and multi-instrument timbre transfer using

Denoising Diffusion Implicit models. The novelty of the

proposed approach lies in the fact that in addition to be-

ing, to the best of our knowledge, the first application of

diffusion models to timbre transfer, it is the first model to

be tested in order to perform single and multi-timbre trans-

fer, without varying the architecture depending on which

application is chosen. We compared the proposed model

with state-of-the-art Universal Network and Music-STAR

baselines through both objective evaluation measures and

a listening test, demonstrating the better capabilities of the

proposed DiffTransfer approach.

Future works will involve increasing the audio quality

of the generated audio, by taking into account the consis-

tency of subsequent generated spectrograms. Furthermore,

we plan on modifying the model in order to be able to

perform unpaired timbre transfer, which greatly eases the

dataset requirements and applicability of the technique.
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ABSTRACT

Music structure analysis is a core topic in Music Infor-

mation Retrieval and could be advanced through the in-

clusion of new data modalities. In this study we consider

neural correlates of music structure processing using pop-

ular music—specifically choruses of Bollywood songs—

and the NMED-H electroencephalographic (EEG) dataset.

Motivated by recent findings that listeners’ EEG responses

correlate when hearing a shared music stimulus, we inves-

tigate whether responses correlate not only within single

choruses but across pairs of chorus instances as well. We

find statistically significant correlations within and across

several chorus instances, suggesting that brain responses

synchronize across structurally matched music segments

even if they are not contextually or acoustically identi-

cal. Correlations were only occasionally higher within

than across choruses. Our findings advance the state of the

art of naturalistic music neuroscience, while also highlight-

ing a novel approach for further studies of music structure

analysis and audio understanding more broadly.

1. INTRODUCTION

Music structure analysis (MSA)—the task of dividing and

labelling songs into perceptually salient segments [1]—is

a core topic of Music Information Retrieval (MIR) and has

been approached through a variety of data types including

audio representations, lyrics, and perceptual annotations.

For example, choruses of popular songs are often easily

recognizable by music listeners, and can be detected from

audio due to both their placement throughout a song and

their intrinsic features [2]. While much progress has been

made in this area, there may be new approaches and data

modalities that could advance it even further.

MIR studies have come to involve brain data, partic-

ularly electroencephalography (EEG) [3]. EEG has been

used to predict stimulus labels, decode musical attributes

such as beat and tempo, and even reconstruct music. EEG

inter-subject correlation (ISC), which captures neural syn-

chronization of audience members experiencing a com-

© N. Rajagopalan and B. Kaneshiro. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: N. Rajagopalan and B. Kaneshiro, “Correlation of EEG Re-

sponses Reflects Structural Similarity of Choruses in Popular Music”, in

Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

plex, real-world stimulus [4], has also advanced music neu-

roscience research. We leverage and extend this approach

to investigate MSA.

We focus on responses to four Bollywood songs writ-

ten in the popular form—specifically their choruses, due

to their salience and tendency to repeat with a high de-

gree of similarity. Importantly, while past EEG-ISC stud-

ies have considered responses among listeners experienc-

ing the same stimulus (e.g., one chorus instance), we ask

for the first time whether neural responses also synchronize

across instances of structurally similar content (i.e., pairs

of choruses). Moreover, by using a dataset containing two

response trials from each participant, we can investigate

correlations both across and within participants. In sum,

we address the following research questions:

RQ 1 Does music structure similarity translate to measur-

able similarity among responses? In other words, do brain

responses synchronize across structurally matched musi-

cal segments, even when those segments are contextually

unique (in their placement within the song) and also of-

ten acoustically unique from one another? Here we ex-

pect structural similarity to produce statistically significant

EEG correlations both within and across a song’s choruses.

RQ 2 Even if responses are similar across chorus in-

stances, are individual choruses still uniquely experi-

enced? This question extends RQ1 to investigate whether

EEG responses are more correlated within, versus across,

chorus instances. We predict that within-chorus EEG cor-

relations will be higher than across-chorus correlations.

RQ 3 Are a listener’s neural responses more similar to

themselves than to responses from other listeners? Under-

standing whether reliable measures of music structure sim-

ilarity can be obtained from single listeners can motivate

the design of future studies. We expect EEG correlation

with one’s own data will be higher than correlation with

the data of other listeners, due to individual differences in

perception and EEG characteristics.

We report small but often significant correlations

that align with previous published research. Moreover,

within-chorus correlations do not systematically outper-

form across-chorus correlations. While preliminary, our

findings suggest that this novel application of EEG corre-

lation may capture structural similarity during music lis-

tening, which may motivate future MSA studies.
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2. RELATED WORK

2.1 MSA and Chorus Analysis

MSA involves recognizing and labelling non-overlapping

musical segments based on musical similarity [1]. Over

the years, MSA has come to involve specific features, sim-

ilarity representations, and algorithms [5]. One sub-topic

of MSA is chorus identification; here, choruses have often

been identified based on repetition and contextual cues us-

ing measures of similarity [6] and Markov models [7], as

well as chroma features and image processing filters [8].

Some systems have also used segment length and position-

ing to identify choruses [6, 8]. Independently of context,

Van Balen et al. looked at intrinsic content features that

might distinguish choruses [2]. Their “Chorusness” vari-

able, a probability measure of how likely a segment may

be labelled as a chorus by an independent annotator, high-

lights audio features (e.g., higher loudness and roughness)

that qualify the particular salience of choruses.

MSA remains a challenging task due, for example, to

ambiguities around defining similarity as well as subjec-

tivity and interpretation of annotations [1,9]. In their 2020

overview article, Nieto et al. called for “richer human la-

bels in upcoming MSA datasets” [1]; we propose that brain

data may fit this call.

2.2 MIR and EEG

The growing use of decoding and signal-based approaches

and complex, naturalistic (real-world) stimuli in neuro-

science has increased that field’s relevance to the more ap-

plied field of MIR. Kaneshiro & Dmochowski have sug-

gested that MIR and neuroscience researchers might aug-

ment their gains through collaboration, highlighting EEG

as a particularly relevant response type for MIR due to its

high temporal resolution, non-invasiveness, whole-brain

coverage, and relative portability and low cost [3].

EEG studies addressing MIR topics include using clas-

sification to predict which stimulus elicited an EEG re-

sponse [10, 11] or which stream a listener attended to

in a polyphonic stimulus [12–15]. Other tasks include

EEG-based tempo detection/classification [16–18], on-

set detection [19], and music reconstruction [20]. EEG

has been mapped to time-varying music or audio fea-

tures using Canonical Correlation Analysis (CCA) [21] or

deep-CCA [22]; by correlating EEG with semantic mu-

sic vectors [23]; or using MEG—the magnetic analogue

of EEG—and temporal response functions to decode sur-

prisal [24]. In recent studies, Ofner and Stober exam-

ined EEG responses at automated segmentation bound-

aries [25], and Sangnark et al. performed music preference

classification on EEG responses to choruses with and with-

out lyrics [26]. However, we know of no study to date that

has assessed similarity among EEG responses to repeated

structural segments.

2.3 Neural Correlation

A particularly relevant approach for the current study in-

volves the correlation of neural responses to a shared stim-

ulus, often termed inter-subject correlation (ISC). Has-

son et al.’s 2004 seminal functional magnetic resonance

imaging study showed that real-world stimuli (e.g., movie

excerpts) can synchronize neural responses across audi-

ence members, and that the timing and location of syn-

chronized activity identifies stimulus-evoked brain activ-

ity [27]. This data-driven approach, reducing the need for

controlled stimuli and a priori event markers, facilitated

the use of complex stimuli in neuroscience. In 2012, Dmo-

chowski et al. introduced an EEG implementation which

first optimizes the data for ISC [4]. Often referred to as

“Correlated Components Analysis (CorrCA)” [4] or “Re-

liable Components Analysis (RCA)” [28], this optimiza-

tion applies a relative eigenvalue decomposition to com-

pute multiple spatial filters in which across-trials variance

relative to within-trials variance (i.e., ISC) is maximized.

Recent studies involving music have shown that EEG-

ISC is modulated by listener expertise [29], musical

tempo [30], temporal stimulus manipulations [30, 31], and

salient musical events [31]. Auditory studies have reported

small but significant group-mean ISC (0.01 < r < 0.02)

in RC1, the maximally reliable spatial component. Rep-

etition, explored through repeated listens of full excerpts,

sometimes but not always results in lower ISC on repeated

listens [29, 30]. However, the topic of repeating structural

elements within a song has not yet been addressed.

2.4 Music-EEG Datasets

The acquisition and preparation of EEG data for analy-

sis requires specialized expertise and sizeable investments

in recording apparatus [3]. A key factor supporting MIR-

EEG research is the growing number of open EEG datasets

released with the intent for re-use by other researchers.

Datasets vary in stimuli, stimulus manipulations, partic-

ipant samples, listening tasks, additional response types,

and EEG platforms used. Shorter stimuli are used in

the MIIR dataset, comprising perceived and imagined re-

sponses to 12 excerpts 6.9–16.0 seconds in length [32] and

the MAD-EEG dataset involving 78 solo, duet, or trio stim-

uli, each around six seconds long [14]. Datasets involving

slightly longer excerpts include the DEAP dataset, with 40

one-minute excerpts from music videos [33]; MUSIN-G,

with 12 excerpts, 100–132 seconds in length, from var-

ious genres [34]; and NMED-M, containing five-minute

excerpts of various versions of a minimalist work [31].

Finally, a few datasets use complete musical works as

stimuli: NMED-H includes four Bollywood songs [35],

NMED-T uses 10 EDM-style songs [36], and NMED-E

includes a cello concerto movement [37].

3. METHODS

3.1 EEG Dataset and Stimuli

Among the available datasets, we chose to work with

NMED-H (Naturalistic Music EEG Dataset—Hindi) [35]

as it used full-length pop (Bollywood) songs with repeat-

ing choruses as stimuli. Specifically, we work with the four

“Intact” songs of the dataset: “Ainvayi Ainvayi”, “Daaru

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

265



Figure 1. Analysis overview. The NMED-H dataset contains EEG responses recorded while 48 participants listened to

four full-length Bollywood songs. We used RCA to compute a spatial EEG component in which ISC was maximized, and

used the stimulus audio and lyrics to identify chorus segmentation boundaries to further epoch the EEG. For each song,

correlations were performed within and across choruses, as well as between choruses and segments epoched at random.

Desi”, “Haule Haule”, and “Malang”. Each song is around

4 min 30 sec in length and contains between 3 and 5 cho-

ruses as illustrated in color in Fig. 1. The stimuli were

assumed to be new to the participants, who did not un-

derstand the Hindi-dialect song lyrics. We used the pre-

processed, 125-channel EEG data sampled at 125 Hz with

average reference; each song contained 24 trials from 12

unique participants (48 participants total) as each partici-

pant had listened to their assigned song twice.

3.2 EEG Analyses

To analyze the EEG, we followed an established proce-

dure of spatial filtering followed by correlation calcula-

tions (Fig. 1). We used a publicly available RCA imple-

mentation 1 to compute a single spatial filter across all four

songs. We computed RCA across entire song durations and

not just chorus segments, as our permutation testing pro-

cedure involved segments sampled from throughout each

song (see § 3.3). We then analyzed the vectorized form of

single EEG trials from only the maximally reliable com-

ponent RC1, as previous studies have shown that that com-

ponent explains most of the ISC in EEG responses to mu-

sic [30, 31]. Thus, the response data for each song was a

time-by-trial matrix, with 24 trials from 12 participants for

each song and a variable number of time samples per song.

To identify and segment song choruses, we first iden-

tified structural segment boundaries at the measure level

using lyrics. 2 Next, we used a publicly available beat-

tracking algorithm [38] to identify audio sample indices

of the boundaries and converted those time stamps to the

sampling rate of the EEG to segment the EEG accordingly.

Correlations were performed on a per-song basis, in

two broad categories. Within-chorus correlations involved

pairwise correlations among response trials from a sin-

gle chorus instance, producing a symmetric matrix whose

diagonal (being 1) was excluded from further analysis.

Across-chorus correlations involved the cross-correlation

of two matrices, each representing a different chorus in-

stance. These correlations produced asymmetric matrices,

since no response vector was ever correlated with itself.

1 https://github.com/dmochow/rca
2 https://gaana.com/, https://www.jiosaavn.com/

Each correlation also involved both intra-subject correla-

tions (IaSC) of non-identical trials from the same partici-

pant and inter-subject correlations (ISC) of trials from dif-

ferent participants. As illustrated in Fig. 2, with 24 trials

per song comprising two listens from each of 12 partic-

ipants, within-chorus correlations produced for each par-

ticipant one IaSC value (first listen and second listen) and

22 ISC values, excluding the diagonal. Across-chorus cor-

relations produced for each participant four IaSC values

(reflecting two distinct chorus instances × two distinct lis-

tens) and 88 ISC values. For each calculation, we com-

puted mean correlations at the participant as well as the

group level.

3.3 Statistical Analyses

We assessed statistical significance over distributions of

per-participant results (N = 12). For RQ1 we used per-

mutation testing: Each analysis was performed over 1000

pairs of segments of the same length as the true chorus

segments, but with one segment epoched from a random

start time in the song. The 1000 results served as the

null distribution against which we compared the true re-

sult to compute the p-value. For RQ2 and RQ3 we used

nonparametric Wilcoxon signed-rank tests to account for

variable standard deviations of the sampling distributions

caused by the discrepancy in the number of samples in

each group (i.e., IaSC versus ISC; within- versus across-

chorus). We performed one-sided tests in accordance with

our expected results (RQ2 H1: within > across; RQ3

H1: IaSC > ISC). We corrected for multiple compar-

isons using False Discovery Rate [39] on a per-song basis

for RQ1 and RQ3 and on a per-song, per-condition basis

for RQ2. We report statistically significant results (‘***’,

‘**’) and also indicate but do not summarize marginally

significant results (‘*’) for this first exploratory analysis.

4. RESULTS

4.1 Individual Correlations

We correlated vectors of spatially filtered, single-trial EEG

on a per-song basis, both among responses to single cho-

ruses as well as across pairs of different choruses. The re-
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Figure 2. Illustration of IaSC and ISC matrix elements for

Participant 1 of 12; each participant heard their assigned

stimulus twice. Top: Within-chorus correlation produces a

symmetric 24×24 matrix. The same IaSC correlation ap-

pears twice (purple), along with 22 unique ISC correlations

(yellow). Bottom: Across-chorus correlation produces an

asymmetric matrix with four unique IaSC correlations (2

choruses × 2 listens) and 88 unique ISC correlations.

sulting correlation matrices could then be partitioned into

correlations from the same participant (IaSC) and differ-

ent participants (ISC). Results are visualized in Fig. 3 and

provided numerically in Tab. 1. After multiple compari-

son correction, 10 of 15 within-chorus IaSC and 2 of 22

across-chorus IaSC were statistically significant (‘**’ or

‘***’). For ISC, 14 of 15 within-chorus calculations and

12 of 22 across-chorus correlations were significant. IaSC

distributions tended to have larger variance than ISC dis-

tributions, both at the participant level for single analyses

(Fig. 3) and across the group means (Tab. 1).

4.2 Within- versus Across-Section Correlations

We assessed whether within-chorus correlations—

involving identical musical content and context—were

higher than across-chorus correlations, which are struc-

turally similar but not identical. Tab. 2 summarizes

the statistical significance of each comparison. After

correcting for multiple comparisons, within-chorus IaSC

was found to exceed across-chorus IaSC 7 times, while

within-chorus ISC was higher than across-chorus ISC 4

times. Significant (and marginally significant) results most

often implicated the first chorus of a song.

4.3 Intra- versus Inter-Subject Correlation

For our last analysis, we assessed whether IaSC—being

computed from the same listener’s data—would exceed

ISC. Contrary to our expectations, one-sided Wilcoxon

signed-rank tests revealed that after multiple comparison

correction, IaSC did not exceed ISC for any within- or

across-chorus correlation.

5. DISCUSSION

MSA has leveraged various representations—e.g., audio,

lyrics, human annotations—to model human perception

of musical structure. In this study we have answered the

call for new forms of human response data to inform this

task [1] and explored perception of repeated structure seg-

ments using brain data. Specifically, we assessed whether

EEG responses to repeating choruses of four Bollywood

songs were significantly correlated.

We found that EEG responses within and across cho-

ruses of a song were often significantly correlated, particu-

larly for ISC. While small, these ISCs are on par with those

reported in previous auditory EEG studies [30,31,40]. Cor-

relating across choruses contrasts with past ISC research,

which considered correlation only among responses to a

single stimulus. That precedent may be due to those stud-

ies using predominantly narrative stimuli, such as movies

or speeches, which generally do not include repeated seg-

ments. But for music, repetition is often integral to

structure, from brief melodic motifs to large-scale ele-

ments [41]. The present use of ISC to assess music struc-

ture similarity is also a departure from its previous ap-

plication to index brain states of attention and “engage-

ment” in relation to attributes of stimuli (e.g., narrative ten-

sion, temporal coherence) [4, 30, 31] or participants (e.g.,

trained versus untrained musicians) [29]. Future research

could consider data from spatial components beyond RC1

and further explore relationships between EEG correlation,

music structure, and repetition to index both content simi-

larity and listener engagement with repeated content.

We found that within-chorus correlation occasionally

but not consistently exceeded across-chorus correlation;

future research is needed to elucidate the role of acous-

tical or contextual differences across chorus instances in

this result. Notably, within-chorus correlation most often

exceeded across-chorus correlation in a song’s first cho-

rus. Past studies have shown that EEG-ISC often drops

upon repeated exposures to full stimuli [4, 29, 30], and

music-discovery engagement has been shown to be highest

for first choruses compared to subsequent instances [42].

While this might lead one to expect higher ISC during
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Figure 3. EEG correlations within and across choruses of four Bollywood songs. Each plot shows a distribution of intra-

(IaSC) and inter- (ISC) subject correlation values across the 12 participants assigned to that song. Statistical significance

of each correlation is denoted as p = 0 *** 0.01 ** 0.05 * 0.10 for FDR-corrected p-values.

the first chorus, current results do not suggest that within-

chorus correlation drops as a song progresses. However, it

may be that listeners have a unique perceptual experience

of first choruses relative to other choruses.

Our expectation that IaSC would exceed ISC was not

supported by the data. The large variance of IaSC rel-

ative to ISC, and greater number of significant ISC re-

sults despite lower group means, suggests that ISC ulti-

mately provided a more stable estimate of neural correla-

tion. Whether this is due to IaSC comprising fewer cor-

relations, or an advantage of correlating across a hetero-

geneous sample of listeners, can be further investigated to

inform future study designs.

This study contributes a first step toward using EEG

data for MSA. While we focused on establishing similar-

ity of neural responses among pre-identified repeating seg-

ments, and not detection of repeated segments or segment

boundaries, our findings lay a foundation for multiple av-

enues of future work. For instance, a multimodal MSA

framework could incorporate EEG measures of similarity

alongside music content representations and human anno-

tations. Other EEG-ISC analysis configurations may also

prove useful for MSA: For instance, Dauer et al.’s finding

that ISC computed over short time windows peaked during

salient musical events including structural segment bound-

aries [31] is worth exploring further. Returning, too, to es-

tablished connections between ISC and engagement, using

ISC to identify highly engaging portions of songs could in-

form audio thumbnailing. Finally, while the present work

leveraged an existing dataset, future studies could be de-
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IaSC ISC
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

S
o

n
g

1

C1 0.069** 0.017***
C2 0.020* 0.016 0.004 0.016**
C3 0.021* 0.041** 0.083** 0.008* 0.017*** 0.017***
C4 -0.006 0.019 0.005 0.028* 0.010** 0.014** 0.013*** 0.026***

S
o

n
g

2

C1 0.082*** 0.019***
C2 0.013 0.046** 0.019*** 0.001
C3 0.004 -0.003 0.013 0.010 0.007 0.010**
C4 0.018 0.014 0.044*** 0.053** 0.010 0.006 0.011** 0.020***
C5 0.015 0.021 0.001 0.010 0.024 0.013* 0.006 0.001 0.016*** 0.023***

S
o

n
g

3 C1 0.059** 0.020***
C2 0.007 0.030** 0.003 0.005**
C3 -0.003 0.000 0.026** 0.010** 0.008*** 0.007**

S
o

n
g

4 C1 0.036** 0.017***
C2 0.012 0.012 0.015*** 0.017***
C3 0.017* 0.019* 0.045** 0.013*** 0.012*** 0.014***

Table 1. Intra- and inter-subject correlation coefficients within and across choruses of four Bollywood songs. Statistical

significance of correlations (FDR-corrected p-values) is denoted as p = 0 *** 0.01 ** 0.05 * 0.10.

IaSC ISC
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

S
o

n
g

1

C1 - * * * - ** ** *
C2 ns - ns ns ns - ns ns
C3 ns ns - ** ns ns - ns
C4 ns ns ns - * * ns -

S
o

n
g

2

C1 - ** ** ** ** - ns ns ns ns
C2 ns - ns ns ns ns - ns ns ns
C3 ns ns - ns ns ns ns - ns ns
C4 ns ns ns - ns ns ns ns - ns
C5 ns ns ns ns - ns * * ns -

S
o

n
g

3 C1 - *** *** - *** **
C2 ns - * ns - ns
C3 ns ns - ns ns -

S
o

n
g

4 C1 - ns ns - ns ns
C2 ns - ns ns - ns
C3 ns ns - ns ns -

Table 2. Results of one-sided Wilcoxon signed-rank

tests assessing whether within-chorus correlation exceeds

across-chorus correlation. Statistical significance of corre-

lations (FDR-corrected p-values) is denoted as p = 0 ***

0.01 ** 0.05 * 0.10; ‘ns’ denotes non-significance.

signed to address specific MSA questions with newly col-

lected EEG data. In all, we do not propose that EEG

should or could replace existing data modalities for MSA,

but rather highlight potential insights from EEG that may

complement other existing approaches and inputs.

5.1 Limitations

We acknowledge limitations of this work. First, while we

report multiple significant results, they do not imply gener-

alizability: The correlations are small, and our findings—

while promising—are not conclusive across all calcula-

tions. Next, we chose NMED-H as a ready-to-use EEG

dataset of responses to popular songs containing repeated

choruses. But the small stimulus set of four songs also hin-

ders generalization, and future confirmatory studies should

utilize a larger song set. We note that the original design of

NMED-H specified that participants not be familiar with

the songs or the language of their lyrics [35]. This too may

limit generalizability, as more familiar or lyrically under-

standable songs may result in different EEG correlations.

Another main limitation is that while the song choruses

crucially elicited the EEG data, they were only treated as

repeating segments, and we did not consider nuances of

placement or content attributes of individual choruses. Yet

such features are known to impact perceptual and neural

responses to choruses [26]. Thus, future research should

consider finer-grained characterizations of music segments

treated as structurally similar. One concrete next step could

involve cross-modal comparisons of music similarity—for

instance, whether similarity measures derived from audio,

lyrics, or human annotations predict neural similarity.

Lastly, we trained RCA once over all available tri-

als. Future work should incorporate cross-validation—

iteratively optimizing the RCA spatial filter on training

data and then applying it to holdout test trials—into the

analysis pipeline to avoid overfitting.

6. CONCLUSION

MSA is an MIR topic with rich applications in audio

thumbnailing, motif-finding, music summarization, music

recommendation, and automatic music generation. Aim-

ing to expand the scope of data modalities that may in-

form this task, we have contributed a first look at structural

repetition using brain data. We used a publicly available

EEG dataset and analyzed single-trial responses to cho-

ruses from four Bollywood pop songs by computing intra-

and inter-subject correlations within and across choruses.

We find that neural responses do often synchronize to a

significant extent, which suggests that similarity among re-

peated choruses may translate to neural similarity. These

findings motivate future studies of music similarity percep-

tion and highlight EEG data as a promising input to multi-

modal MSA systems.
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CHROMATIC CHORDS IN THEORY AND PRACTICE
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ABSTRACT

‘Chromatic harmony’ is seen as a fundamental part of

(extended) tonal music in the Western classical tradition

(c.1700–1900). It routinely features in core curricula. Yet

even in this globalised and data-driven age, 1) there are

significant gaps between how different national ‘schools’

identify important chords and progressions, label them,

and shape the corresponding curricula; 2) even many com-

mon terms lack robust definition; and 3) empirical evi-

dence rarely features, even in discussions about ‘typical’,

‘representative’ practice. This paper addresses those three

considerations by: 1) comparing English- and German-

speaking traditions as an example of this divergence; 2)

proposing a framework for defining common terms where

that is lacking; and 3) surveying the actual usage of these

chromatic chord categories using a computational corpus

study of human harmonic analyses.

1. INTRODUCTION

Different traditions for teaching music theory come with

divergent terminology. These gaps often correspond to na-

tional trends (or ‘schools’) and to the different languages

used. As always with language, these gaps can take several

forms. Some terms may be shared by the two languages,

so no translation is needed. Other times, a term is present

in one language only; this inclusion may indicate an im-

portance for the term/concept on one side of this divide

and not the other. More complex still, two languages may

have some terms with partially overlapping meaning.

There are significant gaps between English- and

German-speaking terminology for chromatic harmony, de-

spite so much shared historical heritage. Even the dis-

tinction of ‘chromatic’ from ‘diatonic’ betrays an English-

language stance. Section §1.1 introduces something of a

frame for this comparison and §2 discusses three inter-

esting case-studies of ‘canonical’ terms. The focus is on

chords that are either intrinsically chromatic (Augmented

Sixths, §2.2), or chromatic against their diatonic context

(Neapolitan Sixths, §2.1; Modal Mixture, §2.3). We leave

to one side what is sometimes called ‘functional chromati-

cism’ (the ‘secondary’/‘applied’ chords involved in tonici-

sation/modulation – see [1, Part 5]) though the final section

(§5) briefly considers some relevant chord progressions.

© M. Gotham. Licensed under a Creative Commons Attri-

bution 4.0 International License (CC BY 4.0). Attribution: M. Gotham,

“Chromatic Chords in Theory and Practice”, in Proc. of the 24th Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

E B F♯ C♯ G♯ D♯ A♯

C G D A E B F♯ C♯

E♭ B♭ F C G D A

C♭ G♭ D♭ A♭ E♭ B♭ F C

Figure 1. A ‘Tonnetz’ diagram of tonal space. Major and

minor triads in the key of C major are grey; those in C

(natural) minor are in blue, and the ‘Neapolitan’ is purple.

Moreover, a closer look reveals that even some of the

apparently core concepts in chromatic harmony are only

vaguely defined. For example, although ‘modal mixture’ is

common (at least in US-English music theory), no source

sets out comprehensive criteria for inclusion in this cate-

gory. Section §3 addresses this, seeking to establish not so

much a single, definitive answer, but a framework to deal

with the various issues involved.

Finally, having established the (range) of terms that

German- and English- speaking scholars elevate as impor-

tant, and clarified the meaning of some, §4 provides an

initial overview of the relative usage of these chords in the

‘When in Rome’ repository: a meta-corpus of all Roman

numeral analyses that human annotators have encoded in

computational formats [2]. In doing so, we gain insight

into how common these chords are, at least in the reper-

toires covered and the view of those human analysts.

Clearly, sheer usage is not the only relevant consider-

ation for the significance of a chordal category — many

subjects are interesting partly because of their rarity. In

any case, all such discussions, and any claims about ‘gen-

eral practice’, need a basis in this kind of empirical ev-

idence. The clarity that evidence brings may prompt a

review of our existing practice (how we categorise these

chords, and/or how much time we devote to them in our

curricula and wider musical practice). It may also clarify

the extent to which that attention is based on the frequency

of occurrence as opposed to some other factor, like how

explainable the concept is in terms of a particular theory.

1.1 Textbooks, Terminology, and Tradition

We begin with that slippery notion of a ‘tradition’. While

it is hard to pin down exactly what this means in prac-

tice, 1 the contents of widely circulated textbooks provide

1 For more on the question of ‘representativeness’, see [3].
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one kind of insight into what is ‘typically taught and com-

monly known’ in a given context. Among the issues here

is the privileging of contexts in which textbooks are com-

mon (broadly speaking, the US), and lack of sensitivity to

more flexibly amassed materials, particularly in a changing

world with ever more materials shared ever more accessi-

bly online. 2 Then again, many of these online materials

and apps continue to reflect what is described here in terms

of textbooks. And I implicate myself in this: see, for ex-

ample, the chapter listings and content of the ‘Open Music

Theory’ (OMT) textbook [5] which (incidentally) serves

throughout this paper as a go-to resource for further read-

ing, with links to relevant chapters provided.

1.1.1 English-language (hereafter ‘Anglophone’)

On the Anglophone side we benefit from two surveys of

the ‘core curriculum’ in American music theory teach-

ing, including information about the textbooks typically

used [6, 7]. The more recent of these surveys finds that

91.89% (238/259) respondents include ‘Chromatic har-

mony’ in their core curriculum (see Table IV-1), with 1

or 2 semesters being the ‘most commonly reported lengths

of time for teaching’ this content (p.202, Table IV-9), and

that 79.92% use textbooks/anthologies (Table IV-10).

These surveys also appear to indicate that the preference

for which textbook to use changes quickly, 3 but that what

those textbooks cover remains largely the same: they con-

sistently cover the same canonical collection including at

least the so-called ‘Neapolitan sixths’, ‘Augmented sixths’,

and ‘Modal Mixture’. 4

Click on those terms above for OMT chapters about

them, and click here for a summary of these chords in a

musical score that you can view, play and more online (no

login required). That rendering is relatively typical of the

simple, purportedly ‘prototypical’ ways these chords are

set out in textbooks. (Naturally, we will discuss here just

how prototypical they really are.)

1.1.2 German-language (hereafter ‘DACH’)

As no equivalent survey existed for the DACH side, 5 we

conducted one anew in mid-2022. 6 Specifically, we asked

anyone teaching chromatic harmony at a German-speaking

tertiary education institution to answer basic questions

about the textbooks and terminology they know and use.

Please refer to that study for a thorough report on the

method and results of the survey. This paper refers to only

the most salient results as relevant for present purposes, as

discussed in the following sections.

2 On the growing adoption of technological alternatives see the ‘What
Do Musicologists Do All Day’ (WDMDAD) surveys (2014-15, [4] and
2021-22, forthcoming) which investigate ‘the use of technology in the
work of music researchers in the widest sense’ (including teaching).

3 I.e., there is little overlap between the 2000 and 2017 results.
4 Increasingly, many also refer to the common-tone diminished sev-

enths, (for which see §5) though they often package this more deeply
e.g., within the ‘Rise of Symmetrical Harmony in Tonal Music’ [1].

5 ‘DACH’ is an abbreviation/acronym for Germany, Austria and
Switzerland. These are the main areas of German-speaking today and
where all the institutions approached for the survey are situated.

6 The written report is forthcoming (Feilen, Schnauss and Gotham).

2. THREE CANONICAL CATEGORIES

2.1 Similar usage: the ‘Neapolitan sixth’

The ‘Neapolitan sixth’ appears routinely in both lan-

guages. It is interesting to note the status of this chord in

relation to the Funktions- and Stufentheorie approaches to

harmony which capture much of the core divide between

DACH and Anglophone approaches (respectively).

The Neapolitan can be seen as a simple, one-semi-tone

modification to the minor subdominant. 7 In Funktions-

theorie, such small transformations typically indicate close

harmonic relations, leading to maps of tonal space like

the Tonnetz of figure 1 which shows how the Neapolitan

sits alongside diatonic chords, especially in minor. 8 (We

will return to the minor-specific aspect in practice in §4).

Stufentheorie, by contrast, typically describes the Neapoli-

tan in terms of a modification of the second degree (♭II6).

This is clearly relegated to a subsidiary position, a ‘chro-

matic’ chord outside the main, ‘diatonic’ set. 9

Notwithstanding the different theoretical frames, the

Neapolitan presents relative close Anglophone-DACH

agreement: not only is there agreement on which pitches

are involved, but both typically relate this chord to the

‘subdominant’ (both), or more loosely to ‘predominant’

function (Anglophone). Despite the Anglophone notion of

♭II6, the close relation to ‘iv’ (‘s’) is often emphasised, and

likewise it is common in DACH to eschew the possible

Funktions-only explanation in favour of the symbol sn that

further emphasises the proximity to the subdominant.

Anglophone and DACH traditions also share most of

the definitional incompleteness, notably terms of whether

to admit: other inversions (e.g., 53) and other tones (e.g.,

seventh chords such as 653). DACH theory often does

admit the 53 configuration of this chord, and reserves a

special name for it: the verselbständigter. It is notewor-

thy that, despite being rather sparing in its use of special

terms for individual chords, DACH considers the Neapoli-

tan worthy not only of one term, but two. 10 Both Anglo-

phone and DACH theories lack an explicit consensus on

whether the Neapolitan may have a seventh.

2.2 Divergent terms: Augmented-sixth chords

The Anglophone convention for teaching Augmented-

sixth chords identifies (at least) three forms that have been

given spurious national labels: the ‘Italian sixth’ (63), the

‘French’ (643), and the ‘German’ (653). Those labels seem

7 This can be viewed as the Mollsubdominantgegenklang (sG), though
see the following text on sn. The -gegenklang transformation is the same
as the -gegenparallel and better known in Anglophone contexts as the
leittonwechsel or ‘leading-tone exchange’.

8 Although this common visual analogy for tonal ‘space’ is familiar to
Anglophone music theory, is much more closely related to the Funktions

mentality. The earliest, recognisable form seems to be from Euler [8]
(yes, the mathematician) but the best known exposition of this idea and
‘space’ is that of Riemann [9] (no, not the mathematician).

9 DACH can also express this chromatic alteration (hoch- and tief-

alterierte), but usually does so a last resort where other theory fails.
10 One of the earliest recorded Anglophone uses of this term treads a

middle line in which the chord is explicitly built on the subdominant scale
degree (‘Fa’, i.e., 4̂) and ‘is never inverted’, apparently meaning that, un-
usually, this 63 form is not to be considered ‘inverted’ [10].
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to have originally been proposed (c.1800) based on their

usage in the repertoire. For example, [11] explicitly links

these chords to the music of those nations. 11

Leaving until §4 the question of whether these national

labels have anything to do with repertoire usage, there is

an Anglophone/DACH division in the terms themselves

which may perhaps be telling. DACH emphasises a sin-

gle category for which the recognised term is übermäßiger

Quintsextakkord. This explicitly refers to the 653 form —

the one that Anglophone theory calls the ‘German’ sixth.

This also indicates opposing ways of handling aug-

mented sixth chord categories: Anglophone traditions not

only use 3 categories, but tend to start with the ‘Italian’

(63) as the prototype (at least in the pedagogical sense)

and then add tones to build the French (643) and German

(653); DACH, by contrast, starts with the 653 and would

need to remove or modify from there. 12

These differences aside, there is broad Anglophone-

DACH agreement on the composition of the chords. The

eponymous augmented sixth interval is needed (and spelt

as such), and there is a strong focus on both the inversion

that sees the lower note of that interval in the bass and the

voice-leading whereby this interval expands ‘out’ to a per-

fect octave on the dominant (5̂).

2.3 Anglophone only: ‘Modal Mixture’

Most Anglophone textbooks offer a short definition of

‘modal mixture’ (a.k.a. ‘borrowing’) as the use of a chord

that is not diatonic in the key specified, but would be in the

parallel (German: variant) major / minor and can therefore

be thought of as a ‘mixture’ of major and minor modes, or

a ‘borrowing’ from the one to the other. Some coverage of

this topic is present in all the Anglophone textbooks sur-

veyed, usually with a dedicated chapter.

No DACH equivalent appears in German text-

books. Equivalents do sporadically appear in DACH

analysis scholarship with terms such as Dur-moll-

Austauschbarkeit, (or simply Austauschbarkeit, literally

‘exchange’), but this term cannot be assumed knowledge

in the classroom or beyond. 13

Despite the ubiquity of the term ‘mixture’ in Anglo-

phone textbooks, it is particularly under-defined and never

fully unpacked to account for all in-/exclusions. This is

perhaps understandable in a pedagogical context where the

increased clarity must be weighted against the correspond-

ing complexity, but as a field, we clearly need a framework

for robust definition. The following, dedicated section §3

provides such a framework.

11 Callcott appears to have inherited the term ‘Italian’, noting that it
‘has been termed’ the Italian. There’s no direct reference, though nearby
mention of Rousseau suggests that may be at least one of his sources.
Callcott seems to introduce the other two ‘nationalities’.

12 Click here for a modern, online example of this DACH pattern, and
see also Biamonte’s account of this chord, including DACH sources dat-
ing back to Marpurg 1755 [12].

13 Incidentally, it is not self-evident that this ‘mixture’ is indeed a mix-
ture of distinct parts, as opposed to a unified entity. For instance, another
school of thought (historically of German-origin, now more common in
Russian music theory) sees the major mode with ♭6̂ as a single ‘harmonic
major’ scale. See [13] for the progress of this idea from Hauptmann, via
Iogansen, Liadov, and Rimsky-Korsakov to modern Russian theory.

3. DEFINING MODAL MIXTURE

In a major context, the subdominant is also major (‘IV’ or

‘S’). Probably the most common chord identified in terms

of modal mixture is the minor variant of this subdominant

(‘iv’ or ‘s’). So in C major, for example, we would have

<F-A♭-C> in place of <F-A-C>.

But what if this mixture chord had a seventh, so not sim-

ply <F-A♭-C>, but <F-A♭-C-E♭>, or <F-A♭-C-E>? The

first case, <F-A♭-C-E♭> seems like a very good candi-

date: the additional borrowing from the minor of E♭ fur-

ther strengthens the case for mixture. The same can’t be

said for <F-A♭-C-E> as E belongs to C major exclusively

and arguably counts against the notion of mixture. 14 So

should cases of clear non-mixture be excluded?

If we admit the <F-A♭-C-E> as a case of modal mixture,

then what do we have to say about the case of <F-A-C-

E♭>? Is that equivalent? Now the E♭ is borrowed, but the

A is arguably not depending on the type of minor mode.

What minor form are we talking about when we speak

of mixture? Some accounts seem to hint at the natural mi-

nor, but then every raised leading-tone chord (V, V7, viio,

. . . ) would count as cases of mixture in minor.

Should the case of <F-A-C-E♭> depend on whether

it is cast as IV♭7 or as V/♭VII? That is, should sec-

ondary/applied chords be handled differently as a case

of ‘functional’ chromaticism or (put another way) as dia-

tonic elements in a new key area? Does this depend on

whether that secondary tonality is realised by a subsequent

tonicisation or modulation? This question opens a sec-

ond set of possible criteria: in addition to questions about

the chord’s content, we now must also consider its context.

Speaking of context, does the so-called ‘Picardy

Third’ count? 15 And arguably related to both content

and context, (and certainly relevant to applied chords) is

the question: does pitch spelling matter? Were our <F-

A-C-E♭> chord spelt as <F-A-C-D♯>, apart from poten-

tially leading analysts to describe it differently, should that

spelling itself have a bearing on the status of mixture? Is

the minor third mixed only when spelt as such, or is it to be

handled as a pitch class, and thus admitting the enharmonic

equivalent of a raised second degree (♯2̂)?

Altogether, these musical questions capture something

of the ambiguity in defining modal mixture, and the need

for greater clarity in what ‘counts’. They also suggest

the need to create a framework for category membership,

rather than clear-cut rules applicable in all contexts.

Realising this, functionality at ‘When in Rome’ enables

user-defined answers to any of the questions raised above,

while also providing default settings and proposing a sys-

tem for grading the relative strength of mixture, both in

terms of the chord content and of the surrounding chord

context.

14 Note we are talking specifically about how relatively mixed these
chords are, not how chromatic.

15 This term stands for the practice of ending a minor key passage with a
major tonic as the final chord. (Click here for the modal mixture chapter
of OMT, including an example of the ‘Picardy Third’.) It is extremely
common, at least in some repertoire contexts.
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3.1 Which pitches, which minor?

In working towards a relative gradation of mixture (which

may be paired with strict requirements/exclusions), we be-

gin with an account of how each pitch can add to or detract

from the mixture status. This necessarily also involves the

question of ‘which minor’, a conundrum which often com-

plicates matters of definition in tonal music.

Many definitions of modal mixture restrict themselves

to natural minor specifically (minor 6̂ and 7̂), yet they do

not describe V in minor as a mixture, despite the raised 7̂

clearly belonging to major and not the chosen minor form.

Tones’ mixture status can be organised in a few categories:

clearly indicative of one mode and not the other; possi-

ble indication of mixture; and neutral/shared. The follow-

ing categorisation is logically guided, but only one (set of)

opinion(s). Users of this framework are free to re-allocate

the status of these pitches (within reason).

3.1.1 Clear (non-)mixture: m3, M3, m6

Tones strongly indicate (non-)mixture when they clearly

belong in either the host mode or the parallel mode but not

both. The clearest example is scale degree 3̂. The minor

third (m3) is a clear case of mixture when it appears in ma-

jor (hereafter min→maj mixture) and non-mixture when

in minor. Likewise, vice versa, for the major M3: this is

a clear case of mixture in minor (hereafter maj→min) and

non-mixture in major. (Again, these comments are sep-

arate from the context caveats discussed elsewhere, e.g.,

concerning the ‘Picardy Third’.)

The minor sixth (m6) in major is almost as clear: it is

not in the major scale and does belong to both natural and

harmonic minors, as well as the descending melodic minor

form. Only the ascending melodic minor misses this pitch.

When in Rome defaults suggest the inclusion of m6 as a

case of clear mixture, in the definition framework, while

enabling theorists to categorise it instead as a case of pos-

sible mixture if they prefer for a specific repertoire/task.

3.1.2 Possible mixture: M6, m7, M7

Some tones offer a lower level of possible mixture due to

their considerably more ambiguous status. When in Rome

proposes the major sixth degree (M6) for this category as

it is more strongly associated with major, though it can be

reached in one melodic minor form (ascending). M6 may

therefore indicate possible maj→min mixture.

Likewise, the minor seventh degree (m7) may indicate

min→maj mixture: it does not feature in major, but it is

also not as strongly indicative of minor mode as m6 is,

appearing only in natural and descending melodic forms.

Finally, as discussed, the major seventh degree (M7) ar-

guably indicates maj→min mixture, though raised leading-

tones are too common in tonal music to support this as a

chromatic category.

3.1.3 Neutral (1, 2, 4, 5) and ‘chromatic’ (♯1, ♯4)

Neutral tones belong to both major and minor forms

equally. This group includes scale degrees 1, 2, 4, and 5

along with any tones excluded from the above categories.

That leaves tones which may be called ‘chromatic’ in

the sense that they do not belong to either mode. We can

confidently populate this category with degrees ♯1̂ and ♯4̂.

If the user asserts that spelling matters, then the chromatic

category also hosts enharmonics (like ♯2̂, discussed above).

3.2 Metrics and/or Categories

If we accept the notion some chords are more strongly in-

dicative of mixture than others, largely because of the rel-

ative status of the tones, then we may wish to explicitly

weight that relative strength, note by note. For example,

clearly mixed tones might attract twice the weight (2) of

possible mixture (1), with neutral values at 0. Chromatic

tones are perhaps the most ambiguous. When in Rome

defaults to a value of −1, because their clearly chromatic

status often detracts from their candidacy for mixture.

For instance, to return to the above example cases of

min→maj mixture: the strength of mixtures like ♭VI, ♭VI7,

and iv7 derives from that fact that they all feature the m6

and m3, and all avoid any detractions. The weighting val-

ues above would grade each of these at 4, twice the strength

of chords like iv with only the m6 (no m3, but also no de-

tractions) at 2. The pros and cons of an ambiguous chords

combining m6 and M3 would effectively balance out.

One asset of this weighting-by-tone metric is its flexi-

bility: it enables any chord to be assessed, including mod-

ifications like added/altered tones, and it can handle the

enharmonic question separately. Context can be handled

either categorically (e.g., excluding all secondaries) and/or

with further weightings. For instance, the status of mix-

ture may be enhanced when it is bookended by clearly

non-mixed chords as in I-iv-I (T-s-T). Again, see ‘When

in Rome’ for a demonstration.

4. IN PRACTICE (CORPUS STUDY)

All of the above discussion – ‘national’ category variants,

graded definitions, and more – would benefit from com-

parison with the actual usage in practice. For instance, if

a chord is not commonly used in a particular style but is

commonly taught in courses purporting to represent that

style, then we need to be clear on the reasons why.

Part of the difficulty of establishing robust definitions

of the chords above comes from the fact that a robust def-

inition of the ‘chord’ itself is challenging. Western clas-

sical notation includes information about which pitches to

play, and when, but has no explicit statements on how they

connect as chords. 16 It differs in this (and other) respects

from leadsheets, for example, where it is typical to include

chord symbols. 17 While many explicit algorithms for au-

tomatic harmonic analysis have been proposed, none really

approaches the quality of a human expert. And arguably

the best automatic analysis systems to have emerged in re-

cent years are those based on machine learning, which de-

rive, in turn, learns from the computer encodings of human

expert analyses discussed here [14].

16 Baroque figured bass is arguably a partial exception: given the bass
note and figuring, you have something like a chordal analysis.

17 Though they are not key-relative like Roman numerals.
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The assessment of chordal usage ‘in practice’ here is

based on that data, and specifically the ‘When in Rome’

repository, which provides a synthesis of all those com-

puter encodings of human analyses for Western classical

music using Roman numerals.

As with all analysis, this is inherently subjective; while

the score source material may have editorial ambiguities

that evade the notion of ‘ground truth’, this is all the more

so in analytical commentary on that source. Then again,

the harmonic analyses are our subject of interest, and so

this subjectivity is not only inevitable, but also desirable.

Once the analyses have been encoded in a suitable for-

mat (legible to human and machine alike), although there

are still operational decisions to make, the process of ex-

tracting them is readily implemented and interpreted. The

operational decisions include filters for more or less de-

tailed versions of the chords used as best befits the research

question at hand. For example, it is sometimes necessary

to retain inversion information, while at other times it is

best to report on aggregated data excluding inversion.

Every such option is fully, openly implemented in ex-

tensively documented and tested code at ‘When in Rome’

to allow maximum re-use and adaptation for future re-

search. Moreover, that repository presents the percentage

usage per basic chord type in dedicated files, separated

both by sub-corpus and for major-versus-minor contexts.

From this alone, we can assess the relative usage of our

‘canonical’ chords. Any such survey highlights the ex-

treme predominance of basic tonic and dominant function

chords (c.75% of the total). Chromatic chords are certainly

marginal in relation to this, but we are more concerned

here with how common the chromatic chords are relative

to each other. Figure 2 provides an example of the summa-

tive data and visualisations provided on ‘When in Rome’,

in this case for the example of Augmented Sixth chords in

the lieder sub-corpus, divided (as discussed) into separate

data for major-versus-minor tonal contexts.

In addition to the source repo, anyone interested can in-

teract with this data on OMT’s chromatic harmony anthol-

ogy (click here) where instances of these chromatic chord

types can be browsed in sortable tables, in their full score

context, and in few-bar excerpts.

4.1 Results for the Three Chromatic Categories

For each of the three ‘canonical’ chromatic categories dis-

cussed above, this section provides some high-level obser-

vations from the evidence of the corpus, and it considers

the implications these observations might have for review-

ing our attitudes to those chords.

The Neapolitan sixth is used relatively little. The main

use cases in the lieder sub-corpus are ‘♭II6’ and ‘♭II65’

in minor (c.0.5%). Another c.0.4% accounts for the other

Neapolitan candidates in minor, and there is very little use

in major contexts at all. Other corpora broadly bear out

this trend, and with even less usage of the seventh chords.

Even here in the lieder, many of the ‘♭II65’ sevenths cases

occur in progressions against an inverted pedal, potentially

suggesting a possible sub-category for this specific device.
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Figure 2. Augmented sixths chords in the Lieder corpus.

The fact that Neapolitans are so commonly taught is

somewhat is contrary to the evidence of usage, perhaps

prompting a review of the importance attributed to them,

especially in the ‘category light’ DACH tradition.

Augmented sixth chords are much more common. For

instance, in the lieder the ‘German’ (653) in minor alone

accounts for over 1.5%, and thus more than all the pos-

sible Neapolitans in both modes. Within the augmented

sixth category, it is notable that the ‘German’ (653) is so

much more common than the other forms, and that all

forms are much more common in the minor mode con-

text. The DACH practice of concentrating teaching and

terminology of augmented sixths on the 653 form arguably

receives support from this usage-in-practice evidence.

Modal mixture is much more common still, but very

unevenly so. The kinds of strong candidates for mix-

ture described above occur relatively infrequently, for in-

stance, with only ‘♭VI’ making a short-list of top-10 cases

(c.0.1%). Much (c.10x) more common are moderate mix-

tures like i (c.1.2%) and iv (c.1.0%). This extremely varied

extent of usage reinforces the need for a distinction be-

tween types or grades of relative mixture strength.

It is perhaps also notable that the ‘other’ chromatic

chord categories discussed (Augmented and Neapolitan

sixths) feature among the most common cases of possi-

ble ‘mixture’. They all pose a strong case for mixture,

(especially the ‘German’ which features both of the main

mixed tones), but they also have the detraction of chro-

matic notes (at least ♯4̂ for the Augmented Sixths; ♭2̂ for

Neapolitans). This may prompt a review or clarification

of categories which, in turn, speaks to wider issues such

as the ‘French’ sixth’s status in relation to tritone substitu-

tion (again, see [12]), the ‘bebop’ dominant seventh with

diminished fifth, and even some secondary dominants.

5. PROGRESSING TO CHORD PROGRESSIONS

This brief paper has set out some of the musical, compu-

tational, and even national/institutional issues at stake in

defining chromatic chords and commenting on their use in

practice, focussing on three individual chromatic chords.
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Clearly this is only an initial step towards developing rec-

ommendations for how to define chords and describe ‘gen-

eral’ practice in a given repertoire.

There is plenty of opportunity for future work, not

least in growing the datasets (their sheer scale, repertoire

coverage, and range of analytical perspectives), and in

widening the range of both chordal categories and the lan-

guages/‘schools’ considered. Another clear next step is to

expand the remit from individual chords to chord progres-

sions. This is not so clear-cut a distinction as it may seem.

We close with some examples. Once again, all of the

logic discussed here is implemented in the When in Rome

repository, and examples are presented in both the ‘An-

thology’ section of that repo, and in the more browsing-

friendly format of the OMT harmony anthology.

5.1 Chord or progression? The Case of the ‘Cto7’

Some chromatic cases sit ambiguously between ‘chord’

and ‘progression’. As discussed, mixture is arguably an

example: we certainly have to take account of the modal

context (iv is diatonic in minor but mixture in major) and

we may also chose to have additional contextual require-

ments such as the elimination of secondary dominants that

resolve, and/or of the ‘Picardy Third’ endings.

The common-tone diminished seventh chord (‘Cto7’)

presents an example that nudges further into the realm

of progressions. Once again, we describe a single chord,

though certainly need a wider contextual view. Here the

chord’s construction as a fully diminished seventh is re-

quired, but only a small part of the definition which other-

wise relies on the context of at least the following chord.

Almost certainly required is a common-tone with the fol-

lowing chord . . . which is not a suspension. 18 Not usu-

ally required, (though potentially strengthening the case) is

use of a common-tone with the preceding chord. And the

case is arguably stronger still if the preceding and follow-

ing chords are the same, indicating more of a prolongation.

5.2 Anglophone/DACH Progressions

The comparison of Anglophone and DACH traditions can,

of course, continue to chord progressions. The ‘Cto7’

does not feature in DACH traditions, though a related form

known in Anglophone circles as the ‘Omnibus’ does have

a relative in the DACH concept of the Teufelsmühle [15].

Not yet at the textbook level, Lewandowki [16] recently

proposed a category pair for fallender Quintanstieg (here-

after, fQ) and aufsteigender Quintfall (hereafter, aQ) both

of which see pairs of fifth in the same direction, separated

by a step in the opposite direction. For example, D-A-C-G

would be an instance of the fQ, while G-C-A-D would be

a case of the aQ.

Instances of these progressions can be extracted by

any corpus, functional or otherwise. 19 Filtering When in

18 The progression of viio7/V to the cadential 64 is common, but a weak
candidate for the Cto. It is excluded by most definitions (e.g., on OMT),
though it may be significant as an historical origin for this progression.

19 As the labels are not dependent on key-context or RN labelling, it
is reasonable to include pop examples here (as Lewandowki does). For
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Figure 3. Fifth progressions by category and corpus.

Rome for the minimal, 4-chord instances of each shows

that the aQ is much (c.20x) more common than the fQ

across all corpora (RHS of fig.3). The better known pattern

of rising/falling cycles of fifths are related in that they also

feature pairs of fifths a step apart. Filtering for 4-grams

of these progressions reveals a similar, and even more ex-

treme (c.50x) preference for one direction (falling) over the

other (rising). So once again, while we may seem to have

a class of equal schema in theory, the usage in practice

highlights an imbalance that arguably needs including at

the outset of teaching these materials.

5.3 Beyond the Anglophone-DACH Comparison

We close with an example progression originating in an-

other language, and with the additional constraint of hav-

ing an expected position for its usage, thus further expand-

ing the context we need to assess.

‘Partimenti’ treatises originating in 18th-century Italy

have enjoyed a renewed interest from music theorists in

recent years [17]. This method centres on prototypical,

schematic patterns that can serve as the basis of compo-

sition (including improvisation). The schema are typically

defined by their bass and melodic lines, their harmony, and

their position both in relation to the metre and the large-

scale form. 20 Harmonic analysis data captures all of this

except the melodic line. For example, most aspects of

the Quiescenza are captured by progressions like I-V7/IV-

IV-V-I, 21 and by the expected position at the end (coda)

of a work. These textbooks provide repertoire examples,

and there are certainly cases in the meta-corpus (which in-

cludes a sub-corpus of Corelli Trio Sonatas) that fit.

However, counter-examples are also easy to find and

an initial survey of overall usage finds no tendency to-

wards end-section emphasis in any sub-corpus, including

the Corelli. 22 Once again, the data suggests that it is

time for a thorough re-evaluation of schematic associations

passed pedagogically from one generation to the next.

example, the fQ (D-A-C-G) is the chord progression of TLC’s Waterfalls.
20 Click here for examples in the relevant section of OMT.
21 Again, the code sets out how to catch all and only the relevant cases.
22 The code includes functionality for plotting usage-by-position.
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ABSTRACT

Intra-opus repeated pattern discovery in polyphonic sym-

bolic music data has challenges in both algorithm design

and data annotation. To solve these challenges, we pro-

pose BPS-motif, a new symbolic music dataset contain-

ing the note-level annotation of motives and occurrences

in Beethoven’s piano sonatas. The size of the proposed

dataset is larger than previous symbolic datasets for re-

peated pattern discovery. We report the process of dataset

annotation, specifically a peer review process and discus-

sion phase to improve the annotation quality. Finally, we

propose a motif discovery method which is shown outper-

forming baseline methods on repeated pattern discovery.

1. INTRODUCTION

Repetition is ubiquitous in music. Computational discov-

ery of repeated patterns in music data has been long dis-

cussed in the field of music information retrieval (MIR).

Aside from its importance in music analysis [1], the role

of repeated pattern discovery has also been noticed in mu-

sic classification [2,3] and generation [4,5]. The definition

of a pattern is multi-fold. Generally speaking, a pattern

refers to a group of notes that serves a musically impor-

tant role and occurs multiple times in a piece of music.

Repeated patterns are known by various names, such as

motifs, themes, phrases and sections, depending on their

specific musical function. The goal of the repeated pattern

discovery problem is then to find the relevant patterns (de-

pending on the intended task) and all of their occurrences

within the provided musical data.

Compared to other music analysis tasks (e.g., harmony

analysis) on polyphonic symbolic music data, repeated pat-

tern discovery is relatively less discussed due to mainly

two challenges. First, searching for all the possible can-

didates of repeated patterns is costly and redundant [6].

The computational complexity of the algorithm is high,

while the discovered patterns often have little musical sig-

nificance [7]. Second, repetition is a non-exact attribute

of music. A large pattern can be potentially divided into

© Y.-W. Hsiao, T.-Y. Hung, T.-P. Chen and L Su. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: Y.-W. Hsiao, T.-Y. Hung, T.-P. Chen and L Su, “BPS-

Motif: A Dataset for Repeated Pattern Discovery of Polyphonic Symbolic

Music”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

small ones; whether a note group constitutes a meaningful

repeated pattern also depends on the subjective views re-

garding repetition, similarity, and musical importance. As

a result, human-annotated datasets that comprehensively

identify all the available patterns and all of their occur-

rences remains in a quite limited scale.

In this paper, we propose a new dataset, BPS-motif,

to improve the scalability of music pattern discovery re-

search. The BPS-motif dataset contains the note-level an-

notation of motives and their occurrences in the first move-

ments of Beethoven’s Piano Sonatas (BPS). This is an ex-

tension of the many previous musical annotations on BPS,

such as the functional harmony, phrase and section anno-

tation provided in the Beethoven Piano Sonata Functional

Harmony (BPS-FH) dataset [8]. We are specifically inter-

ested in annotating the motivic units in the melody parts

of each piece of music, which could be complementary to

the more thematic annotation (e.g., phrases and sections)

provided in the BPS-FH dataset. We expect that the pro-

posed dataset can enrich not only multi-task MIR research

but also novel computational music analysis tasks.

Besides, as another contribution of this paper, we also

propose a simple yet effective algorithm for repeated pat-

tern discovery. Different from previous works which em-

phasized the equal translations among notes, we empha-

size the contextual relationships among short segments

of notes. We demonstrate that the proposed algorithm

not only outperform several baselines on the BPS-motif

dataset, but also on the JKU-PDD dataset [9], the most

widely used dataset for the discovery of repeated themes

and sections. In other words, the proposed algorithm is

competitive for finding both motivic and thematic patterns.

The rest of this paper is organized as follows. Section

2 gives a background introduction and a survey of previ-

ous works on the datasets and methods for repeated pattern

discovery. In Section 3, we introduce the dataset and our

proposed annotation process. In Section 4, we introduce

the proposed motif discovery algorithm and demonstrate

its evaluation results. Conclusions are made in Section 5.

2. RELATED WORK

2.1 Repeated pattern discovery datasets

The datasets for repeated pattern discovery are built mostly

for the interest in computational music analysis research.

Complete annotation of repeated patterns should incorpo-

rate all the note groups (each note in pitch-onset part) that
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constitute 1) the patterns of interest and 2) the occurrences

of each pattern. Usually, a music piece contains more

than one pattern, and each pattern should repeat (i.e., oc-

cur more than twice). The occurrences of a pattern may

not be the same; one occurrence can be an exact copy of,

or a variation from another occurrence that belongs to the

same pattern. The music data can be either monophonic or

polyphonic, and can be in either symbolic or audio format.

The annotation can be either intra-opus or inter-opus [10].

In the former case, the analysis focuses on how a piece of

music is broken down into pattern occurrences by having

occurrences of a pattern within one music piece [7, 10].

In the latter case, the analysis focuses on the evolution of

common elements in a corpus, by having occurrences of a

pattern in different pieces of music. It should be noted that

the annotation in inter-opus datasets can be limited to only

a small set of patterns, while intra-opus datasets need a

comprehensive set of patterns and occurrences and is hard

to build; see Table 1 and the discussion below.

Table 1 presents the datasets for both inter-opus and

intra-opus pattern discovery. In the Saraga dataset, Srini-

vasamurthy et al. annotated 4,571 temporal occurrences

from 1,067 characteristic melodic phrases, a musical unit

related to the rāga, over 170 audio recordings [11]. Krause

et al. performed large-scale leitmotif classification in au-

dio recordings by annotating the time intervals of 10 leit-

motifs in Richard Wagner’s four-opera cycle Der Ring des

Nibelungen and achieve a large scale of occurrence over 16

versions of recordings [12]. 1 In the MTC-ANN dataset,

Kranenburg et al. categorized 93 patterns in 360 mono-

phonic folk tunes and annotated 1,657 occurrences [13].

Finkensiep et al. considered 20 types of schemata and

annotated 244 events in Mozart’s piano sonatas [14]. In

the MIREX campaign of Discovery of Repeated Patterns

and Themes, Collins et al. firstly compiled an organized,

open-source intra-opus pattern discovery dataset contain-

ing 165 occurrences in five pieces and this dataset has

been widely discussed in the follow-up research works. It

should be noted that, among these datasets, only the JKU-

PDD dataset is for intra-opus pattern discovery but its size

is smallest among all (only five pieces of music).

Aside from the above-mentioned datasets, it is still

worth mentioning the datasets for pattern matching [15],

such as the Dig That Lick dataset for Jazz music [16] and

the Theme Finder for Classical music [17]. These datasets

support pattern retrieval tasks with known query, but they

neither support pattern discovery research nor provide the

annotation of pattern occurrences explicitly.

2.2 Repeated pattern discovery methods

For symbolic music data, there are three major approaches

to implementing the repeated pattern discovery algorithms:

1) string-based approach which represents music data as

one-dimensional pitch sequence and finds repeated pat-

terns with sub-string matching [18, 19]; 2) geometry-

based approach which represents music data as multi-

dimensional point sets (usually onset-pitch pairs in two-

1 There are in total 38,448 occurrences if counting the 16 versions.

format usage #ps #ptns #ocrs

[11] poly audio inter 170 1,067 4,571

[12] poly audio inter 11 10 2,403

[13] mono symbolic inter 360 93 1,657

[14] poly symbolic inter 54 20 244

[9] poly symbolic intra 5 32 165

Ours poly symbolic intra 32 263 4,944

Table 1: Comparison of several open-source musical re-

peated pattern datasets including the saraga dataset [11],

The Ring (one performance version) [12], MTC-ANN

[13], Schemata [14], JKU-PDD [9], and BPS-motif (ours).

The number of pieces (#ps), the number of individual pat-

terns (#ptns), and the number of occurrences (#ocrs) are

listed. The data formats can be monophonic (mono) or

polyphonic (poly), audio or symbolic. The type of annota-

tion can be inter-opus (inter) or intra-opus (intra).

dimensional space) and retrieves the translatable subsets

(see discussion below) as repeated patterns [20–22]; 3)

feature-based approach which extracts or learns features

from music data, and retrieves patterns with clustering or

classification of the features [14, 23–25].

While the string-based approach falls limited in repre-

senting polyphonic music [22], research efforts on pattern

discovery have been more emphasized on the geometry-

based approach. In the geometry-based approach, we con-

sider a music piece D with N notes and d denotes a note.

We have D := {di}
N
i=1

, where di := (oi, pi) denotes the

ith note, and oi, pi denote its onset and pitch value, re-

spectively. In the discussion of the structure induction al-

gorithm with translational equivalence classes (SIATEC)

[20], two subsets (i.e., two patterns) m and n in D are

translatable (denoted as n ≡ m) if there exists a vector v

such that the translation function f(d,v) : m → n;d 7→
d+v is bijective. All the patterns translatable with respect

to m form a translational equivalence class (TEC) of m in

D, that means

TEC(m,D) := {n : n ≡m,n ⊆ D} . (1)

A maximal translatable pattern (MTP) is the largest

pattern translatable by a translatable vector v [20]:

MTP(v,D) := max
|d|
{d : d ∈ D and d+ v ∈ D} , (2)

where |d| is the number of notes in d. SIATEC is then an

algorithm which finds all the TEC of the available MTPs in

D. A survey and comparative study can be found in [26].

In the feature-based approach, machine learning tech-

niques are usually applied; features are processed by clus-

tering for the pattern discovery task (when a query is not

given), and by classification for the pattern matching task

(when a query is given) [15]. For example, in [23], ag-

glomerative clustering over the wavelet transform of the

pitch sequence data was used for pattern discovery in

melodies. In [14], music schema recognition was per-

formed by extracting the schema candidates using a skip-

gram model and then a binary classification on the rhythm
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and pitch features over the candidates. It is also noted that

the feature-based approach has also been widely discussed

in the repeated pattern discovery of audio. In [24], Nuttall

et al. adopted matrix profile, a time-series-based motif dis-

covery method [27], on the predominant pitch contours to

extract the characteristic melodic phrases from audio [11].

Krause et al. utilized recurrent neural networks (RNN) to

classify over 30,000 leitmotifs over differnt performances

of Der Ring des Nibelungen [25].

3. DATASET

3.1 Overview

The BPS-motif dataset contains the annotation of motives

in the first movements of Beethoven’s 32 piano sonatas.

An annotation unit contains a group of motif notes and

the corresponding motif label. The motif labels are sorted

in alphabetical order: the motif that occurs first in the

music piece is labeled as A, the secondly occurred mo-

tif is labeled as B, the thirdly occurred one is C, and

so on. The group of notes which are the jth occurrence

of the motif A in D is annotated as mA,j , mA,j ⊂ D,

j ∈ Z≥0. All the occurrences of this motif are anno-

tated with A. Further information, such as the start time

and end time of each motif occurrence, and the non-motif

notes (i.e., the notes which do not belong to any motif) can

be directly derived. The dataset is available at: https:

//github.com/Wiilly07/Beethoven_motif.

Over the 32 music pieces, we labeled 263 distinct mo-

tives with 4,944 occurrences in total (see Table 1). These

occurrences contain 36,652 notes, which is 28.87% of the

total number of 126,943 notes. For each piece of music,

the number of motives ranges from 2 to 13 (average 8.22

motives), and the number of occurrences ranges from 41 to

290 (average 154.5 occurrences). On average, a motif con-

tains 7.41 notes and spans 5.30 crochet beats. The pitch

ranges of the motives are mostly within two octaves.

To facilitate the annotation process, we only consider

the repeated patterns in melodic notes; that means, all the

annotated motives are constrained to be a monophonic note

sequence. For example, in Figure 1a, although the first beat

of the first measure contains three notes (i.e., B3, D4, G4),

only G4 is included in the the annotated motif A0. How-

ever, there can be multiple motives which are fully or partly

overlapped in time; see the demonstration in Figure 1c (the

red and blue boxes represent two overlapped motives).

3.2 Data format

We basically followed the data format adopted in the BPS-

FH dataset. First, all the articulation symbols and grace

notes were omitted (see Figure 1a). Second, pickup was

filled when needed (see Figure 1b and the following dis-

cussion). Repeat signs are also unfolded when needed.

We take a crotchet beat as the unit time step (i.e., the

duration of a crotchet is 1 in our note annotation and is

1 second in MIDI) to represent the data. Two types of

timestamps are recorded. The score time takes the pickup

measure as negative while the MIDI time fills the pickup

(a) Grace note removal/ taking the monophonic motif

(b) Filling the pickup measure

(c) Annotating overlapped motives

Figure 1: Examples of annotated motives. From (a) to

(c), the three demonstrated excerpts are from Beethoven’s

Piano Sonata No. 20, No. 1, and No. 5, respectively. The

notes bounded by a colored box form a motif occurrence.

measure and defines the beginning of the measure as 0.

For example, in Figure 1b, the score time of the C4 note

at the beginning is -1 while the MIDI time is 3. Both the

score time and the MIDI time unfolds the repeat signs so

the timestamps increase monotonically. Similarly, at the

measure level, the score measure number is the measure

number counted on the score sheet (the pickup measure

is measure 0, with repeat signs), while the MIDI measure

number takes the pickup measure (if there is) as measure

1 and unfolds the repeat signs. Two types of pitch number

are recorded: the MIDI pitch (in MIDI number) and the

morphetic pitch number [28].

For each piece of music, we provide annotation data in

different formats for users to retrieve the motif events in

different ways. The file formats include:

1. A multi-track MIDI file that records the motif notes.

Temporally overlapped motives are recorded in dif-

ferent tracks. There are at most four tracks in our

annotation of this dataset.

2. A list of all the notes. Each note has the labels of

1) onset time (in score time), 2) MIDI pitch num-

ber, 3) morphetic pitch number, 4) note duration (in
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Figure 2: Motives and occurrences labeled in Beethoven’s Piano Sonata No.1 in F minor. From top to bottom shows the

annotation of section intervals, subsection intervals, phrase intervals, the time when a new motif occurs (with motif labels),

and the piano roll of the music piece marked with motif and non-motif notes. In the bottom subfigure, different motives are

specified by different colors. Motif occurrences are marked with a black bounding box. Non-motif notes are in gray color.

Figure 3: Assessment results (Q1 to Q4) regarding the data

annotation from the seven reviewers. The results were col-

lected before the discussion phase.

crotchet beats), 5) staff number (integers from zero

for the top staff), 6) MIDI measure number, and 7)

motif (e.g., a note is annotated as A if it is part of A).

The notes without motif labels are non-motif notes.

3. Individual note lists of each motif occurrence. These

lists are provided for users to better retrieve each oc-

currence. The labels in these lists are the same as the

ones in the list of all notes.

4. A list describing the properties of motif occurrences.

Each motif occurrence has the labels of 1) the start

time and end time (in both score time and MIDI

time), 2) the duration of the occurrence, 3) the mea-

sure number where the motif start (in both score

measure and MIDI measure), 4) the “start beat” of

the motif start, and 5) time signature.

We also provide the PDF scoresheets with the annota-

tor’s manual annotations and notes. These scoresheets are

for reference only because they are the raw annotations and

may not be the same as the annotation of our final version;

see Section 3.3 for more details about the annotation pro-

cess. The note lists and the score time are compatible with

the BPS-FH dataset, therefore annotation of more thematic

units (e.g., theme, sub-section and phrase) can be retrieved

from the BPS-FH dataset. To better see our annotation re-

sult, Figure 2 illustrates the hierarchical musical structures

with motives of Beethoven’s Piano Sonata No. 1, combin-

ing the section, subsection and phrase labels in BPS-FH,

and the motif labels in BPS-motif. 2

3.3 Annotation process

There are a few challenges in the data annotation process.

First, as mentioned, identifying of musical motifs and their

repetitions or variations in a piece of music is not straight-

forward. Ambiguity arises from multiple factors. For ex-

ample, some repeated patterns may not be considered as

valid musical motifs, a motif may not always be the small-

est unit of a repeated pattern, and the similarity or differ-

ence between two such sequences can also be subject to hu-

man interpretation. Besides, while experienced musicians

can read the scoresheet and mark the motives directly by

hand on it, converting such hand-drawing annotations into

database formats still requires lots of efforts.

Our proposed approach to build the BPF-motif dataset

incorporates three parts: annotation, review, and score typ-

ing. First, two annotators (the first and the second authors)

manually annotate the motives on the scoresheet. Each

piece is annotated by one annotator. Then, we invite ex-

ternal reviewers to review annotated scoresheets. Also, the

reviewer helps us digitize the manual annotation. In the re-

view process, we design a review form to let the reviewers

assess the overall quality of annotation and also provide

their suggested annotation if they hold different opinions.

The review form contains the following questions:

1. (Q1) Are the annotations reasonable? (3: totally rea-

sonable; 2: mostly reasonable; 1: unreasonable)

2. (Q2) Are the annotations coherent with your opin-

ion? That means, if you were the annotator, will you

2 It should be noted that there are still some annotation inconsistency
between the BPS-FH and BPS-motif datasets. For example, in Figure 2,
the phrase c is constructed only with the motif D, while the phrase c′′′ is
constructed only with the motif H . This means that while the annotator
of BPS-FH considered c′′′ as simply a variation of c, the annotator of
BPS-motif considered them being different (and are thereon constructed
with different motives).
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Figure 4: Two segments (light gray and light purple re-

gions) and their common structure. The crosses indicate

notes, and the set of vectors in a segment represents its

structure. Blue vectors denote the common structure which

exists in both segments. The dashed gray arrows represents

non-motivic notes within the two segments.

also have the same annotations as ours? (3: totally

coherent; 2: mostly coherent; 1: incoherent)

3. (Q3) Are the annotations consistent (i.e., did we hold

consistent criteria annotating the data)? (3: totally

consistent; 2: mostly consistent; 1: inconsistent)

4. (Q4) In which way your opinions are different from

ours? (a: we took multiple motives into one (un-

dersegmentation); b: we divided a motif into many

(oversegmentation); c: we took some non-motif

patterns as motives (overlabeling); d: we omitted

some musically important motives (underlabeling))

Choose one even you totally agree to our annotation.

5. (Q5) If you hold different opinions on our annotation

and think we should revise them, leave your com-

ments explicitly. Your comments can be, for exam-

ple, “the motif E in Sonata No. x should be further

divided into F and G” (describe what F and G are);

“the motif H in Sonata No. y can be considered as a

variation of B and should be merged,” etc.

Seven reviewers were invited to review the annotations.

The reviewers are all from composition background and

are good at using computer scorewriters. Each reviewer

was assigned from 3 to 7 pieces (according to the length

of the music piece) for review, then they answered the

above questions and provided their suggested annotations

on a co-edited document. During the review and discus-

sion phase, the reviewers also need to convert the manual

annotation on the score into the symbolic form using the

scorewriter MuseScore. This confirms that they had care-

fully read the annotation, and also speed up the process of

building the dataset. After the reviewers typed the scores of

the annotated motives, we can directly convert it to MIDI

and the final annotation data.

The reviewer’s assessment results are shown in Fig. 3.

From Q1 to Q3, it is shown that no reviewer reported our

annotation as unreasonable, incoherent to their thoughts,

or self-inconsistent. However, over half of the review-

ers did point out a few annotation they considered prob-

lematic. We discussed with the reviewers regarding those

issues and revised them such that all the annotations are

Algorithm 1 Find Common Structure

1: function COMMON STRUCTURE(D,∆t)

2: S← ∅
3: for i← 1 to N − 1 do

4: Ci ← ∅
5: for j ← i+ 1 to N do

6: if oj − oi < ∆t then

7: add dj to Ci

8: end if

9: end for

10: Si ← {dj − di, dj ∈ Ci}
11: add Si to S

12: end for

13:

14: M← ∅
15: for i← 1 to N − 1 do

16: Ŝ← ∅
17: for j ← i+ 1 to N do

18: add {Si ∩ Sj} to Ŝ

19: end for

20: add MOST_COMMON(Ŝ) to M

21: end for

22: return M

23: end function

acceptable for the reviewer. The result of Q4 shows that

reviewers tend to say our annotations are oversegmented.

This however fits our needs because doing this provides ex-

tra flexibility to the dataset; researchers who are interested

in longer repeated patterns can simply merge our annota-

tions. On the other hand, it is hard to retrieve short motivic

patterns from undersegmented annotation.

4. MOTIF DISCOVERY

4.1 Algorithm

We regard a motif as a short pattern recurring with little

change in its structure. In other words, the relative posi-

tions of the notes in a motif will be almost fixed. We there-

fore find motifs by detecting common structures in short

musical segments. The idea of the proposed algorithm is

presented in Figure 4 and Algorithm 1. Formally, let ∆t

denote a threshold of time interval, and D := {di}
N
i=1

a

musical piece composed of N notes sorted in ascending

order, with di = (oi, pi) being a two-dimensional vector

indicating the onset and pitch number of the ith note. For

di, we first aggregate its context Ci and create a segment

Si. The derived segments are then compared pairwisely to

obtain common structures. By representing a segment as a

set of vectors (see Figure 4 and Line 3–12 in Algorithm 1),

the common structure of any two segments (i.e., the blue

arrows in Figure 4) can be obtained by collecting vectors

which exist in both segments (Line 18).

As the pairwise comparisons between segments (Line

15-19) will result in various types of common structures,

we retrieve a representative pattern and all its occurrences

by finding the “most common” structure (i.e., the com-
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Algorithm Pest Rest Fest Pocc Rocc Focc Pthr Rthr Fthr Runtime

SIATEC 0.1804 0.6444 0.2803 0.2102 0.2771 0.2235 0.0408 0.2994 0.0713 28.5082

COSIATEC 0.2118 0.4557 0.2863 0.2769 0.1282 0.1548 0.0489 0.1601 0.0743 208.4119

SIATECCompress 0.2136 0.4326 0.2835 0.1430 0.1121 0.1103 0.0579 0.1703 0.0856 636.6930

Proposed 0.5709 0.8339 0.6733 0.1491 0.4174 0.2002 0.1222 0.2644 0.1646 119.5330

(a) Motif discovery on the proposed dataset

Algorithm Pest Rest Fest Pocc Rocc Focc Pthr Rthr Fthr Runtime

SIATEC 0.1238 0.4630 0.1920 0.5248 0.3970 0.4437 0.0706 0.4006 0.1176 1.5099

COSIATEC 0.1140 0.2530 0.1491 0.1305 0.0870 0.1044 0.0740 0.2042 0.1027 6.0167

SIATECCompress 0.1807 0.2849 0.2181 0.1778 0.0889 0.1185 0.1117 0.2202 0.1470 34.6371

Proposed 0.2649 0.5002 0.3406 0.4208 0.5105 0.3948 0.1096 0.3003 0.1561 4.0546

(b) Repeated pattern discovery on the JKU-PDD dataset

Table 2: Evaluation of pattern discovery algorithms. The subscripts est, occ, and thr indicate the establishment, occurrence,

and three-layer measurements, respectively. The averaged runtime is in minutes.

mon structure that occurs the most times) in Ŝ with the

MOST_COMMON operation (Line 20). Finally, motifs

are acquired by filtering out non-motivic patterns in M

heuristically. In this work, we set ∆t = 12 crotchet beats.

The proposed algorithm differs from the SIA family in

two aspects. First, the SIA family aggregates notes of a

pattern by detecting equal translations among notes, while

our algorithm finds patterns by identifying common struc-

tures, or contextual relationships, among small segments.

Second, the SIA family computes maximal translatable

patterns (MTP) and subsequently find their occurrences,

whereas our algorithm establishes a small pattern and all

its occurrences at the same time. Our approach is promis-

ing in that the contextual comparisons between segments

help identify motifs which are small and recurring. The

code of the proposed algorithm is available at https://

github.com/Tsung-Ping/motif_discovery.

4.2 Evaluation

We evaluate the motif discovery algorithm on the proposed

dataset (with an averaged number of 3937 notes per piece)

as well as the JKU-PDD dataset (1284 notes in average) [9]

using standard metrics for pattern discovery. The estab-

lishment measurement (est) shows the capability of an al-

gorithm to recognize patterns rather than to find all occur-

rences of a pattern. The occurrence measurement (occ), on

the contrary, emphasizes the ability to find all occurrences

of a pattern. The three-layer measurement (thr) is a com-

prehensive evaluation combining aspects of both the estab-

lishment and occurrence measurements. Each of the three

measurements are specified in terms of precision, recall,

and F1 score. 3 The averaged runtime on each dataset will

also be measured to give a rough sketch of the time com-

plexity. We compare the proposed algorithm with three

methods from the SIA family, i.e., SIATEC [20], COSI-

3 For more detailed definitions of the three evaluation measure-
ments, refer to https://www.music-ir.org/mirex/wiki/

2017:Discovery_of_Repeated_Themes_\%26_Sections.

ATEC [21], and SIATECCompress [21]. 4 All algorithms

were implemented in Python programming language.

The evaluation results are summarized in Table 2. Gen-

erally, our algorithm performs consistently across datasets

despite that the two datasets are composed of distinct types

of musical patterns, i.e., motivic (the proposed) versus the-

matic (the JKU-PDD), which differ with each other mainly

in the size. Our algorithm is superior to the baselines in

all the three establishment measures, indicating that our

method can identify more existences of the ground-truth

patterns than the other algorithms. Besides, our algorithm

is competent in the other two measurements, with at least

one best performance in each measurement. Specifically,

the Rocc measure shows that the patterns retrieved by our

algorithm are more complete (i.e., discovering more occur-

rences of a pattern) with respect to the ground-truth pat-

terns, and the Fthr measure suggests that our method has

better capability to recognize salient patterns in music, es-

pecially the motivic ones. Finally, the runtime measure-

ment indicates that our algorithm can achieve a better per-

formance on the pattern discovery tasks at a moderate com-

putational cost, which is 4.2 (resp. 2.7) times slower than

the SIATEC on the proposed (reps. JKU-PDD) dataset.

5. CONCLUSION

We have demonstrated a dataset for repeated pattern dis-

covery of polyphonic symbolic data and a motif discovery

algorithm. Our data annotation clearly demonstrates the

hierarchical structure of music. The proposed motif dis-

covery algorithm has been shown outperforming the base-

line methods on various repeated pattern discovery prob-

lems. These findings suggest a direction for developing re-

peated pattern discovery algorithms, and also evoke further

investigation on music structure analysis, novelty analysis,

and repeated pattern discovery algorithms.

4 For the three baseline algorithms, we use the implementa-
tions available at https://github.com/wsgan001/repeated_
pattern_discovery.
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ABSTRACT

Multi-pitch estimation (MPE), the task of detecting active
pitches within a polyphonic music recording, has garnered
significant research interest in recent years. Most state-of-
the-art approaches for MPE are based on deep networks
trained using pitch annotations as targets. The success of
current methods is therefore limited by the difficulty of ob-
taining large amounts of accurate annotations. In this pa-
per, we propose a novel technique for learning MPE with-
out any pitch annotations at all. Our approach exploits
multiple recorded versions of a musical piece as surrogate
targets. Given one version of a piece as input, we train a
network to minimize the distance between its output and
time–frequency representations of other versions of that
piece. Since all versions are based on the same musical
score, we hypothesize that the learned output corresponds
to pitch estimates. To further ensure that this hypothesis
holds, we incorporate domain knowledge about overtones
and noise levels into the network. Overall, our method re-
places strong pitch annotations with weaker and easier-to-
obtain cross-version targets. In our experiments, we show
that our proposed approach yields viable multi-pitch esti-
mates and outperforms two baselines.

1. INTRODUCTION

Music transcription, i. e., converting music audio record-
ings into score representations, is a fundamental task in
music information retrieval (MIR). As a subtask of tran-
scription, one may estimate the pitches active at different
points in time throughout a recording of polyphonic mu-
sic, yielding a piano roll representation (without consider-
ing instrumentation, note values, or other score-based in-
formation). This goal is commonly referred to as multi-
pitch estimation (MPE). Recent years have seen signifi-
cant advances in MPE systems, mainly due to the use of
deep learning models [1–6]. These models are typically
trained with large amounts of aligned pitch annotations as
targets, see also Figure 1a. Creating such annotations may
involve an enormous effort. In particular, manually anno-

© M. Krause, S. Strahl, and M. Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. Krause, S. Strahl, and M. Müller, “Weakly Supervised
Multi-Pitch Estimation Using Cross-Version Alignment”, in Proc. of the

24th Int. Society for Music Information Retrieval Conf., Milan, Italy,
2023.

Figure 1: Systems for multi-pitch estimation are typically
trained using pitch annotations (a), which are cumbersome
to create. In this work, we propose to use different ver-
sions of a piece as surrogate targets (b), which are much
easier to obtain. In both scenarios, a network input (I)
is passed through convolutional layers, producing an out-
put (O), which is compared to one or several targets (T)
using some loss function (L).

tating pitch activity in every frame of an audio recording
would be prohibitively time consuming. Many datasets are
thus annotated using semi-automatic methods like score–
audio synchronization (e. g., [7]), which introduces anno-
tation errors. Because of this, systems that can learn pitch
estimation without large amounts of pitch annotations are
highly desirable.

In this paper, we propose a novel approach for learn-
ing MPE without pitch annotations. As our key idea, we
use different versions (i. e., recorded performances) of a
musical piece as surrogate targets. To this end, we lever-
age cross-version music datasets, which contain several
versions per piece. Such datasets are especially common
for Western classical music, where the same compositions
are regularly performed by different musicians. Each ver-
sion exhibits unique timing, artistic expression, and vary-
ing acoustic conditions. All versions, however, are based
on the same musical score and thus contain the same com-
binations of pitches. We therefore hypothesize that a deep
network may produce pitch estimates by learning the com-
monalities between different versions of a piece.
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In our approach, we train a deep network that takes
a time–frequency representation of one version as input,
and whose output minimizes a certain distance to time–
frequency representations of other versions. This core idea
is illustrated in Figure 1b. Since versions vary in length
and the timing of pitch events may be different, we require
a distance measure that temporally aligns the network out-
put to the representations of other versions. To do so within
a deep learning setting, we use a differentiable variant of
dynamic time warping called SoftDTW [8]. Apart from
the fundamental frequencies of pitches played, all recorded
versions of a piece contain overtone structures and ambi-
ent noise. To increase the validity of our hypothesis and
to encourage the network to capture nothing but pitches,
we incorporate knowledge about overtones and noise us-
ing additional fixed processing blocks.

Overall, our proposed approach replaces the need for
strong pitch annotations (which are frame-wise, binary,
and difficult-to-obtain) with weaker cross-version targets
(not temporally aligned, real-valued, and easy-to-obtain).

In summary, we make the following contributions: We
propose a novel approach for weakly supervised MPE that
does not require pitch annotations, based on the hypothesis
that pitch estimation can be learned from multiple versions.
We further propose to incorporate extra layers for simulat-
ing overtones and noise levels to ensure that our hypothesis
holds. Finally, as a proof of concept, we show qualitatively
and quantitatively that our approach can be used for MPE
and outperforms two baselines. To aid reproducibility, we
release code and trained models for our approach. 1

The remainder of this paper is structured as follows: In
Section 2, we discuss related work on pitch estimation. In
Section 3, we describe our proposed approach. Section 4
covers the experimental setup, while Section 5 contains our
results. Section 6 concludes the paper with an overview of
possible directions for future work.

2. RELATED WORK

ON MULTI-PITCH ESTIMATION

The majority of work on MPE and music transcription in
general has focused on supervised training schemes, where
a dataset of music recordings with aligned pitch annota-
tions is given. Most recent papers utilize deep learning
models that are trained with pitch targets using standard
cross-entropy loss functions [1–5]. Often, these works fo-
cus on piano music, where annotations can be obtained us-
ing MIDI recording technology built into certain types of
pianos [9]. We refer to [6] for an overview of music tran-
scription research.

Some works have explored pitch estimation from data
without aligned pitch annotations. Weiß and Peeters [10]
proposed to utilize weakly aligned annotations, where
there may be temporal deviations between recorded per-
formance and annotations. This scenario is also explored
in [11]. However, in both cases, pitch annotations are re-
quired for the entire training dataset. Gfeller et al. [12] in-

1 https://www.audiolabs-erlangen.de/resources/

MIR/2023-ISMIR-WeaklySupervisedMPE

troduced a self-supervised approach for pitch estimation,
where a network learns to predict the relative differences
between pitch-shifted, monophonic recordings. Their ap-
proach requires only a small amount of data with pitch
annotations, but does not deal with polyphonic scenarios.
Berg-Kirkpatrick et al. [13] describe a system for MPE
on piano recordings that does not use pitch annotations.
Their approach solves an optimization problem, with con-
straints motivated by the sound production process in pi-
anos. In contrast, the method we propose in this paper uti-
lizes several versions of a musical piece and could be used
for recordings with arbitrary instruments.

3. PROPOSED METHOD

We now describe our proposed approach for learning
MPE using cross-version alignment. Here, we assume
that we have multiple corresponding recorded versions
for each musical piece in the training set. Let us de-
note the set of all corresponding versions for one piece by
V = {V1, V2, . . . }. Furthermore, given a version V ∈ V ,
we write InputRep(V ) for the audio representation of V

that our network takes as input. 1

Given an input I = InputRep(V ), we formulate
MPE as the problem of producing a binary piano roll
M̃ ∈ {0, 1}B×N that matches the pitch annotations
A ∈ {0, 1}B×N for that input. Here, B denotes the num-
ber of pitch bins, while N is the number of time frames
in the input. In the supervised case, deep networks for
MPE produce a real-valued output O ∈ [0, 1]

B×N that is
optimized using the binary cross-entropy loss LBCE with
T = A as targets (where the loss is averaged over all time–
pitch bins). The final pitch predictions M̃ are obtained from
O by applying a threshold τ . This threshold is often set
to a fixed value (e. g., τ = 0.4 in [7]) or optimized on a
validation dataset [14]. This supervised approach to MPE,
which crucially relies on the aligned pitch annotations A,
is illustrated in Figure 1a. In the following, we will refer
to it with the shorthand Sup.

Our proposed approach, illustrated in Figure 1b, also
takes an input representation I = InputRep(V ) for
some version V ∈ V . As before, our network yields
a real-valued output O ∈ [0, 1]

B×N . However, rather
than using pitch annotations A, we utilize a surrogate
target T = TargetRep(V ′) based on another version
V ′ ∈ V \ {V }. We choose a time–frequency representa-

tion TargetRep(V ′) ∈ [0, 1]
B×N

′

as target that is normal-
ized in the range [0, 1] and has the same number of bins
B as O, but a potentially different number of time frames
N ′, due to the temporal differences between versions. 1 As
explained in the introduction, T contains the same combi-
nations of pitches as I. 2 Intuitively, if O is close to the
target representations of all versions V \ {V }, we hypoth-
esize that O must correspond to pitch estimates for I. We

1 Details of InputRep and TargetRep are provided in Section 4.
2 Here, we assume that there are no structural differences between ver-

sions, i. e., performers do not deviate from the score. Versions performed
in different keys can be handled through pitch shifting, see Section 4.
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Figure 2: Detailed overview of the proposed cross-version alignment (CVA) method, see also Figure 1b. Before applying
the alignment loss (LSoftDTW), the intermediate output of the network (M) is optionally extended using a simple overtone
model (+Ov) and a bias value (+B) to address background noise. The final output O can thus arise from different configura-
tions (e. g., O = M,O = M+Ov, . . . ). Importantly, the MPE output of the system (M̃) is computed based on the intermediate
representation M, rather than the output O.

refer to our proposed approach with the shorthand CVA (for
“cross-version alignment”).

Note that we cannot directly apply a loss on time–pitch
bins here (as in the supervised case), since O and T are
not temporally aligned. For this reason, we use the dif-
ferentiable alignment loss LSoftDTW in our approach, see
Section 3.1. Furthermore, our hypothesis may fail to ap-
ply, since recorded versions of a piece contain overtone
structures and background noise in addition to the pitches
played. We thus extend our approach to account for these
properties of music recordings in Section 3.2.

3.1 Differentiable Alignment

In order to perform temporal alignment between O and a
target representation T in a differentiable fashion, we use
the SoftDTW loss [8]. SoftDTW is a differentiable approx-
imation of the classical dynamic time warping algorithm
that is often used to align music sequences [15]. SoftDTW
has originally been introduced for one-dimensional time
series but has also been adopted for computer vision tasks
like action recognition in video recordings [16,17]. Within
MIR, SoftDTW has previously been used in the context of
music synchronization [18] and MPE [11]. In [11], the au-
thors showed that SoftDTW can be used to replace strongly
aligned (i. e., frame-wise) pitch annotations with weakly
aligned pitches without a major impact on MPE perfor-
mance. Nevertheless, their approach requires pitch anno-
tations for training.

In our case, we crucially rely on the ability of SoftDTW
to align real-valued sequences such as time–frequency rep-
resentations of audio. In contrast, a commonly used alter-
native loss function called connectionist temporal classi-
fication (CTC) can only handle discrete target sequences.
To compute LSoftDTW, one needs to choose a local cost
function (for comparing individual frames of the time–
frequency representations) and set a temperature hyper-
parameter called γ (which determines the approximation
quality of SoftDTW). Here, we use the cosine distance for
comparing frames, which exhibited high training stability
in our experiments. We further set γ = 0.1, which corre-
sponds to a good approximation of DTW.

As a drawback, the time and space complexity of Soft-
DTW is quadratic in the lengths of the input sequences.
We thus train on short input excerpts (see Section 4).

3.2 Overtone and Noise Model

Aside from differentiable alignments, our proposed ap-
proach utilizes fixed processing layers that simulate over-
tone structures and background noise. In this way, our
method follows the analysis-by-synthesis paradigm [19],
where one estimates parameters from an audio recording
(pitches, in our case) by re-synthesizing the input. Choi
and Cho [20] utilized this idea for unsupervised drum tran-
scription. Their network consists of a transcription stage
and a fixed sample-based drum synthesizer. The transcrip-
tion network is trained by minimizing a reconstruction loss
on the synthesizer output. In recent years, such systems
have become more popular due to the release of the dif-
ferentiable digital signal processing (DDSP) library [21],
which has been used, e. g., in the context of unsupervised
monophonic pitch estimation [22]. In contrast to these
works, our proposed approach utilizes cross-version data.

A full overview of our CVA approach is given in Fig-
ure 2. We explicitly add overtones (denoted by +Ov) and
background noise (+B) to an intermediate output M of our
network via dedicated layers. In this way, the network may
learn a sparser and more piano roll-like representation M,
since overtones and noise are added afterwards. Crucially,
the final MPE results M̃ are obtained from M, before over-
tones and noise are applied. The output O, used for align-
ment with the cross-version targets, depends on the model
configuration used. For example, O = M+Ov+B if all mod-
ules are used, O = M+Ov if only overtones are added, etc.
In the basic system without extensions, O = M.

Here, we opt for very simple overtone and noise models
that serve to indicate the potential of our core idea. We esti-
mate the relative amplitudes of different harmonics from a
small internal dataset of single-note piano recordings. The
resulting estimates, used for our overtone model, are illus-
trated in Figure 3. We keep these values fixed for all sub-
sequent experiments. To apply this fixed overtone model
within our network in a differentiable fashion, we sum up
pitch-shifted versions of M. For each harmonic h, we shift
M along the vertical axis by a number of semitones corre-
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Figure 3: Amplitudes for the overtone model (+Ov) em-
ployed in our proposed approach.

sponding to h (e. g., 12 semitones for h = 2). We then
weight the shifted representation with the amplitude esti-
mated for h (see Figure 3). The final output is obtained by
summing the resulting representations for all h. 3 To ad-
dress the overall noise level in the target T, we add a fixed
bias term of δ = 0.2 after applying the overtone model.
As a result of this additional processing, we may obtain
outputs larger than 1. We therefore clip all values outside
the interval [0, 1] (corresponding to the value range of the
target representations T) to get the final output O.

4. EXPERIMENTAL SETUP

4.1 Model, Representations, and Training

In this work, we focus on demonstrating the potential of
our cross-version approach compared to traditional, fully
supervised training for MPE. Thus, we do not propose
complicated network architectures that require extensive
tuning. Instead, we use a relatively small convolutional
neural network for extracting the representation M from
I. For InputRep and TargetRep, we use time–frequency
representations based on the constant-Q transform (CQT),
which provides a frequency axis corresponding to semi-
tones. Note that we cannot train on entire (several min-
utes long) recordings in a single step. Instead, our training
batches contain short input excerpts and we use state-of-
the-art music synchronization techniques [23] to find the
corresponding sections in other versions.

Concretely, we use the network architecture, input rep-
resentation, and training setup from [10] (we refer to their
paper for details). Their network consists of five convolu-
tional layers with musically motivated kernel shapes and
roughly 50 000 learnable parameters. The network takes
a magnitude harmonic CQT (HCQT [24]) of an audio ex-
cerpt as InputRep, containing N = 500 frames computed
with a hop size of 512 from waveforms at 22 050 Hz (i. e.,
an excerpt of 11.6 seconds length). The network produces
outputs M of the same length, with a pitch axis containing
B = 72 bins (corresponding to the semitones from C1 to
B6). The final layer of the network contains a sigmoid acti-
vation, such that all values in M are restricted to the interval

3 Equivalently, the overtone model can be understood as a frame-wise
convolution in pitch direction, with a kernel based on the amplitudes in
Figure 3.

[0, 1]. For TargetRep, we use magnitude CQTs where the
center frequencies of different bins correspond to the same
B = 72 semitones. Column-wise max-normalization is
applied on T, such that the target values are also in [0, 1].

We train our network by minimizing the SoftDTW
loss over all training excerpts until the validation loss has
stopped improving for 12 epochs. In each training step,
we compute the loss on a batch of 16 inputs. Each input
excerpt is based on some version V ∈ V and aligned to
the corresponding excerpt in one randomly selected target
version V ′ ∈ V \ {V }. We use the Adam optimizer with
a learning rate of 0.001, which is reduced whenever the
validation loss has not improved for three epochs. Finally,
we employ an efficient CUDA implementation of the Soft-
DTW recursions by Maghumi et al. [25]. 4

4.2 Dataset and Split

To train our cross-version approach, we require a dataset
containing multiple versions per piece. For testing, we ad-
ditionally require aligned pitch annotations for the record-
ings. We opt for using the Schubert Winterreise Dataset
(SWD, [26]) for training, which contains nine versions of
the 24 songs in the cycle “Winterreise” composed by Franz
Schubert (in total, roughly 11 h of audio). Each song con-
stitutes one unique musical piece. The recordings consist
of a tenor or baritone singer accompanied by piano. There
are no structural differences between versions. Thus, all
recordings for a piece contain the same combinations of
pitches up to transposition (a global pitch shift), since some
musicians chose to perform some songs in different keys.
When training our CVA approach, we ensure that input and
target version are in the same key by appropriately shifting
the target CQT representation according to the key annota-
tions given in the dataset.

We train and evaluate our model using a challenging
split where the train and test sets contain both different
versions and different songs. We choose songs 1–13 for
training, 14–16 for validation, and 17–24 for testing. Fur-
thermore, versions HU33 and SC06 are used for testing,
while the remaining seven versions are used for training
and validation. Such a split is also referred to as a “neither
split”, since neither the same versions nor songs appear
during training and testing [27]. This split avoids over-
optimistic evaluation due to confounders such as the “al-
bum effect” [28].

4.3 Baselines

Aside from the supervised baseline Sup, which is trained
using strong pitch annotations, we compare our proposed
CVA approach to two additional baselines. With these,
we aim to evaluate our hypothesis that cross-version tar-
gets are useful for learning MPE-like representations (see

4 Note that, within one batch, the targets T may have different lengths.
In order to benefit from parallelization across the batch dimension, we
therefore rescale the targets T to a common length N

′
= 500 (a trick

referred to as W4 in [11]). This did not affect results negatively in early
experiments. Note that rescaling is not equivalent to temporally aligning
inputs and targets.
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Scenario CS AP
τ = 0.4 τ = τ

∗

F Acc. F Acc.

CQT 0.585 0.410 0.443 0.287 0.450 0.292
AE 0.588 0.500 0.336 0.203 0.511 0.345

CVA 0.632 0.589 0.585 0.416 0.592 0.423
CVA+Ov 0.664 0.639 0.553 0.384 0.623 0.455
CVA+B 0.633 0.563 0.560 0.392 0.592 0.424
CVA+Ov+B 0.682 0.646 0.625 0.458 0.627 0.460

Sup 0.748 0.753 0.700 0.543 0.703 0.546

Table 1: Results for multi-pitch estimation on the Schubert
Winterreise Dataset for the baselines and different config-
urations of our proposed approach.

Section 3). For the CQT baseline, we take the target rep-
resentations of our test recordings (which are normalized
to have values in the range [0, 1]) and obtain multi-pitch
estimates by directly thresholding these magnitude CQTs
with τ . This learning-free baseline was previously pro-
posed in [10] and, like CVA, does not require pitch anno-
tations. Furthermore, we consider a second baseline that
is very similar to CVA but does not utilize cross-version
targets. Therefore, for each input excerpt, we choose the
same version V ∈ V for both I and T. Thus, the network
needs to effectively recreate its input, similar to an auto-
encoder. We refer to this baseline with the shorthand AE.
Intuitively, we expect CQT and AE to yield similar results.
However, AE allows us to verify that any improvements
observed for CVA stem from the cross-version targets and
not from the model architecture or training setup. Note that
Sup and AE use the same network architecture as CVA.

4.4 Evaluation Metrics

We evaluate the multi-pitch estimates of our proposed ap-
proach and all baselines using standard metrics on the test
set. For this, we utilize the strongly aligned pitch annota-
tions provided in the test data. As metrics, we use the co-
sine similarity (CS) between predictions and annotations,
averaged over all frames and files in the test set. Further-
more, we compare the average precision (AP, computed as
the area under the precision-recall curve), F-measure (F),
and the accuracy (Acc.) metric introduced in [29]. For
these measures, we average over all pitches. Note that F
and Acc. are evaluated on M̃ and thus depend on the thresh-
old τ , while CS and AP are threshold-free evaluation met-
rics that directly compare M and A.

5. RESULTS

The main results of our study are summarized in Table 1.
Rows correspond to different baselines or configurations of
our proposed approach. We write +Ov when adding over-
tones and +B when including the bias term to account for
background noise. Our model including all proposed mod-
ules is thus referred to as CVA+Ov+B. Columns contain
the evaluation metrics. For the thresholding-based metrics
F and Acc., we provide both results based on a fixed thresh-
old (τ = 0.4) and a threshold chosen to optimize F on the
validation set (τ = τ∗).
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Figure 4: F-measures on the test set for different MPE ap-
proaches, depending on the choice of threshold τ . Markers
show the optimal threshold τ∗ as determined on the vali-
dation set.

Our proposed approach CVA outperforms the two base-
lines CQT and AE across all metrics, demonstrating the ef-
fectiveness of using different versions of a piece to capture
pitches in M. For example, CS=0.632 for CVA compared
to CS = 0.588 for AE, and AP = 0.589 for CVA com-
pared to AP = 0.410 for CQT. Furthermore, our proposed
overtone and noise models are effective. By adding over-
tones (CVA+Ov), we can further increase AP from 0.589
to 0.639. Adding a fixed bias term (CVA+B) does not
yield improvements by itself. However, by combining both
modules (CVA+Ov+B), we achieve the best results for our
approach, further increasing AP to 0.646 and CS to 0.682.

Despite these encouraging results, there remains a gap
between the best results for our proposed approach and
those for the supervised baseline Sup. We emphasize
again that—unlike CVA—Sup requires strong pitch anno-
tations for training.

5.1 Impact of Threshold τ

When using the standard value of τ = 0.4 for threshold-
ing M, our CVA approach also outperforms both baselines
in terms of F-measure and accuracy (e. g., F = 0.553 for
CVA+Ov compared to 0.443 for CQT).

A fixed threshold may be sub-optimal, especially for
methods that are not explicitly trained for MPE. When
evaluating using the optimized threshold τ∗, we observe
increased results for all approaches. CVA and its extensions
continue to outperform the two baselines. The F-measure
for CVA+Ov, for example, further increases to F = 0.623.
For that model, the optimal threshold as determined on the
validation set is τ∗ = 0.28. In this case, our method re-
quires at least a few pitch annotations to determine τ∗ and
is no longer relying solely on the cross-version targets.

Figure 4 further demonstrates the impact of the param-
eter τ . F-measures (vertical axis) are shown for different
MPE approaches (colored lines), depending on the choice
of τ (horizontal axis). Markers indicate τ∗. As shown in
this figure, a poor choice of τ may strongly affect test re-
sults. Moreover, τ∗ as found using the validation set may
not always give the highest scores on the test set. For in-
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Figure 5: Qualitative results on a test excerpt from SWD.

stance, a choice of τ = 0.5 would yield an even higher
F-measure of 0.634 for CVA+Ov+B.

5.2 Training Stability

The metrics reported in Table 1 are computed from a single
training run per method. When repeating the experiment,
results may deviate slightly due to random network ini-
tialization, dataset shuffling, or dropout. For CVA+Ov+B,
we repeat the experiment five times and find low standard
deviation σ in results (σ(CS) = 0.004, σ(AP) = 0.009,
σ(F) = 0.008, and σ(Acc.) = 0.009 for τ = τ∗).

5.3 Qualitative Results

To complement the quantitative evaluation, we also pro-
vide qualitative results on an exemplary excerpt in Fig-
ure 5. The first row shows an input excerpt (I) and corre-
sponding pitch annotations (A), while the remaining rows

show multi-pitch estimates before (M) and after threshold-
ing (M̃, computed using τ = τ∗).

For CQT and AE, the resulting M correspond to the input
representation and thus lead to poor multi-pitch estimates.

When training our approach without overtones or noise
model (CVA), the output representation M emphasizes the
fundamental frequencies of many of the actual pitches be-
ing played. However, M also contains a lot of energy from
overtone structures and background noise. As a conse-
quence, the resulting M̃ contains many spurious pitch pre-
dictions, especially for higher pitches.

With +Ov and +B, we see a reduced impact of over-
tones or background noise in M, respectively. In both cases,
many erroneous predictions remain after thresholding. By
including both modules (CVA+Ov+B), we obtain a promis-
ing representation that bears visual resemblance to the re-
sults for Sup. We also observe fewer spurious activations
in M̃ compared to the basic CVA. Overall, the proposed ex-
tensions are effective in encouraging the model to produce
MPE predictions in M.

6. CONCLUSION

In this paper, we presented a novel approach for MPE that
does not require pitch annotations for training. Instead,
our method utilizes multiple versions of the same musical
piece as surrogate targets. We train a network that takes a
time–frequency representation of one version as input and
minimizes an alignment-based distance to time–frequency
representations of other versions. We hypothesized that
this would result in outputs corresponding to pitch esti-
mates. We further incorporate knowledge about overtones
and noise levels into our system to support this hypothesis
and improve results. In our experiments, we showed that
our approach outperforms two baselines and that our pro-
posed extensions to the model are effective. Overall, our
work demonstrates the use of weak cross-version targets to
replace strong pitch annotations.

This paper serves as a proof of concept for our core idea,
which could be extended in future work. First, better re-
sults may be obtained by utilizing larger model architec-
tures and bigger training datasets than in the present study.
Here, we also abstained from excessive model and hyper-
parameter tweaking. In the future, larger and more exten-
sively tuned models may close the gap between fully su-
pervised approaches and the proposed cross-version train-
ing. Second, one may extend our approach to align one in-
put excerpt to multiple versions simultaneously within the
same training step (rather than choosing one target version
at a time). This may further regularize the model output.
Finally, future work may explore more elaborate synthe-
sis models that could replace the simplistic overtone and
noise models used here. For example, one may incorpo-
rate knowledge about the sound production processes of
different instruments into the network [13]. In this con-
text, results might also be improved by estimating the syn-
thesis parameters (e. g., amplitudes of the overtone model)
from the input recording, rather than using fixed process-
ing steps.
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ABSTRACT

We present the Batik-plays-Mozart Corpus, a piano per-

formance dataset combining professional Mozart piano

sonata performances with expert-labelled scores at a note-

precise level. The performances originate from a record-

ing by Viennese pianist Roland Batik on a computer-

monitored Bösendorfer grand piano, and are available both

as MIDI files and audio recordings. They have been pre-

cisely aligned, note by note, with a current standard edition

of the corresponding scores (the New Mozart Edition) in

such a way that they can further be connected to the mu-

sicological annotations (harmony, cadences, phrases) on

these scores that were recently published by [1].

The result is a high-quality, high-precision corpus map-

ping scores and musical structure annotations to precise

note-level professional performance information. As the

first of its kind, it can serve as a valuable resource for

studying various facets of expressive performance and

their relationship with structural aspects.

In the paper, we outline the curation process of the

alignment and conduct two exploratory experiments to

demonstrate its usefulness in analyzing expressive perfor-

mance.

1. INTRODUCTION

Music performance is a complex and nuanced activity that

involves the interplay of various expressive features such

as timing, dynamics, and articulation. Expressive per-

formance research in music information retrieval (MIR)

focuses on modeling expressive aspects of music perfor-

mance by analyzing how performers use nuances in tim-

ing, dynamics, articulation, and other expressive features

to convey their musical intentions, with the aim of devel-

oping computational models that can analyze, recognize,

or synthesize expressive performances [2].

Recent research in this field for Western classical pi-

ano has focused on data-driven approaches both for per-

formance generation [3,4] and data creation in the form of

© P. Hu and G. Widmer. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

P. Hu and G. Widmer, “The Batik-plays-Mozart Corpus: Linking Perfor-

mance to Score to Musicological Annotations”, in Proc. of the 24th Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

large-scale MIDI performance data transcribed from au-

dio recordings [5, 6]. While such data corpora can be use-

ful for comparative performance analyses and related tasks

(e.g., performer identification, performance style transfer),

they lack the necessary precision and alignment informa-

tion (with the underlying musical score) required to pre-

cisely map expressive intentions and parameters to under-

lying score features.

Compared to these large-scale transcribed MIDI

datasets, precise MIDI data (as recorded on computer con-

trolled grand pianos such as the Yamaha Disklavier or

Boesendorfer SE/Ceus series) along with their correspond-

ing score alignment is somewhat limited in quantity and

size [7–9]. The performances in such datasets are typically

sourced from advanced piano students or piano competi-

tions, whereas the digital scores are often obtained from

open-source, user-curated online libraries such as Mus-

eScore 1 .

Regarding the performance-to-score alignment, one

would ideally want to have note-by-note correspondence

information; unfortunately, in the case of the largest of

these datasets [7], score-performance alignments are only

given at a rather coarse level of beats. Score annotations

conveying structural information such as underlying har-

mony or phrases are even more scarce.

To address these limitations, we introduce the Batik-

plays-Mozart dataset 2 , in which we provide a set of ex-

pert performances of 12 complete Mozart piano sonatas

(36 distinct movements) in MIDI format by concert pi-

anist Roland Batik, precisely aligned, at a note-by-note-

level, to a standard edition (the New Mozart Edition) of

the score, thereby linking the performance information to

a previously published dataset [1] of expert annotations of

the scores in terms of harmony, cadence, and phrase struc-

ture. To the best of our knowledge, this is the first corpus of

its kind, combining high quality digital score and structural

annotations with expert performances in recorded MIDI

format. We report two preliminary experiments to demon-

strate the benefits of having precise performance–score–

structure annotation alignments.

The remainder of this paper is organised as follows:

Section 2 presents a list of comparable expressive perfor-

mance datasets currently publicly available. Section 3 de-

1 https://musescore.com/sheetmusic
2 https://github.com/huispaty/batik_plays_

mozart
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Size Modality Annotations
Dataset Pieces Performances MIDI Score Alignment Other

ASAP [7] 222 1,068 recorded MusicXML beat time and key signature
Vienna4x22 [8] 4 88 recorded MusicXML note -
CrestMuse PEDB [9] 35 411 recorded MusicXML note phrase
MazurkaBL [10] 44 2,000 - MusicXML beat dynamics, tempo markings

Batik-plays-Mozart 36 36 recorded MusicXML note phrase, harmony, cadence

Table 1. An overview of publicly available comparable piano performance datasets for which precise recorded MIDI data,

score-performance alignments and/or musicological annotations are available.

scribes the data origins, the used data formats, and the cu-

ration process. Section 4 gives an overview of the dataset,

and Section 5 describes two preliminary experiments to

demonstrate the benefits of performance–score–structure

annotation alignments. Finally, Section 6 concludes the

paper with some remarks for future work.

2. RELATED WORK

Several piano performance datasets have been published

in the context of expressive performance analysis and per-

formance rendering. While recently published datasets are

considerably larger than Batik-plays-Mozart, they provide

performance recordings solely in the form of MIDI tran-

scribed from audio recordings [5, 6] or do not include a

high-quality digital score ground truth [11]. Despite the

encouraging results demonstrated by recent transcription

models, they often introduce inaccuracies, such as incor-

rect note fragmentation, missed note onsets, and falsely

identified notes [12]. Similarly, certain expressive perfor-

mance aspects such as (micro-)timing and tempo can only

be measured given either a temporal or note-wise score-

performance mapping [2]. Nevertheless, these datasets re-

main useful for various related tasks such as symbolic mu-

sic generation, music transcription and tagging, or high-

level comparative performance analysis.

Table 1 presents an overview of comparable piano per-

formance datasets currently publicly available, for which

precise (recorded) MIDI data, score-performance align-

ments and/or musicological annotations are available.

Among these datasets, ASAP [7] stands out as the most

extensive one, both in terms of musical pieces and per-

former range, with 1,068 performances beat-aligned to 222

scores, each annotated with key and time signature. In

comparison to ASAP, all other publicly accessible datasets

are significantly smaller: The Vienna 4x22 corpus [8] con-

tains 22 different performances for excerpts of four dif-

ferent pieces, each aligned on a note level and provided

in MusicXML 3 , MIDI and audio format. The CrestMuse

PEDB v2.0 [9] provides 35 pieces note-aligned to 411 per-

formances, with scores provided in MusicXML and MIDI

and performances in MIDI and WAV. The dataset also con-

tains phrase structure annotations, however, merely in the

format of PDF and plain text files, somewhat limiting their

(re)usability.

The MazurkaBL dataset [10] consists of a corpus of 44

3 https://www.musicxml.com/

Chopin Mazurkas with MusicXML scores that have been

beat-aligned to 2000 performances. The performances

themselves are not provided (neither as MIDI nor as au-

dio); only beat positions and corresponding loudness val-

ues are given, along with the positions of tempo/dynamics

markings in the score.

3. CURATION PROTOCOL AND FILE FORMATS

3.1 File origins

The MIDI performance files originate from a performance

of twelve Mozart piano sonatas by Viennese concert pi-

anist Roland Batik on a computer-controlled Bösendor-

fer SE290 grand piano, the predecessor of the CEUS

model. The Bösendorfer SE series measures each indi-

vidual keystroke and pedal movement precisely, with on-

set and offset times being captured at a time resolution of

1.25ms. Hammer velocity values are captured in a propri-

etary file format, and converted and mapped to the 128 dy-

namics MIDI values (see [13] for conversion details). The

audio recordings corresponding to those MIDI files can be

purchased commercially 4 .

These MIDI performance data were originally aligned

manually, on a note-to-note level, to a symbolic encod-

ing of the score produced by our team [14, 15]. In or-

der to make it possible to link the performance data in

an unequivocal way to the musicological score annota-

tions provided in the Annotated Mozart Sonatas dataset by

Hentschel et al. [1], we decided to replace our score encod-

ing in the alignments entirely by the score notes as given in

the their dataset, which link to their annotations directly via

absolute temporal score position. The scores in the Anno-

tated Mozart Sonatas dataset conform to the New Mozart

Edition 5 and are given in MuseScore format, with the har-

mony, phrase and cadence label annotations provided in

tabular format, as tab-separated values (TSV) files.

3.2 The match alignment format

We provide the alignment between the above-mentioned

score and performance files in the match file format [16],

a file format for symbolic music alignment in a human-

understandable textual form. It is structured sequentially,

and the alignment information is given at the level of indi-

vidual notes.

4 https://www.gramola.at/products/9003643987012
5 https://dme.mozarteum.at/DME/nma/start.php?l=

2
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Figure 1. Visual illustration of the alignment process.

Each step in the alignment process is numbered accord-

ing to the textual description in Section 3.3. Steps marked

* indicate manual correction / post-processing. Elements

highlighted in green are combined in the new alignment

match files.

The encoded alignment is complete in the sense that all

performance and all score notes are captured. Each per-

formance and each score note is represented with their

respective note ID, and their respective alignment can

be recorded with one out of three potential tuples: 1.

A match between score note and performance note, i.e.,

(score_id, performance_id), 2. a deleted score

note (score_id, ) which represents a score note omit-

ted in the performance, or 3. an inserted performance note

( , performance_id), which marks a performed

note for which there is no corresponding score note.

Following this alignment encoding, each line in a match

file corresponds to either a match, a deletion or an inser-

tion. Additional lines express (sustain or soft) pedal in-

formation, or encode meta information about the musical

piece and performer. While the performance part in match

corresponds to a lossless encoding of a corresponding per-

formance in MIDI format, the score part captures essential

information including onset, offset and duration in beats,

and pitch, pitch spelling, and octave information for each

score note.

3.3 Curation protocol

To create note-level score-to-performance alignments, en-

coded in the match file format, between the performance

MIDI data by pianist Roland Batik and scores and musico-

logical annotations by Hentschel et al. [1], we follow the

workflow as outlined below (see Fig. 1):

1. Retrieve information from old alignment. Given

an old alignment file, we use partitura [17] to re-

trieve a score and performance representation which

we parse into score and performance note arrays,

sna_o and pna_o, to sequentially capture each

(notated and performed) note with a unique note ID.

In addition we retrieve a score-to-performance align-

ment, align_o, in the encoding format explained

above (i.e., a list of note ID tuples expressing either

a match, deletion or insertion).

2. Retrieve score note array from MusicXML. In the

next step, we convert the annotated MuseScore for-

mat scores provided by Hentschel et al. [1] to Mu-

sicXML, assign unique note IDs to each note, and

convert this score representation into a second score

note array (sna_s).

3. Unfold score note array. We update the score note

array obtained from MusicXML, sna_s, by unfold-

ing it in accordance to the repetition structure found

in the performance note array, pna_o. 6

4. Create score-score alignment. In this step, we

create a score-to-score alignment (align_s) by

matching each note in the two score note arrays

sna_o and sna_s using its pitch, onset and du-

ration information in beats. Any notes in sna_o

and sna_s not matched automatically need to be

aligned manually. Missed alignments at this stage

can occur due to:

• Score mistakes. These reflect mistakes in the

score (e.g., a missing note, incorrect pitch, oc-

tave, missing modifier, missing repetition or

ending markings) and require a manual correc-

tion of the score file.

• Differing score versions. For certain sonata

movements, the notated score provides an al-

ternative score version reflecting the first edi-

tion (“Erstdruck”) for certain segments of a

piece, expressing the composer’s impromptu

ornamentation. 7 For the current dataset, such

ornamented versions exist in K.284iii, K.332ii,

K.457iii.

• Double-voiced score notes. These occur fre-

quently in notated music, and describe a score

note that is notated doubly in two different

voices but corresponds to one performed note.

• Grace notes. Grace notes in notated music

can occur in multiple forms to reflect differ-

ent types of ornaments such as trills, acciac-

cature, mordents, turns etc. Depending on the

ornament type and the underlying score encod-

ing format, this may result in several notes oc-

curring at the same (notated) onset (and hence

6 To reflect the same note occuring in a repeated segment, a suffix is
added to the ID to reflect the number of occurrence, i.e. for a note with ID
n14, the repeat structure unfolding is expressed as n14-1 for the first,
and n14-2 for the second occurrence, respectively.

7 https://www.henle.de/en/music-column/

mozart-piano-sonatas/
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Figure 2. An example of a cadenza within a piano sonata

starting in measure 198 in KV333, 3rd movement.

with zero duration) to ensure a regular measure

according to the time signature of that piece.

Without onset and duration information, these

notes must then be manually aligned to their

corresponding performed notes.

• Cadenza and ad libitum measures. Both ca-

denza measures and those marked ad libitum

correspond to irregular measures, that is, mea-

sures that contain more beats than indicated in

the time signature (see Fig. 2). Digitally en-

coded, the notes in such measures are com-

monly notated without duration to allow for

error-free parsing, and thus share the same beat

onset and need to be aligned manually.

5. Update score-performance alignment. Here we

update the score note IDs in the old alignment

(align_o) according to the score-score alignment

(align_s) to create new score-performance align-

ments, align_n. For each alignment in align_o,

we then need to ensure the validity of the original

alignment type (match, insertion or deletion). In

particular, for notes in the original score note ar-

ray (sna_o) that could not be aligned to notes in

the MusicXML-based score note array (sna_s), we

consider two cases:

• If the note in sna_o corresponds to type

‘match’ in align_o, the alignment type for

the formerly matched performance note is

changed accordingly into an insertion.

• If the note in sna_o corresponds to type ‘dele-

tion’ in align_o (i.e., a score note that was

not performed), it is is discarded in align_n.

Notes in sna_s that could not be aligned with notes

in sna_o, on the other hand, are recorded as type

‘deletion’ in align_n.

6. Create match files. Using the updated

performance-to-score alignment align_n, we

create new match files, and manually add attri-

butional information (e.g., ‘diff_score_version’,

‘voice_overlap’) to score notes to reflect edge cases

described in step 4.

4. DATASET OVERVIEW

The Batik-plays-Mozart dataset contains performances by

pianist Roland Batik of twelve Mozart sonatas (see Table

2 for the list of sonatas), corresponding to approx. 102,400

played notes and 223 minutes of music, for which the per-

formances are provided in MIDI, musical scores in Mu-

sicXML, and the alignment in match file format. Ap-

proximately 98,300 (95.36%) of all performed notes are

aligned with a corresponding score note, the remaining

4,100 (4.44%) represent insertions (reflecting mostly or-

naments). Roughly 200 score notes have been omitted in

the performances.

For each performance, we also provide the performance

note arrays, which capture each played note with its note

ID along with onset and duration information in seconds

and MIDI ticks, as well as velocity and pitch informa-

tion. Likewise, the dataset includes the score note array

(unfolded according to the repeats as played by the pianist

and reflected in the alignment), which captures each score

note with its (MusicXML) note ID (including repeat suf-

fices, where applicable), onset and duration information in

terms of beats (reflecting the time signature), and quarter

notes (reflecting a “normalized” score time unit), and pitch

and voice information.

We link our aligned score note arrays to the musico-

logical annotations in [1] via their temporal position in

the following way: In the second version 8 of the dataset,

each annotation label for harmonies, cadences, and phrases

is unequivocally referenced to a temporal score position

represented in terms of quarterbeats and measure number,

where the first expresses the distance of the label from the

beginning of the piece in quarter note units. We leverage

these two temporal parameters to link each note-aligned

score note array by first reducing it to its shortest form

(without any unfolded repeats), aligning it temporally with

the musicological annotations, and eventually unfolding it

according to the performed repetition structure.

5. DATASET DEMONSTRATIONS

This section presents two simple examples of the kinds of

studies that are made possible by our dataset. The first

is motivated by a directly related study in the Annotated

Mozart Sonata corpus paper [1]; the second shows how

precise performance alignments permit more detailed in-

vestigations relating to cadences and their performance.

5.1 Global tempo and harmonic density

In a first study, we replicate the second experiment in

Hentschel et al. [1], aimed at investigating the relationship

8 https://github.com/DCMLab/mozart_piano_

sonatas
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Sonata Performed Notes Duration (min) Match Notes % Insertion Notes % Deletion Notes %

KV279 7,789 16.21 7,385 94.087 404 5.780 11 0.130

KV280 6,277 14.69 6,070 95.793 207 3.983 13 0.223

KV281 7,030 14.43 6,396 90.450 634 9.393 11 0.160

KV282 5,761 14.77 5,552 96.197 209 3.467 20 0.337

KV283 8,231 17.39 7,915 95.657 316 4.233 9 0.107

KV284 13,386 25.92 12,691 93.763 695 6.033 27 0.203

KV330 7,869 18.47 7,589 96.857 280 3.047 7 0.100

KV331 11,760 22.64 11,595 98.283 165 1.370 45 0.347

KV332 9,013 17.84 8,660 93.417 353 6.210 24 0.373

KV333 9,137 20.40 8,827 96.723 310 3.120 16 0.157

KV457 7,290 18.24 7,022 96.043 268 3.843 9 0.110

KV533 8,878 22.12 8,616 97.027 262 2.837 15 0.137

Total 102,421 223.12 98,318 95.358 4,103 4.443 207 0.199

Table 2. List of sonatas in the Batik-plays-Mozart dataset. The bottom row represents the sum in all columns except for

those expressing percentages, for which the mean is shown.

between tempo and harmonic change rate. The basic ques-

tion asked in [1] was whether the rate at which the harmony

changes in a piece is correlated with the piece’s typical per-

formance tempo. Their study involved determining the av-

erage (median) performance duration of each sonata move-

ment from 6 complete commercial sonata recordings, and

correlating harmonic label density (rate of harmonic labels

in their annotations, per performance time unit) with av-

erage overall performance tempo (number of quarter notes

per performance time unit). We repeat the same experi-

ment with our pianist’s performances and our alignment

files instead of 6 pianists’ audio recordings.

We apply the same procedure as in [1], unfolding the

score according to the repeat structure of the piece in or-

der to calculate the actual piece length (in terms of quarter

notes). The only difference is that we do this according

to the repeats actually performed by the pianist (which are

expressed in our match files, thus omitting the need for a

dedicated “unfolding" step), whereas [1] seem to have as-

sumed that all repeats were played by all pianists.

Comparing our results (Fig. 3) to Fig. 10 in [1], we

see a similar general trend, in the form of a roughly linear

increase in harmonic label density with performed tempo

(slope = .43, r= .75, compared to .48 and .80, respectively,

in [1]). 9 However, we also immediately see a marked

difference in the performance tempo distribution: in [1],

Fig. 10, there is a relatively large cloud of points (sonata

movements) with conspicuously high tempos of 180–200

(quarters per minute), which does not appear in our plot,

and which we believe may point to a systematic problem

in their way of estimating playing tempo: assuming that

all notated repeats are played out by the performers leads

them to overestimate the tempo in all cases where some or

a majority skipped some repeats. 10

9 Note that we have a somewhat smaller set of points, because we only
have 12 of the 18 sonatas in our dataset.

10 Of course, the authors explicitly acknowledge the problem: “Also,
some of the initial assumptions might have to be revisited. For example,
the extreme outlier suggesting a tempo of 239 quarter notes per minute
is due to the fact that for this particular piece – the first movement of K.
533/494 – there seems to be a convention among pianists to repeat the first
part of the piece, but not the second (as the score would suggest), which
of course reduces the performance duration.” [1] (p.76), but a comparison

Figure 3. Correlation between global tempo (as measured

in quarter notes per minute) and harmony label density

We thus see an immediate advantage of our more pre-

cise performance-aligned corpus: the match files naturally

give correct tempo and score duration information, being

based as they are on score-performance alignments that re-

flect the actual repeat structure played by our performer.

Still, we can say that our results support and confirm the

overall hypotheses proposed there, showing a more or less

linear relationship between harmonic label density and

global performance tempo.

5.2 Performance of different cadence types

Our data permits much more detailed investigations into

relationships between structural aspects of a piece, and

how these are translated into performance decisions by a

pianist. As a simple example, we investigate variations in

local tempo before various types of cadences. Specifically,

we compare the local tempo prior to a cadence annotation

across different tempo classes for authentic (perfect and

imperfect, i.e., PAC and IAC) and half cadences (HC), and

differentiate between the cases when a cadence falls on ei-

ther a downbeat or a weak beat. The hypothesis to be tested

with our distribution implies it might be more severe than expected.
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Figure 4. Comparison of local timing strategies one quarter note before and after authentic and half cadence labels, over

different tempo classes (in increasing tempo from top to bottom), for cadences falling on a downbeat (left) or weak beat

(right). Colour identifies cadence type, line style notated tempo class.

here is that a performer will tend to shape cadences dif-

ferently, in terms of tempo, depending on their type and

degree of ‘finality’.

To compute the local tempo curves, we consider a uni-

form window spanning one quarter note each preceding

and following a cadence label. 11 For each score-note-

aligned performed note in that window, we define the lo-

cal tempo via the beat period (BP), which we calculate

as the ratio of the inter-onset-interval (IOI) between the

current performed onset and the subsequent one, and the

IOI between the current notated onset and subsequent one.

We exclude grace notes and their corresponding performed

notes from this calculation in order to remove outliers.

Next, we perform time-wise interpolation on these

tempo curves to obtain beat period values at eighth note

intervals within the window. Given that we are most in-

terested in the local timing strategy immediately before a

label (that is, an eighth note before the label position), we

discard those curves where that particular time point is in-

terpolated. Following this procedure, we obtain a total of

3,540 local tempo values (corresponding to 708 curves), of

which 251 (7.09%) values are interpolated.

Figure 4 shows the mean of local tempo curves across

different tempo classes, for cadence labels annotated on a

downbeat (left) and on a weak beat (right), respectively.

For both authentic and half cadence types, the differences

in local tempo diminish with increasing global tempo for

both downbeat and weak beat cadences. Likewise, the

tempo profiles tend to flatten out with increasing global

tempo, suggesting that the pianist takes more liberty, in

terms of expressive timing, in slow pieces. For this rea-

son, we focus our analysis on the adagio tempo class, the

slowest tempo (the solid line plots in Fig. 4) .

The influence of the beat level on the local tempo for

half cadences seems to be negligible, with the local beat

period decreasing slightly prior to the cadence (causing an

11 In the Annotated Mozart Sonatas Corpus [1], cadence labels are
placed at the onset of the final target harmony (e.g., I/i for authentic ca-
dences).

increase in local tempo, i.e. an accelerando), regardless of

whether it falls on a downbeat or weak beat. For authentic

cadences, we can see a substantial difference in expres-

sive tempo depending on whether or not the label falls on

a downbeat: for authentic cadences falling on a downbeat,

the mean tempo curve for the adagio tempo class corre-

sponds mostly to what one would expect (i.e., a very clear

ritardando in preparation of the cadence) based on the un-

derlying harmonies and their notion of tension and release.

Interestingly, this ritard seems to continue somewhat after

the resolution into the tonic, suggesting a lengthening of

the tonic arrival. For weak-beat authentic cadences, a sim-

ilar significant preparation or anticipation is largely miss-

ing.

6. CONCLUSION AND FUTURE WORK

We have presented Batik-plays-Mozart, a piano perfor-

mance dataset linking professional Mozart piano sonata

performances to expert-labelled musical scores, at the level

of notes. The resulting dataset is the first of its kind to com-

bine professional performances in precise, recorded MIDI

with curated musical scores and expert musicological and

structural annotations [1] at this level of detail.

We presented two preliminary experiments, intended

to demonstrate the benefits of having such precise, note-

aligned performance–score–structure annotation data for

studying expressive features and their relation to the un-

derlying musical structure.

Our plan for future work includes the transcription of

the remaining six sonatas of the Mozart piano sonatas cor-

pus from audio recordings by the same pianist, and their

subsequent alignment to the musical scores using state-of-

the-art transcription and alignment models. By doing so,

we hope to advance our understanding of the differences

between transcribed and recorded MIDI, and to evaluate

the potential benefits of incorporating an alignment step to

improve the quality of transcription.
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ABSTRACT

Generating a stereophonic presentation from a mono-

phonic audio signal is a challenging open task, especially

if the goal is to obtain a realistic spatial imaging with

a specific panning of sound elements. In this work, we

propose to convert mono to stereo by means of predict-

ing parametric stereo (PS) parameters using both nearest

neighbor and deep network approaches. In combination

with PS, we also propose to model the task with generative

approaches, allowing to synthesize multiple and equally-

plausible stereo renditions from the same mono signal. To

achieve this, we consider both autoregressive and masked

token modelling approaches. We provide evidence that the

proposed PS-based models outperform a competitive clas-

sical decorrelation baseline and that, within a PS prediction

framework, modern generative models outshine equivalent

non-generative counterparts. Overall, our work positions

both PS and generative modelling as strong and appealing

methodologies for mono-to-stereo upmixing. A discussion

of the limitations of these approaches is also provided.

1. INTRODUCTION

Single-channel monophonic (mono) signals are found in

multiple situations, such as historical recordings or current

ones made with a single microphone (e.g., field recordings,

amateur band rehearsals, etc.). Even recordings made with

two or more microphones that are not spaced enough or

that do not have enough directivity may be better treated

by downmixing to mono (e.g., mobile phone recordings).

Furthermore, many processing algorithms, including mod-

ern deep neural network algorithms, cannot yet or are sim-

ply not designed to handle more than one channel. Unlike

these scenarios, the most common listening experiences,

either though loudspeakers or headphones, involve two-

channel stereophonic (stereo) signals. Hence the useful-

ness of mono to stereo upmixing.

Classical approaches to produce a pseudo-stereo ef-

fect from a mono signal are based on decorrelation. Ini-

© J. Serrà, D. Scaini, S. Pascual, D. Arteaga, J. Pons,

J. Breebaart, and G. Cengarle. Licensed under a Creative Commons At-

tribution 4.0 International License (CC BY 4.0). Attribution: J. Serrà,

D. Scaini, S. Pascual, D. Arteaga, J. Pons, J. Breebaart, and G. Cengarle,

“Mono-to-stereo through parametric stereo generation”, in Proc. of the

24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

tial approaches used time delays and complementary fil-

ters [1], although all-pass filters [2] are commonly used

nowadays, together with multi-band processing to improve

the effect [3–5]. Instead of multi-band, estimation of fore-

ground/background time-frequency tiles can also be per-

formed [6]. Decorrelation approaches, however, only pro-

vide a mild stereo effect, with limited width, and cannot

spatially separate individual elements in the mix. To over-

come the latter, researchers have considered source sepa-

ration approaches [7–9]. The main idea is that, if individ-

ual elements or tracks are available, those can be panned

to any location, producing a more realistic spatial image.

Nevertheless, this approach presents several drawbacks:

firstly, even the best-performing source separation algo-

rithms produce artifacts [10], which can be highly audi-

ble in the stereo render; secondly, current separation algo-

rithms are very restrictive in the number and types of el-

ements they can separate [11], thus considerably limiting

their application in real-world spatialization tasks; thirdly,

after elements or tracks are separated, it remains to be seen

how can they be automatically panned in a realistic manner

(cf. [12]), which is the reason why separation-based ap-

proaches usually involve user intervention in the panning

stage [7–9].

Music is a paradigmatic example where, apart from

stereo capture, artists and engineers massively exploit the

stereo image to serve a creative artistic intent. Instrument

panning is a fundamental part of music mixing, and achiev-

ing the right balance requires musical sensibility as well as

technical knowledge [13]. However, apart from some style

conventions, the stereo image of a music mix is a highly

subjective construct: given a set of input tracks, there are

many plausible stereo renditions from which selecting the

final mix is practically only a matter of artistic choice.

Hence, we posit that this is a perfect ground for modern

deep generative models [14]. However, to our surprise, we

only found one work using deep neural networks for mono-

to-stereo [15], with very limited generative capabilities.

In this work, we propose the use of machine learning

techniques and parametric stereo (PS) decoding [16,17] for

converting mono to stereo. PS is a coding technique that al-

lows to transmit a stereo signal through a mono signal plus

side information that, with enough bit rate, can be used to

recover an almost transparent version of the original stereo

content. By leveraging machine learning techniques, we

generate (or invent) plausible versions of PS parameters in

situations where side information is not available. These
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parameters can then be used to decode an existing mono

signal into a plausible stereo one. We propose two variants

of PS generation: one based on a classical nearest neigh-

bor approach [18] and another one based on deep gener-

ative modeling. For the latter, we consider both common

autoregressive modeling [19] and more recent masked to-

ken modeling [20], and show that there can be noticeable

differences between the two. We use subjective testing to

compare the proposed approaches and show that PS gen-

eration can produce results that are more appealing than

considered competitive baselines. We also introduce two

objective evaluation metrics and discuss the limitations of

both PS and generative approaches for mono-to-stereo.

2. PARAMETRIC STEREO

PS exploits the perceptual cues that are more relevant to

our spatial perception of sound, namely the fact that direc-

tional sources produce interaural level and phase (or time

delay) differences, and the fact that diffuse sound fields

manifest as decorrelated signals at the two ears. These

cues effectively describe how a mono signal is mapped to

the left and right stereo channels, and can be measured us-

ing three quantities or parameters [16, 17]: interchannel

intensity differences (IID), interchannel time differences

(or, equivalently, phase differences), and interchannel co-

herence or correlation (IC). PS parameters are computed

in frequency bands, to reflect the frequency-dependent na-

ture of the spatial properties of stereo content, and also

on a frame-by-frame basis, to reflect the time-varying na-

ture of frequency cues and spatial images. An important

observation is that PS is capable of capturing spatial at-

tributes that are perceptually relevant and re-instate those

without changing signal levels, tonality, or other artifacts

that may arise from methods that operate on audio sig-

nals directly. In this work, for compactness and ease of

implementation, we choose to use the two-parameter ap-

proach by Breebaart et al. [17], which models IID and IC

without interchannel phase differences, accepting that this

two-parameter approach is not providing the best possible

quality of PS coding. We now overview this PS coding

strategy and introduce the main notation of the article.

2.1 Encoding

Given two complex-valued spectrograms expressed as

complex matrices X and Y, where rows represent fre-

quency bins and columns represent frames, we define the

band-based cross-spectrogram function

ρ(X,Y) = B (X ⊙ Y∗),

where ⊙ denotes elementwise multiplication, ∗ denotes el-

ementwise complex conjugate, and B is a matrix with ones

and zeros that is used to sum frequency bins according

to a certain frequency band grouping (using matrix mul-

tiplication). In this work, we use the same spectrogram

settings and banding as in [17]: frames of 4,096 samples

for 44.1 kHz signals, 75% overlap, a Hann window, and

34 bands which are approximately distributed following

equivalent rectangular bandwidths.

Given the two complex spectrograms L and R corre-

sponding to the left and right channels of a stereo signal,

we can compute the IID using

PIID = 10 log10 (ρ(L,L)⊘ ρ(R,R)) ,

where ⊘ denotes elementwise division. The IC is similarly

derived from the cross-spectrogram following

PIC = Re {ρ(L,R)} ⊘
√

ρ(L,L)⊙ ρ(R,R),

where Re{} extracts the real part of each complex value

and the square root is applied elementwise. Notice that

the use of the real part instead of the absolute value allows

to retain information on the relative phase of the two sig-

nals that would otherwise be lost. We finally quantize PIID

and PIC by discretizing each matrix element. To do so,

we use the same non-uniform quantization steps as in [17]:

31 steps for IID and 8 for IC. We denote the quantized ver-

sions as QIID and QIC.

To facilitate subsequent operation, and to prevent po-

tential prediction mismatches between IID and IC, we join

both parameters and treat them as one. For PIID and PIC,

we concatenate them in the frequency axis and form a sin-

gle matrix P. For QIID
i,j and QIC

i,j , we fuse them elementwise

into individual integers using the amount of IC quantiza-

tion steps. This way, Qi,j = 8 · QIID
i,j + QIC

i,j (note that

we can recover back QIID
i,j and QIC

i,j using the division and

modulo operators).

2.2 Decoding

To decode the above PS encoding, we perform a mixing

between the available mono signal and a decorrelated ver-

sion of it. We decorrelate a mono signal S by applying a

cascade of 4 infinite impulse response all-pass filters and

obtain SD (this all-pass filter is an enhanced version of the

basic one proposed in [17] thanks to transient detection and

preservation, which avoids time smearing). After that, we

can decode the estimated left and right channels L̂ and R̂

by carefully mixing S and SD. We can do so with

L̂ = Ma ⊙ S + Mb ⊙ SD,

R̂ = Mc ⊙ S + Md ⊙ SD,

using mixing matrices M, which are computed from the

coded PS parameters PIID and PIC. The exact calculation of

mixing matrices M is straightforward to obtain by adapting

to matrix notation the formulation in [17], to which we

refer for further detail and explanation.

3. PARAMETRIC STEREO GENERATION

We now explain the proposed approaches for PS genera-

tion. All of them share the above encoding-decoding for-

mulation, either using the quantized or unquantized ver-

sions. During training, stereo signals are used to compute

input downmixes S = (L+R)/2 and target PS parameters

P or Q (hence the proposed approaches aim at producing
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P̂ or Q̂). Note that, in the case of the generative mod-

els we consider, one has to additionally input contextual

PS parameters in a teacher-forcing schema [21]. We also

want to note that, since they are quite common practice,

it is not in the scope of the current work to provide a de-

tailed explanation of existing generative models (instead,

we refer the interested reader to the cited references). In

all proposed approaches, we tune model hyperparameters

by qualitative manual inspection in a preliminary analysis

stage. PS specifications are predefined and correspond to

the ones mentioned in Sec. 2. Neural network approaches

use Pytorch’s [22] defaults and are trained with Adam for

700 epochs using a batch size of 128 and a learning rate of

10−4, with warmup cosine scheduling.

3.1 Nearest neighbor

The first approach proposes to impose the PS parameters

of existing, similar stereo fragments to individual mono

frames using a nearest neighbor (NN) algorithm [18]. We

call the approach PS-NN. The idea is to retrieve frame-

based PS parameters using mono frame sequences, and to

use the sequence of those retrieved parameters to decode

the mono input. At training time, we randomly select a

song, randomly extract an N = 20 frame spectrogram S

and its corresponding parameters P, and compute a key-

value vector pair (we here use the magnitude spectrogram).

The key vector is formed by framewise averaging the en-

ergy in each band,

k =
1

N

N
∑

j=1

B S:,j , (1)

and the value vector corresponds to the PS parameters of

the last frame, v = P:,N , which allows for a fully-causal

schema. We repeat the process half a million times and

store all pairs in a nearest neighbor structure. At test time,

for every frame of the input mono signal, we compute

an average as in Eq. 1, query the nearest neighbor struc-

ture, retrieve the v̂ vector of the closest neighbor (using

Euclidean distance), and assign it as the predicted PS pa-

rameter for that frame. This way, we obtain a sequence of

estimated PS parameters P̂.

In preliminary analysis, we observed that PS-NN pro-

duced a high-rate ‘wobbling’ effect between left and right

(that is, panning was rapidly switching from one channel

to the other) and presented some temporal inconsistencies

(that is, sources were unrealistically moving with time,

even within one- or two-second windows). To counteract

these effects, we implemented a two step post-processing

based on (i) switching the sign of P̂IID
:,j if the Euclidean dis-

tance to P̂IID
:,j−1 was smaller, and (ii) applying an exponen-

tial smoothing on the columns of P̂ with a factor of 0.95.

This post-processing substantially reduced the aforemen-

tioned undesirable effects.

3.2 Autoregressive

The second approach proposes to model PS parameters

with a deep generative approach based on an autoregres-

sive (AR) transformer [19]. We call the approach PS-AR.

Our architecture is composed by 7 transformer encoder

blocks of 512 channels, with 16 heads and a multilayer per-

ceptron (MLPs) expansion factor of 3. We use sinusoidal

positional encoding at the input, and add a two-layer MLP

with an expansion factor of 2 at the output to project to

the final number of classes (which is 31×8 tokens times

34 bands per frame, see Sec. 2.1). The input is formed by

a projection of the mono spectrogram S and the teacher-

forcing information Q into a 512-channel activation H,

H = ϕ(S) +

B
∑

i=1

ξi(Qi,:), (2)

where ϕ is a two-layer MLP with an expansion factor of 2,

B = 34 is the number of bands, and ξi is a learnable per-

band token embedding (which includes the mask token,

see below). We train the model with weighted categorical

cross-entropy, using the weight

w = 1 + λσ
(

[

PIID
]

±ϵ

)

+ σ(PIC), (3)

calculated independently for every element in the batch.

In Eq. 3, σ(X) corresponds to the elementwise standard

deviation of X, λ = 0.15 compensates for different mag-

nitudes, [ ]±ϵ corresponds to the clipping operation, and

ϵ = 20 is a threshold to take into account the little per-

ceptual relevance of IIDs larger than 20 dB [23]. In pre-

liminary analysis, we observed that using w qualitatively

improved results, as it shall promote focus on wider stereo

images and more difficult cases.

PS-AR follows a PixelSNAIL recursive approach [24],

starting with the prediction of lower frequency bands, then

higher frequency bands, and moving into the next frame

once all bands are predicted. To efficiently exploit the past

context, all input sequences have full-sequence teacher-

forcing except for the upper frequency bands of the last

frame, which are masked consecutively and uniformly at

random during training [24]. At test time, we sample re-

cursively, following the same masking strategy and using

a temperature hyperparameter τ = 0.9. In addition, we

employ classifier-free guidance [25] with a hyperparam-

eter γ = 0.25. For that, we use the approach in [26],

which modifies the conditional logits Ucond with uncondi-

tional ones Uuncond such that

U = (1 + γ)Ucond − γUuncond. (4)

To have both a conditional and an unconditional model

within the same architecture, following common practice,

we randomly replace ϕ(S) in Eq. 2 by a learnable dropout

token 10% of the time.

3.3 Masked token modeling

The third approach proposes to model PS parameters with

a deep generative approach based on masked token mod-

eling (MTM) [20]. We call the approach PS-MTM. The

architecture, loss, inputs, and outputs of the model are the

same as in PS-AR, including the cross-entropy weights
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(Eq. 3) and classifier-free guidance (Eq. 4). The only dif-

ference is the masking approach and the sampling proce-

dure, which implies different hyperparameters for the test-

ing stage (we use τ = 4.5 and γ = 0.75, but now the tem-

perature τ has a different meaning as explained below).

MTM generates patch representations Q with quantized

elements Qi,j which are dubbed as tokens (in our case the

matrix Q has dimensions B × N , with N being the num-

ber of considered audio frames; the maximum number of

tokens in Qi,j is 31×8, as defined in Sec. 2.1). During

training, the teacher-forcing input Q is masked uniformly

at random, and only the ground truth elements correspond-

ing to the masked positions are used to compute the cross-

entropy loss at the output. The number of elements to mask

is also selected at random following a cosine schedule [20]

(this specifically includes the case where all patch elements

are masked). During sampling, patch representations are

formed with 50% overlap, using no masking for the first

half of the patch, similar to [26].

MTM sampling is an iterative process that achieves or-

ders of magnitude speedups compared to autoregressive

modeling (in our case PS-MTM uses 20 steps for a 3 s hop,

while PS-AR requires B = 34 steps for just a single au-

dio frame of a few milliseconds). MTM iteratively sam-

ples a masked patch, performs predictions with classifier-

free guidance [26], chooses the predictions with the high-

est logit score for the next iteration (they will become un-

masked and fixed), and reduces the percent of masked to-

kens following the same scheduling as in training until no

masked elements remain [20]. Differently from training,

the masking used in sampling is not random, but based

on logit scores (lowest ones become masked), and noise

is added to logit scores to promote diversity [20, 26]. In

our case, we employ Gaussian noise with zero mean and

a standard deviation τ , which becomes our redefined tem-

perature parameter.

4. EVALUATION

To train and evaluate all approaches we use a collection

of professionally-recorded stereo music tracks at 44.1 kHz.

We consider 419,954 tracks for training and 10 k for eval-

uation, and randomly extract a 10 s chunk from each track.

During training, we sample 6 s patches from those and per-

form data augmentation using a random gain and also ran-

domly switching left and right channels.

4.1 Baselines: regression and decorrelation

In addition to the original stereo and its mono downmix,

we consider two additional baselines to compare with the

previous approaches. The first baseline corresponds to an

ablation of the deep generative approaches, and tries to an-

swer the question of whether a generative component is

needed or convenient for the task. Thus, the baseline con-

sists of a neural network with the exact same configuration

as PS-AR or PS-MTM, but substituting the generative part

by standard regression with mean-squared error [18]. We

term this baseline PS-Reg, and note that it could be con-

sidered an enhanced modern version of the approach of

Chun et al. [15], using PS.

It is interesting to mention that, in preliminary analysis,

we observed that PS-Reg accurately estimated IC values,

but consistently failed to predict IIDs. The predicted IIDs

had minimal deviation from zero, which can be attributed

to the probability distribution function of IID values be-

ing centered around zero with equally plausible deviations

to the right and to the left. This was an early indication

that the one-to-many mapping of IID prediction cannot be

correctly handled by regression methods, and that the task

would be better served by a generative approach.

The second baseline we consider corresponds to a vari-

ant of classical decorrelation approaches. Here, the decor-

relation is implemented by means of an all-pass filter

network enhanced by (i) detection and preservation of

transients, and (ii) a frequency-dependent mix between

original and decorrelated signals to achieve a frequency-

dependent IC. We term this baseline Decorr, and we note

that it could be considered an improved modern version of

the approaches [1–6].

4.2 Objective measures

To the best of our knowledge, there are no objective mea-

surements for plausible stereo renderings nor suitable PS

prediction scores. Due to the highly creative/subjective na-

ture of the task, common error measurements may not be

appropriate. Therefore, as a way of measuring progress,

we propose to use a couple of metrics inspired from the lit-

erature on generative modeling (cf. [14]). The first metric

we consider is the minimum error on a large sample basis,

Emin. Given a large sample of generated PS parameters

(K = 128 for a single audio excerpt), Emin chooses the

minimum error with respect to the ground truth:

Emin = min
k





∑

i,j

δ
(

Pi,j , P̂
(k)

i,j

)



 ,

where δ is a suitable error function. The idea is that if we

allow the model to generate many samples for every input,

in the limit of very large K one of them should come close

to the ground truth. For PS parameters, we use absolute

errors, weight the IID to compensate magnitudes with IC,

and take into account some perceptual relevance for IID as

in Sec. 3.2 and Eq. 3:

δ(x, y) =

{

λ |[x]±ϵ − [y]±ϵ| for IID,

|x− y| for IC.

The second metric we consider is the Fréchet distance

on the PS parameter space, DF. Given a pool of PS param-

eters P and a K times larger pool of generated parameters

P̂ , assuming Gaussian distributions, DF is computed as

DF =
∣

∣

∣
µ(P)− µ(P̂)

∣

∣

∣

2

+

+ Tr

{

σ(P) + σ(P̂)− 2

√

σ(P)σ(P̂)

}

,
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Figure 1. Preference results for the items included in the subjective test (Sec. 4.3). Markers indicate average values and

vertical bars indicate the 95% confidence interval associated to them.

where Tr{} denotes the matrix trace and µ and σ corre-

spond to the mean vector and the covariance matrix over

frames, respectively. The Fréchet distance has become a

standard measure in generative modeling where, instead

of the PS parameters used here, activations of pre-trained

classification networks are used. We will see that it is also

able to provide some informative cues in our task (Sec. 5).

4.3 Subjective evaluation

Given the creative/subjective nature of the task, the best

way to measure performance is through subjective testing.

In this study, we ran a preference test with 24 listeners on

7 song excerpts of 10 s from the test set. To select those ex-

cerpts, we ranked the test excerpts based on w (Eq. 3) and

randomly selected them from the top quartile. When do-

ing so, we manually verified that the selected excerpts cov-

ered distinct musical genres and ensured that a PS-decoded

version did not exhibit significant coding degradation (this

way, we prime the listener to focus on the stereo image

instead of potential artifacts introduced by our implemen-

tation of PS, Sec. 2).

The test consisted in providing a rating between 0 and

100 to 7 approaches: the three proposed ones, the two

baselines, the mono downmix, and the original stereo sig-

nal (professional mix, non-coded). Mono and stereo sig-

nals provide us with intuitive bounds for the analysis of

preference, and also serve us to discard non-expert lis-

teners. Indeed, we found that the task is quite hard

for non-experts, who provided many inconsistent ratings

when asked to evaluate an appropriate balance between

the width and the clarity of the mix. We used the most

obvious of those inconsistencies to discard listeners from

the test, namely the fact that they rated mono (input) over

stereo (professional mix) in one or more occasions. Half

of the users (12) did not incur into such inconsistency

and were considered reliable enough to derive conclusions

from their ratings. To compensate for differences in sub-

jective scales, we normalized excerpt preference tuples

between 0 and 1 (that is, we normalized the ratings for

the 7 approaches independently per audio excerpt and lis-

tener). To measure statistical significance, we used pair-

wise Wilcoxon signed-rank tests and applied the Holm-

Bonferroni adjustment for multiple testing with p = 0.05.

The Wilcoxon signed-rank test is appropriate for our case

as it is non-parametric and designed for matched samples.

5. RESULTS

In Fig. 1 we depict the average listener preference for each

item and approach. Initially, we see that the pattern differs

depending on the test item. For some items, the proposed

approaches are preferred over the baselines (e.g., Electro1,

Jazz1, and Latin3) while, for some other items, differences

between approaches are less clear (e.g., Rock1 and Soul2).

All approaches seem to be preferred above the mono sig-

nal, except for baseline approaches with Electro1. Notice-

ably, in some situations, preference for some of the pro-

posed approaches even overlaps with the original stereo

(e.g., Electro1, Latin3, and Soul2). The case of Soul2

shows an example where considered approaches are al-

most as preferred as the original stereo, whereas the case

of Jazz1 shows an example where considered approaches

are still far from the professional mix.

Despite the different preferences on individual excerpts,

upon further inspection we see that a clear pattern emerges

when considering all items: proposed approaches rank bet-

ter than mono and the considered baselines (Fig. 1, right).

In Table 1 we confirm that, on average, PS-AR is preferred

over the baseline approaches and that, in turn, PS-NN and

PS-MTM are preferred over PS-AR. In Table 2, we report

statistically significant differences beetween PS-NN/PS-

MTM and the baseline approaches, but not between PS-AR

and the baseline approaches (and neither between PS-AR

and PS-NN/PS-MTM nor between PS-NN and PS-MTM).

Overall, the results show that a generative approach to PS

prediction can become a compelling system for mono-to-

stereo. The performance of PS-NN is a nice surprise that

was not predicted by the objective metrics, which other-

wise seem to correlate with listener preference (Table 1;

perhaps PS-NN does not follow the trend because it is not

a generative approach).

Besides quality, another aspect worth considering is
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Approach Emin ↓ DF ↓ Preference ↑

Mono 0.104 20.89 0.090 ± 0.042

PS-Reg 0.069 8.11 0.451 ± 0.066

Decorr 0.093 8.32 0.457 ± 0.064

PS-AR 0.074 0.62 0.527 ± 0.060

PS-NN 0.089 3.08 0.582 ± 0.057

PS-MTM 0.068 0.59 0.608 ± 0.050

Stereo 0.000 0.03 0.908 ± 0.042

Table 1. Results for the objective (Emin, DF) and subjec-

tive (Preference ± 95% confidence interval) evaluations.

PS-Reg Decorr PS-AR PS-NN PS-MTM Stereo

Mono ✓ ✓ ✓ ✓ ✓ ✓

PS-Reg ✗ ✗ ✓ ✓ ✓

Decorr ✗ ✓ ✓ ✓

PS-AR ✗ ✗ ✓

PS-NN ✗ ✓

PS-MTM ✓

Table 2. Pairwise statistical significance for the case of all

test items (12 subjects times 7 excerpts, see Sec. 4.3). The

obtained p-value threshold is 0.0053.

speed. In Table 3 we observe that PS-AR, as anticipated,

is orders of magnitude slower than the other approaches, to

the point of making it impractical for real-world operation.

Decorr, PS-Reg, and PS-NN are faster than real-time on

CPU and PS-MTM is not. However, one should note that

with PS-MTM we can easily trade off sampling iterations

at the expense of some quality reduction (see [20, 26]).

PS-NN may dramatically improve speed if we consider

the use of fast nearest neighbor search algorithms or even

hash tables, which make this approach very interesting for

real-world deployment (note we deliberately made PS-NN

comparable in size to the other approaches, see Table 3).

6. DISCUSSION

Despite the good results obtained above, the subjective test

reveals that, for some of the considered excerpts, there is

still a gap between professional stereo mixes and the pro-

posed approaches. We hypothesize that this gap is due to

(i) limitations of the considered PS encoding, and (ii) the

difficulty of the task itself. Regarding (i), we suspect that

part of the low subjective scores of PS-based approaches is

due to the audio distortions and tonal artifacts introduced

by the PS decoding. Thus, we hypothesize that using a

commercial implementation of PS coding (or perhaps even

learning end-to-end the coding operation) could yield bet-

ter results. Besides, we think that the fact that PS is defined

in a banded domain poses a challenge to PS generation ap-

proaches, namely that individual bands are panned but ap-

proaches do not have an explicit notion of instrument or

‘entity’. Indeed, we sometimes observe individual entities

being panned into two different positions simultaneously

(e.g., for the same instrument, we may get some frequen-

cies panned to the left and some to the right, which is an

uncommon stylistic decision). A potential solution to this

Approach Learnable RTF ↓
parameters CPU GPU

Decorr 0 0.25 n/a

PS-Reg 30.1 M 0.32 0.21

PS-NN 34.0 M† 0.82 n/a

PS-MTM 34.5 M 5.81 0.33

PS-AR 34.5 M 255.87 8.38

Table 3. Number of learnable parameters and average real-

time factor (RTF). Superscript † indicates an estimation

of 0.5 M key-value pairs with B = 34 bands (Sec. 3.1).

RTFs are measured on a Xeon(R) 2.20 GHz CPU and on a

GeForce GTX 1080-Ti GPU.

problem could be to add better (or more) inputs to the mod-

els, together with more capacity, with the hope that they

achieve a better understanding of what is a source before

panning it. Along this line, it would be perhaps interesting

to include some techniques used in the context of source

separation with neural network models [11]. Regarding

(ii), another issue we sometimes observe is with the tem-

poral consistency of panning decisions, with an instrument

appearing predominantly in one channel but then moving

(without much artistic criterion) to the other channel after

10 or 20 s. Handling temporal consistency is a transversal

problem across all generative models, typically handled by

brute force (that is, more receptive field and/or larger mod-

els) or by some form of hierarchical or recurrent process-

ing. Nonetheless, it is still an open issue, especially in the

case of really long sequences like audio and music.

In addition to the limitations inherent to the technol-

ogy, there are also some shortcomings in the test method-

ology. The subjective tests were conducted using head-

phones, whereas stereo images are typically created and

mixed in a studio using professional loudspeaker monitor-

ing. This implies that when critically evaluating the pro-

posed approaches on a professional setup, additional sub-

tleties might be discernible. Another methodological chal-

lenge was that often users had difficulty in evaluating mul-

tiple test excerpts according to the stated evaluation crite-

ria. A potentially contributing factor to it was the absence

of a standardized test methodology for multiple preference

testing without a reference.

7. CONCLUSION

In this work we study methods to convert from mono to

stereo. Our proposal entails (i) the use of PS for mono

to stereo upmixing and (ii) the synthesis of PS parame-

ters with three machine learning methods. We also in-

troduce (iii) the use of modern generative approaches to

the task and propose two variants of them. We addition-

ally (iv) overview and adapt an existing PS methodology

and (v) propose two tentative objective metrics to evaluate

stereo renderings. The three proposed approaches outper-

form the classical and the deep neural network baselines

we consider, and two of such approaches stand out with a

statistically significant difference in the subjective test.
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ABSTRACT

Recent developments in MIR have led to several bench-

mark deep learning models whose embeddings can be used

for a variety of downstream tasks. At the same time, the

vast majority of these models have been trained on Western

pop/rock music and related styles. This leads to research

questions on whether these models can be used to learn

representations for different music cultures and styles, or

whether we can build similar music audio embedding mod-

els trained on data from different cultures or styles. To that

end, we leverage transfer learning methods to derive in-

sights about the similarities between the different music

cultures to which the data belongs to. We use two Western

music datasets, two traditional/folk datasets coming from

eastern Mediterranean cultures, and two datasets belonging

to Indian art music. Three deep audio embedding mod-

els are trained and transferred across domains, including

two CNN-based and a Transformer-based architecture, to

perform auto-tagging for each target domain dataset. Ex-

perimental results show that competitive performance is

achieved in all domains via transfer learning, while the best

source dataset varies for each music culture. The imple-

mentation and the trained models are both provided in a

public repository.

1. INTRODUCTION

As the time passes by, more and more pre-trained models

are being made available in the MIR field. These models

can be used in a variety of tasks by providing informative

deep audio embeddings for music pieces. In correspon-

dence with publicly available datasets, the vast majority

of these models are trained on the so called “Western” 1

musical tradition [1]. While studying world, folk, or tradi-

tional music, that fact arises two research questions; on the

one hand what is the potential of these models when they

1 we use the term “Western” to denote music styles which mostly orig-
inate from Western cultures, including pop, rock, and Western classical.

© C. Papaioannou, E. Benetos, and A. Potamianos. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: C. Papaioannou, E. Benetos, and A. Potami-

anos, “From West to East: Who can understand the music of the others

better?”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

are being used in the realm of a different culture and on the

other hand how capable can a model be when trained on

a specific music tradition on providing meaningful audio

embeddings.

There are several experimental setups one can employ

in order to derive answers to the above questions. By tak-

ing into account the importance of the auto-tagging task in

the MIR field [2], it becomes clear that transferring knowl-

edge between domain-specific models to perform this task

may lead us to valuable insights. Automatic content-based

tagging aims to predict the tags of a music piece given its

audio signal. The audio signal includes the acoustic char-

acteristics and some of them are responsible for the oc-

currence of a tag in a piece, forming a multiple instance

problem [3].

A variety of models have been proposed to cope with

the automatic tagging of music pieces. They can be di-

vided, according to the input data they process, into the

ones that utilize time-frequency representations and the

others that accept the raw audio signal. In the first cate-

gory, CNN-based models which are adopted by the com-

puter vision field can be found, such as VGG-ish [4] as

well as specifically developed architectures for music, like

Musicnn [5]. A Transformer-based architecture was re-

cently proposed in [6] called Audio Spectrogram Trans-

former (AST). Regarding the models that process audio,

the TCNN [7] and the Wave-U-Net [8] architectures are

being commonly used. For the purposes of our study, it

is essential to use models of the same category with re-

spect to the input they accept and, thus, we selected the

ones that process time-frequency representations because

of their popularity in the MIR field.

While using deep neural networks, transfer learning of

a trained model can lead to a significant performance im-

provement on the target domain, compared to one that

starts from a random state in the parameters space [9]. Typ-

ically, the weights of the target domain model are initial-

ized with the ones of a pre-trained model and then fine-

tuning is applied. During this step, one has to determine

which of the layers will be trainable and which ones will

be kept frozen [10]. In general, it is not clear which part

of the network should be allowed to be trained in the tar-

get task and, thus, experimentation with different setups is

necessary. Standard methods include the fine-tuning of the

whole network, as suggested in [11], as well as only the

last few layers or a part of the network, as in [12]. We
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experiment with both setups to derive valuable insights on

knowledge transfer across domains.

Even though under-represented in general, datasets

from specific music cultures are evident in the MIR field

and a set of the aforementioned methods have been used to

perform several tasks. In [13] a classification of Indian art

music was conducted using deep learning models while au-

tomatic makam recognition in Turkish music was carried

out in [14, 15]. With respect to Western music, there are

several research works performing auto-tagging via deep

learning models, as in [16] and [17].

In this paper, we incorporate a mosaic of different cul-

tures by including six datasets from Western to Mediter-

ranean and Indian music. Three music audio embedding

models, two that mainly consist of convolutional layers

and a Transformer-based architecture, are utilized on both

single-domain and transfer learning experimental setups

for music tagging. Results indicate that any model, de-

spite the music culture that it is trained on, has the po-

tential to adapt to another and achieve competitive results.

When comparing the contributions of cross-domain knowl-

edge transfers, we notice that they vary for each music

culture and we suggest which one is the best candidate to

outperform the single-domain approach. To the authors’

knowledge, this is the first study which attempts to explore

whether existing music audio embedding models can be

used to transfer or learn representations for non-Western

cultures. For reproducibility, we share the implementation

in a public repository 2 .

2. DATASETS

The selection of the datasets is a prominent theme in the

current study and it is constrained by the available corpora

that reflect different music cultures. By basing our intu-

ition on the location of each culture, we pursue to include

three distinct geographic regions each one represented by

two corpora.

Even though spread in several continents, we consider

the “West” as a single entity and utilize the MagnaTa-

gATune [18] and FMA-medium [19] datasets that mainly

belong to this culture. The second region is the eastern

Mediterranean represented by the traditions of Greece and

Turkey in our study with Lyra [20] and Turkish-makam

[21] datasets. The Indian subcontinent is also incorporated

with Hindustani and Carnatic corpora [22], corresponding

to the music traditions of the Northern and Southern areas

of India respectively.

2.1 MagnaTagATune

MagnaTagATune [18] is a publicly available dataset that is

commonly used for the auto-tagging problem in the MIR

field. It consists of more than 25,000 audio recordings,

summing to 210 hours of audio content at total. Each

audio recording is annotated with a subset of the unique

188 tags. Typically, only the top 50 most popular tags are

used, which include annotations about genre, instruments

2 https://github.com/pxaris/ccml

and mood. In Table 1, the most frequent tags for Mag-

naTagATune are presented along with the ones of the other

datasets.

2.2 FMA-medium

The Free Music Archive [19] is an open and easily acces-

sible dataset that is used for evaluating several tasks. It

contains over 100,000 tracks which are arranged in a hier-

archical taxonomy of 161 genres. In order to keep the du-

rations of the datasets balanced whenever possible, and to

include genres belonging to Western music styles, we use

FMA-medium that consist of 25,000 tracks of 30 seconds

each. That means that its total duration is 208 hours, al-

most equal to the one of MagnaTagATune. With regards to

the metadata, we include the top-20 hierarchically related

genres of the music pieces.

2.3 Lyra

Lyra [20] is a dataset for Greek traditional and folk music

that comprises 1570 pieces and metadata information with

regards to instrumentation, geography and genre. Its to-

tal duration is 80 hours which makes it the only dataset

with duration less than 200 hours in our study. We in-

corporate the top-30 tags retrieved from columns “genre”,

“place” and “instruments” to form our multi-label classifi-

cation setup.

2.4 Turkish-makam

The Turkish makam corpus [21, 23] includes thousands of

audio recordings covering more than 2,000 works from

hundreds of artists. It is part of CompMusic Corpora 3 [24]

which comprises data collections that have been created

with the aim of studying particular music traditions. Us-

ing Dunya [25] and the related software tool 4 , we were

able to get access to 5297 audio recordings, summing in

359 hours, along with their metadata. In order to keep

the dataset sizes similar, we set a maximum audio dura-

tion equal to 150 seconds which reduced the total length to

215 hours. For the tags, the top-30 most popular with re-

gards to “makam”, “usul” and “instruments” information

have been included.

2.5 Hindustani

The Hindustani corpus [22] is also part of CompMusic

Corpora. It includes 1204 audio recordings, with a total

duration of 343 hours, covering a plethora of artists and

metadata categories. By setting the maximum audio du-

ration to 780 seconds, the size of the dataset has been de-

creased to 206 hours for the needs of our study. Further-

more, information about “raga”, “tala”, “instruments” and

“form” has been used to form the labels of each piece. The

top-20 most frequent tags have been incorporated to our

study as the target of the classification models.

3 https://compmusic.upf.edu/corpora
4 https://github.com/MTG/pycompmusic
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MagnaTagATune FMA-medium Lyra Turkish-makam Hindustani Carnatic

guitar 18.76% Rock 28.41% Voice 76.21% Voice 63.33% Voice 83.90% Voice 82.35%

classical 16.52% Electronic 25.26% Traditional 76.05% Kanun 31.09% Tabla 53.03% Violin 78.45%

slow 13.71% Punk 13.28% Violin 57.34% Tanbur 27.93% Khayal 41.33% Mridangam 75.65%

techno 11.42% Experimental 9.00% Percussion 53.71% Ney 27.56% Harmonium 39.25% Kriti 70.87%

strings 10.55% Hip-Hop 8.80% Laouto 51.69% orchestra 26.38% Teentaal 35.35% adi 51.88%

drums 10.05% Folk 6.08% Guitar 37.34% Oud 24.36% Tambura 27.88% Ghatam 30.32%

electronic 9.74% Garage 5.67% Klarino 31.05% kemence 22.79% Ektaal 21.58% Khanjira 17.65%

rock 9.17% Instrumental 5.40% Nisiotiko 26.85% Cello 17.83% Pakhavaj 7.88% rupaka 11.98%

fast 8.92% Indie-Rock 5.17% place-None 25.16% Violin 17.62% Sarangi 7.30% mishra chapu 7.27%

piano 7.95% Pop 4.74% Bass 24.76% Hicaz 10.63% Dhrupad 7.05% Tana Varnam 5.21%

Table 1. Relative frequencies of the top 10 most popular tags in each dataset.

2.6 Carnatic

The Carnatic corpus [22] comprises 2612 audio record-

ings, summing in more than 500 hours of content. As

with the previous datasets, by setting a maximum dura-

tion cut equal to 330 seconds, the total duration has been

decreased to 218 hours. Identical to Hindustani, the top-20

most popular annotations regarding “raga”, “tala”, “instru-

ments” and “form” have been included for the metadata.

3. METHOD

In this section, the models which are used for the purposes

of this study are first presented. We, then, describe how

transfer learning is utilized to infer similarities between the

music cultures by employing knowledge from the domain

adaptation field.

3.1 Models

3.1.1 VGG-ish

All of our models use the mel-spectrogram as their in-

put, a commonly used feature for MIR tasks such as au-

tomatic tagging [26]. This selection enables the utiliza-

tion of CNN-based architectures which have been success-

fully used in computer vision tasks. The Visual Geometry

Group (VGG) network [27] and its variants consist of a

stack of convolutional layers followed by fully connected

layers.

We use a VGG-ish architecture, similar to the one im-

plemented by the authors in [28], that is a 7-layer CNN,

with 3 × 3 convolution filters and 2 × 2 max-pooling,

followed by two fully-connected layers. It accepts mel-

spectrograms that correspond to short chunks of audio as

its input, with duration equal to 3.69 seconds.

3.1.2 Musicnn

Musicnn [17] is a music inspired model that uses convo-

lutional layers at its core. Its first convolutional layer con-

sists of vertical and horizontal filters in order to capture

timbral and temporal features respectively. These features

are, then, concatenated and fed to 1D convolutional lay-

ers followed by a pair of dense layers that summarize them

and predict the relevant tags. Similar to VGG-ish, it uses

mel spectrograms from short audio chunks at its input with

duration 3 seconds.

3.1.3 Audio Spectrogram Transformer

As its name indicates, Audio Spectrogram Transformer

(AST) is a purely attention-based model for audio classi-

fication [6]. Based on the Transformer architecture [29],

AST splits the input mel-spectrogram to 16×16 patches in

both time and frequency dimensions that are, in turn, flat-

tened to 1D embeddings of size 768 using a linear projec-

tion layer. A trainable positional embedding is also added

to each patch embedding so that the model will capture

the spatial structure of the input 2D spectrogram. The re-

sulting sequence is fed to the Transformer, where only the

encoder is utilized since AST is designed for classification

tasks. The output of the encoder is followed by a linear

layer that predicts the labels. As the authors that intro-

duced the architecture suggest, we set a specific cut to the

input length of the AST model that is equal to 8 seconds in

all our experiments.

3.2 Transfer Learning

The purpose of transfer learning is to improve the per-

formance of the models on target domains by transferring

knowledge from different but related source domains [30].

In the field of MIR, both transferring feature representa-

tions to the target domain from a pre-trained model on a

source task [31] as well as learning shared latent represen-

tations across domains [32] have been proposed in the past.

Yet, these methods have not been applied to non-Western

music datasets neither by adapting an existing model to

them nor by studying to what end these cultures can be

valuable source domains for widely developed models, two

aspects which are both studied in this work.

According to the categorization conducted by the au-

thors in [33], these methods belong to parameter sharing

category of the model-based transfer learning techniques.

In the deep learning realm, it is, thus, common to use a

trained network for a source task, share its parameters and

in turn fine-tune some or all layers to produce a target net-

work. While following this method, one expects it to lead

to better results when the participating domains are similar
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Model VGG-ish Musicnn AST

Metric /

Dataset
ROC-AUC PR-AUC ROC-AUC PR-AUC ROC-AUC PR-AUC

MagnaTagATune 0.9123 0.4582 0.9019 0.4333 0.9172 0.4654

FMA-medium 0.8889 0.4949 0.8766 0.4473 0.8886 0.5024

Lyra 0.8097 0.4806 0.7391 0.4042 0.8476 0.5333

Turkish-makam 0.8696 0.5639 0.8505 0.5299 0.8643 0.5669

Hindustani 0.8477 0.6082 0.8471 0.6016 0.8307 0.5786

Carnatic 0.7392 0.4278 0.7496 0.4182 0.7706 0.4394

Table 2. ROC-AUC and PR-AUC scores of the models on single domain auto-tagging tasks.

to each other. Indeed, by studying the prior work on do-

main adaptation, one will find that the main strategy con-

sists of minimizing the difference between the source and

target feature distributions, when transferring representa-

tions from a labeled dataset to a target domain where la-

beled data is sparse or non-existent [34, 35].

By adapting the above rationale to our study, where the

participating domains are all rich in labeled data, we expect

that when applying transfer learning by parameter sharing,

the more the similarity between the participating domains

the better the performance of the target domain on its su-

pervised learning task.

In order to study to what end this hypothesis stands in

computational musicology with deep neural networks, we

utilize the previously presented models which are widely

used in the MIR field and consist of different cores, namely

convolutional layers (VGG-ish and Musicnn) and a Trans-

former module (AST). Having the models trained on each

single dataset, we apply all the cross-domain knowledge

transfers for each architecture by fine-tuning only the out-

put layer as well as the whole network. We then aggre-

gate the results across the models seeking to derive in-

sights with regards to the similarities between the domains

as well as specifying which source is the best candidate for

each target dataset.

4. EXPERIMENTS

As already mentioned, we use mel spectrograms as the

input of all our models. In order to convert the audio

recordings of the datasets to this representation, we use Li-

brosa [36] to re-sample them to 16 kHz sample rate. Then,

512-point FFT with a 50% overlap is applied, the maxi-

mum frequency is set to 8 kHz and number of Mel bands

to 128. Our intention, in this study, is not the optimization

of the performance of the single-domain tasks but rather

studying the knowledge transfer across the domains. So,

we keep our training setup as close as possible to the liter-

ature, at each single domain task, in order to have a sanity

check for the implementation.

For VGG-ish and Musicnn models, we use a mixture

of scheduled Adam [37] and stochastic gradient descent

(SGD) for the optimization method, identical to what the

authors at [28] have used. The batch size is set to 16 and

the learning rate to 1e− 4 for both models while the max-

imum number of epochs are 200 for VGG-ish and 50 for

Musicnn. With regards to the AST model, we follow the

setup proposed in [6], namely batch size 12, Adam opti-

mizer, learning rate scheduling that begins from 1e − 5
and is decreased by a factor of 0.85 every epoch after the

5th one as well as pre-trained on Imagenet Transformer

weights.

All our models accept a fixed size audio chunk at their

input but need to predict song-level tags. During the evalu-

ation phase, we aggregate the tag scores across all chunks

by averaging them to acquire the label scores for the whole

audio. We use the area under receiver operating character-

istic curve (ROC-AUC), a widely used evaluation metric

on multi-label classification problems and the area under

precision-recall curve (PR-AUC), a suitable metric for un-

balanced datasets [38].

During transfer learning, we initialize all parameters of

the target model, except for the output layer, from each

source dataset and (i) allow only the output layer to be

trained and (ii) train the whole network. In both settings,

we use the same hyper-parameters and evaluation proce-

dure with the single-domain setups across all datasets for

each model architecture.

5. RESULTS

The performance of the three models on all single-domain

tasks can be seen in Table 2. The performance of the Mu-

sicnn and VGG-ish models on MagnaTagATune is similar

to the reported metrics in [28], which indicates the validity

of our implementation. In general, the AST model shows

the best performance followed by VGG-ish and then Mu-

sicnn. This result should not be taken into account solidly,

because no hyper-parameter tuning has been taken place

for each domain and in order to keep the duration of the

training to less than 24 hours for each task, the number of

epochs for Musicnn was significantly less than VGG-ish.

On the other hand, one should consider that the AST [6]

and VGG-ish [28] models may, indeed, perform better for

limited time resources.

In Table 3, one can see the ROC-AUC scores in all

single-domain and cross-domain setups. The rows are the

source datasets while the columns are the target datasets.

A sub-table is constructed for each model architecture and

for a transfer from domain A to B, the result of the fine-

tuning of only the output layer (‘output’) as well as all

the layers (‘all’) are reported. The single-domain setup is
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Target domain MagnaTagATune FMA-medium Lyra Turkish-makam Hindustani Carnatic

trainable layer(s) /

Source domain
output all output all output all output all output all output all

VGG-ish

MagnaTagATune - 91.23 88.11 92.39 74.69 85.40 76.79 86.84 76.09 85.04 67.19 74.71

FMA-medium 85.82 91.29 - 88.89 68.56 84.04 75.40 87.78 75.77 84.39 67.03 74.56

Lyra 84.34 90.93 82.84 92.10 - 80.97 76.98 87.21 77.41 84.24 67.30 73.52

Turkish-makam 85.19 90.90 84.41 91.74 70.93 82.38 - 86.96 77.54 85.32 67.16 73.50

Hindustani 84.24 91.02 83.83 91.91 66.27 79.71 77.25 87.63 - 84.77 66.72 74.63

Carnatic 84.18 91.00 82.62 91.73 61.59 76.72 77.07 87.40 78.19 84.81 - 73.92

Musicnn

MagnaTagATune - 90.19 87.34 91.03 71.79 78.74 74.72 85.96 75.87 84.18 66.12 75.57

FMA-medium 85.52 90.35 - 87.66 65.94 77.59 75.51 85.13 73.16 85.49 66.38 75.77

Lyra 81.38 90.03 82.23 90.80 - 73.91 74.11 85.20 78.10 83.29 65.09 75.51

Turkish-makam 84.35 90.11 83.79 90.81 61.87 79.83 - 85.05 75.67 83.75 67.49 74.09

Hindustani 82.38 89.86 83.42 90.85 64.48 78.95 74.60 85.58 - 84.71 65.25 76.95

Carnatic 83.02 90.05 82.78 90.74 61.83 77.92 75.09 85.43 75.34 84.19 - 74.96

AST

MagnaTagATune - 91.72 89.25 91.99 75.68 83.77 76.28 87.20 74.67 86.57 66.03 75.43

FMA-medium 88.63 91.62 - 88.86 65.72 82.17 76.37 87.43 74.51 85.76 67.33 75.98

Lyra 87.49 91.44 87.44 92.43 - 84.76 77.08 86.80 72.24 83.73 68.47 76.59

Turkish-makam 87.33 91.40 86.31 91.95 72.70 77.95 - 86.43 70.13 83.56 67.10 75.23

Hindustani 87.40 91.35 87.11 92.26 71.74 84.60 75.70 86.90 - 83.07 67.75 75.85

Carnatic 87.42 91.45 86.83 91.75 63.33 81.44 76.87 87.14 74.11 82.91 - 77.06

Table 3. ROC-AUC scores (%) when applying transfer learning using the models VGG-ish, Musicnn and Audio Spectro-

gram Transformer. Rows are the source domains and columns the target domains. After initializing the network with the

parameters of the trained (at the source dataset) model, fine-tuning on the output layer as well as on the whole network

is applied. The diagonal values (under the “all” columns) correspond to the respective single-domain models (no transfer

learning) where the experimentation with only the output layer trainable has no meaning.

when source and target is the same dataset and, thus, only

training of the whole network has meaning. The table is

better parsed column-wise, e.g., by inspecting the results

of VGG-ish model on MagnaTagATune when transferring

knowledge from the other domains at the upper-left pair of

columns in the table.

In order to aggregate all the cross-domain knowledge

transfers, we follow the subsequent procedure: for each

target task that consists of a specific model, target dataset

and fine-tuning method, min-max normalization is applied

to the N −1 transfer learning results, where N is the num-

ber of all datasets. The previous step leads to the con-

struction of M ×F matrices, M the number of the models

and F the number of fine-tuning methods, where rows are

the source domains, columns the target domains and di-

agonal elements are empty. Each cell has a value in the

range [0, 1], as a result of the normalization step, while the

value 1 corresponds to the knowledge transfer that led to

the best performance in the target domain. By calculating

the element-wise mean of the produced M × F matrices,

we reach to the result that can be seen in Figure 2.

6. DISCUSSION

The results indicate that knowledge transfer both from

Western to non-Western cultures and the opposite can be

beneficial when deep learning models are used to perform

automatic music tagging. Indeed, by inspecting Table 3,

the general take-home message one should acquire is that

regardless of the model architecture, all datasets have the

potential to contribute as a source to a target domain by

providing their deep audio embeddings. To investigate how

valuable knowledge transfers from widely used datasets

to non-Western music cultures can be, we focus on the

last four datasets, i.e., the last eight columns of the ta-

ble, and parse the two first rows, corresponding to Mag-

naTagATune and FMA datasets, at each model architec-

ture. For instance, we notice that for Lyra, when Musicnn

is used and fine-tuning only of the output layer is applied,

the model coming from MagnaTagATune has the greater

ROC-AUC score, namely 71.79%. Additionally, the AST

model trained on the FMA-medium dataset, outperforms

the others when totally fine-tuned to the Turkish-makam

dataset, scoring 87.43%.

In order to study the inverse transfer direction, we cen-

ter our interest to the first four columns of the entire table.

Even though MagnaTagATune and FMA are almost always

the best source for each other, the deep audio embeddings

provided by the other datasets achieve competitive perfor-

mance. For example, when MagnaTagATune is the target

domain and fine-tuning is restricted to the output layer of

the network, we observe that transferring from Turkish-
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Figure 1. Average, over the three models, ROC-AUC scores of all cross-domain transfers when fine-tuning of the output

layer is applied. The highest bar at each group corresponds to the respective single-domain model.

Figure 2. Cross-cultural music transfer learning results.

Rows correspond to the source datasets and columns to the

target datasets. The value of each cell (knowledge trans-

fer) is normalized and averaged across all models and fine-

tuning methods.

makam leads to a performance that is comparable to the

best source (FMA-medium) for all models.

By considering all cross-domain knowledge transfers,

one can specify the best candidate to provide a trained

model, with a specific architecture, for each target dataset.

We, thus, notice that the model that is transferred from

Hindustani outperforms the others at the Carnatic dataset,

when fine-tuning on the whole Musicnn architecture is ap-

plied. A holistic picture of the cross-cultural music transfer

learning is depicted in Figures 1 and 2.

In Fig. 1 the scores of all cross-domain transfers when

fine-tuning the output layer, can be seen, averaged across

the three models. The uniformity of the performances

of different sources at each target dataset can be exam-

ined. We, thus, recognize that the most unbalanced perfor-

mances are spotted on the Lyra target domain, a result that

is probably related to the smaller size of this dataset com-

pared to the others. By exploring Fig. 2 in a column-wise

fashion, we observe that for MagnaTagATune as the tar-

get domain, FMA-medium is the best source with a value

equal to 1. This means that in all transfer learning setups,

this source performed better than the others in this domain.

Both figures show that MagnaTagATune and FMA-

medium perform consistently well across the domains,

something that possibly indicates their appropriateness for

the auto-tagging task. However, as we move to the East-

ern cultures, we notice that their contribution is somehow

decreased and other domains tend to contribute similarly

or even more in those targets. The values at Fig. 2 should

not be considered solidly as similarity metrics between the

domains because other factors may also affect the results

we notice. It is, although, a first step towards studying dif-

ferent music cultures using deep learning methods.

7. CONCLUSIONS

In this paper, the transferrability of music cultures by uti-

lizing deep audio embedding models is studied. To that

end, six datasets and three models were employed while

experimentation with two fine-tuning methods took place.

The automatic tagging of music pieces served as the su-

pervised learning task where all cross-domain knowledge

transfers were applied and evaluated.

The results show that state-of-the-art models can bene-

fit from knowledge transfer not only from Western to non-

Western cultures but also the opposite too. By aggregating

the scores across all models and fine-tuning methods, the

suitability of each source domain for a target task was cal-

culated and, thus, which domain can be the best candidate

to transfer knowledge from for each dataset was proposed.

Based on the literature, we suggest that this result can be

interpreted to a degree as a similarity metric between the

music cultures.

We identify that the current study has limitations. In

the future, the semantic similarities between the labels of

the involved domains will be examined. More datasets and

models, like those that process raw audio signals, will be

considered as well as semi-supervised and unsupervised

learning techniques. Other tasks may be employed such

as mode estimation, assuming that key in Western cultures

functions in a similar way with makam or raga in other

cultures. All datasets can also be utilized to learn music

embeddings in order to unveil cross-cultural links between

acoustic features and tags.
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ABSTRACT

Optical Music Recognition (OMR) has become a popu-

lar technology to retrieve information present in musical

scores in conjunction with the increasing improvement of

Deep Learning techniques, which represent the state-of-

the-art in the field. However, its effectiveness is limited

to cases where the target collection is similar in musical

context and graphical appearance to the available train-

ing examples. To address this limitation, researchers have

resorted to labeling examples for specific neural models,

which is time-consuming and raises questions about us-

ability. In this study, we propose a holistic and comprehen-

sive study for dealing with new music collections in OMR,

including extensive experiments to identify key aspects to

have in mind that lead to better performance ratios. We

resort to collections written in Mensural notation as a spe-

cific use case, comprising 5 different corpora of training

domains and up to 15 test collections. Our experiments

report many interesting insights that will be important to

create a manual of best practices when dealing with new

collections in OMR systems.

1. INTRODUCTION

Manual sheet music transcription is a tedious process,

prone to errors, and generally requires professionals with

precise knowledge of the type of notation and/or music at

issue. The alternative to this manual digitization of con-

tent is to resort to cutting-edge technology based on artifi-

cial intelligence, which performs an automated reading of

documents. This technology is known as Optical Music

Recognition (OMR).

OMR has been an active research area for decades [1],

although the field progressed slowly [2]. Recently, the

use of modern machine learning techniques, namely Deep

Learning, has led to a paradigm shift that has partially un-

locked this situation [3, 4]. Indeed, it has been shown that

© J. C. Martinez-Sevilla, A. Rosello, D. Rizo and J. Calvo-

Zaragoza. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: J. C. Martinez-Sevilla, A.

Rosello, D. Rizo and J. Calvo-Zaragoza, “On the Performance of Optical

Music Recognition in the Absence of Specific Training Data”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

current OMR technologies, despite the fact that they are

not yet fully mature, are usually a better alternative than

performing the entire transcription by hand [5].

Concerning the machine learning methods, the related

literature reports that the models provide sufficient preci-

sion when the collections to be transcribed are from the

same graphic and content domain as the corpus used to

train them. This, however, makes it difficult to transfer

technology to new collections, since it is not always possi-

ble, desirable, or efficient to invest resources in annotating

a small portion of the target collection. Although it is naive

to assume the availability of training sets from the same

domain as a given target collection, in the current data era

we can assume to have at least a series of labeled collec-

tions, even with different graphic and musical character-

istics. This, of course, can and should be used to improve

the efficiency of fitting OMR models to new collections for

which we do not have specific training sets.

In this paper, we report on a case study focused on Men-

sural notation to answer questions about the transferability

of OMR models to new music collections. To our best

knowledge, this work constitutes the first to analyze this

issue in the field. We consider Mensural notation as the

structuring experimental body because the OMR technol-

ogy can be considered mature for this notation. Also, we

have a significant number of labeled and unlabeled collec-

tions in this notation, which allows us to carry out an ex-

haustive study that is expected to lead to more generaliz-

able conclusions. Specifically, we consider 5 labeled col-

lections that will be used as training sets, along with their

possible combinations, and up to 15 unlabeled collections

as target.

The rest of the paper is structured as it follows: in Sec-

tion 2, we provide some background to the topic; in Sec-

tion 3, we present our methodology to analyze the question

at issue; the experimental setup is described in Section 4,

while the results and analysis are given in Section 5; fi-

nally, we conclude the paper in Section 6, while pointing

out some interesting avenues for future work.

2. BACKGROUND

Recent advances in artificial intelligence, with extensive

use of Deep Learning (DL) technologies, resulted in about

successful approaches to OMR. Specifically, a holistic ap-
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proach, also known as end-to-end formulation, which has

been dominating the state of the art in other applications

such as text or speech recognition [6, 7], is currently con-

sidered the reference model in OMR. The related literature

includes many successful solutions of this type [8–10]. In

this work, we resort to this approach as representative of

the state of the art based on DL.

However, as introduced above, there is still no computa-

tional approach for creating a universal OMR system; i.e,

one that is capable of dealing with any kind of collection.

The underlying issue is an overly unsolved challenge in

artificial intelligence [11]: DL works well if the problem

is statistically regular and there is abundant training data

to adequately and representatively learn such regularity.

This is, unfortunately, quite difficult to expect when deal-

ing with ancient documents. Instead of trying to solve the

underlying problem of machine learning, we take a more

practical path to provide a series of best practices to tackle

the situation of target collections in the absence of specific

training data successfully.

It is important to highlight that, in the OMR literature,

there are very few works dedicated to studying the prac-

tical aspects of the technology. Pugin and Crawford [12]

estimated through a quantitative evaluation the suitability

of using the Aruspix machine-learning-based OMR sys-

tem on a real collection. Furthermore, Alfaro-Contreras et

al. [5] analyzed the benefits of using OMR in cases where

the accuracy of the system was not perfect. Our work fur-

ther contributes to this barely explored line of practical as-

pects for the application of OMR to real-world scenarios

from the perspective of the available training data.

3. METHODOLOGY

The focus of the work is essentially experimental. We

want to be able to answer specific questions about how

to approach the generation of generalizable OMR mod-

els. Our objective is to reduce the uncertainty when facing

the recognition of collections for which there is no specific

training set.

To answer these questions, we will consider as a starting

point the availability of N training sets that, even depict-

ing the same musical notation (Mensural notation), differ

in graphic characteristics. This will allow drawing more

interesting conclusions about the synergy of using a het-

erogeneous set of training collections. To cover all possi-

bilities, we create models from all possible combinations

of these sets (2N − 1 possibilities). Each of these possibil-

ities will be directly evaluated on M test sets (not seen in

any training case), also showing heterogeneous character-

istics.

As previously mentioned, we will consider a deep end-

to-end model as representative of the state of the art in

OMR. Below we explain in more detail how this model

works.

3.1 Learning framework

For the task, a Convolutional Recurrent Neural Network

(CRNN) scheme is proposed for the end-to-end optical

music transcription pipeline. The CRNN architecture con-

sists of a block of convolutional layers that learns the rele-

vant features from the input image (single staff), followed

by a group of recurrent stages that model the temporal de-

pendencies of the feature-learning block. Finally, a fully-

connected network with a softmax activation is used to re-

trieve the posteriogram, which is decoded to obtain the pre-

dicted musical symbols. 1

The Connectionist Temporal Classification (CTC) [13]

training procedure is used to train the CRNN model using

unsegmented sequential data. The training set T consists

of pairs of single musical staff images xi and their corre-

sponding symbol sequence zi in a symbol vocabulary Σ,

with 261 units corresponding to the number of different

symbols among the training sets. To use CTC as an end-

to-end sequence labeling framework, an additional "blank"

symbol is included in the vocabulary Σ′.

Formally, let T ⊂ X × Σ∗ be a set of data where an

image xi ∈ X of a single staff is related to symbol se-

quence zi =
(

zi1, zi2, . . . , zi|zi|

)

∈ Σ∗, where Σ repre-

sents the symbol vocabulary used for encoding the music

score. Note that the use of CTC to model the transcrip-

tion task as an end-to-end sequence labeling framework

requires the inclusion of an additional “blank” symbol in

the Σ vocabulary, i.e., Σ′ = Σ ∪ {blank}.

At prediction, for a given musical staff image input

xi ∈ X , the model outputs a posteriogram pi ∈ R
|Σ′|×K ,

where K represents the number of frames given by the

recurrent stage. Finally, the predicted sequence ẑi is ob-

tained resorting to a greedy policy that retrieves the most

probable symbol per frame in pi, later a subsequent map-

ping function merges consecutive repeated symbols and re-

moves blank labels.

4. EXPERIMENTAL SETUP

In this section, we present our choices for the experimental

design. First, we describe the considered evaluation met-

ric. Then, we give more implementation details of the deep

learning model. Finally, we present and describe the col-

lections selected as train and target sets.

4.1 Evaluation

To evaluate the performance of the OMR model, we resort

to the Symbol Error Rate (SER). This is computed as the

average number of elementary editing operations (inser-

tions, deletions, or substitutions) required to convert pre-

diction ẑi into reference zi, normalized by the length of

the latter.

In general, we are interested in computing the amount

of effort it would take for a person to correct the remaining

errors in the system. Since computing this human effort

1 Understanding musical symbol as the conjunction of
glyph:position, i.e., note_half:L2 (a glyph note_half

present in the second staff line).
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does not scale well in practice (it consumes huge amounts

of resources), we believe that this metric is suitable to mea-

sure the transcription correctness. In addition, it is a metric

that has been commonly applied in previous works on this

subject (cf. Section 2).

4.2 Neural model configuration

The CRNN topology is based on the one used in the re-

search [14], where the authors adopt a 4 convolutional

layer block with batch normalization, Leaky ReLu activa-

tion, and max-pooling down-sampling. The feature maps

extracted from the convolutional block are fed into two

Bidirectional Long Short-Time Memory layers with 256

hidden units each and a dropout value of d = 50% fol-

lowed by a fully-connected network with |Σ′| units.

The models were trained with a batch size of 16

elements—note that in experiments where multiple train-

ing sets were used all the generated batches in the train-

ing process were balanced so the net didn’t adjust to a

certain corpus. The ADAM optimizer [15] was consid-

ered and a fixed learning rate of 10−3. We iterate for 300

epochs, keeping the weights that minimize the SER met-

ric in the validation partition with an early stopping policy

of 30 epochs. Finally, all experiments were run using the

Python language (v. 3.8.13) with the PyTorch framework

(v. 1.13.0) on a single NVIDIA GeForce RTX 4090 card

with 24GB of GPU memory.

4.3 Datasets

A set of 20 different white Mensural notation works has

been collected for this work, consisting of pairs of staff

images and their transcription into sequences of musical

symbols. The pieces have been selected looking for diverse

cases concerning printers or copyists, layouts, authors, the

period in history, and extension. 2

4.3.1 Training Datasets

For training, 4 different datasets were chosen from real col-

lections, trying to cover as much variability as possible.

When facing a new transcription project, it is usual that

no training collection is similar or big enough for build-

ing a model to obtain reliable results from the automatic

recognition process. In this scenario, the creation of syn-

thetic training data from scratch is a valid alternative that

will be evaluated in the work with the PRIMENS dataset.

Therefore, we will add this synthetic collection to the set

of training sets, resulting in 5 different collections. These

training collections are described below.

• CAPITAN. The Capitan dataset contains 100 handwrit-

ten pages of ca. 17th-century manuscripts in late white

Mensural notation extracted from the work with signa-

ture B59.850 in the Catedral del Pilar in Zaragoza [16].

• SEILS. The SEILS dataset contains 151 printed pages

of the “Il Lauro Secco” collection corresponding to an

2 The whole set, along with a comprehensive description of
the contents, can be found at https://grfia.dlsi.ua.es/

polifonia/ismir2023.html.

anthology of 16th-century Italian madrigals in white

Mensural notation [17].

• GUATEMALA. The Guatemala dataset presents 383

handwritten pages from a polyphonic choir book, part

of a larger collection held at the “Archivo Histórico Ar-

quidiocesano de Guatemala” [18].

• MOTTECTA. This dataset corresponds to the work

“Mottecta (Mottecta Francisci Guerreri, que partim

quaternis partim quinis alia senis alia octonis concinun-

tur vocibus, liber secundus dataset)”, authored by Fran-

cisco Guerrero in the 16th-century and edited by Gi-

acomo Vincenti in the 17th-century. This 297-printed

mensural pages corpus has been obtained from the col-

lection of mensural books of the Biblioteca Digital His-

pánica. 3

• PRIMENS. The Printed Images of Mensural Staves

(PrIMenS) dataset is a synthetic corpus that tries to

resemble low-quality real scans of printed mensural

sources. It has been built from works composed by Agri-

cola, Frye, and Ockeghem available in the Josquin Re-

search Project 4 . Given polyphonic scores encoded in

**kern [19] format, each voice is separated into a single

file. In order to increase the variability, the original clefs

are modified according to the instrument annotation in

the voice. To obtain single staves, the whole work has

been divided into a random number of measures from

3 to 18, and the resulting files have been converted into

**mens [20] format. The corresponding agnostic encod-

ing has been generated following the method described

in [17]. The images have been obtained using the digi-

tal engraver Verovio [21] by applying random values to

all the options in the allowed ranges. Finally, those im-

ages have been distorted to simulate real printed image

scans by using a random sequence of graphical filters

with the GraphicsMagick Image Processing. Addition-

ally, this real-image simulation process has been com-

plemented by composing randomly damaged old paper

textures with distorted images.

To better understand the differences that might appear

among these corpora, we provide a staff example from

each corpus in Fig. 1.

4.3.2 Target Datasets

For the task of testing the suitability of each model, 15

datasets have been chosen. These corpora have been care-

fully and specifically labeled for this work, and are sum-

marized in Table 1 and Fig. 2.

The printed sets have been extracted from the publicly

available collection of Mensural books in the Biblioteca

Digital Hispánica. 5 The handwritten collections are ob-

tained from archive of Catedral del Pilar in Zaragoza [16].

3 bdh.bne.es/bnesearch/detalle/bdh0000008932
4 https://josquin.stanford.edu/ (accessed September

1st, 2022).
5 https://www.bne.es/es/catalogos/

biblioteca-digital-hispanica (accessed March 7th, 2023)
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(a) CAPITAN

(b) SEILS

(c) GUATEMALA

(d) MOTTECTA

(e) PRIMENS

Figure 1: Samples of staves of the different training

datasets employed.

Name (ID) Number of staves Printer

Amorosa (Amo) 224 H. of G. Scoto

Chansons (Cha) 173 A. Le Roy, R. Ballard

Dolci (Dol) 170 H. of G. Scoto

Lamentationes (Lam) 528 G. G. Carlino

Madrigali (Mad) 201 G. Scotto

Magnificat (Mag) 1361 Antonio Gardano

Missarum (Mis) 489 H. of G. Scoto

MusicaNova (Mus) 874 Antonio Gardano

Orlande (Orl) 259 A. Le Roy, R. Ballard

Responsoria (Res) 666 G. G. Carlino

Sacrarum (Sac) 460 Antonio Gardano

Villanelle (Vil) 59 G. G. Carlino

B3.28 (B3) 60 Handwritten

B50.747 (B50) 80 Handwritten

B53.781 (B53) 32 Handwritten

Table 1: Features of the different target collections consid-

ered in this work.

5. RESULTS

Given the number of training corpora (5), the test datasets

(15), and the number of experiments (31), we are able to

report up to 465 different SER results. This enables us to

properly summarize the experimentation, extracting mean-

ingful learnings that will be used to state the best practices

to deal with training data on new projects. The analysis of

the results follows. The extended raw results of each exper-

iment are attached to this document in the supplementary

material.

5.1 Importance of size and variability

In order to understand which is the best training set selec-

tion strategy when facing a new unseen collection, all the

possible combinations of the datasets available for training

have been evaluated against the different target sets.

Figure 2: Image examples from the selected corpora as

test partition. The images follow a left-right-top-bottom

order concerning the list order from Table 1.

The more training sets we include in the combination

the greater the number of staves of that combined training

set will be. To evaluate which factor is more important, ei-

ther the variability, given by the number of different train-

ing sets included in each combination, or the size as the

total number of staves to train, we have plotted in Fig. 3

the summary statistics of the SER obtained by each trained

model over all the target collections.

In general, the best behavior has been obtained when

merging all the available training corpora. This first out-

come may seem obvious, but due to the variability of the

training datasets and some of the test works, it was not il-

logical to expect otherwise. From this result, the fact to

be explained is why it performs the best, either due to the

size of the training set in terms of the number of staves or

the generality the model encompasses due to the training

corpora of different natures included.

The plot shows that, although adding more training cor-

pus does not worsen the results, it is not a determining fac-

tor. In general, good results are generally obtained with

combinations of at least 3 training sets. However, a com-

bination of just two corpora (i.e. CS) yields a good per-

formance both in mean and dispersion that denotes its ro-

bustness. These two corpora are complementary from the

graphical point of view and seem to be representative of

both printed sources (SEILS) and handwritten manuscripts

(Capitan). When applying 3-corpora training set combi-

nations, the results are equivalent: CGS experiment com-

pared with the GMP, wherein the combination of the first

two handwritten corpora and one printed appear compared

to the collection of one handwritten and two printed train-

ing sets. From these evidences, it can be deduced that the

variability of training sets is relevant for better overall per-

formance.

If we focus on the size of the training collection, i.e.,

the total number of staves used for training, the plot shows

that it is not as important as the variability for the final

performance. For example, experiment CMS, having less

than 4 000 staves, brings better results than experiment GP

with over 8 000 samples for training.

To confirm the size is not all that matters, Fig. 4 illus-

trates the results reported by calculating the number of ex-

periments where the SER is minimized in any of the target

datasets, taking into account the number of datasets used
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Figure 4: Percentage of experiments that minimize the

SER value for any of the available test corpora.

to train. It can be noticed that trained experiments with

sizes 3, 4, and 5 report a value of 31.2%. Aside from the

value itself, what this aspect exposes is that the size of your

dataset at a given point is no longer a critical factor for the

transcription quality.

5.2 The complexity of a corpus

The average SER values for all experiments on each target

dataset are plotted in Fig. 5. The main noticeable aspect is

the difference between Q1 and Q3 (the colored box ends)

in the diverse corpora. This substantial contrast in disper-

sion is what we named “The complexity of a corpus”. The

plot shows that, as expected, the performance depends on

the precise selection of the combination of training corpora

to use. The maximum SER values are obtained when the

training data is built from just one dataset.

In general, the worst results in the graph are obtained

for handwritten target works (those named with the prefix

“B”) because, intrinsically, they are more difficult to deal

with and need a higher variability in the number of training

corpora of handwritten works.
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Figure 5: The boxplot shows different statistical SER fig-

ures over all experiments made in each one of the testing

corpora.

5.3 The importance of leveraging the availability of

training corpora

Figure 6 shows the results of the experiments that use each

specific training corpus compared to the experiments that

do not use it. The image presents the casuistry when hav-

ing to choose either adding new samples from a different

dataset or continue increasing the size of existing labeled

samples. As the image reveals, every dataset available for

the train, no matter the type—printed or handwritten, real

or synthetic—should be included. It is worth mentioning,

that the relevance of adding a new corpus is more notice-

able than others. For example, referring to the Capitan cor-

pus, if we compare the experiments CMP – MP, CPS – PS,
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Figure 6: Comparison between all experiments containing (green) and not containing (blue) each training set.

and CMS – MS, we can observe this phenomenon: because

of the variability that Capitan adds to the training set, the

improvement is noticeable. Therefore, a new corpus seems

to generally improve the model performance, as outlined in

Fig. 5.

But not only adding a different corpus helps to improve,

as the key is to be aware of what is missing in terms of

graphical variability in the available training data to build

a more robust model. An interesting piece of evidence in

the plot that shows how to proceed when this happens is

to notice that even a synthetic corpus helps in improving

the overall results when it complements the available orig-

inal training data. Note the reduction in SER when adding

PrIMenS, that synthetically simulates printed sources, to

complement two other handwritten datasets (Capitan and

Guatemala).

5.4 Lessons learned

In order to summarize and establish a set of best practices

to improve the generalization performance of OMR sys-

tems in the absence of specific training data, we will intro-

duce some questions and answers related to the knowledge

acquired from the experimental outcomes.

• Which is the best choice to transcribe a new collec-

tion? In general, one must use all the available training

corpora even if some of them are quite different from the

target collection.

• Is it better to have fewer collections with a high num-

ber of samples or more collections with fewer sam-

ples each? It is preferable to have more variability even

at the cost of a smaller sample set.

• How important is it to be aware of the collection to

transcribe for selecting the right corpora to train the

model? It is indeed relevant, and depending on the diffi-

culty (for example, whether or not it is handwritten) the

differences in performance can be very varied.

• Does the introduction of a synthetic corpus improve

the performance? Yes, the introduction of a reliable

synthetic collection adds size and variability to the train-

ing data, enabling better performance rates.

We consider that these answers can be used as general

rules of thumbs, although of course in certain cases they

may not hold.

6. CONCLUSIONS

OMR promises to make written music collections more ac-

cessible and browsable by automatically recognizing the

symbolic content from their images. However, modern

technologies are based on machine learning with deep neu-

ral networks, which typically causes unpredictable perfor-

mance when processing a collection for which no specific

training data is available. In this work, we have studied

this issue using a large number of training and test col-

lections depicting Mensural notation. This extensive study

has been developed considering a state-of-the-art model as

representative of the ability to transfer knowledge between

collections with dissimilar characteristics.

Our experiments allowed us to analyze various phenom-

ena related to the synergies created between different train-

ing collections, the importance of choosing a good recog-

nition trained model to alleviate the uncertainty about per-

formance in a new collection, as well as a series of gen-

eral good practices on how to proceed for training general

OMR models.

As future work, we want to keep on in this line of inves-

tigating practical aspects of OMR systems that have a di-

rect impact on particular use cases. For example, we want

to extend the case study to the scenario of transfer learning

and fine-tuning, where a (limited) amount of training data

from a new collection can be assumed. Also, it is interest-

ing to analyze the nature of the errors made by the different

OMR models, as well as to have a more precise estimate

of the impact of the different errors on the amount of effort

required during the post-editing correction process.
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ABSTRACT

We introduce Composer’s Assistant, a system for interac-

tive human-computer composition in the REAPER digi-

tal audio workstation. We consider the task of multi-track

MIDI infilling when arbitrary track-measures have been

deleted from a contiguous slice of measures from a MIDI

file, and we train a T5-like model to accomplish this task.

Composer’s Assistant consists of this model together with

scripts that enable interaction with the model in REAPER.

We conduct objective and subjective tests of our model.

We release our complete system, consisting of source code,

pretrained models, and REAPER scripts. Our models were

trained only on permissively-licensed MIDI files.

1. INTRODUCTION

Many generative models for music exist. For instance,

MuseNet [1] and SymphonyNet [2] can generate or con-

tinue a piece of music, and Music Transformer [3] can con-

tinue a piano performance or harmonize a piano melody.

When we tried using these tools as compositional aides,

however, we quickly ran into limitations. For instance,

while Music Transformer is capable of harmonizing a

given melody, it does not offer the ability to keep part of

the harmonization and regenerate the other part. MuseNet

and SymphonyNet can generate a continuation of a user’s

prompt, but do not allow the user to regenerate individ-

ual instruments or measures within the continuation while

keeping the rest of the continuation intact.

DeepBach [4] can perform infilling on Bach-like

chorales in a window specified by the user. Motivated

by the idea of extending the DeepBach user experience to

more styles, arbitrary collections of instruments, and arbi-

trary infilling target locations, we train a transformer [5, 6]

model on the task of multi-track MIDI infilling. Our model

allows composers to generate new notes for arbitrary sub-

sets of track-measures in their compositions, conditioned

on any contiguous slice of measures containing the sub-

set. (By a track-measure, we simply mean a measure

within a track—see Figure 1.) We also build a novel sys-

tem for interacting with our model in the REAPER digital

© M. E. Malandro. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: M. E.

Malandro, “Composer’s Assistant: An Interactive Transformer for Multi-

Track MIDI Infilling”, in Proc. of the 24th Int. Society for Music Infor-

mation Retrieval Conf., Milan, Italy, 2023.

Figure 1. A prompt in REAPER, followed by a model out-

put. Vertical lines separate measures. Users place empty

MIDI items in REAPER to tell the model in which mea-

sures to write notes, and track names to tell the model what

instrument is on each track. A track-measure in the prompt

is boxed. Our model writes at least one note into every

track-measure in every empty MIDI item in the prompt.

audio workstation (DAW). 1 Our system is cross-platform

and easy to install. When a user runs one of our REAPER

scripts, a model prompt is built directly from the slice

of measures selected in the user’s REAPER project, our

model evaluates the prompt, and the model output is writ-

ten back into the user’s project—see Figure 1. All of this

happens within a few seconds, allowing the user to listen

to the output, modify it to create a new prompt, generate

an output from that, etc. This allows our model to be used

in an interactive manner, where model outputs are refined

by the user over the course of several prompts.

We note that our infilling objective includes continuing

a piece of music, simply by including empty measures at

the end of the piece in the prompt. Additionally, our model

has the ability to write variations: One can randomly mask

1/n of the track-measures in a measure selection and ask

the model to fill in those parts, then feed the result back

into the model with another 1/n masked, and so on, until

1 Our system and video demo are available at https://github.
com/m-malandro/composers-assistant-REAPER.
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all track-measures have been masked and filled.

Toward the end of this project we discovered MMM

[7,8], which consists of two separate GPT-2–like [9] mod-

els trained on the tasks of measure infilling and track in-

filling. The authors include code to use these models to

infill arbitrary subsets of track-measures, as we do. MMM

comes in 4-bar and 8-bar variants, which are limited to in-

puts with 12 and 6 tracks, respectively, and its web demo

is limited to inputs having a 4/4 time signature.

The primary contributions of this work are as follows.

First, in Section 3 we introduce a novel data filtering and

preprocessing approach, applicable to any MIDI dataset

used for training models. Our approach helps rectify cer-

tain issues we have encountered when using other mod-

els. Second, we train and release a new model, capable

of infilling arbitrary track-measures in an arbitrary slice of

measures in a MIDI file, with no effective restriction (aside

from a soft input token limit of 1650) on tempos, number

of measures, or number of instrument tracks. Tracks may

be polyphonic or monophonic in any combination. The

only time signature restriction is that all measures must be

eight quarter notes or fewer. Our model is more flexible

than MMM and compares favorably to MMM in both ob-

jective and subjective tests—see Sections 6–7. Addition-

ally, our model was trained only on permissively-licensed

MIDI files, so its outputs should be usable by composers

with minimal risk—see Section 5. Finally, we release our

complete system, including training code and scripts that

enable rapid interaction with our model in REAPER. Our

model is the first DAW-integrated model capable of infill-

ing parts for all 128 pitched MIDI instruments (including

repeated instruments) and drums, in any combination.

2. RELATED WORK

As mentioned in Section 1, MMM [7, 8] performs multi-

track infilling for all MIDI instruments (subject to bar and

track limits), and DeepBach [4] performs multi-track in-

filling for Bach-like chorales. Coconet [10] also performs

multi-track infilling for Bach-like chorales. MusIAC [11]

incorporates user controls and performs track-based and

measure-based infilling, although its inputs and outputs

are limited to a maximum of three tracks, 16 measures,

and four common time signatures. MusicVAE [12] can in-

terpolate between two given clips of music, which can be

viewed as a type of infilling. To our knowledge, all other

existing music infilling systems are limited to monophonic

infilling [13–17] or single-instrument infilling [18, 19].

Generating or continuing a piece of music can be seen

as a special case of infilling. Models which can generate

or continue a piece of music include [1–3, 20, 21].

Previous DAW-integrated generative music systems in-

clude [4,18,22]. NONOTO [23] is a model-agnostic inter-

face that can be linked with a model to perform interactive

measure-based infilling. This interface could potentially

be altered to allow for the expanded type of infilling our

model is capable of. However, we opt to build an inter-

face between our model and REAPER directly, essentially

using REAPER as the GUI for our model.

3. DATA FILTERING AND PREPROCESSING

In this section we describe our filtering and preprocess-

ing approach, any portion of which can be applied to any

dataset of MIDI files. First, we remove from the dataset

any file whose notes seem to have no relation to the un-

derlying grid (Section 3.1). Next, we dedupe files from

the dataset using note onset chromagrams (Section 3.2).

Finally, we preprocess all remaining files to standardize

properties like track order (Section 3.3). This final prepro-

cessing step includes a method for detecting and remov-

ing shifted duplicate and near-duplicate tracks within files

(Section 3.4).

3.1 Cosine Similarity for On-Grid Note Detection

Every MIDI file has a measure and grid structure defined

by tempo and time signature events. However, MIDI file

authors are free to ignore this structure, and frequently do

when recording free-flowing performances. Other mod-

els we have used occasionally write a note in the wrong

place—e.g., a 32nd note away from where it clearly should

be—and a small experiment we ran suggests that training

on MIDI files that don’t quantize well to the grid used by

the model is a major cause of this. To address this, we re-

move from our dataset any MIDI file whose note onsets ap-

pear to have no relation to the underlying grid. This is not

as simple as checking whether all (or most) note onsets oc-

cur on the grid, as many MIDI file authors who use the grid

include “humanization” of note timings, where many note

onsets that occur slightly off the grid nevertheless quantize

correctly to the grid. For instance, in a MIDI file with a res-

olution of 960 ticks per quarter note, a humanized quarter-

note performance might have notes occurring in a 40-tick

window centered at every 960th tick.

To perform this filtering, given a MIDI file M , we quan-

tize the note onsets in M to a resolution of 12 ticks per

quarter note, and we form a length-12 vector vM whose

ith entry (i ∈ {0, . . . , 11}) is the number of note onsets

in M occurring i ticks after a grid quarter note. The idea

is that if the note onsets in M have nothing to do with the

grid, then vM will point in a similar direction to the uni-

form vector v1 = (1, . . . , 1) ∈ R
12. We therefore compute

the cosine of the angle θM between vM and v1:

cos(θM ) =
⟨vM , v1⟩

||vM || · ||v1||
,

and we declare a threshold T such that when cos(θM ) > T
we remove the file M from our dataset. Hand exploration

indicated that T = 0.8 was a reasonable threshold, which

we chose for this project. We note that a straight fully-on-

grid 8th-note pattern M has cos(θM ) ≈ 0.41 and a straight

fully-on-grid 16th-note pattern M has cos(θM ) ≈ 0.58.

3.2 Deduping Using Note Onset Chromagrams

We dedupe our dataset to avoid data imbalance during

training and to prevent overlap between our training and

test sets. Given a MIDI file M , we compute a size-12 set

of note onset chromagrams using the following procedure.
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First, we remove all drum tracks from M . Then, using a

12-tick-per-quarter-note grid, we quantize the note onsets

in M to the nearest 16th note or 8th note triplet. Then,

we remove all empty measures at the beginning and end of

M , and we replace each set of contiguous empty measures

within M with one empty measure. Then, for each tick in

M and for each pitch class, we record whether M has at

least one note onset of that pitch class at that tick. This

information comprises one note onset chromagram for M .

The other 11 come from repeating this procedure for each

possible transposition of M . We dedupe the dataset by

keeping only one file with a given set of note onset chro-

magrams. Quantization helps us catch files that differ only

trivially in grid resolution and/or note onset times, while

transposition helps us catch files that differ only in key.

3.3 Preprocessing of Individual MIDI Files

After deduping, we preprocess each MIDI file in our

dataset in the following way.

First, we arrange the information in the MIDI file so that

each track holds notes for one instrument. We order tracks

according to their MIDI instrument number (0–127), tak-

ing drums as instrument 128. We also consolidate all drum

tracks to a single track, and we apply a drum simplification

map (consolidating, e.g., three different bass drum pitches

to a single pitch).

Next, we apply pedal information in the file (if present)

to extend note lengths, and then delete all continuous con-

troller (cc) data. We do not model cc data in this project.

With the exception of drums, we allow multiple tracks

to use the same instrument. However, when this happens,

if there is more than one track having a given instrument,

we remove all but one of those tracks that are equal to, a

shift of, or close to a shift of another track with the same

instrument, using the procedure in Section 3.4.

We impose the restriction that all measures must be

eight quarter notes or fewer. If any time signature in the

file declares longer measures, we alter the time signatures

to shorten the measures.

Finally, using a 24-tick-per-quarter-note grid, we quan-

tize the events in the file to the nearest 32nd note or 16th

note triplet. This is ultimately the level of quantization we

use to train our model. (Earlier experiments involved quan-

tizing to 16th notes or 16th notes + 8th note triplets, which

we found insufficient for expressive generation.)

3.4 Removing Shifted Duplicate and Near-Duplicate

Tracks

A MIDI file may contain duplicate tracks. Such tracks

contain no useful information for modeling, so we remove

them. Shifted duplicate tracks are frequently used by MIDI

file authors to encode delay effects (as the MIDI spec of-

fers no way to encode the use of a delay directly). Choos-

ing to use a delay is a mixing decision, not a compositional

decision, and we want our model to focus on making com-

positional decisions, so we remove shifted duplicate tracks

as well. We have also seen tracks that are duplicates or

shifted duplicates of other tracks within a file, plus or mi-

nus a few notes and/or humanization. We remove such

near-duplicate tracks as well.

Given a note n in a track T , let st(n) and end(n) in-

dicate the start and end times of the note n, respectively,

and let pitch(n) ∈ {0, . . . , 127} indicate the MIDI pitch of

n. We record, for p ∈ {0, . . . , 127}, the union of closed

intervals

IT (p) = ∪n∈T :pitch(n)=p{[st(n), end(n)]} ⊆ R,

and we define |IT | =
∑127

p=0 |IT (p)|, where |IT (p)| is the

sum of the lengths of the disjoint intervals in IT (p).
Given tracks T1 and T2, we define the overlap measure

O(T1, T2) ∈ [0, 1] ⊆ R to be

O(T1, T2) =

∑127
p=0 |IT1

(p) ∩ IT2
(p)|

max (|IT1
|, |IT2

|)
.

The idea is that O(T1, T2) measures the percentage of the

note intervals in the larger of the two tracks accounted for

by the note intervals in the smaller of the two.

We use a threshold of 0.9 for asserting near-overlap be-

tween two tracks. As we go through the tracks in a MIDI

file in order, a later track T is thrown out if there exists an

earlier track T0 using the same instrument such that some

shift Ts of T of no more than a half note has the property

that O(T0, Ts) ≥ 0.9. In our experience with our trained

model, we have found this preprocessing step sufficient to

prevent the model from outputting duplicates or shifted du-

plicates of tracks in its inputs.

4. OUR LANGUAGE

After applying the procedure from Section 3 to a collec-

tion of MIDI files, we process the files into an event-based

language for modeling. Our language is similar to the

standard event-based MIDI language used for piano per-

formance modeling in [3]. However, we use explicit mea-

sure tokens to denote the start of each measure. Also, we

do not model velocity of individual notes directly. Instead,

we assign a dynamics level to each measure based on the

average velocity of the notes in the measure. We use eight

dynamics levels, with thresholds learned from data.

The tokens used by our language are as follows:

• M:x, x ∈ {0, . . . , 7}. Declares a measure of dynam-

ics level x.

• B:x, x ∈ {0, . . . , 7}. Declares the tempo (BPM)

level at the start of a measure. We use eight tempo

levels, with thresholds learned from data.

• L:x, x ∈ {1, . . . , 192}. Declares that a measure has

length equal to x ticks.

• I:x, x ∈ {0, . . . , 128}. Changes the current instru-

ment to MIDI instrument x (128 = drums).

• R:x, x ∈ {1, . . . , 63}. Declares that the current in-

strument is the same MIDI instrument as another in-

strument in the file/project, but on a different track.

Higher x values indicate lower average pitch.
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Figure 2. We tokenize this measure as M:5 B:6 L:96 I:0

w:48 d:24 N:67 I:0 R:1 d:48 N:36 N:43 N:48 I:73 w:12

d:12 N:84 w:12 N:81 w:12 N:79. Note that piano and flute

are MIDI instruments 0 and 73.

• N:x, x ∈ {0, . . . , 127}. Note of pitch x. Used by

instruments 0–127.

• D:x, x ∈ {0, . . . , 127}. Drum hit of drum pitch x.

Used by instrument 128.

• d:x, x ∈ {0, . . . , 192}. Sets the duration of each

note declared from this point forward to x ticks.

• w:x, x ∈ {1, . . . , 191}. Advances the current inser-

tion point for new notes in the measure by x ticks.

• <extra_id_x>, x ∈ {0, . . . , 255}. Mask tokens.

• <mono>, <poly>. Instructs the model to write a

monophonic or polyphonic part for a masked part.

For our purposes a monophonic part is one where no

two notes in the part have the same onset tick.

Tokens are assembled in a standardized manner to rep-

resent measures. Each measure begins with M:x, B:x, and

L:x tokens. I: commands are included for a measure only

when that instrument is present in the measure. We do not

intermingle instrument note instructions as we write each

measure from left to right (as MuseNet [1] did), as that

would make it difficult to mask individual instrument parts

within measures. Rather, we write the full part for one in-

strument within the measure before writing the full part for

the next instrument within the measure. Figure 2 contains

an example of a tokenized measure.

To form songs, we simply concatenate measures.

5. MODEL, DATA, AND TRAINING PROCEDURE

We use recent recommendations from the language mod-

eling community to design and train our model. Based

on the recommendations in [24–26], we choose a T5

(full, relative-attention) encoder-decoder architecture [6].

We opt for a full attention model because such models

were found to outperform memory-efficient models in [24]

when the full input sequence fits in memory, as we expect

to be the case in most real-world applications of our model.

Also, we adopt the DeepNarrow strategy of [27], opting

for a model dimension of 384, 10 encoder layers, and 10

decoder layers. For training, we use the pytorch [28]

Hugging Face [29] implementation of T5. For inference,

we use nucleus sampling [30] with a threshold of p = 0.95.

To train a model that is essentially free of copyright

worry, we collect MIDI files from the internet marked

as being in the public domain, freely available to use

without attribution, or available under a CC BY license.

We exclude files marked as having share-alike or non-

commercial licenses, since we want composers to be able

to use model outputs however they wish. We also collect

private donations and files from the internet for which we

secure direct permission from the MIDI file authors to use

for training. This results in a dataset of approximately 40K

MIDI files after filtering. Most of our training files are in

Western classical, folk, and hymnal styles, although some

modern styles are also present.

We follow the standard approach to the training of large

language models of splitting our training procedure into

pretraining and finetuning phases. A similar approach was

also used in [31]. For pretraining, we use the T5 corrupted-

span sequence-to-sequence objective [6]. We begin by pre-

training on the 192K training files in the CocoChorales

[32] dataset and their piano reductions for three epochs.

The CocoChorales are only used for this initial pretraining

to teach the model the basics of music theory and our lan-

guage. We then move on to our dataset of 40K MIDI files.

After tokenization and corruption, we greedily chunk each

song into inputs of 512 or fewer (short) or 1650 or fewer

(long) tokens. Additionally, each song in our dataset is

transposed a random amount between -5 and +6 semitones

(inclusive) for each epoch. Following the recommenda-

tions in [24], we train our model on short examples for 20

epochs and then long examples for 11 epochs. We release

the resulting pretrained model, which others may find use-

ful for finetuning on downstream tasks.

For finetuning, we continue to leverage the corrupted-

span sequence-to-sequence objective to finetune our model

on the task of multi-track MIDI infilling. We create train-

ing examples from songs in our training dataset by taking

slices of measures from the songs and masking subsets of

track-measures from these slices. During finetuning ev-

ery N:, D:, d:, and w: token for a given track-measure

is masked, and corresponds to a single mask token. With

probability 0.75, we add a <poly> or <mono> token cor-

responding to the nature of the masked tokens for each

mask. (We choose not to include these tokens in every

training example since users will not always include these

instructions in their prompts.) Finetuning examples are

limited to inputs with a maximum of 1650 tokens and out-

puts with a maximum of 1650 tokens.

We generate our finetuning masks by selecting from

mask patterns that we consider to be musically relevant

and/or useful for training. To help train our model for use

on small numbers of measures, we also occasionally (15%

of the time) truncate examples to a random smaller number

of measures than the number allowed by our token limits.

As with pretraining, each example is transposed randomly.

We finetune our model for 51 epochs, and we release the

resulting finetuned model.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

330



Task Our Model Our Model -MP MMM-8 MMM-4

Note F1 results. Higher is better.

8-bar random infill 0.5414 ± (0.1887)a 0.5315 ± (0.1904)b 0.4153 ± (0.1819)c 0.4025 ± (0.1652)d

16-bar random infill ∗ 0.5771 ± (0.1661)a 0.5705 ± (0.1669)b 0.4133 ± (0.1534)c 0.4059 ± (0.1399)d

8-bar track infill 0.179 ± (0.1902)a 0.1634 ± (0.18)b 0.1063 ± (0.1573)d 0.1427 ± (0.1646)c

16-bar track infill 0.1773 ± (0.1752)a 0.1609 ± (0.165)b 0.1107 ± (0.1383)d 0.1467 ± (0.1489)c

8-bar last-bar fill 0.5019 ± (0.2719)a 0.5063 ± (0.2751)a 0.4329 ± (0.2445)b 0.3756 ± (0.2289)c

16-bar last-bar fill ∗ 0.5415 ± (0.2853)a 0.539 ± (0.2823)a 0.4338 ± (0.2468)b 0.3818 ± (0.2293)c

Pitch class histogram entropy difference results. Lower is better.

8-bar random infill 0.2845 ± (0.1627)a 0.2948 ± (0.1597)b 0.3045 ± (0.1561)c 0.3049 ± (0.1497)c

16-bar random infill 0.2691 ± (0.1325)a 0.2797 ± (0.1326)b 0.3093 ± (0.124)c 0.3063 ± (0.1138)c

8-bar track infill 0.3933 ± (0.3032)c 0.42 ± (0.3134)d 0.2864 ± (0.2966)a 0.3021 ± (0.2517)b

16-bar track infill 0.3842 ± (0.2654)c 0.3995 ± (0.2763)c 0.284 ± (0.2348)a 0.3036 ± (0.2072)b

8-bar last-bar fill 0.3018 ± (0.2661)a 0.3072 ± (0.2692)a 0.3213 ± (0.2602)b 0.3439 ± (0.2777)c

16-bar last-bar fill ∗ 0.2851 ± (0.2652)a 0.2925 ± (0.2672)a 0.3209 ± (0.2619)b 0.3454 ± (0.2741)c

Groove similarity results. Higher is better.

8-bar random infill 0.9534 ± (0.0298)a 0.9519 ± (0.0306)b 0.9333 ± (0.0369)c 0.9314 ± (0.0364)d

16-bar random infill ∗ 0.956 ± (0.027)a 0.9552 ± (0.0275)b 0.9323 ± (0.0337)c 0.9317 ± (0.032)c

8-bar track infill 0.9115 ± (0.0592)a 0.9069 ± (0.0617)b 0.8921 ± (0.0695)d 0.8987 ± (0.0626)c

16-bar track infill 0.9113 ± (0.0547)a 0.9082 ± (0.0553)b 0.8946 ± (0.0561)d 0.9011 ± (0.0536)c

8-bar last-bar fill 0.9517 ± (0.0414)a 0.9524 ± (0.0411)a 0.9381 ± (0.045)b 0.9334 ± (0.0457)c

16-bar last-bar fill ∗ 0.9544 ± (0.0481)a 0.9542 ± (0.0424)a 0.938 ± (0.051)b 0.9339 ± (0.0475)c

Table 1. Objective infilling summary statistics. All cells are of the form mean ± (std dev)s, where s is a letter. Different

letters within a row indicate significant location differences (p < 0.01) in the samples for that row according to a Wilcoxon

signed rank test with Holm-Bonferroni correction. Asterisks (∗) indicate a significant performance difference (p < 0.01)

between a 16-bar task and the 8-bar task in the previous row for our model according to a Wilcoxon rank sum test.

6. OBJECTIVE EVALUATION OF OUR MODEL

To form our test set, we select a set of 2500 MIDI files from

the Lakh MIDI dataset [33, 34] that is disjoint (according

to the procedure in Section 3.2) from our training set, all in

4/4 time and having at least 16 measures. Given a MIDI file

in our test set, for each of the three mask patterns below,

we select an 8- and a 16-measure slice of the file and mask

the selected slice with that mask pattern. We thus generate

six test examples from each test file, corresponding to the

six different tasks on which we evaluate models. Given a

slice of measures, our mask patterns for testing are:

1. Random mask: Each track-measure in the slice is

masked with probability 0.5.

2. Track mask: Up to half of the tracks t are selected

at random from the slice, and every measure of each

such track t is masked.

3. Last-bar mask: Given the last measure m of the

slice, measure m of every track is masked. This

pattern is used to measure the ability of models to

continue songs.

The ground truth for each example consists of the masked

notes in the example. In our test data, 99% and 75% of our

8-measure and 16-measure prompts (respectively) encode

to 1650 or fewer tokens. When input prompts are longer

than 1650 tokens, we chunk the prompts prior to evaluating

them with our model.

To compare our model to MMM [7, 8], we modify the

MMM Colab worksheet to run our examples through the

MMM models in batches. We recreate our test exam-

ples, quantizing them from their underlying MIDI files

to MMM’s 12-tick-per-quarter-note resolution, and then

modify them to accommodate the restrictions of the MMM

models: Since the 4-bar and 8-bar MMM models are lim-

ited to inputs containing a maximum of 12 and 6 tracks,

respectively, we chunk each test example into 4-bar and 8-

bar chunks, and then we split each chunk into sub-chunks

consisting of up to 12 and 6 tracks. The MMM models

have a strict input + output token limit of 2048, so when

sub-chunking, we only add enough tracks to a sub-chunk

to ensure that the input + ground truth has no more than

2048 tokens. This biases the comparison in favor of the

MMM models somewhat, as this requires us to look at the

length of the ground truth as part of the input chunking

procedure. Also, our test set is contained in MMM’s train-

ing set, but there is no reasonable way to avoid this as the

MMM models were trained on the full Lakh MIDI dataset.

(We wanted a diverse and well-randomized test set, and the

Lakh MIDI dataset is the only publicly-available dataset

we are aware of that fits this bill.)

We evaluate models with standard metrics: Note F1

[35], average pitch class histogram entropy difference

[19, 36], and average groove similarity [19, 36]. Note F1

measures how closely the generated notes match, on a

note-for-note basis, the notes in the ground truth. (For our

purposes, a generated note matches a note n in the ground
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Real Music Our Model MMM

1st place 66 32 27

Avg rank 1.664 2.032 2.304

p-values Our Model MMM

MMM 0.0239 -

Real Music 0.0034 2.3 · 10−5

Table 2. Subjective results from our listening test.

truth if and only if its onset tick, measure, pitch, and track

match exactly those of n.) The other metrics measure how

well certain higher-level statistics of the generated notes

match those of real music. For pitch class histogram en-

tropy calculations, drums are ignored. Each metric is com-

puted on a per-example basis, and then for each model,

task, and metric, the 2500 results are averaged to give the

results in Table 1. For fairness of groove similarity com-

parison, we use a denominator of 48 for all models. (This

is reasonable, as our models and the MMM models both

effectively have 48 possible note onset positions per 4/4

measure.) For our model, “-MP” indicates that the exam-

ples were evaluated without <mono> or <poly> tokens

present.

For each row of Table 1, we perform a Wilcoxon signed

rank test [37] with Holm-Bonferroni correction [38]. We

find significant differences between our model and the

MMM models in all 18 rows, with our model outperform-

ing the MMM models in 16 out of 18 rows. The MMM

models outperform our model only for pitch class his-

togram entropy difference for full-track infilling.

Additionally, we find a significant difference in our

model’s performance when <mono> and <poly> tokens

are included in prompts in 11 out of 18 rows. All signif-

icant differences favor including these tokens, suggesting

that the development of additional user controls (as in [11])

would be a useful line of future work.

Finally, a Wilcoxon rank sum test [37] reveals signifi-

cant differences (p < 0.01) in 8-bar versus 16-bar results

for our model in five out of nine comparisons. All sig-

nificant differences favor the 16-bar results, emphasizing

the importance of training on longer measure slices. How-

ever, we never observe a significant difference in 8-bar ver-

sus 16-bar results for track infilling, suggesting that larger

context windows generally provide no additional useful in-

formation for completing this particular task.

Additional experiments not reported here indicate that

scaling our training approach (training larger models on

more data) is a feasible path for improving model perfor-

mance on the metrics presented here.

7. SUBJECTIVE EVALUATION OF OUR MODEL

While the results in Section 6 are encouraging, the ground

truth may not reflect the only reasonable way to fill in miss-

ing notes. To help address this, we conducted a small lis-

tening test with 25 participants. We prepared nine exam-

ples mostly involving melodic generation. Each example

consisted of three 8-measure clips, one of which was real

multi-track music. The other two clips were created by

removing some tracks from the real music and using our

model and MMM to fill those tracks. Participants were

shown five of the nine examples at random, and for each

example were asked to rank the three clips in order of pref-

erence. Results are given in Table 2.

A Wilcoxon signed rank test with Holm-Bonferroni cor-

rection reveals significant differences in rankings between

all three types of music, with p-values given in Table 2. In

this test we see a clear preference for real music, and a sig-

nificant (p < 0.05) preference for music generated by our

model over music generated by MMM. One expert partic-

ipant commented that melodies generated by the models

were generally more directionless than those in real music,

often failing to drive towards a cadence or “payoff.” We

agree with this assessment, and this is a shortcoming of

our model that we hope to address in future work.

8. LIMITATIONS AND RISKS

Our model writes music that is reflective of its training set.

Most of our training files are in Western classical, folk, and

hymnal styles. While we included in our training set only

files marked as being permissively licensed, it is possible

that some files were mismarked. It is also theoretically

possible for our model to output copyrighted music, even

if such music was not present in the training set.

The most common request we have heard from com-

posers to whom we have shown our system is personaliza-

tion. Generally speaking, they do not want systems that

write full songs, and they do not want systems that write

“generic” music. Rather, they want systems that can sug-

gest ideas in their style. Some small experiments indicate

that our finetuned model can be personalized by individu-

als (by continuing to finetune the model on their own MIDI

files) to write in their styles. Low-rank adaptation [39] of

our model may also be possible. Personalization is an av-

enue we would like to explore formally in future work. For

now, our code supports training by users, and our model di-

mensions were chosen carefully to enable this on consumer

hardware. A video card with 6 GB of RAM is sufficient to

train our released model on examples with input and out-

put lengths of 1024, and 12 GB of RAM is sufficient to

train on examples with input and output lengths of 1650.

While this can benefit composers who wish to use our sys-

tem, there is also the risk that our models may be trained

by users to impersonate the styles of others.

9. CONCLUSION

We have introduced Composer’s Assistant, a system for

interactive human-computer composition in the REAPER

digital audio workstation. Composer’s Assistant performs

multi-track MIDI infilling and comes with an easy-to-use

interface. We have released our source code, a pretrained

model, a finetuned model, and scripts for interacting with

our finetuned model in REAPER. Our models were trained

only on permissively-licensed MIDI files.
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ABSTRACT 

We introduce a novel audio corpus, the FAV Corpus, of 

over 400 favorite musical excerpts and pieces, formal anal-

yses, and free-response comments. In a survey, 140 Amer-

ican university students (mostly music majors) were asked 

to provide three of their favorite 15-second musical ex-

cerpts, from any genre or time period. For each selection, 

respondents were asked: “Why do you love the excerpt? 

Try to be as specific and detailed as possible (music theory 

terms are encouraged but not required).” Classical selec-
tions were dominated by a very small number of compos-

ers, while the pop and jazz artists were diverse. A thematic 

coding of the respondents’ comments found that the most 

common themes were melody (34.2% of comments), har-

mony (27.2%), and sonic factors: texture (27.6%), instru-

mentation (24.3%), and timbre (12.5%). (Rhythm (19.5%) 

and meter (4.6%) were less present in the comments.) The 

comments cite simplicity three times more than complex-

ity, and energy gain 14 times more than energy decrease, 

suggesting that people's favorite excerpts involve simple 

moments of energy gain or "build-up". The complete FAV 

Corpus is publicly available online at 
EthanLustig.com/FavCorpus. We will discuss future pos-

sibilities for the corpus, including potential directions in 

the spaces of machine learning and music recommenda-

tion.  

1. INTRODUCTION 

Why do we like the music we like? Perusal of the range of 

options in a record store or streaming platform, or of live 

music offerings in a large city, shows the enormous diver-

sity of musical taste among individuals. Research has 

probed some of the factors involved in this variability, 

such as gender, age, personality, social identity, cultural 
background, and musical training [1-6]. Still, there seems 

to be general agreement that particular pieces of music are 

especially “good.” Certain hymns, Christmas carols, folk 

songs, and classical pieces remain favorites across decades 

and centuries; certain popular songs cause world-wide and 

lasting explosions of enthusiasm. It seems, also, that spe-

cific sections or moments within these pieces are espe-

cially pleasurable, giving rise to what are sometimes called 

peak experiences [7-8]. Our own personal reflections cer-

tainly confirm this, and anecdotally, there seems to be at 

least some agreement as to what the “best” moments of a 

piece are. But what makes a certain part of a piece espe-

cially enjoyable?  

Music psychology has begun to address this issue, 

though in tentative and exploratory ways. Most of this re-

search has focused on the physiological manifestations of 

peak experiences, such as chills, which have been shown 

to correlate with pleasure. A pioneering study by Sloboda 
[9] asked participants to identify passages causing strong 

physiological effects—what he called “thrills” (p. 110, af-

ter [10])—and to describe the nature of those responses. 

More recent studies follow Sloboda’s model in having par-

ticipants identify pieces that cause physiological re-

sponses, especially chills, and then probing the possible 

causes and correlates of these responses: neurological cor-

relates [11, 12], musical elicitors [13, 14], and self-re-

ported perceptual correlates such as the perceived sadness 

or happiness of the music [15]. With regard to musical elic-

itors of chills, studies have found many factors including 

sequences, appoggiaturas, new or unexpected harmonies, 
crescendi, climaxes, sudden dynamic or textural changes, 

and entrances of instruments [9, 13-15]. Also deserving 

mention is a large project by Gabrielsson and Wik [16] fo-

cusing on the effects (physical, emotional, and cognitive) 

of “strong experiences” of music (p. 158). Musical elici-

tors are mentioned only briefly and in very general terms: 

“instruments, rhythm, melody, harmony, musical form, 

performance qualities etc.” (p. 198; see also [17], p. 568). 

In this study we offer a novel approach to the study of 

peak experiences and the musical factors that elicit them. 

In contrast to the exploratory research cited above, our 
study takes a systematic, survey-based approach. Our con-

ception of peak experience is close to Maslow’s [7]—a pri-

marily internal albeit not physiological, intensely positive 

experience—and falls within the fairly broad range of 

ways that the term is used [8]. 

Our project differs from most research on peak experi-

ences by focusing on passages of music directly reported 

to be strongly liked, rather than those causing chills and 

other physiological responses. While chills have generally 

been shown to coincide with pleasurable experiences [12, 

13], they may not always do so; conversely, one can cer-

tainly get great enjoyment from a musical passage without 
experiencing chills. 

In a survey, 140 respondents identified favorite musical 

excerpts. Respondents also provided free-response com-

ments explaining their choices, and we provide a content 
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analysis of these comments. We also present a publicly 

available corpus, the FAV Corpus, which includes audio 

files of excerpts and complete pieces, formal analyses of a 

subset of the pieces, and the respondents’ free-response 

comments. 

2. METHOD 

2.1 Participants 

In 2017, 140 students at the University of Rochester (New 
York) were given a survey regarding their favorite musical 

excerpts. Approximately 85% of the respondents to the 

survey were students at the Eastman School of Music (a 

division of the university) and were therefore music ma-

jors. The remaining 15% were students in an introductory 

music psychology course; while students in this course 

were mostly not music majors, the course required basic 

knowledge of music theory as a prerequisite. While stu-

dents with music-theory training may not be representative 

of the broader population, we deliberately chose them for 

their ability to articulate the musical reasons for their pref-

erences, with regard to matters such as harmony, rhythm, 
and form. On average, the respondents had 11.1 years of 

music training on a musical instrument (including voice) 

(SD = 4.2). There were 73 females, 63 males, and four who 

preferred not to say. The average age of the respondents 

was 19.7 years old, with a range of 17 to 29 years old (SD 

= 1.9). Respondents received extra credit points in their 

courses for participation. The survey received ethical ap-

proval by the Institutional Review Board of the University 

of Rochester. 

2.2 Data Collection 

The survey asked each respondent to identify “three of 
your favorite excerpts of music... in any style and from any 

time period.” For each excerpt, they were instructed to pro-

vide a URL (web address) to a recording of the 

piece/song/movement on YouTube or Spotify. We used 

the phrase “piece/song/movement” to avoid stylistic bias, 

but hereafter we will refer only to “pieces.” Respondents 

were then asked to “identify the 15-second excerpt that’s 

your favorite” by providing start- and end-points for the 

excerpt in relation to the recording. The choice of 15 sec-

onds was fairly arbitrary. We chose it, in part, because it 

roughly corresponds to the length of some of our favorite 
musical passages. 

Following each selection, respondents were prompted 

to write a response to the following question: “Why do you 

love the excerpt? Try to be as specific and detailed as pos-

sible (music theory terms are encouraged but not re-

quired).” We take the term love to indicate a high degree 

of liking or preference, similar in meaning to enjoy or 

greatly like. Our mention of “music theory terms” was 

aimed at encouraging respondents to identify the musical 

features giving rise to their preferences. There is a possible 

downside to this wording; by drawing attention to our own 

 
      1 Due to reasons such as invalid web links, respondent errors, etc., the 

actual corpus contains 399 excerpt audio files and 402 piece audio files. 

(See EthanLustig.com/FavCorpus for details.) 

music-theoretical background, it may have steered re-

spondents toward pieces or excerpts that they thought were 

theoretically “respectable” in some way. However, the 

huge stylistic variety of the chosen excerpts (described be-

low), including many from very recent popular music, sug-

gests to us that this was not a concern for many respond-

ents. Additionally, respondents were asked to choose be-

tween either “I enjoy this excerpt much more than the other 
parts of the piece” or “I enjoy this excerpt about as much 

as the other parts of the piece.” 

2.3 Creating the Corpus 

Recordings of the complete pieces provided by the re-

spondents were extracted from the YouTube/Spotify 

URLs and saved as WAV audio files; audio files were also 

made of each preferred 15-second excerpt. In some cases, 

the beginning of the internet recording did not correspond 

to the true beginning of the piece. To adjust for this, any 

time before the beginning of the piece was subtracted from 

the timepoints of the preferred excerpt, so that the adjusted 

timepoints indicated the excerpt’s location in relation to 
the piece. In about 8% of cases, the chosen excerpt was not 

exactly 15 seconds long, but usually just a few seconds 

shorter or longer. In such cases, the excerpt was converted 

to a 15-second excerpt with the same midpoint as the cho-

sen excerpt. (For example, 0:00-0:25 would be converted 

to 0:05-0:20.) For more detail about this process, see [18].  

The corpus, which we call the FAV Corpus, is publicly 

available at EthanLustig.com/FavCorpus. The corpus con-

tains 420 items (three excerpts from each of the 140 re-

spondents). A spreadsheet indicates, for each item, (a) the 

respondent’s number, which had been assigned arbitrarily, 
(b) the excerpt number for that respondent (1, 2, or 3), (c) 

the artist and title of the piece, (d) the style and historical 

era or year (explained below), (e) the duration of the piece, 

(f) the timepoints of the preferred excerpt, (g) whether the 

respondent indicated that they enjoyed the excerpt “much 

more than” [A] or “about as much as” [B] the rest of the 

piece, and (h) the respondent’s comment about why they 

liked the excerpt. In what follows, we indicate excerpts by 

respondent and excerpt number; for example, Respondent 

1’s three excerpts are 1_1, 1_2, and 1_3. We also provide 

sound files for both the complete pieces and the preferred 
15-second excerpts.1 

3. RESULTS 

3.1 Stylistic Content of the Corpus 

The distribution of styles and artists in the corpus was ex-

amined. While this is not the main focus of the current 

study, it provides a window into the musical tastes and pas-

sions of students at an American music school in 2017 (re-

call that roughly 85% of respondents were music students). 

Each excerpt was categorized as classical (49.5%), pop 

(41.8%), or jazz (8.7%). For most excerpts, classification 

was clear; there were a few borderline cases, such as jazz-

rock fusion pieces. The most popular artists in the survey 
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are listed in Table 1, with the number of excerpts for each. 

Following convention, for classical works, we identify the 

composer as the artist; for jazz and pop, we identify the 

performer(s) as the artist. Table 1 alone might give the im-

pression that respondents strongly favored classical music, 

but the style statistics just cited show otherwise; the pre-

ponderance of classical composers in Table 1 indicates, ra-

ther, that classical selections were dominated by a small 
handful of artists, while pop and jazz selections were much 

more widely dispersed. 

 

Composer # Excerpts 

Bach 

Brahms 

Beethoven 

Tchaikovsky  

Rachmaninov 

Mahler 

Kendrick Lamar 

Debussy 

Sibelius 
Handel 

17 

14 

12 

10 

9 

6 

6 

6 

5 
5 

 

Table 1. Artists (composers/performers) most represented 

in survey. 

 

Among the classical excerpts, 12.1% were from the Ba-

roque period (1600-1749), 8.5% Classical (1750-1819), 

31.7% Romantic (1820-1899), and 47.7% 20th/21st-cen-

tury (1900-present). (Each composer was assigned to a sin-

gle period, based on their years of greatest activity.) Again, 

the large number of 20th/21st-century selections is not re-

flected in Table 1 since they are distributed over a much 

larger number of composers. We also observed that many 
of these 20th/21st-century composers were toward the 

conservative end of the stylistic spectrum; the most popu-

lar was Rachmaninoff, with nine excerpts. For the pop and 

jazz selections, we identified the year of release of each 

recording. The pop selections strongly favored recent mu-

sic: 69.0% were from 2010–2017 (more than half of these 

from 2016–2017 alone), and 17.9% from the 2000s. Jazz 

selections had a weaker bias toward recent music, with 

31.4% of selections from 2010 through 2017.  

3.2 Formal Analysis 

One of us (David Temperley) did a formal analysis of a 
subset of pieces in the corpus. He did not know which ex-

cerpts were preferred when doing the analysis. The subset 

consisted of pieces in which respondents had said that they 

liked their preferred excerpt “much more than” the rest of 

the piece; this yielded a set of 127 pieces (about 30% of 

the survey responses).2 The recordings of the pieces were 

divided into sections to the nearest second, and the sections 

were given formal labels, as the genre warranted (for in-

stance, P = primary theme for a sonata-form piece; V 

(verse) and CH (chorus) for pop songs). It was assumed 

that each section continued until the beginning of the next 

 
      2 Altogether there were 137 eligible pieces, 10 proved impossible to 

analyze into formal sections, because there was no large-scale repetition 

and no clear moments of change demarcating reasonably-sized sections. 

Some of these were contemporary pieces; others were Baroque pieces, 

section, so that each piece was exhaustively partitioned 

into sections. As an arbitrary constraint to simplify the 

analysis, no section was allowed to be less than 15 seconds 

long. Two main criteria were used for determining the lo-

cation of formal sections: change and repetition. A signif-

icant change in any musical parameter, such as harmony, 

melody, instrumentation, texture, meter, or rhythmic pat-

tern, was considered to make a good candidate for a section 
break. Repetition could also define sections: for instance, 

the return of the opening theme in a sonata-form move-

ment might define a new section beginning even in the ab-

sence of obvious local changes. Repetition of the same la-

bel signified exact or slightly modified repetition; for ex-

ample, V would be used for two verses of a pop song, with 

different lyrics and perhaps some changes in instrumenta-

tion, but mostly similar melody and harmony. For more 

substantially modified repetitions, numbers were used 

(e.g., V1 and V2 for two verses that had significantly dif-

ferent melody or harmony). See [18] for more detail about 

the annotation system.  
We analyzed the preferred excerpts in relation to their 

location within the piece. First, we wondered if people tend 

to choose excerpts that are near section boundaries. For 

each preferred excerpt, in the set of 127 excerpts for which 

formal analyses were available, we found the temporal dis-

tance between the midpoint of that excerpt and the closest 

formal section boundary; we then performed the same pro-

cess for random 15-second excerpts from the same pieces, 

repeating the process 10 times to mitigate the effect of ex-

treme values. (One piece had a 7-minute section that 

seemed to create outliers in the data; this piece was re-
moved from the analysis.) Midpoints of preferred excerpts 

have an average (absolute) temporal distance from the 

nearest section boundary of 11.41 seconds, while for mid-

points of random excerpts, the distance is 13.67 seconds—

a modest but significant difference (t(168.73) = -2.46, p < 

0.01). Thus, preferred excerpts show a slight tendency to 

be located near formal boundaries. A total of 49.2% of the 

preferred excerpts actually contain a section boundary; 

among the random excerpts, only 37.6% do. We then re-

analyzed the same distances as signed values, to see 

whether preferred excerpts tend to be near the beginning 
or end of a formal section. For preferred excerpts, the mean 

signed difference between the midpoint and the nearest 

boundary is 2.90 (i.e., on average, the midpoint occurs 2.90 

seconds after the boundary), significantly greater than zero 

(one-sample t-test, t(125) = 2.22, p < 0.05). This indicates 

a slight tendency to choose excerpts near the beginning of 

a section rather than near the end, or, perhaps, overlapping 

more with the beginning of a section than with the end of 

the previous one.  

Finally, we examined the location of each excerpt in re-

lation to the piece as a whole. For this analysis, we used all 

399 excerpts in the corpus. Each excerpt received a value 
for its proportional position in the piece, where 0 would be 

at the very beginning, and 1 would be at the very end. The 

for example imitative textures with a rapid or seamless alternation be-

tween subject entries and episodes. 
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mean value was 0.46; clearly there was not a strong bias 

toward choosing excerpts early or late in the piece. 

3.3 Content Analysis of Comments 

As mentioned earlier, respondents were asked to comment 

on their reasons for liking each excerpt in their own words. 

Responses varied from a few words to several sentences. 

While a few responses were flippant or minimal, a great 

many respondents showed enthusiasm for the task and 
took considerable effort in explaining their choices. We 

did a content analysis of the respondents’ comments. One 

of us (David Temperley) coded all 420 comments, identi-

fying 17 themes that seemed to appear repeatedly in the 

comments. We then provided a list of the 17 themes and 

their definitions (Table 2) to an independent coder (a mu-

sic theory Ph.D. student at the Eastman School of Music) 

and asked him to assign themes to the comments using that 

list. Each comment could be tagged with any number of 

themes (including zero). In choosing themes, both coders 

aimed to represent the respondents’ actual reasons for lik-

ing the excerpts, as opposed to aspects mentioned simply 
to aid reference, although this distinction was not always 

easy to make. For example, a comment like “I love the vi-

olin melody” was encoded as MEL (melody) rather than 

INS (instrumentation). 

 

BIO Autobiographical connection: references to the  

      respondent’s past experience with the piece or excerpt, 

      OR incidents in their life that it reminds them of for 

      any reason. 

COM (+/-) Complexity (or its opposite, simplicity). 

DYN (+/-) Dynamics. 

EN (+/-) Energy. Energy level in music is thought to be 

      conveyed by such as dynamics, register, rhythmic  

      activity, and textural thickness; an increase in any of 
      these dimensions could create a rise in energy.  

      However, when the change is described in these more 

      specific terms (e.g. dynamics) it can be coded in that 

      way; EN should be reserved for more general  

      descriptions of energy change or level, e.g. “buildup” 

      or “climax”. 

HAR Harmony: includes harmonic progression, function, 

      or chord quality; also tonality (e.g. modulation), mode 

      (major/minor), and dissonance/consonance. 

INS Instrumentation: choices of instrument or instrument 

      combinations; also includes general uses of an  
      instrument (e.g. “I like the clarinet in a high register”), 

      or special timbral effects prescribed by composer, e.g. 

      extended techniques; also synthesized parts in popul 

      music textures. (Compare to TIM). 

INT Interpretation (e.g. expressive timing; also gener 

      statements about beauty/expressiveness of a  

      performance or quality of performer). 

LYR Lyrics. 

MEL Melody: the main melody in this particular part of 

      the piece. Also includes improvised solos, e.g. in jazz. 

MET Meter (incl. tempo). 

PHY Mentions of a physical or physiological response to 
      the music. 

RET Return of earlier thematic material. 

RH Rhythm. Includes references to general rhythmic feel, 

      e.g. “groove”. 

SUR Explicit mentions of surprise or denial of  

      expectation. 

TEX Texture: a catch-all category including aspects of 

      pitch-rhythmic patterns other than melody, such as  

      details of accompaniment or bass lines, chord voicings, 

      or polyphonic patterns. 

TIM Timbre: when credited to performer (e.g. a singer’s 
      tone), or synthesized/electronic sounds that are not a 

      consistent part of the texture. (Compare to INS). 

VIR Virtuosity (or just proficiency, i.e. playing a very  

      difficult bit accurately; also intonation). 

 

Table 2. Themes and definitions used in content analysis. 

 

Agreement between the two coders regarding the as-

signment of each theme was measured using Cohen’s 

kappa, where 1.0 would indicate that the two coders as-

signed the theme to exactly the same comments. Agree-

ment levels varied between 0.37 and 0.84, depending on 

the theme, and thus were mostly in the range of moderate 

or substantial according to Landis and Koch’s [19] rubric. 
In what follows we discuss the results of this content anal-

ysis. We also analyzed word frequencies in the comments, 

grouping together similar words such as “simple,” “sim-

pler,” and “simplicity”. We include some results of that 

analysis in the following discussion. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1. The percentage of respondents’ comments iden-

tified with themes in the content analysis. For explanation 

of abbreviations, see Table 2.  

 
Figure 1 shows the percentage of occurrences of each 

theme in the comments. The counts of each theme were 

averaged between the two coders. The frequent mentions 

of melody (MEL, occurring in 34.2% of comments) and 

harmony (HAR, 27.2%) indicate the importance of the 

pitch domain in respondents’ preferences. Rhythmic fac-

tors—rhythm (RH, 19.5%) and meter (MET, 4.6%)—were 

less important, though it should be remembered that mel-

ody has a rhythmic aspect as well. Notably, the word 

“groove” occurred 20 times—confirming the widely held 

view that this is a significant factor in musical enjoyment 

[20, 21]. What might be called sonic factors were also 
mentioned frequently: texture (TEX, 27.6%), instrumenta-

tion (INS, 24.3%), and timbre (TIM, 12.5%). There were 

comparatively few mentions of performance aspects: in-

terpretation (INT, 6.0%) and virtuosity (VIR, 4.3%). 
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Given that a large majority of respondents were majoring 

in classical music performance, we had expected these fac-

tors to weigh more heavily. Lyrics (LYR) were mentioned 

in 12.5% of comments, and autobiographical factors (BIO, 

connections with the respondents’ life experience) in just 

3.6%. The PHY theme, physiological responses (such as 

chills), was mentioned in just 3.1% of comments. It is pos-

sible that the survey instructions—which encouraged the 
use of music-theory terms—steered respondents’ attention 

towards musical features and away from autobiographical 

and physiological factors. 

Three of the themes—complexity (COM), energy (EN), 

and dynamics (DYN)—were parametric: They could be 

subscripted as “+” (indicating an increase or relatively 

high level) or “–” (a decrease or relatively low level), 

though this was optional. While there were 6.5 instances 

of COM+ in the comments, there were 22 instances of 

COM– (again, theme counts reported here and below are 

averaged across the two coders’ analyses). This result sug-

gests that respondents favored moments of relatively low 
or decreasing complexity. Our analysis of word frequen-

cies also supports this view: “simple” (and related words) 

occurs 32 times in the comments, while “complex” (and its 

variants) only occurs 11 times. Related to this, the words 

“tension/tense” and “resolution/resolve” were used about 

equally often (19 and 18 times, respectively). However, 

seven of the comments mentioning tension refer specifi-

cally to the resolution of the tension (sometimes using 

other words like “relax,” “release,” or “relief”); in the re-

maining cases, the tension seems to be valued in itself.    

The energy (EN) theme shows an even stronger para-
metric tilt than complexity: 35.5 of its mentions are EN+, 

while only 2.5 are EN–. Energy is often treated as more or 

less synonymous with the arousal/activation dimension in 

Russell’s [22] two-dimensional model of emotion, and this 

in turn has been associated with musical parameters such 

as loudness, pitch register, and rhythmic activity [23].3 

Note from Table 2 that this theme reflects general refer-

ences to energy, as opposed to mentions of energy-invok-

ing musical dimensions such as dynamics, rhythm, or tex-

ture. The dynamics (DYN) theme also showed a paramet-

ric tilt, marked “+” eight times and “–” only three times. 
Analysis of word frequencies shows further evidence of a 

preference for increasing energy. For example, the word 

“build” and related words such as “build-up” occurs 47 

times. It is not obvious what the opposite of “build” would 

be, indicating a general decrease in energy level; one 

thinks of such words such as “decrease,” “decline,” “fade,” 

“wane,” “subside,” and “dwindle.” None of these words 

occurred even once, except “fade,” which occurred just 

three times.4 Several other frequent word categories indi-

cate an increase or peak in energy, such as “climax/climac-

 
      3 In experiments on music and emotion, manipulations in the temporal 

dimension usually involve changing the speed of a melody, and are there-

fore described (correctly) as variations in tempo (for a survey, see [23]). 

Within a piece, however, the tempo (i.e., the speed of the main beat) 

rarely changes, except for small fluctuations; temporal variation is more 

likely to involve changes in rhythmic values (e.g., from a quarter-note 

texture to a 16th-note texture). In both of these cases, though, the varia-

tions involve a change in the temporal density of events; if an increase in 

tempo conveys an increase in energy, it seems likely that an increase in 

rhythmic activity over a fixed tempo would also do so. 

tic” (used 28 times), “power(ful)” (27 times), and “cre-

scendo” (9 times; “diminuendo” is never used and “decre-

scendo” just once).  

In this connection, a result from our analyses of formal 

structures, described earlier, is relevant. In pop songs, 

which nearly always contain both choruses and verses, re-

spondents’ preferred excerpts were more often in choruses 

(13 times) than verses (7 times). (Recall that our analysis 
of formal structures included only about 30% of the survey 

responses.) Respondents’ comments also mentioned cho-

ruses (44 times) much more often than verses (18 times).5 

It has been observed that choruses tend to be higher than 

verses in the “energetic” dimensions mentioned above, 

such as pitch register and textural thickness [24, pp. 39-

40]. Thus, several patterns in our data point to an increase 

in energy as an important elicitor of musical pleasure.  

Perusal of the comments suggests other possible themes 

as well. For instance, many comments contain terms or 

phrases that could be described as emotional. In the first 

20 comments, we see “aggressive" (1_2), “raw emotion” 
(2_3), “intensity” (2_3), “exciting” (4_2, 6_2), “[the 

singer] let[s] emotions loose,” (5_2) “dramatic” (6_1), and 

“triumphant” (6_2). In many cases, such terms are used to 

describe a specific aspect of the music that could also be 

encoded in some other way: for example, “a triumphant 

theme” (MEL); “the buildup is very exciting” (EN). An-

other issue is the distinction between induced and per-

ceived emotion [25]. Sometimes the distinction is clear—

“It is insanely happy” is perceived emotion, “[It] always 

makes me so happy” is induced emotion—but not always: 

if a passage is described as “exciting” or “relaxing,” is that 
induced or perceived emotion? If induced emotion is in-

cluded in the “emotion” theme, one could potentially in-

clude a large number of comments implying a positive 

emotional reaction: for example, “I love the cellist’s inter-

pretation.” Indeed, one might say that such a reaction is 

implicit in all of the comments, given the nature of the task.  

4. DISCUSSION 

In our study, 140 college students, mostly music students, 

identified three of their favorite 15-second passages of mu-

sic. One result emerging from our analysis of the survey 

comments was a preference for passages that increase in 
energy—often described by respondents as “builds” or 

“build-ups,” or as sections that “build.” As noted earlier, 

energy in music is generally associated with parameters 

such as loudness, pitch register, and rhythmic activity. It 

also seems intuitive to us, although this does not seem to 

have been widely studied, that textural thickness is also as-

sociated with energy, perhaps partly because a thickening 

of texture implies greater loudness, whether or not the 

loudness actually increases. Our finding that increases in 

      4 Some of these words, such as “build,” “decrease,” and “fade,” could 

be either nouns or verbs; we counted both, including all verb forms. The 

word “drop” is also of interest; it occurs 12 times, as noun or verb, but 

only five of those uses could be taken to refer to energy level. Sometimes 

the term is used to refer to the re-entrance of the kick drum in a pop or 

EDM song. 

      5 One might wonder if choruses are more frequent than verses in our 

corpus, and therefore take up more time. Actually they do not: choruses 

take up a total of 1769 seconds, in the portion of the corpus that was for-

mally analyzed; verses take up a total of 1977 seconds. 
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energy are often pleasurable accords well with other work 

on peak musical experiences that has linked them to cre-

scendi and increases in texture [13-15, 26]. It also appears 

that there is a strong preference for passages perceived as 

having relatively low or decreasing complexity and ten-

sion, compared to passages perceived to be high in com-

plexity or tension. This is in line with Meyer's [27] obser-

vation that in music, "The greater the buildup of suspense, 
of tension, the greater the emotional release upon resolu-

tion" (p. 28) and Huron's [28] idea of "contrastive valence" 

(p. 39). 

Earlier studies have found that a wide range of factors 

affect peak experiences [9, 13, 14], and this is apparent 

from the free-response comments in our survey. The single 

most common theme in the comments was melody. While 

it is hardly news that people like a good melody, this result 

draws our attention to the huge importance of this factor; 

the question of what makes a melody good is one that mu-

sic theory and music psychology are still a long way from 

answering. Our corpus might provide a useful starting 
point for an exploration of this topic. Other frequent 

themes in respondents’ comments—such as harmony, in-

strumentation, rhythm, and texture—also point to factors 

that greatly influence listeners’ preferences; how they do 

so is, at present, largely mysterious.  

4.1 Future Directions 

In terms of future directions, the first avenue of exploration 

could be expanding the existing dataset. The survey could 

be re-run online, and globally, with many more partici-

pants, increasing sample size and statistical power, as well 

as diversifying the participant set. Instead of three songs 
and excerpts, many more songs and excerpts could be re-

quested from each participant, allowing for better trend 

analysis within participants, to potentially identify differ-

ent listener-types. The usefulness of this kind of data for 

the music-recommendation space, and associated industry 

applications, is clear [29]. 

As the corpus grows in size, the potential for using ma-

chine learning and related methods (which tend to excel 

with larger datasets) to analyze the data becomes more vi-

able. An acoustical signal-analysis-based approach, using 

the many tools available in the field of music information 
retrieval, for instance, could be applied to the corpus, to 

determine which audio features (e.g. spectral flux, disso-

nance, loudness, etc.) are determinative of the favorite ex-

cerpts as compared to random controls from the same 

pieces. This acoustical approach could be effectively com-

bined with a symbolic, music-theoretic approach. 

In fact, even without venturing outside of the symbolic 

space, there is immense potential for further coding and 

analysis of corpus features such as scale-degree distribu-

tions, metric position, harmonic root patterns, and so forth, 

akin to the statistical work applied to the Rolling Stone 

Corpus [30, 31]. This computational approach to the cor-
pus could be supplemented by a more humanistic, analyti-

cal approach in which more speculative and traditional 

analysis is conducted to attempt to understand why these 

particular excerpts are so powerful. For instance, given the 

overwhelming emphasis on pitch (melody and harmony) 

in participants’ comments, it would be interesting to deter-

mine the melodic, harmonic, rhythmic, and contrapuntal 

structures characteristic of the excerpts in the corpus; and 

what distinguishes a favorite excerpt from a non-favorite 

excerpt in the same piece.  

Another possible direction for future research could be 

to measure the energy and complexity trajectories of the 

pieces in our corpus. While energy can be measured using 
low-level spectral features such as root-mean-square 

(RMS) acoustic energy, some efforts have been made to 

create more sophisticated predictors of perceived musical 

energy using combinations of features [32, 33]. Such algo-

rithms could be applied to our corpus. Meanwhile, meas-

uring complexity (especially in an automatic way) presents 

more of a challenge. Complexity—in its information-the-

oretic sense—is inherently subjective, since it depends on 

the listener’s expectations, which in turn can vary widely 

depending on their musical experiences. Furthermore, 

complexity presumably depends heavily on patterns of 

pitch and rhythm, which cannot yet be reliably extracted 
from polyphonic audio [34]. For classical pieces, MIDI en-

codings could be used, but for popular songs, transcrip-

tions would need to be created. Once these problems were 

solved, it might be possible to create measures of complex-

ity using probabilistic models (such as Markov models); 

indeed, there have been interesting efforts in this direction, 

though they relate only to melody [35, 36]. 

Another intriguing area is the correlation of personality, 

personal values, and socio-economic data with music taste 

[1-6]. An expanded iteration of the survey could perhaps 

include a personality inventory and collect socio-economic 
data, building a more holistic and accurate model of music 

taste.  

We hope that the current study has taken a small step 

toward advancing our understanding of peak musical ex-

periences, and that our publicly available corpus will be 

useful to other researchers in this area, as we continue to 

answer the question: why do we like the music that we 

like? 

5. REFERENCES 

[1] D. J. Hargreaves, C. Comber, and A. Colley, "Effects 

of age, gender, and training on musical preferences 
of British secondary school students," Journal of Re-

search in Music Education, vol. 43, no. 3, pp. 242-

250, 1995. 

[2] P. J. Rentfrow and S. D. Gosling, "The do re mi's of 

everyday life: The structure and personality corre-

lates of music preferences," Journal of Personality 

and Social Psychology, vol. 84, no. 6, pp. 1236–

1256, 2003. 

[3] S. Manolios, A. Hanjalic, and C. C. S. Liem, "The 

influence of personal values on music taste: Towards 

value-based music recommendations," Proceedings 

of the 13th ACM Conference on Recommender Sys-

tems, pp. 501-505, 2019. 

[4] T. Schäfer and C. Mehlhorn, "Can personality traits 

predict musical style preferences? A meta-analysis," 

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

340



  

 

Personality and Individual Differences, vol. 116, pp. 

265-273, 2017. 

[5] A. Mohan and E. Thomas, "Effect of background mu-

sic and the cultural preference to music on adoles-

cents’ task performance," International Journal of 

Adolescence and Youth, vol. 25, no. 1, pp. 562–573, 

2020. 

[6] B. I. L. M. Mendis et al., "Exploration of music pref-
erences among the socioeconomic stereotypes: A 

cross-sectional study," Journal of Advanced Re-

search in Social Sciences, vol. 4, no. 4, pp. 1–18, 

2021.  

[7] A. H. Maslow, Religions, Values, and Peak-experi-

ences. Columbus, OH: Ohio State University Press, 

1964. 

[8] J. Whaley, J. Sloboda, and A. Gabrielsson, "Peak ex-

periences in music," in The Oxford Handbook of Mu-

sic Psychology, S. Hallam, I. Cross, and M. Thaut, 

Eds. Oxford, UK: Oxford University Press, 2009, pp. 

452–61. 

[9] J. Sloboda, "Music structure and emotional response: 

Some empirical findings," Psychology of Music, vol. 

19, no. 2, pp. 110-120, 1991. 

[10] A. Goldstein, "Thrills in response to music and other 

stimuli," Physiological Psychology, vol. 8, pp. 126-

129, 1980. 

[11] A. J. Blood and R. J. Zatorre, "Intensely pleasurable 

responses to music correlate with activity in brain re-

gions implicated in reward and emotion," Proceed-

ings of the National Academy of Sciences, vol. 98, no. 

20, pp. 11818–11823, 2001. 

[12] V. N. Salimpoor, M. Benovoy, K. Larcher, A. 

Dagher, and R. J. Zatorre, "Anatomically distinct do-

pamine release during anticipation and experience of 

peak emotion to music," Nature Neuroscience, vol. 

14, no. 2, pp. 257–262, 2011. 

[13] O. Grewe, F. Nagel, R. Kopiez, and E. Altenmüller, 

"Listening to music as a re-creative process: Physio-

logical, psychological, and psychoacoustical corre-

lates of chills and strong emotions," Music Percep-

tion, vol. 24, no. 3, pp. 297–314, 2007. 

[14] S. Bannister, "A survey into the experience of musi-
cally induced chills," Psychology of Music, vol. 48, 

no. 2, pp. 297–314, 2020. 

[15] J. Panksepp, "The emotional sources of “chills” in-

duced by music," Music Perception, vol. 13, no. 2, 

pp. 171–207, 1995. 

[16] A. Gabrielsson and S. L. Wik, "Strong experiences 

related to music: A descriptive system," Musicae Sci-

entiae, vol. 7, no. 2, pp. 157–217, 2003. 

[17] A. Gabrielsson, "Strong experiences with music," in 

Handbook of Music and Emotion, P. Juslin and J. Slo-

boda, Eds. Oxford, UK: Oxford University Press, 

2010, pp. 547-574. 

[18] E. Lustig, "The effect of perceived complexity and 

formal location on musical preference," Ph.D. disser-

tation, Dept. Music Theory, University of Rochester, 

Rochester, NY, 2021. 

[19] J. R. Landis and G. G. Koch, "The measurement of 

observer agreement for categorical data," Biometrics, 

vol. 33, no. 1, pp. 159–174, 1977. 

[20] P. Janata, S. T. Tomic, and J. M. Haberman, "Sen-
sorimotor coupling in music and the psychology of 

the groove," Journal of Experimental Psychology: 

General, vol. 141, no. 1, pp. 54-75, 2012. 

[21] M. Witek, E. Clarke, M. Wallentin, M. Kringelbach, 

and P. Vuust, "Syncopation, body-movement and 

pleasure in groove music," PLoS ONE, vol. 9, no. 4, 

2014. 

[22] J. A. Russell and L. F. Barrett, "Core affect, prototyp-

ical emotional episodes, and other things called emo-

tion: Dissecting the elephant," Journal of Personality 

and Social Psychology, vol. 76, no. 5, pp. 805–819, 

1999. 

[23] A. Gabrielsson and E. Lindström, "The role of struc-

ture in the musical expression of emotions," in Hand-

book of Music and Emotion, P. Juslin and J. Sloboda, 

Eds. Oxford, UK: Oxford University Press, 2010, pp. 

367–400. 

[24] T. de Clercq, "Sections and successions in successful 

songs: A prototype approach to form in rock music," 

Ph.D. dissertation, Dept. Music Theory, University 

of Rochester, Rochester, NY, 2012. 

[25] P. Evans and E. Schubert, "Relationships between 

expressed and felt emotions in music," Musicae Sci-

entiae, vol. 12, no. 1, pp. 75–99, 2008. 

[26] B. K. Hurley, P. A. Martens, and P. Janata, "Sponta-

neous sensorimotor coupling with multipart music," 

Journal of Experimental Psychology: Human Per-

ception and Performance, vol. 40, no. 4, pp. 1679–

1696, 2014. 

[27] L. Meyer, Emotion and Meaning in Music. Chicago, 

IL: University of Chicago Press, 1956. 

[28] D. Huron, Sweet Anticipation: Music and the Psy-

chology of Expectation. Cambridge, MA: MIT Press, 

2006. 

[29] A. Agostinelli et al., "MusicLM: Generating music 

from text," arXiv preprint arXiv:2301.11325, 2023. 

[30] T. de Clercq and D. Temperley, "A corpus analysis 

of rock harmony," Popular Music, vol. 30, pp. 47-70, 

2011.  

[31] I. Tan, E. Lustig, and D. Temperley, "Anticipatory 

syncopation in rock: A corpus study," Music Percep-

tion, vol. 36, no. 4, pp. 353-370, 2019. 

[32] A. Zils and F. Pachet, "Extracting automatically the 

perceived intensity of music titles," in Proceedings of 

the 6th COST-G6 Conference on Digital Audio Ef-

fects (DAFX03), 2003. 

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

341



  

 

[33] P. Wood and S. Semwal, "An algorithmic approach 

to music retrieval by emotion based on feature data," 

in Proceedings of 2016 Future Technologies Confer-

ence (FTC), 2016, pp. 140-144. 

[34] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, "Auto-

matic music transcription: An overview," IEEE Sig-

nal Processing Magazine, vol. 36, no. 1, pp. 20-30, 

2018. 

[35] T. Eerola, "Expectancy-violation and information-

theoretic models of melodic complexity,” Empirical 

Musicology Review, vol. 11, no. 1, 2016. 

[36] B. P. Gold, M. T. Pearce, E. Mas-Herrero, A. Dagher, 

and R. J. Zatorre, "Predictability and uncertainty in 

the pleasure of music: A reward for learning?," Jour-

nal of Neuroscience, vol. 39, no. 47, pp. 9397–9409, 

2019. 

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

342



LYRICWHIZ: ROBUST MULTILINGUAL ZERO-SHOT LYRICS
TRANSCRIPTION BY WHISPERING TO CHATGPT

Le Zhuo1 Ruibin Yuan2,3 Jiahao Pan4 Yinghao Ma5 Yizhi Li6 Ge Zhang2,7 Si Liu1

Roger Dannenberg3 Jie Fu2 Chenghua Lin6 Emmanouil Benetos5 Wenhu Chen7 Wei Xue4 Yike Guo4

1 Beihang University 2 Beijing Academy of Artificial Intelligence 3 Carnegie Mellon University
4 Hong Kong University of Science and Technology 5 Queen Mary University of London

6 University of Sheffield 7 University of Waterloo

zhuole1025@gmail.com, ruibiny@andrew.cmu.edu, fujie@baai.ac.cn

ABSTRACT

We introduce LyricWhiz, a robust, multilingual, and

zero-shot automatic lyrics transcription method achieving

state-of-the-art performance on various lyrics transcrip-

tion datasets, even in challenging genres such as rock and

metal. Our novel, training-free approach utilizes Whisper,

a weakly supervised robust speech recognition model, and

GPT-4, today’s most performant chat-based large language

model. In the proposed method, Whisper functions as the

“ear” by transcribing the audio, while GPT-4 serves as the

“brain,” acting as an annotator with a strong performance

for contextualized output selection and correction. Our ex-

periments show that LyricWhiz significantly reduces Word

Error Rate compared to existing methods in English and

can effectively transcribe lyrics across multiple languages.

Furthermore, we use LyricWhiz to create the first pub-

licly available, large-scale, multilingual lyrics transcription

dataset with a CC-BY-NC-SA copyright license, based on

MTG-Jamendo, and offer a human-annotated subset for

noise level estimation and evaluation. We anticipate that

our proposed method and dataset will advance the devel-

opment of multilingual lyrics transcription, a challenging

and emerging task.

1. INTRODUCTION

Automatic lyrics transcription (ALT) is a crucial task in

music information retrieval (MIR) that involves convert-

ing an audio recording into a textual representation of

the lyrics sung in the recording. The importance of this

task stems from the fact that lyrics are a fundamental as-

pect of many music genres and are often the main way in

which listeners engage with and interpret a song’s mean-

ing. Additionally, ALT has numerous applications in the

music industry, such as enabling better cataloging [1], mu-

sic searching [2, 3], music recommendation [4], as well as

© L Zhuo, R Yuan, and J Pan. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: L Zhuo, R Yuan, and J Pan, “LyricWhiz: Robust Multilingual

Zero-shot Lyrics Transcription by Whispering to ChatGPT”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

Figure 1. Concept illustration of the working LyricWhiz,

where user prompts the two advanced models, Whisper

and ChatGPT, to perform automatic lyrics transcription.

facilitating the creation of karaoke tracks and lyric videos.

Moreover, ALT can assist in various music-related re-

search tasks, including sentiment analysis [5], music genre

classification [1], lyrics generation, which is further used

for music generation [6], security review, and music copy-

right protection. Thus, accurate and efficient ALT is essen-

tial for advanced MIR and the development of new music-

related applications.

However, to date, no sufficiently robust and accurate

ALT system has been developed. Even major commercial

music streaming platforms still rely heavily on manually-

annotated lyrics, incurring high costs. One key reason is

the challenging nature of lyrics transcription. The diver-

sity of singing styles and skills leads to varied timbres

of the same pronunciation. Moreover, the phonemes in

singing may be pronounced in vastly different ways, such

as longer duration, tone changes, or even vowel substitu-

tions, to accommodate the melody. Lastly, the inclusion

of various music accompaniments across different genres

makes it challenging to distinguish the vocal signals from

other sounds. To surmount these challenges, a more robust

ALT system is necessary, capable of outperforming exist-

ing models in diverse scenarios, including the transcription

of multilingual lyrics.

Another significant factor hindering the progress of

343



ALT systems is the absence of large-scale singing datasets.

Currently, only two relatively sizable datasets [7, 8] exist

for ALT systems. However, all existing datasets are in

English, with no multilingual datasets available. Besides,

these datasets often have stringent copyright licensing re-

strictions, which significantly hampers their utilization by

researchers. Consequently, developing a more comprehen-

sive and representative dataset, encompassing multiple lan-

guages and without copyright issues, is essential for sup-

porting the creation of a robust and accurate system.

In this paper, we present LyricWhiz, a novel method for

automatic lyrics transcription. LyricWhiz surpasses exist-

ing methods on various ALT datasets, resulting in a signif-

icant reduction in WER for English lyrics and providing

accurate transcription results across multiple languages.

Our system is robust, multilingual, and training-free. To

achieve these results, we combined two powerful models

from their respective domains as shown in Figure 1: Whis-

per, a weakly supervised speech transcription model, and

GPT-4, a large language model (LLM) from the ChatGPT

family. Whisper acts as the “ear” while GPT-4 serves as

the “brain” by providing contextualized output selection

and correction with strong performance [9]. We further

use LyricWhiz to build a multilingual lyrics dataset, named

MulJam, which is the first large-scale, multilingual lyrics

transcription dataset without copyright-related issues.

The contributions of our work are as follows:

• We propose a novel, robust, training-free ALT

method, LyricWhiz, which significantly reduces

WER on various ALT benchmark datasets, includ-

ing Jamendo, Hansen, and MUSDB18, and is close

to the in-domain state-of-the-art system on DSing.

• We introduce the first ALT system that can perform

zero-shot, multilingual, long-form ALT by integrat-

ing a large speech transcription model and an LLM

for contextualized post-processing.

• We create the first publicly-available, large-scale,

multilingual lyrics transcription dataset with a clear

copyright statement which eliminates further re-

viewing of the users and facilitates public usage. We

provide a human-annotated subset to estimate noise

levels and evaluate multilingual ALT performance.

2. RELATED WORK

2.1 Automatic Lyrics Transcription

Automatic lyrics transcription (ALT) is an essential task

in music information retrieval and analysis, aiming to rec-

ognize lyrics from singing voices. It remains challenging

due to facts such as the sparsity of training data and the

unique acoustic characteristics of the singing voice that dif-

fer from normal speech. Traditional methods treat ALT in

the automatic speech recognition (ASR) framework, which

generally utilizes a hybrid of language model and acous-

tic model, e.g., HMM-GMM. Music-related characteristics

have been used to further address these challenges [11–13].

Despite integrating domain-specific music priors into

system designs, the data scarcity issue persists. Recently,

some researchers have constructed datasets for end-to-end

learning, which greatly advances ALT, but most datasets

are either noisy (DALI [7, 14], Hansen [15], DAMP-

MVP 1 ); not large (Vocadito [16]); or not diverse in terms

of genre and language (MUSDB18 [17], DSing [8]).

Recent rapid progress in ASR has greatly benefited

ALT. Some work focuses on applying the ASR model ar-

chitectures [18–20], such as the Transformers, to ALT,

and other work leverages the vast amount of public anno-

tated ASR datasets [19–21] to bridge between the speech

and music data. For the first time, a recent study [22]

transferred a large-scale self-supervised pre-trained ASR

model, mus2vec 2.0, to the singing domain, and exhib-

ited superior performance on multiple benchmark datasets.

Nevertheless, this approach consists of pre-training, fine-

tuning, and transfer learning phases, thereby remaining rel-

atively complicated and still requiring singing datasets.

2.2 Weakly Supervised Automatic Speech Recognition

The paradigm of large-scale unsupervised pretraining and

non-large annotated dataset finetuning has dominated end-

to-end ASR research [23]. Well-known pretrained ASR

models include contrastive learning based Wav2vec [24],

Wav2vec 2.0 [25], HuBert [26], WavLM [27], Whis-

per [28], and Vall-E [29], which have performed impres-

sively in various downstream tasks, including ASR and

speech synthesis. Among them, Whisper has been most

recognized for its ASR robustness across different datasets

and its multilingual and multitasking capabilities, mak-

ing Whisper potentially applicable to music tasks. Be-

sides, specifically for ALT, pre-trained musical audio mod-

els including JukeBox [6], MusicLM [30], MULE [31],

SingSong [32], music2vec [33], and MERT [34], may also

contribute to achieving strong performance.

2.3 Chat-based Large Language Models

ChatGPT 2 , a chat-based large language model (LLM),

has found broad application in optimizing workflows

across a variety of domains, including multimodal intel-

ligence [35, 36]. Recent breaking AutoGPT 3 is even rec-

ognized as an embryonic form of artificial general intel-

ligence. Inspired by these developments, LyricWhiz col-

laborates with both Whisper [28] and ChatGPT to opti-

mize the workflow of ALT. Prompt engineering is known

to be important to navigate LLMs to perform better [37].

LyricWhiz mainly adopts three primary strategies:

a) As shown in [38, 39], a well-formalized task de-

scription prompt can effectively improve ChatGPT’s per-

formance on downstream tasks with strict format require-

ments. We follow this empirical observation to strictly for-

malize the expected format of ALT post-processing out-

puts. We also refer to the prompt pattern catalog in [39]

for an intuitive understanding of prompt engineering.

1 https://zenodo.org/record/2747436#.ZDqBQOzML0o
2 https://openai.com/blog/chatgpt
3 https://github.com/Torantulino/Auto-GPT

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

344



Recordings Vocal
Recordings

PANNs
Whisper

Whisper ChatLLM

Lyrics Option 1

Lyrics Option 2

Lyrics Option nLyrics Option n

Final Lyrics

...

Audio Event
Detection

Language
Identification

Language
Tags

Decoding
Prompts
Decoding
Prompts

CoT
Instructions

Figure 2. Framework of the proposed LyricWhiz. In the first stage, we employ PANNS [10], to detect audio events and

filter out non-vocal recordings. In the second stage, we utilize the language identification module in Whisper to predict

input audio language. We then construct language-specific prompts for Whisper and transcribe input audio multiple times.

In the final stage, we request ChatGPT with CoT instructions to ensemble multiple predictions and generate the final lyrics.

b) Inspired by [40, 41], LyricWhiz utilizes prompt aug-

mentation to ask ChatGPT to analyze the prompt and input

lyrics, in order to select the most accurate prediction from

multiple Whisper trials, which is done in the first phase as

illustrated in Section 3.2. [41] designs a gradient-guided

strategy to select prompts. By contrast, we simply feed

ChatGPT with an instruction to select prompts for itself.

c) The importance of a well-designed CoT [42], which

effectively divides a complicated task into several phases

and designs specific prompts for each phase, is widely ac-

knowledged for enhancing LLM performance. We also

proposes a concise CoT strategy, depicted in Section 3.2.

3. METHODOLOGY

The overall framework of our method is presented

in Figure 2. This section will provide an in-depth analysis

of the design of the Whisper and ChatGPT components,

and our multilingual dataset.

3.1 Whisper as Zero-shot Lyrics Transcriptor

In the Whisper [28] paper, the authors scaled the weakly

supervised ASR to 680,000 hours of labeled audio data,

which covers 96 languages and includes both multilin-

gual and multitask training. This approach demonstrates

high-quality results without the need for fine-tuning, self-

supervision, or self-training techniques. By leveraging

weak supervision and large-scale training, Whisper gen-

eralizes well to standard benchmarks and achieves robust

speech recognition in various downstream tasks.

Motivated by this, we discovered that the weakly super-

vised Whisper model, trained on speech data, also excels in

lyrics transcription within the music domain. We directly

apply Whisper to transcribe lyrics of music from various

genres, including pop, folk, rock, and rap, and find that the

model consistently achieves accurate transcription results.

The model excels at long-form transcription and is robust

to different song styles, even for challenging genres such

as rock and electronic music, where Whisper still provides

reasonable results. We further test Whisper on multiple

benchmark datasets for lyric transcription. The results in-

dicate that Whisper, without any training or fine-tuning,

can achieve or surpass SOTA performance across multiple

lyric transcription datasets.

Upon analyzing the transcription results from Whisper,

we observed that the model occasionally outputs content

unrelated to lyrics, such as music descriptions, emojis,

website watermarks, and YouTube advertisements. We at-

tribute this to the weakly supervised training of Whisper

on large-scale noisy speech datasets. To address this issue,

we utilize the input prompt designed in Whisper as a prefix

prompt to guide it toward the lyric transcription task. Un-

like prompt designing philosophy in other large language

models, Whisper’s prefix prompt does not work well with

explicit task instructions and has difficulty understanding

lengthy explanations. In practice, we notice that using the

simplest prompt, “lyrics:", effectively prevents the model

from outputting descriptions of the music in most cases,

resulting in a significant improvement in transcription re-

sults. Therefore, in the following sections, this prompt is

consistently used for Whisper’s transcription input.

Additionally, we apply post-processing tricks to Whis-

per’s output, utilizing the model’s predicted no-speech

probability to handle situations where predictions are made

despite the absence of vocals in the song. Specifically, we

drop predicted lines of lyrics with a no speech probability

greater than 0.9. This effectively filters out watermarks and

advertisements, further enhancing the transcription results.

3.2 ChatGPT as Effective Lyrics Post-processor

Although we addressed some issues with Whisper’s pre-

dictions through prompt design and post-processing, we

still cannot avoid transcription translation errors, as well

as grammatical and syntactical errors. Furthermore, due

to the inherently stochastic nature of temperature schedul-

ing in Whisper, the transcription predictions vary with each

run, leading to fluctuations in evaluation metrics. To re-

duce this variance and enhance overall accuracy, we gen-
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GPT-4 Instruction Prompt

Task: As a GPT-4 based lyrics transcription post-processor,
your task is to analyze multiple ASR model-generated ver-
sions of a song’s lyrics and determine the most accurate ver-
sion closest to the true lyrics. Also filter out invalid lyrics
when all predictions are nonsense.
Input: The input is in JSON format:
{“prediction_1”: “line1;line2;...”, ...}
Output: Your output must be strictly in readable JSON format
without any extra text:
{
“reasons”: “reason1;reason2;...”,
“closest_prediction”: <key_of_prediction>
“output”: “line1;line2...”
}
Requirements: For the "reasons" field, you have to provide
a reason for the choice of the "closest_prediction" field. For
the "closest_prediction" field, choose the prediction key that
is closest to the true lyrics. Only when all predictions greatly
differ from each other or are completely nonsense or mean-
ingless, which means that none of the predictions is valid,
fill in "None" in this field. For the "output" field, you need
to output the final lyrics of closest_prediction. If the "clos-
est_prediction" field is "None", you should also output "None"
in this field. The language of the input lyrics is English.

Table 1. Instruction prompt for GPT-4 contextualized

post-processing. We decompose this task into three con-

secutive phases, inspired by Chain-of-Thought prompting.

Note that lines in blue indicate additional prompts used ex-

clusively for multilingual dataset construction.

erate 3 to 5 predictions for each input music under identical

settings and employ ChatGPT as an expert in lyrics to en-

semble these multiple predictions.

The crux of the problem lies in designing an effective

prompt for ChatGPT to accomplish the ensemble task rea-

sonably. As shown in Table 1, we first assign ChatGPT

the role of a transcription post-processor, indicating that

its task is to analyze multiple lyric transcription results and

select the one it deems most accurate. We then stipulate

that both input and output should be in JSON format to fa-

cilitate structured processing and provide detailed descrip-

tions for each output field.

Drawing on the Chain-of-Thought in large language

models for reasoning, we devised a concise thought chain

for ChatGPT that decomposes lyrics post-processing into

three consecutive phases. This involves first having Chat-

GPT analyze multiple lyric inputs and provide reasons for

selection, then making a choice, and finally outputting the

chosen lyric prediction. We test this approach using GPT-

3.5 and the newly released GPT-4. The results demon-

strate that using the analysis-selection-prediction prompt

for ChatGPT’s inference effectively enhances the final

transcription results, with GPT-4 exhibiting a noticeably

superior performance compared to GPT-3.5.

3.3 Multilingual Lyrics Transcription Dataset

Building upon the exceptional performance of the pro-

posed framework in lyric transcription tasks, we further

extend it to the challenging task of multilingual lyric tran-

scription, introducing the first large-scale, weakly super-

vised, and copyright-free multilingual lyric transcription

dataset. We utilize the publicly available MTG-Jamendo

Dataset Languages Songs Lines Duraion

DSing [8] 1 (en) 4,324 81,092 149.1h
MUSDB18 [17] 1 (en) 82 2,289 4.6h
DALI-train [14] 1 (en) 3,913 180,034 208.6h
DALI-full [14] 30∗ 5,358∗ - -

MulJam (Ours) 6 6,031 182,429 381.9h

Table 2. Comparison between different lyrics transcription

datasets. Our model operates with a longer window (~30s),

resulting in fewer lines compared to other datasets.

dataset for music classification, which comprises 55,000

full audio tracks, 195 tags, and music in various languages.

Since the MTG dataset contains a considerable propor-

tion of non-vocal music, we first employ PANNs [10], a

large-scale pre-trained audio pattern recognition model, to

detect audio events and filter out non-vocal music with

vocal-related tag probabilities below a predefined thresh-

old. This filtering method eliminates approximately 60%

of the music, thereby substantially reducing the time and

resources required for dataset construction. We then uti-

lize Whisper to transcribe lyrics from the music.

As the music in the MTG dataset encompasses multi-

ple languages, we first utilize the Language Identification

module within Whisper to predict the language of input

music. Based on the predicted language, we translate the

prefix prompt “lyrics:” into the corresponding language for

input, e.g., “paroles” in French, and “liedtext” in German.

After obtaining the transcription results, we discard lyrics

that are too short or too long. When ensembling the pre-

diction results with ChatGPT, we also incorporate the lan-

guage of lyrics as an input condition in the prompt. Given

the prevalence of nonsensical content in the transcription

results, we additionally require ChatGPT to evaluate the

validity of the transcribed lyrics in the prompt. If all in-

put lyrics are deemed nonsensical, e.g., all special Unicode

characters, or extremely divergent, the transcription result

for that piece of music is considered invalid and discarded.

To prepare the dataset for training, it is essential to con-

duct line-level annotation. Timestamps can be obtained

from the output of Whisper by aligning the lyrics both

before and after ChatGPT processing. For the alignment

of strings, the Levenshtein distance [43] is employed. To

exclude aligned lines of lower confidence, the distance is

normalized, setting a threshold at 0.2. The quality of an-

notation is further enhanced through two subsequent filter-

ing stages. In the first stage, lines that exhibit unusually

high character rates, exceeding 37.5 Hz, are eliminated.

The second stage encompasses another Whisper iteration;

segments yielding a transcription of "Thank you." are ex-

cluded. These segments, which typically represent instru-

mental sections, are believed to originate from Whisper’s

training on data similar to video transcripts.

Following the construction process outlined above,

we ultimately obtained a multilingual lyric transcription

dataset, MulJam, consisting of 6,031 songs with 182,429

lines and a total duration of 381.9 hours. The dataset’s

statistical information and comparisons with existing ALT

datasets are presented in Table 2.
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Method Jamendo Hansen DSing

TDNN-F [8] 76.37 77.59 19.60

CTDNN-SA [44] 66.96 78.53 14.96

Genre-informed AM [12] 50.64 39.00 56.90

MSTRE-Net [13] 34.94 36.78 15.38

DE2-segmented [45] 44.52 49.92 -

W2V2-ALT [22] 33.13 18.71 12.99

LyricWhiz (Ours) 24.25 7.85 13.78

w/o ChatGPT Ens. 28.18 8.07 15.22

w/o Whis. Prompt 33.21 8.75 13.40

Table 3. The WERs (%) of various ALT systems, in-

cluding ablation methods, on multiple datasets. Note that

W2V2-ALT is an in-domain baseline that natively train on

DSing. The results of our method on Jamendo, Hansen are

obtained from full-length transcription results, and the re-

sults on DSing are obtained from utterance-level segments.

To our best knowledge, MulJam is the first publicly

available large-scale dataset for multilingual lyrics tran-

scription without copyright restrictions. While DALI [7]

is another large-scale music dataset featuring multilingual

lyrics, its restricted access and strict licensing requirements

limit its applicability for downstream tasks. In contrast,

MulJam is free from copyright-related constraints and can

be utilized without approval, as the audio can be legally

downloaded directly from public sources without the need

for approval, making it easily accessible. This even in-

cludes audio that is permitted for use in the development of

commercial software. Researchers are permitted to legally

modify our dataset for derivative works and redistribution,

provided they cite our work and adhere to the CC BY-NC-

SA license. Furthermore, in contrast to the imbalanced

language distribution in DALI, where English songs ac-

count for over 80% of the total songs, our dataset includes

a greater proportion of songs in other languages, which is

advantageous for multilingual lyrics transcription.

4. EXPERIMENTS

In this section, we first outline our experimental setup, in-

cluding datasets and evaluation metrics. Next, we report

lyrics transcription results on various benchmark datasets.

We also conduct extensive ablation studies to verify the ef-

fectiveness of our methods. Finally, we demonstrate the

reliability of our dataset through noise level estimation.

4.1 Experimental Setup

Datasets. Our proposed method does not require any

training; thus, we directly test it on several accessible lyric

transcription benchmark datasets, including Jamendo [46],

Hansen [15], MUSDB18 [17], DSing [8]. Among these,

Jamendo, Hansen, and DSing are widely used test datasets

in music transcription. MUSDB18, originally a dataset

for music source separation, contains 150 rock-pop songs.

The authors in [17] provided line-level lyric annotations

for MUSDB18, making it a challenging real-world dataset

for lyric transcription. Additionally, we manually collected

40 multilingual songs with lyrics annotations from MTG-

Method a) b) c)

CTDNN-SA-mixture [17] 76.06 78.44 89.24

Ours-mixture 50.90 47.04 50.70

CTDNN-SA-vocals [17] 37.83 30.85 58.45

Ours-vocals 26.29 25.27 33.30

Table 4. The WERs (%) of our method and baseline [17]

on three subsets of annotated MUSDB18. The results of

our method are obtained from utterance-level segments.

Jamendo as a test set for the proposed dataset, which can

be used to validate the reliability of our proposed dataset

via transcription accuracy.

Evaluation. We report the Word Error Rate (WER) as

the evaluation metric, which is the ratio of the total num-

ber of insertions, substitutions, and deletions with respect

to the total number of words. We calculate the average

WER on the test sets. Since Whisper possesses the capa-

bility for long-form transcription, we directly evaluate en-

tire songs using Jamendo, Hansen, and the multilingual test

set. We perform utterance-level evaluations on MUSDB18

and DSing since they only have utterance-level annota-

tions. We discovered that many songs in these evaluation

datasets are problematic, such as incorrect lyric annota-

tions and excessively short song segments. One notable

problem is that sometimes there are prominent harmony

parts in the background of a song. However, it is not pro-

vided in the lyric annotations (e.g., Adele’s “Rolling in the

Deep”). LyricWhiz is powerful enough to transcript both

the leading vocal and the background vocal with high accu-

racy. Therefore, we removed these problematic data from

our evaluations. Finally, we normalize the transcription re-

sults to match the standardized ground truths. We remove

all special Unicode characters, such as emojis. All text is

converted to lowercase, and numeric characters are con-

verted to their alphabetic correspondence.

Budget. To ensure fast and multi-round inference of

the Whisper-large model on various datasets, including

the large-scale MTG-Jamendo dataset, we conducted our

experiments concurrently on a server with 8xA100 80G

GPUs. It takes approximately 9 hours to complete one

round of inference, and each process uses up to 12G

VRAM. The vocal probability threshold is set to 0.07 for

PANNs-based vocal event detection. To carry out contex-

tualized post-processing using ChatGPT, we invested a to-

tal of US$2,000 on GPT-4 API for the entire project.

4.2 Comparative Experiments

In order to verify the superiority of our approach, we

compare it with several previous studies on benchmark

datasets. W2V2-ALT [22], a transfer learning method

based on ASR self-supervised models, represents the cur-

rent state-of-the-art in lyric transcription tasks. In our ex-

periments, we primarily compare our method with W2V2-

ALT, as well as other previous methods. The experimen-

tal results, as shown in Table 3, indicate that our method

achieves the best performance on Jamendo and Hansen

and the second-best performance on DSing. In long-form
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transcription datasets such as Jamendo and Hansen, our

method significantly outperforms all previous approaches

due to the strong contextual memory capabilities of both

Whisper and ChatGPT. Furthermore, our method also

leads by a considerable margin on MUSDB18, shown in

Table 4, demonstrating the robust performance and re-

silience of our proposed method in more diverse and com-

plex musical scenarios. It is worth noting that our method

did not surpass previous results on the DSing dataset,

which we attribute to two factors. First, previous models

were trained on the DSing training set, making the DS-

ing test set an in-distribution dataset for the models, while

our approach does not require any training and directly em-

ploys large-scale ASR models for zero-shot lyric transcrip-

tion. Second, the segmented evaluation on DSing results

in the loss of contextual information, which consequently

leads to inaccurate transcriptions.

4.3 Ablation Studies

To further substantiate the efficacy of each component

within our proposed approach, we conducted comprehen-

sive ablation experiments.

Whisper Prompt. In our experiments, we investigate

the Whisper prompt mechanism and test various prompts.

First, we construct a complex prompt following the format

of ChatGPT prompts, including task descriptions, format

specifications, and specific requirements. We then grad-

ually reduce the constituent elements of the prompt and

observe the results. We discover that, unlike general large

language models, Whisper has weaker task understanding

capabilities for complex prompts and can only compre-

hend shorter task prompts. In practice, using the simplest

prompt “lyrics:” yielded the best results. For multilingual

transcription, we translate "lyrics:" into the corresponding

language. As shown in Table 3, the designed prompt per-

forms better in long-form transcription scenarios, assist-

ing the model in producing meaningful lyrics for difficult

tasks. However, its performance is less effective at the ut-

terance level, possibly because predicting a single line of

lyrics does not require additional contextual information.

ChatGPT Ensemble. In order to confirm that ChatGPT

can analyze and infer the most accurate version of lyrics,

we first conduct a simple experiment. In this experiment,

we add the ground truth lyrics to the predicted results and

input them together into ChatGPT for ensembling. We

then calculate the proportion of times ChatGPT ultimately

chose the ground truth. If ChatGPT is able to choose the

most accurate lyrics, i.e., the ground truth, the final pro-

portion should be close to 100%. The computed results on

the Hansen dataset is 72.7% for ground truth data, which

is sufficient to demonstrate that ChatGPT can make cor-

rect choices based on the constructed prompt and input

lyrics. As further observed in Table 3, ChatGPT ensem-

bling is particularly effective for long-form lyric transcrip-

tion, suggesting that ChatGPT requires contextual infor-

mation (the content of preceding and following lyrics, as

well as the content of different versions of predicted lyrics)

for inference. In contrast, utterance-level lyric inputs lack

Language Songstrain Songstest WERtest

English 3,791 20 21.86

French 1,030 7 26.64

Spanish 620 5 22.54

Italian 311 3 44.01

Russian 147 4 39.18

German 132 1 25.43

Overall 6,031 40 26.26

Table 5. The distribution of our dataset and WERs (%) on

test set. We manually constructed a test set of 40 songs

following the language distribution of the collected train-

ing set. Then, we applied our proposed method to the test

set and computed the WER.

both context and diversity among different prediction re-

sults, leading to inferior performance.

4.4 Dataset Analysis

In order to demonstrate the reliability of the dataset con-

structed using Whisper and ChatGPT on MTG-Jamendo,

we manually create a multilingual test set for noise level

estimation. Specifically, we first select six languages from

the intersection of the languages in MTG and those in

which Whisper performs best. We then conduct a strati-

fied sampling of 40 songs on Jamendo and manually an-

notate their lyrics. We use these 40 songs as a test set,

assessing the WER to estimate the noise level of our col-

lected dataset. Table 5 presents the number of songs in

each language and the WER results for the test set, where

our method achieves decent WER levels for the majority

of languages. As our goal is to construct a large-scale,

multilingual dataset for weak supervision, our method’s

transcription results are acceptable. Furthermore, we have

not implemented specific normalization for multilingual

transcription results, such as removing diacritical marks,

which could be employed to enhance performance.

5. CONCLUSION

This paper presents LyricWhiz, a novel zero-shot au-

tomatic lyrics transcription system excelling in various

datasets and music genres. Combining Whisper and GPT-

4, our approach significantly reduces WER in English

and efficiently transcribes multiple languages. LyricWhiz

further generates the first publicly accessible, large-scale,

multilingual lyrics dataset with a human-annotated subset

for noise level estimation and evaluation. The success-

ful integration of the large speech model and large lan-

guage model in LyricWhiz offers a novel avenue for tradi-

tional Music Information Retrieval (MIR) tasks, as previ-

ous task-specific solutions are being eclipsed by general-

purpose models. Notably, large language models have

demonstrated their superior language understanding abil-

ities across various tasks. Hence, we anticipate further ap-

plications of large language models to a broader spectrum

of music-related domains, such as text-to-music genera-

tion, to enhance the performance of various models.
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ABSTRACT

In piano performance, some mistakes stand out to listeners,

whereas others may go unnoticed. Former research con-

cluded that the salience of mistakes depended on factors

including their contextual appropriateness and a listener’s

degree of familiarity to what is being performed. A con-

spicuous error is considered to be an area where there is

something obviously wrong with the performance, which a

listener can detect regardless of their degree of knowledge

of what is being performed. Analogously, this paper at-

tempts to build a score-independent conspicuous error de-

tector for standard piano repertoire of beginner to inter-

mediate students. We gather three qualitatively different

piano playing MIDI data: (1) 103 sight-reading sessions

for beginning and intermediate adult pianists with formal

music training, (2) 245 performances by presumably late-

beginner to early-advanced pianists on a digital piano, and

(3) 50 etude performances by an advanced pianist. The

data was annotated at the regions considered to contain

conspicuous mistakes. Then, we use a Temporal Convo-

lutional Network to detect the sites of such mistakes from

the piano roll. We investigate the use of two pre-training

methods to overcome data scarcity: (1) synthetic data with

procedurally-generated mistakes, and (2) training a part of

the model as a piano roll auto-encoder. Experimental eval-

uation shows that the TCN performs at an F-measure of

0.78 without pretraining for sight-reading data, but the pro-

posed pretraining steps improve the F-measure on perfor-

mance and etude data, approaching the agreement between

human raters on conspicuous error labels. Importantly, we

report on the lessons learned from this pilot study, and what

should be addressed to continue this research direction.

1. INTRODUCTION

A commonly held notion in automatic music performance

analysis (MPA) research is that deviations of music perfor-

mances from their underlying music score can be regarded

as performance mistakes. But previous music pedagogy

© A. Morsi, K. Tatsumi, A. Maezawa, T. Fujishima, and X.

Serra. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: A. Morsi, K. Tatsumi, A. Maezawa,

T. Fujishima, and X. Serra, “Sounds out of pläce? Score-independent

detection of conspicuous mistakes in Piano Performances”, in Proc. of
the 24rd Int. Society for Music Information Retrieval Conf., Milano, Italy,

2023.

research suggests that some of such deviations are more

apparent to a listener than others [1, 2]. For example, a

chord that is voiced differently from that written in the

score might be overlooked, but missing a note in a char-

acteristic motif or playing a note that clashes with the un-

derlying harmony would stand out. Repp [1] referred to

errors of the former category as perceptually inconspicu-

ous. Accordingly, we consider a conspicuous error to be

"a performance error that can be detected by the majority

of listeners with a formal music training, regardless of their

degree of knowledge about the underlying music score of

a performed piece."

This paper explores the potential of building score-

independent models that detect regions of conspicuous er-

rors in MIDI piano performances of piano solo pieces

based on Western music theory, as shown conceptually in

Figure 1. Based on the intuition that a listener is capable

of detecting obvious mistakes in piano performances by

listening to the surrounding context, we use a non-causal

variant of the Temporal Convolutional Network (TCN) [3]

We gather datasets for our task, since despite the plethora

of work in automatic MPA that has spanned both the

score-dependent (or reference-dependent) [4–7] and score-

independent paradigms [8–13], there is no data available to

support our desired goal.

More specifically we: (1) gather three datasets of con-

spicuous errors in various performance situations, report-

ing on the dataset creation process and annotation proce-

dure, (2) study the properties of the annotated data through

(i) observing the annotated data for sources of inconsisten-

cies, (ii) analyzing the relationship between inconspicuous

and conspicuous errors and (ii) analyzing the ambiguity of

the task through listening experiments, (3) present a model

based on TCN to identify conspicuous errors from piano

MIDI performance and discuss its effectiveness through

experimental evaluation, and (4) present and evaluate two

pre-training strategies, depending on the nature of the un-

labeled data that can be acquired. A subset of the gathered

data and listening examples can be found on the compan-

ion page 1

2. RELATED WORK

We distinguish between locally and globally-based auto-

matic MPA. In local approaches (such as the majority

1 https://bit.ly/3UCCiea

352



Inconspicuous:
Harmonically consistent note modifications

Conspicuous:
Harmonically conflicting note insertion

Musically natural note modifications

Inconspicuous:

Abrupt pauses or repetitions

Conspicuous:

Rhythmically unnatural timing

Conspicuous:

time

nts

Figure 1: Illustration of our problem definition. Some errors stand out more than others in performance. Our goal is to

identify segments containing conspicuous errors to the listeners, without the need for music score data.

of score-dependent performance assessment), the analysis

is conducted at a note (or equivalent) level. Global ap-

proaches learn from data mapping large performance snip-

pets (often entire performances) to overall evaluations.

Local approaches include score-based performance

mistake identification, which tends to cover note-level (or

equivalent) errors such as pitch [1, 2, 4, 7] and rhythm mis-

takes [2]. Pitch mistakes are essentially categorized as

pitch intrusions (extra note) and pitch omissions (miss-

ing note), and occasionally pitch substitutions (wrong

note in-place of a correct one), although the latter can be

treated the joint occurrence of the former two [1]. Align-

ment/score comparison-based approaches for detecting de-

viations are locally-based by definition. Piano assessment

examples of such include [4,7,14], which cover pitch mis-

takes. Not all local approaches are score-dependent, such

as those which capture note-level aspects relating to the ar-

ticulation or sound quality. Examples are [15] and [12], for

piano (3-point scale for quality of legato or staccato) and

trumpet (7-point scale) respectively.

Global approaches to performance assessment have

usually been score-free, with the exception of [5] which

utilizes the score as input. Usually, such approaches

are based on regression models mapping features to

performance-wide ratings [9, 11, 16, 17], or end-to-end

approaches which learn correspondences between whole

or parts of performances to performance wide ratings

[5, 10, 13]. Such ratings can be discrete or continuous and

can span several performance dimensions. Although the

connection has not been explicitly made, we speculate that

most likely they would excel in capturing conspicuous per-

formance mistakes that manifest as consistent errors/error

patterns across a performance.

Accordingly, we frame our approach as a score-

independent locally based one since our goal is to return

binary labels for each time point in a piano MIDI roll re-

flecting the presence or absence of an obvious performance

mistake. Therefore, we need similarly annotated data for

piano MIDI performances to train our models. Despite

score deviations not necessarily indicating conspicuous er-

rors, our desired output is closest to that of score-based

performance mistake identification systems because their

output can be interpreted as a binary sequence indicating

the presence or absence of a score deviation albeit with-

out perceptual relevance. However, their methods are not

applicable for our problem formulation.

3. DATA

We obtain 3 sources of non-commercial, piano MIDI per-

formance data for different playing situations:

Sight-Reading Data (SR): 103 sight-reading perfor-

mances comprising mostly of piano reductions of popular

classical pieces, arranged for beginner to intermediate

difficulty. They are played by seven beginning to interme-

diate adult pianists with formal music training.

Performance Data (PF): 245 performances of approx-

imately 3 minutes each, collected from a digital piano

recording app. Not all performed pieces are known, but

most of them are pop and classical, that are either read

from a score, or semi-improvised. While user attributes

are unknown, the performance data suggests that the skill

levels range between late-beginner and early-advanced.

Burgmüller Data (BM): 50 performances from

Burgmüller’s 25 Etudes, Op. 100 recorded twice on

a digital piano. They are played by an advanced pianist

who had previously played the etudes. The pianist

practiced each etude briefly before recording two takes.

The total time for the SR, PF, and BM are 379, 723, and

60 minutes respectively, of which 128, 176, and 3 minutes

were annotated as conspicuous errors. Non-overlapping

splits of SR and PF are used for training, validation, and

testing, whereas BM is kept exclusively for testing. The

annotation procedure is described in 3.1. SR and PF sub-

sets cannot be shared, but short excerpts of them, and the

full BM set can be found in the companion page.

3.1 Annotation Procedure

We had 2 annotators: Annotator 1, who has experience

as a classical piano teacher, and Annotator 2, has train-

ing in music production and is also an intermediate-level

pianist. We asked Annotator 1 to label the SR and BM
data, and asked Annotator 2 to label the PF data, and to

indicate (yes/no) whether they know the piece being per-

formed. For the SR and PF subsets, annotators were given

instructions to annotate obvious performance mistakes that

can be recognized even without checking the score, and it

was left open to them to decide what that entails. The an-
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notation was done with Cubase 2 , and they were asked to

add an annotation at MIDI note 0 covering the span of the

time window which they judge as pertaining to an error.

Despite the potential label ambiguity due to the openness

of the instructions, we wanted to observe the judgments of

different people in this pilot study so that we can improve

the data annotation protocol for future experiments.

The BM subset was treated differently because it has

been played off of known music score data. First, the per-

formances were automatically annotated with sites of score

deviations using a score alignment system. Then, the anno-

tator manually reviewed the labels by listening to the per-

formance while looking at the corresponding sheet music,

and added missing deviations from the score or removed

those which do not reflect errors. The annotator simultane-

ously manually labeled each error as conspicuous or not.

3.2 Annotation Examples and Pitfalls

Some types of errors were labeled more consistently than

others. The more common error modes, as shown in Fig-

ure 2, include insertions and deletions of notes that do not

fit in musical context, abrupt pauses, and unstable rhythm

coming from hesitations during playing. Annotators have

shown reasonable consistency in terms of label location

and span when mistakes are relatively short after which

the player recovers into their playing flow, such as those

of Figure 2. However, more compound deviations were la-

belled ambiguously. For example, sometimes after an error

a player would ’sneak-in’ some practice before resuming

the flow of the piece. In such examples, if the short phrase

being practiced sounds out of context, but in itself is co-

herent, an open question is where the label should be, and

whether it should be one continuous label or an intermit-

tent one.

Moreover, we also observe the presence of non-

annotated conspicuous mistakes in the data, but there is

an inherent ambiguity in how one would assess a "bad but

acceptable" and "erroneous" performance". In a discus-

sion with Annotator 1 after the annotations, they indicated

that their mental model for deciding whether a segment

should be labelled was dependent on every performance.

If a region contrasts with their expectation of the music

given how that performer is playing, then it was annotated.

This opens the possibility that annotators have calibrated

what should count as a mistake based on individual per-

formance. Silence regions are one of the main sources of

ambiguity, since silences between correct portions are non-

annotated regardless of their length, but silences within or

surrounding mistake portions often receive a mistake label.

3.3 Analysis of the dataset

3.3.1 Conspicuous to total label ratio in BM

Although the ratio of annotated regions to total perfor-

mance time is very small in the BM data, its annotation

approach of allows us to investigate the relationship be-

tween the set of errors obtained by comparing with a score

2 https://www.steinberg.net/cubase/

Figure 2: Examples of musical attributes that seemed to be

consistently annotated as conspicuous errors (in red). (a)

missed note that breaks a pattern, (b) harmonically unnat-

ural note insertions, (c) repetition, (d) abrupt pauses.

(presumably all errors) to conspicuous errors. We found

that 59% of all identified errors were perceived as conspic-

uous. Note that this is a very subset-specific result, because

it depends on the ratio between subtle and obvious errors

in the performances themselves as much as the qualities of

the performer and the annotation.

3.3.2 Listening test of conspicuous errors

Through a listening test of some performance portions la-

beled as conspicuous errors and unlabeled areas for PF,

we assess how different subjects agree with the annotations

and among themselves. We chose PF because we expect

it to contain a nice balance between famous and unknown

pieces for each subject.

Conditions: We recruited 31 subjects, not necessarily

trained musicians. 84% of the subjects had experience

playing a musical instrument, and 97% of the subjects had

experienced either reading or notating music scores. Each

subject is asked to first listen with headphones to a snip-

pet from the PF dataset, ranging from 4 to 12 seconds.

The snippet is either (1) a randomly chosen conspicuous

mistake segment, with 2 seconds of padding on either end,

or (2) a segment that contains no error label, whose dura-

tion is the average duration of the conspicuous error seg-

ments within the piece, plus two seconds of padding. The

subjects were allowed to skip questions and no constraints

were given on the number of times the snippet may be lis-

tened to. The subject is then asked to choose if they hear

an obvious mistake or not, along with the subject’s knowl-

edge of the piece. This procedure was repeated 15 times.

Then, we scale the counts obtained when presenting non-

conspicuous snippets, to provide a sensible assessment of

the dataset itself. That is, the ratio of snippets contain-

ing the inconspicuous error to the conspicuous ones, ρ0,

should match the ratio between the total duration of the

inconspicuous error labels to that of the conspicuous la-

bels in the dataset, ρ1. Thus, we scale the count of the re-

sponses obtained when presenting the inconspicuous error

by ρ1/ρ0.

Results and discussion: A total of 462 responses were

obtained (30-31 responses per snippet). The precision, re-

call, and the F-measure of how correctly the subjects iden-

tified the mistakes were 0.37, 0.50, and 0.43, respectively.

The result suggests that the notion of conspicuous error is

not so clear-cut when only presenting a short snippet sur-

rounding an error, without providing a longer musical con-

text. We also found that famous pieces tend to get more

consistent responses. To check this, we computed for each
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60%

Piano-roll

TCN backbone

Onset piano-roll

Classi er head

Conspicuous

error probability

Figure 3: Our method reads a piano roll and outputs the

probability of the center of a segment being a conspicuous

error. It is comprised of a TCN backbone and a 1d convo-

lution classifier head.

snippet (1) the probability that a song is unknown and (2)

the entropy of the probability that a subject would identify

that snippet to contain an error. The correlation between

(1) and (2) was 0.63, indicating a moderate correlation be-

tween how well the piece is known among the subjects and

how consistent are the labels.

4. METHODOLOGY

Given a sequence of piano note events, the goal is to infer

a time sequence of binary labels that indicates the presence

of conspicuous errors at a given time.

4.1 Model

Our model is a TCN-based network that receives a piano

roll X as input and emits a binary label of conspicuous

error e at each time frame of the piano roll. As shown in

Figure 3, it is comprised of a feature extraction backbone

followed by a classification head. We choose to assign a

label at frame-level instead of note-level, since not only

the note itself but its absence can indicate errors.

4.1.1 Piano Roll Input

Two piano rolls are extracted for a given sequence

of piano note events, one for the note onset and an-

other for the sustained portion according to the key de-

pression. Specifically, suppose a set of I MIDI note

events (start time, end time, pitch, velocity) given as

{(si, ei, pi, vi)}
I
i , and a sampling rate of R are given.

Then, a 256-dimensional piano roll X ∈ R
256×T is com-

puted, such that X(pi, round(Rsi)) = vi, and X(128 +
pi, round(Rs)) = vi for s ∈ [si, ei]. Partitura [18] is used

for the computation, and R is set to 16 Hz.

Notice that the sustain pedal information is ignored in

the computation of the piano roll. This is necessary to pre-

vent the piano roll of the sustained portion from smear-

ing since a beginning pianist has a tendency to keep the

pedal depressed which causes and excessive elongation of

the computed note durations.

4.1.2 Conspicuous mistake detector

We model the mistake detector as a simple TCN compris-

ing of a feature extraction backbone followed by a classi-

fication head, based on preliminary experiments exploring

model architectures and inspired by the approach in [13].

Feature extraction backbone: Given the piano roll X ,

the feature extraction backbone computes a feature φ ∈
R

D×T . We set D = 256 in this paper. This is realized as

a 5-layer noncausal TCN with dilation of [1,2,4,8,16], and

for all layers, has an output channel size of 256, kernel size

of 3, uses ELU nonlinearity and has a residual connection,

similar in spirit to [3].

Classification head: Given the feature φ, a network com-

prising of three layers of 1x1 convolution with output chan-

nel sizes [256,64,1] with residual connections and ELU

nonlinearity followed by a sigmoid function is used to ar-

rive at the conspicuous error posterior probability e.

4.2 Training strategies

The model is trained using RAdam with a learning rate of

10−3, as to minimize the cross-entropy between the con-

spicuous error probability e and the posterior distribution

computed from the ground-truth label. We augment the

data by randomly transposing the entire MIDI file in the

training data. Furthermore, when computing the cross-

entropy loss, we smooth the ground-truth label to account

for annotation inconsistencies in the start and end times

of the conspicuous error segment. Furthermore, since it

is difficult to obtain annotations of conspicuous errors, we

pre-train the model as well, using the following two strate-

gies.

4.2.1 Pretraining the feature extractor as an autoencoder

The feature extractor can be trained in an unsupervised

manner, by training it as an autoencoder for a much larger

collection of piano performances in the wild. Specifically,

we train an auto-encoder using the feature extraction TCN

introduced earlier as the encoder and a TCN with trans-

posed 1d convolutions instead of a 1d convolution as the

decoder. This way, the space of φ is pre-trained as to model

the space of piano performances within a given receptive

field of a TCN. This method could be useful if a large

dataset of performances of unknown performance qualities

are obtainable.

4.2.2 Pretraining the model with synthetic mistake labels

The model can also be pre-trained on performance data

onto which mistakes are simulated and corresponding mis-

take labels are inserted to match the expected format of

data in Section 3.1. Specifically, we apply systematic ad-

justments to a set of mistake-free performances and modify

the note events, in a manner inspired by performance mis-

takes made by beginning adult pianists [19]. For each note

event, with probability pc we modify the note in one of the

following ways:

1. With probability po omit a note with a probability po

2. With probability pr replace a note, to the same

note transposed n semitones, to simulate hitting the

wrong key.

3. With probability pi insert a note that is transposed

by n semitones.
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Method Precision Recall F-measure

Baseline 0.79 0.80 0.78
SYNTH 0.65 0.76 0.69

SYNTH(FT) 0.61 0.69 0.62
AE 0.55 0.59 0.55

AE+SYNTH 0.44 0.65 0.51

(a) SR Data

Method Precision Recall F-measure

Baseline 0.28 0.46 0.33
SYNTH 0.27 0.54 0.34

SYNTH(FT) 0.30 0.61 0.38
AE 0.28 0.52 0.34

AE+SYNTH 0.27 0.63 0.36

(b) PF Data

Method Precision Recall F-measure

Baseline 0.26 0.36 0.26
SYNTH 0.26 0.69 0.35

SYNTH(FT) 0.26 0.49 0.32
AE 0.27 0.46 0.31

AE+SYNTH 0.28 0.52 0.35

(c) BM Data

Table 1: Results for different training strategies

4. With probability pp pause the performance by a

small amount distributed uniformly between 0.3 and

0.8 seconds. With probability ppr, repeat the last

played note.

5. With probability ps pause the performance by a large

amount distributed uniformly between 2 and 4 sec-

onds. Repeat the last played note.

In this paper, we set pc = 5%, po = 10%, pi = 39%,

pr = 39%, ps = 2%, and pp = 10%. Furthermore,

for note replacement and insertion, n is chosen so that

n = 1, 2 are chosen with probabilities of 22% and n = 4, 6
by 2%. For a set of mistake-free performances, we ob-

tained 260 hours of mostly jazz and classical MIDI piano

performances. The quality and repertoire are comparable

to those available from Yamaha PianoSoft 3 .

This method is useful if many performances that are

known to be relatively error-free are obtainable Further-

more, this idea may possibly be used for data augmenta-

tion, at the risk of increasing false positives, since not all

synthetic errors sound conspicuous, as also hinted by [1,2].

4.3 Experiment: Model Evaluation

We evaluate our model using different training strategies.

4.3.1 Experimental conditions

Our model has been trained with the following strategies:

1. Baseline - The model is trained on SR and PF data.

2. SYNTH - Same as Baseline, in addition to the inclu-

sion of a subset of the synthetic data introduced in

Section 4.2.2 during training and validation.

3. SYNTH(FT) - The model is pretrained on the syn-

thetic data, then fine-tuned using SR and PF. This

3 https://shop.usa.yamaha.com/

simulates a situation where a new annotated dataset

becomes available after traing a model solely trained

on a synthetic data.

4. AE - Train TCN autoencoder introduced in Sec-

tion 4.2.1 as a pretraining step for the backbone

TCN, using approximately 100,000 MIDI perfor-

mances played by various users. The set of perfor-

mances does not contain SR PF or BM, although it

is obtained from the same source as PF. The model

is fine-tuned on SR and PF.

5. AE+SYNTH - Use the pretrained autoencoder back-

bone and fine-tune using SR, PF and the synthetic

data.

The trained models have been validated on SR and PF, and

tested on a test split of SR, PF, and the entire BM.

As the metric, we have evaluated the transcription

precision/recall/F1-measure using mir_eval [20], treat-

ing the estimated and the ground-truth annotations as note

events occurring at a predefined pitch. When computing

the transcription metrics, the note onset and offset toler-

ances have been set to 2 seconds. Furthermore, based

on the validation set, the ends of the estimated segments

have been padded by 0.2 seconds and overlapping seg-

ments have been merged.

4.3.2 Results and discussion

The results are shown in Table 1. For PF and BM datasets,

the augmentation strategies offer some improvements. The

two strategies proposed, i.e., the use of synthetic data and

autoencoder, also result in improvements. In general, both

strategies tend to improve the recall rate, suggesting that

they provide similar qualitative improvements, and either

one can be used depending on the data available.

Despite the augmentation strategies, the F-measures for

PF and BM data suggest future room for improvement,

even taking into account the ambiguity of conspicuous

errors. The PF and BM data are difficult to infer, as

seen by the differences in the F-measure between the SR
dataset and the two. As another example, the validation

F-measure of the models on the synthetic dataset is about

0.60. This suggests that the model is moderately capable of

pin-pointing the ground-truth labels if they are easy to clas-

sify, or generated stochastically but systematically. At the

same time, however, the model has room for improvement,

as the best-performing F-measure of 0.38 on the PF dataset

falls somewhat short of the oracle F-measure of 0.43, as

discussed in Section 3.3.

The method performs well for the SR data, perhaps

because most of the mistakes are quite conspicuous in

a sight-reading situation, especially compared to PF and

BM, both of which contain mostly beginner-intermediate

performances with occasional mistakes. The performance

tends to drop as more pretraining steps are added, presum-

ably because the pretraining data mostly contain data of the

same type as the PF set, increasing the disparity between

the training data and the test data. In sight-reading situa-

tions, the results suggest it is sufficient simply to train on a
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(a) True positives. The black band indicates the detected conspic-
uous error with different training strategies. The model presum-
ably responds to (a) repetition, (b) silences, (c) slight hesitations
in playing, (d) note insertions, and (e) lack of synchrony voices.

(b) False positives. The model presumably confuses (a) the re-
peated motives as an error, (b) rhythm with rest as abrupt pauses,
(c) an audible but weak note with a note deletion, and (d) a long
chord after a fast passage with hesitations.

Figure 4: Examples of typical operation and failure modes.

dataset that solely contains data from the same set, instead

of pretraining or augmenting the dataset with typical ama-

teur performances containing some conspicuous errors.

4.3.3 Qualitative insights of the estimates

Figure 4 shows some examples of true positives that are

consistent across different strategies and consistent false

positives. The proposed method tends to capture repeti-

tion, pauses, hesitations, and note insertions that occur in

narrow pitch intervals as mistakes. At the same time, how-

ever, the very same properties arising from musical expres-

sion or composition are detected as false positives, such

as repeated motifs, ornaments, and grand pauses. Even

though such musical aspects are superficially performed

similarly to the aforementioned mistakes, humans are ca-

pable of differentiating between genuine performance mis-

takes and those within musical contexts. This suggests that

the model has room to improve by modeling the underly-

ing composition better. The readers are invited to check

the companion page for examples.

5. LIMITATIONS AND IMPROVEMENTS

Our work opens door to many open problems that need to

be solved, some more fundamental than others.

Problem definition and annotation protocol: More

work is needed to define the concept of conspicuous er-

rors, and how the task should be evaluated from a music

technology perspective. Accordingly, a more comprehen-

sive protocol for data collection should be developed. Al-

though we had kept the annotation instructions open to also

develop an understanding of annotator behavior, it became

evident that our data collection approach does not guaran-

tee that the labels we have are for solely conspicuous er-

rors. In [1], conspicuous errors were identified in a music

performance by finding the subset of agreed-upon mistake

labels between multiple listening subjects.

To define manifestations of conspicuous errors, a mid-

point should be found between a rule-based approach and

one learned from empirical labels. The outcome should be

a set of error descriptions, some of which happen at partic-

ular time instants and some over longer windows, whether

continuous windows or a longer span of intermittent la-

bels. However, since the conspicuousness of errors is in-

spired by a perceptual idea, we think these errors should be

defined through an empirical process albeit better defined

than the one in this study to avoid the same pitfalls.

Synthetic mistakes: Synthetic data is important for

improving performance, but current synthesized mistakes

sound unnatural. A simple example was a case of induced

pitch insertions, where it seemed impossible that someone

can perform with such confidence and tempo despite the

extent of out-of-context pitch insertions. We observe that

beginners make mistakes and employ recovery strategies in

a manner that is more complex than the presented method,

so a better understanding of beginning pianists’ behavior

is necessary to create more natural-sounding mistakes.

Listener, player, expression, and style: Conspicuous

errors are dependent on the listener’s knowledge of the

piece and the proficiency of the performer. Furthermore,

conspicuous error and expression are two sides of the same

coin. For example, hitting an adjacent key can either come

across as an expressive ornament or a conspicuous error.

This suggests that conspicuous error detection should in-

herently be conditioned on the style, the level of the lis-

tener, and the player’s proficiency.

Connecting with pedagogy and edu-tainment: The

impact of music education software which provides anal-

ysis solely founded on rigid note-level rhythmic and pitch

correctness has been challenged [21] on the basis that users

might end up too focused on playing too correctly (almost

robotically) to attain the highest scores. There are many

pedagogical considerations for designing useful automatic

assessments [22].

6. CONCLUSION

This paper presented a study on detecting conspicuous per-

formance mistakes for a piano solo performance of begin-

ning to intermediate players. We (1) clarified the idea of a

conspicuous error in line with previous research, (2) gath-

ered locally annotated piano MIDI performance data, and

(3) discussed sources of inconsistencies in our data through

analysis of the annotation procedure and subjective tests.

Although some of our models show an acceptable perfor-

mance on the test split of the SR data subset, we find that

the our pre-training suggestions do not provide remarkable

performance improvements.
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ABSTRACT

We introduce VampNet, a masked acoustic token mod-

eling approach to music synthesis, compression, inpaint-

ing, and variation. We use a variable masking schedule

during training which allows us to sample coherent mu-

sic from the model by applying a variety of masking ap-

proaches (called prompts) during inference. VampNet is

non-autoregressive, leveraging a bidirectional transformer

architecture that attends to all tokens in a forward pass.

With just 36 sampling passes, VampNet can generate co-

herent high-fidelity musical waveforms. We show that by

prompting VampNet in various ways, we can apply it to

tasks like music compression, inpainting, outpainting, con-

tinuation, and looping with variation (vamping). Appropri-

ately prompted, VampNet is capable of maintaining style,

genre, instrumentation, and other high-level aspects of the

music. This flexible prompting capability makes VampNet

a powerful music co-creation tool. Code 3 and audio sam-

ples 4 are available online.

1. INTRODUCTION

In recent years, advances in discrete acoustic token mod-

eling have resulted in significant leaps in autoregressive

generation of speech [1, 2] and music [3]. Meanwhile, ap-

proaches that use non-autoregressive parallel iterative de-

coding have been developed for efficient image synthe-

sis [4, 5]. Parallel iterative decoding promises to allow

faster inference than autoregressive methods and is more

suited to tasks like infill, which require conditioning on

both past and future sequence elements.

In this work, we combine parallel iterative decoding

with acoustic token modeling, and apply them to music

audio synthesis. To the best of our knowledge, ours is the

first 1 extension of parallel iterative decoding to neural au-

dio music generation. Our model, called VampNet, can be

1 While our work was under peer review, Google released SoundStorm
[6], which leverages a similar parallel iterative decoding approach to ours.

© H. Flores García, P. Seetharaman, R. Kumar, and B.

Pardo. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: H. Flores García, P. Seetharaman,

R. Kumar, and B. Pardo, “VampNet: Music Generation via Masked

Acoustic Token Modeling”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

Figure 1. VampNet overview. We first convert audio into

a sequence of discrete tokens using an audio tokenizer. To-

kens are masked, and then passed to a masked generative

model, which predicts values for masked tokens via an effi-

cient iterative parallel decoding sampling procedure at two

levels. We then decode the result back to audio.

flexibly applied to a variety of applications via token-based

prompting. We show that we can guide VampNet’s gener-

ation with selectively masked music token sequences, ask-

ing it to fill in the blanks. The outputs of this procedure can

range from a high-quality audio compression technique to

variations on the original input music that match the orig-

inal input music in terms of style, genre, beat and instru-

mentation, while varying specifics of timbre and rhythm.

Unlike auto-regressive music models [2, 3], which can

only perform music continuations – using some prefix au-

dio as a prompt, and having the model generate music that

could plausibly come after it – our approach allows the

prompts to be placed anywhere. We explore a variety of

prompt designs, including periodic, compression, and mu-

sically informed ones (e.g. masking on the beat). We find

that our model responds well to prompts to make loops and

variations, thus the name VampNet 2 . We make our code

open source 3 and highly encourage readers to listen to our

audio samples 4 .

2 To vamp is to repeat a short passage of music with variation.
3 https://github.com/hugofloresgarcia/vampnet
4 audio samples: https://tinyurl.com/bdfj7rdx
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2. BACKGROUND

Two-stage approaches to generative modeling have gained

traction in image [4, 5, 7, 8] and audio [2, 3, 6, 9] synthe-

sis, largely in part due to their computational efficiency. In

the first stage, a discrete vocabulary of “tokens” is learned

for the domain of interest. The input is put through an en-

coder to obtain these tokens, which can be converted back

into the input domain via a corresponding decoder. In the

second stage, a model is trained to generate tokens, and is

optionally given some conditioning (e.g. previous tokens,

a text description, a class label) to guide generation.

2.1 Stage 1: Tokenization

In images, visual tokenization has been leveraged for state-

of-the-art classification [10] and synthesis [4,7,8,11]. The

most popular approach is to use vector quantization on a la-

tent space. Similar approaches have been explored for au-

dio [12], but until recently such approaches have been re-

stricted to low sampling rates (e.g. 16khz), or have been re-

stricted to speech audio. The “sampling rate” of the latent

space (the number of latent vectors required every second

to represent audio) is a critical aspect of the tokenization

scheme. The lower the sampling rate of the latent space,

the easier the next stage (generation) will be to accom-

plish. Recently, methods based on residual vector quan-

tization [13,14] have been proposed for audio tokenization

at high compression rates with good reconstruction quality

of high-sample-rate audio.

The primary work we leverage for audio tokenization is

the Descript Audio Codec (DAC) [15]. With DAC, audio is

encoded into a sequence of tokens via a fully convolutional

encoder. The output of this encoder is then quantized us-

ing a hierarchical sequence of vector-quantizers [11]. Each

quantizer operates on the residual error of the quantizer be-

fore it. Because of this residual vector quantization, DAC

is able to reconstruct audio with very high quality, at a high

compression ratio. It, along with its predecessors [13, 14],

are instrumental in enabling audio language models like

AudioLM [2], MusicLM [3], and VALL-E [1]. While we

later briefly describe our tokenizer, the key contributions

of our work are applicable to the output of any audio tok-

enizer and our specific audio tokenizer is not the focus of

this work.

2.2 Stage 2: Generation

Given audio encoded as tokens, the common approach is to

use an autoregressive model [16] for generation. State-of-

the-art (SOTA) audio generation approaches like AudioLM

[2], MusicLM [3], and JukeBox [17] use this approach,

generating each acoustic token in the sequence in a step-

by-step fashion using transformer-based [18] decoder-only

models. Autoregressive sampling is slow in nature due to

the high number of steps required at inference time [4].

Further, autoregressive models inherently restrict down-

stream applications, as each generated token is only condi-

tioned on the previous tokens. For an autoregressive model

to perform tasks like inpainting (“filling in the middle”),

one must re-arrange the data during training [19].

In language, masked modeling has been used exten-

sively as a pre-training procedure for high-quality seman-

tic representations [20]. This procedure has also been ex-

tended for representation learning in images [21] and au-

dio [22]. Masked modeling for representation learning

generally has a constant mask probability. For example,

in BERT [20], tokens are masked 15% of the time during

training. It has been shown that this approach is equiva-

lent to a single-step discrete diffusion model [23], that uses

masking for its noising procedure. Therefore, we can ex-

tend masked modeling to masked generative modeling by

varying the probability of masking a token during training.

This was done for image generation in MaskGIT [4], and

in language [23]. Similar to diffusion modeling [24, 25],

which seeks to synthesize data starting from random noise

through a series of denoising steps, masked generative

modeling seeks to synthesize data starting from completely

masked data through a series of “unmasking” steps.

Key to the efficiency of MaskGIT and related ap-

proaches is a parallel iterative decoding procedure. In par-

allel iterative decoding, the model predicts every token in

the output sequence in a single forward pass. However,

after just one forward pass of the model, the output often

does not have high quality. The output of the first sam-

pling step is re-masked, with a lower masking probability,

and then put through the model again. In this way, masked

generative models can efficiently refine their output, result-

ing in high quality generation.

In unconditional generation tasks, the model is asked

to generate a realistic sample from the target data distribu-

tion from scratch, without any guidance. This is a difficult

problem, as many target data distributions are highly multi-

modal. Unconditional generative models are susceptible to

mode collapse [26], blurry samples, mode averaging, and

other issues [27]. Therefore, some conditioning is helpful

as it provides some signal for the model to resolve the mul-

timodality. Conditioning is also a commonly used method

to guide the output of the system towards desired content.

Conditioning can take the form of a class label, a genre

tag or lyrics [17], or an associated text description [3,8,28].

Conditioning can also be applied at every timestep, like

the semantic tokens of AudioLM [2], or aligned text or

phonemes for text-to-speech generation [1].

In this work,we adopt a masked generative modeling

approach with a parallel iterative decoding procedure, in-

spired by work in vision such as MaskGIT [4] and Paella

[5], as illustrated in Figure 1. We do not apply any con-

ditioning beyond that provided by the unmasked tokens in

our encoded audio. As we show later, different approaches

to masking, applied at inference time, can be used to steer

generation in useful and artistic ways.

In training, tokens are masked randomly throughout the

sequence. The model is then asked to predict the value of

each of the masked tokens in a single forward pass, but it

is conditioned on all of the unmasked tokens, both in the

future as well as in the past. We vary the number of tokens
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Figure 2. Training, sampling, and prompting VampNet. Training: we train VampNet using Masked Acoustic Token

Modeling, where we randomly mask a portion of a set of input acoustic tokens and learn to predict the masked set of

tokens, using a variable masking schedule. Coarse model training masks coarse tokens. Coarse-to-fine training only masks

fine tokens. Sampling: we sample new sequences of acoustic tokens from VampNet using parallel iterative decoding,

where we sample a subset of the most confident predicted tokens each iteration. Prompting: VampNet can be prompted in

a number of ways to generate music. For example, it can be prompted periodically, where every P th timestep in an input

sequence is unmasked, or in a beat-driven fashion, where the timesteps around beat markings in a song are unmasked.

that are masked during training, allowing us to generate

audio at inference time through a sampling procedure. We

now describe our method in more detail.

3. METHOD

We adapt the procedure of Masked Visual Token Modeling,

proposed in MaskGIT [4] to audio, accounting for several

key differences between the vision and audio domain. We

call our approach Masked Acoustic Token Modeling.

3.1 Masked Acoustic Token Modeling

We first train an audio tokenizer based on the techniques

described in DAC [15]. Unlike the visual tokens of

MaskGIT, our acoustic tokens are hierarchical in nature

due to residual vector quantization. As a first step, the au-

dio signal x is encoded at each time step t as a a D di-

mensional latent vector Z. We then quantize Z using N
vector quantizers. Quantizer 1 produces Ẑ1, a quantized

approximation of Z that has residual error R1 = Z − Ẑ1.

Thereafter, the residual from each quantizer i is passed to

the next quantizer i + 1, which produces a quantized ap-

proximation of the remaining residual error: Ri ≈ ˆZi+1.

Vector Z is reconstructed by summing the output of the N
quantizers: Z =

∑N

i=1
Ẑi.

Since the encoded signal is represented as a quantized

vector of N discrete tokens at each timestep, we have N
tokens that can be masked or unmasked at each timestep.

Rather than attempt to generate all tokens at once, we in-

stead split the N tokens into Nc “coarse” tokens, and Nf

“fine” tokens, as in AudioLM. We then train two generative

models: one that generates the fine tokens given the coarse

tokens as conditioning, and one that generates the coarse

tokens given a sequence of coarse tokens. To generate a

sample (Figure 1), we chain the two models together. First,

we apply the coarse model to generate a sequence of coarse

tokens. Then, we apply the coarse-to-fine model to gener-

ate the fine tokens. We decode the tokens to a 44.1khz

waveform using the decoder of our audio tokenizer.

3.2 Training procedure

Let Y ∈ R
T×N be a matrix representing the output of the

encoder for some audio segment. Each element yt,n in Y

is a token from the nth level codebook at timestep t. Let

YM be the set of all masked tokens in Y and YU be the

set of all unmasked tokens in Y. The model generates a

probability distribution over the set of possible codebook

values for each token y ∈ YM , given the unmasked tokens

and the model parameters θ. The training objective is to

maximize the probability of the true tokens. This corre-

sponds to minimizing the negative log likelihood.

L = −
∑

∀y∈YM

log p(y|YU , θ) (1)

To predict the masked tokens, we use a multi-layer bidi-

rectional transformer, which predicts the probabilities of

each possible token at every timestep, for every quantizer.

If each quantizer has a codebook size of C possible values,

and there are N quantizers, then the last layer of the net-

work will be a fully connected layer of shape (E,CN),
where E is the dimensionality of the output of the last

layer. We then reshape this output into (EN,C), and com-

pute the cross-entropy loss between the ground-truth one-

hot token and the predicted token. Because the transformer

is bidirectional, it can attend to all tokens in the input se-

quence to optimize the loss for each token.
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For the coarse-to-fine generative model, the input se-

quence always contains Nc coarse tokens, and the masking

operation is restricted to the Nf fine tokens. The last layer

of this network only predicts masked fine tokens. Other-

wise, the training procedure for both models is identical.

3.3 Sampling

We follow the same iterative confidence-based sampling

approach used in MaskGIT. More concretely, given YM as

the set of masked tokens and YU as the set of unmasked

tokens, do:

1. Estimate. For each masked token y in YM , estimate

the conditional probability distribution over its vo-

cabulary of codebook values V .

2. Sample. For each masked token, sample from the

distribution to generate an associated token estimate

ŷ ∈ V . We don’t use any sampling tricks in this

step, sampling from the categorical probability dis-

tribution for each token as-is.

3. Rank by Confidence. Compute a confidence mea-

sure for each of the sampled tokens by taking their

prediction log-probabilities and adding temperature-

annealed Gumbel noise to them:

confidence(ŷt) = log(p(ŷt)) + temp · gt (2)

where ŷt is a token estimate at timestep t, gt is

an i.i.d sample drawn from Gumbel(0,1) [29], and

temp is a hyperparameter that is linearly annealed to

0 over the number of sampling iterations. Then, sort

the set of sampled token estimates by the confidence

computed above. We find that high temperature val-

ues (e.g. > 6.0) result in higher quality samples.

4. Select. Pick the number of tokens to mask at the

next sampling iteration, k, according to the mask-

ing schedule 5 . Take the k lowest confidence es-

timates and toss them out, re-masking their tokens.

Place the remaining high-confidence token estimates

in YU , removing their tokens from YM .

5. Repeat Return to step 1 until the number of itera-

tions has been reached.

3.4 Prompting

Interactive music editing can be enabled by incorporating

human guidance in the sampling procedure through the

conditioning prompt of unmasked tokens. Because our ap-

proach isn’t conditioned on any signal other than the in-

put audio itself, we find that various types of prompts are

useful for obtaining coherent samples, as they lower the

amount of multimodality when sampling from the model.

Like AudioLM, we can prompt our model with prefix au-

dio of some duration (usually between 1 and 4 seconds),

and it will provide a continuation of that audio. Unlike Au-

dioLM, and other auto-regressive approaches, we can also

prompt our model with suffix audio, and it will generate

5 k = γ( t

tT
)D, where t is the current iteration, tT is the total number

of iterations, and D the total number of tokens in the sequence. The
scheduling function γ is a cosine schedule.

audio that leads up into that suffix. We can provide prefix

and suffix audio, and the model will generate the remaining

audio, such that it is appropriate, giventhe specified prefix

and suffix.

We can also apply a “periodic” prompt, where all but

every P th timestep are masked.The lower P is, the more

the generated audio will sound like the original, as the

model is highly conditioned. For example if P = 2, then

the model is essentially behaving like a upsampler, imput-

ing the tokens for every other timestep. As P increases,

the model shifts from behaving in a compression mode to

a generative mode, creating variations that match the style

of the original.

Another useful style of prompt are “compression”

prompts, where all codebooks other than the most coarse-

grained are masked. This gives the model strong condi-

tioning on every timestep, so the model is likely to produce

audio that closely matches the original. We can combine

this prompt with a periodic prompt with low P for even

more extreme compression ratios. Given the bitrate of the

codec B , which has number of codebooks N , a downsam-

pling rate P for the periodic prompt, and a number of kept

codebooks Nk, we can achieve a bitrate of B/P (N−Nk).

Finally, we can design music-specific prompts, which

exploit knowledge about the structure of the music. More

concretely, we explore beat-driven prompting, where

timesteps that fall on or around the beat are left unmasked.

The model is left to create music between these beats,

resulting in interesting variations on the original music.

These prompts can all be combined to create a very use-

ful music creation tool. In concert with a well designed

user interface, VampNet shows promise as the basis for a

next-generation music editing and creation suite.

4. EXPERIMENTS

Our experiments aim to evaluate VampNet’s capability

to both compress and generate music, given the various

prompting strategies described in Section 3.4. For our ob-

jective audio quality measures, we use a multiscale mel re-

construction error and the Fréchet Audio Distance (FAD).

Mel-reconstruction error is defined as the L1 distance be-

tween log-mel spectrograms at various time-scales,

DF,M = ||ŜF,M − SF,M ||1 (3)

where F is the FFT size of each spectrogram, and

M is the number of mel-frequency bins. We use F ∈
[2048, 512] and M ∈ [150, 80], with a hop size of 1

4
the

FFT size. Mel-reconstruction is valuable as a metric for

compression quality, but not for generation quality, since

it is likely that models produce audio that does not match

one to one with the original target audio. For generation

quality, we use FAD, which measures the overlap between

distributions of real and generated audio. Unlike mel-

reconstruction, FAD is geared more towards evaluating if

sample quality falls within the data distribution of the real

audio, and can be used to evaluate generation quality.
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Figure 3. Mel reconstruction error (top) and Fréchet Au-

dio Distance (FAD, bottom) for VampNet samples taken

with varying numbers of sampling steps, taken using a pe-

riodic prompt of P = 16. The samples were generated

by de-compressing tokens at an extremely low bitrate (50

bps), effectively generating variations of the input signals.

4.1 Dataset

Similar to JukeBox [17], we collect a large dataset of pop-

ular music recordings. Our dataset consists of 797k tracks,

with a sampling rate of 32 khz. These tracks are resam-

pled to 44.1kHz to make compatible with our tokenizer.

Our dataset contains music from thousands of artists across

genres described in Echo Nest’s Every Noise at Once 6 .

We use a subset of 2k tracks for validation, and another

subset of 2k tracks for testing. We ensure that there is no

artist overlap between train, validation, and test tracks. In

addition, we collect a set of music and non-music data

(speech, environmental sound), which we used to train

our tokenizer, using the datasets described in DAC [15].

All audio is normalized to -24dbFS. We do not use any

metadata about these files during training, as our model is

trained unconditionally.

4.2 Network Architecture and Hyperparameters

The audio tokenizer model we use takes as input 44.1kHz

audio, and compresses it to a bitrate of 8kbps using 14

codebooks, with a downsampling rate of 768x. The latent

space therefore is at 57Hz, with 14 tokens to predict at ev-

ery timestep. We designate 4 of these tokens as the coarse

tokens, and the remaining 10 as the fine tokens. Refer to

the Descript Audio Codec [15] for details on the tokenizer

architecture. We train the tokenizer for 250k steps.

The VampNet architecture (for both coarse and coarse-

to-fine models) consists of a bidirectional transformer [18]

with relative attention [30] and an embedding dimension

of 1280 and 20 attention heads. The coarse model has 20

attention layers, while the coarse-to-fine model has 16. We

train the coarse and coarse-to-fine model for 1M and 500k

steps, respectively. We train with the AdamW optimizer

[31] with β1 and β2 set to 0.9 and 0.999, respectively. We

6 https://everynoise.com/engenremap.html

Figure 4. Multiscale Mel-spectrogram error (top) and

Fréchet Audio Distance (FAD, bottom) for VampNet 10s

samples taken with a different types of prompts.

use the learning rate scheduler introduced by Vaswani et

al [18] with a target learning rate of 0.001 and 10k warmup

steps. We use a dropout of 0.1, and a batch size of 25, with

a GPU memory budget of 72GB.

4.3 Efficiency of VampNet

We first validate that VampNet can generate realistic music

audio in a low number of steps. To do this, we run Vamp-

Net using one of our prompts (the periodic prompt, with

P = 16) on our test set, on 10-second excerpts. We vary

the number of sampling steps in [1, 4, 8, 12, 36, 64, 72], and

report metrics for each sampling step.

4.4 Effect of prompts

We seek to understand how VampNet responds to different

prompts, as discussed in Section 3.4. The prompts range

from “compression” prompts, which compress music to a

low bitrate, to more creative “generative” prompts. We ex-

amine whether compression and generative prompts exist

on a continuum, and whether decompression from low bi-

trates results in generative behavior.

We draw 2000 10-second examples from our evaluation

dataset, encode them into token streams with our audio to-

kenizer, and manipulate the token streams in four ways:

1. Compression prompt: C codebooks are left un-

masked, starting from the coarsest codebook. All

other tokens are masked. We set Nk = 1.

2. Periodic prompt: every P th timestep is left un-

masked. In an unmasked timestep, tokens from ev-

ery codebook are unmasked. All other tokens (e.g.

tokens in timesteps that do not correspond to the pe-

riod P ) are masked. We set P ∈ [8, 16, 32].
3. Prefix and suffix (inpaint) prompts: a segment at the

beginning and at the end of the sequence is left un-

masked. All other tokens are masked. This prompt

is parameterized by a context length in seconds. We

set the context to be either 1 second or 2 seconds,

which corresponds to 57 or 114 timesteps.
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4. Beat-driven prompt: we first process the audio wave-

form with a beat tracker [32]. Then, around each de-

tected beat, we unmask timesteps to the right of the

beat. We examine a 75ms unmasked section around

each beat, which is about 4 timesteps per beat.

After manipulating the input token streams with our

prompts, we generate new musical signals from these

masked token streams using VampNet, and compute FAD

and mel-reconstruction error between the generated signals

and the input signals from our music dataset. We include

a noisy token stream baseline, where a portion (as dictated

by mask ratio r) of the tokens in the input token stream are

replaced with random tokens. We also include as baseline

the codec by itself, as well as the coarse-to-fine model.

Finally, we examine how these prompts can be com-

bined - specifically the compression and periodic prompts.

By manipulating the hyperparameters of these prompts (C
and P ), we can shift the model behavior from compression

to generation. As more timesteps are masked, the model

must generate plausible musical excerpts that connect the

unmasked timesteps, that may not match the input music.

5. RESULTS AND DISCUSSION

Results for our experiment varying the number of sam-

pling steps used to generate samples with VampNet are

shown on Figure 3. We find that VampNet achieves the

lowest FAD with 36 sampling steps, although 12 sampling

steps achieves comparable performance. In practice, we

find that samples taken with 24 steps achieve a fair trade-

off between generation quality and compute speed, with

10-second samples taking around 6 seconds to sample on

an NVIDIA RTX3090. In contrast, to generate 10 seconds

of audio with an autoregressive model would require 574

steps, which would take around 1 min to generate 10 sec-

onds of audio, given an autoregressive model with the same

number of parameters as ours, and the same tokenizer.

Results for our study on the effect of each prompt are

shown in Figure 4. First, we note that while the noisy token

baseline has comparable mel reconstruction to all prompts,

it performs very poorly in terms of FAD. This indicates that

while our prompting strategies may result in audio that is

not a perfect match to the original input audio, it still falls

inside the distribution of plausible music.

Of our proposed prompts, we find that beat-driven

prompts perform best, achieving the lowest FAD of all

prompts. A notable result here is that the periodic prompt

with P = 16 (35 conditioning timesteps) performs on par

with inpainting with 1 second of context (57 conditioning

timesteps). Therefore, prompt techniques that spread out

the conditioning tokens throughout the sequence (periodic

prompts) are able to use fewer conditioning timesteps to

generate samples of comparable quality to those generated

by sampling techniques that place all of the conditioning

tokens at the start and end of the sequences (inpainting).

Qualitatively, we also find that beat-driven prompts can

keep a steadier tempo than other prompts, though their out-

puts tend to resemble the original music closer than peri-

Figure 5. Mel-spectrogram error (top) and Fréchet Audio

Distance (FAD) (bottom) for VampNet samples at varying

bitrates. A baseline is provided by replacing tokens in the

input sequence with random tokens, per noise ratio r.

odic prompts. In practice, a mix of beat-driven, periodic,

and inpainting prompts can be employed to steer of Vamp-

Net in creative ways. To illustrate, we highly encourage

the reader to listen to the accompanying sound samples 7 .

We then combined periodic and compression prompting

to show how the model’s behavior shifts between recon-

struction and generation tasks, as more tokens are masked

away. Results for this experiment are shown in Figure 5.

At higher bitrates, (600 bps and above), VampNet is able

to accurately reconstruct the original music signal, achiev-

ing low mel-spectrogram error and FAD values with re-

spect to the evaluation music audio. At bitrates of 200bps

and below, VampNet has comparable reconstruction qual-

ity to the noisy token baselines, indicating that the sam-

pled VampNet signals no longer resemble the input audio

in terms of fine-grained spectral structure. However, the

FAD for VampNet samples at low bitrates is much lower

than the FAD for noisy baselines. This indicates that even

though VampNet isn’t able to reconstruct the input music

signal at low bitrates, it is still able to generate coherent

audio signals with musical structure, that are closer to the

distribution of “real music” than our noisy baseline.

6. CONCLUSION

We introduced VampNet, a masked acoustic token mod-

eling approach to music generation. VampNet is bidirec-

tional, and can be prompted a variety of ways using an

input audio file. Through different prompting techniques,

VampNet can operate in a continuum between music com-

pression and generation, and is an excellent tool for gener-

ating variations on a piece of music. With VampNet, a mu-

sician could record a short loop, feed it into VampNet, and

have VampNet create musical variations on the recorded

idea every time the looped region repeats. In future work,

we hope to investigate the interactive music co-creation po-

tential of VampNet and its prompting techniques, as well as

explore the representation learning capabilities of masked

acoustic token modeling.

7 audio samples: https://tinyurl.com/bdfj7rdx
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ABSTRACT

Learning an instrument can be rewarding, but is unavoid-

ably a huge undertaking. Receiving constructive feedback

on one’s playing is crucial for improvement. However, per-

sonal feedback from an expert instructor is seldom avail-

able on demand. The goal motivating this project is to

build software that will provide comparably useful feed-

back to beginners, in order to supplement feedback from

human instructors. To lay the groundwork for that, in this

paper we investigate performance assessment criteria from

both quantitative and qualitative perspectives. We gathered

83 piano performances from 21 players. Each recording

was evaluated by both expert piano instructors and novice

players. This dataset is unique in that the novice evalua-

tors are also players, and that both quantitative and quali-

tative evaluations are collected. Our analysis of the eval-

uations indicates that the kind of specific, concrete piano

techniques that are most elusive to novice evaluators are

precisely the kind of characteristics that can be detected,

measured, and visualized for learners by a well-designed

software tool.

1. INTRODUCTION

Learning to play a musical instrument can be reward-

ing, but is also unavoidably a huge undertaking. Receiv-

ing feedback on one’s playing is crucial for improvement.

However, personal feedback from an expert instructor is

seldom available on demand; it is typically available (if at

all) only in weekly music lessons. Our long-term goal in

this project is to build software that will provide compa-

rably useful feedback to beginners, as needed, in order to

supplement insights from human instructors. The modes

of computer-generated feedback could involve textual or

visual indicators, or a mix of both. However, determining

what kinds of feedback are especially helpful for beginners

(among those that are feasible for computers to generate) is

not trivial and should not be based on assumptions. To lay

the groundwork for meaningful computer-aided feedback,

therefore, in this paper we gather information on how ex-

© Y. Jiang. Licensed under a Creative Commons Attribu-

tion 4.0 International License (CC BY 4.0). Attribution: Y. Jiang,

“Expert and Novice Evaluations of Piano Performances: Criteria for

Computer-Aided Feedback”, in Proc. of the 24th Int. Society for Mu-

sic Information Retrieval Conf., Milan, Italy, 2023.

perts and novices assess piano performances and what cri-

teria they tend to rely on in such assessments.

Recent years have seen rapid growth in commercial

products for computer-assisted instrumental learning. Un-

fortunately, most applications cannot deal with perfor-

mances involving expressive timing: they expect users to

play at a fixed tempo throughout a piece, even though such

performances in real life are often perceived as boring and

far short of the full expressive potential of music. For ex-

ample, Yousician [1] and Simply Piano [2] color correctly

played notes as the user progresses through a song at a pre-

set tempo. While platforms like this have their own pur-

poses and values, such oversimplified music playing ex-

periences can mislead some learners to think that making

music is all about playing the correct notes (rather than bet-

ter sounding notes). Moreover, real-time feedback could

distract players from listening to themselves, and as Perci-

val et al. [3] point out, “computer analysis and interaction

should occur after a student has finished playing”.

Therefore, for our purposes, it makes more sense to en-

vision software that can analyze a complete performance

recording before providing feedback. Given such a record-

ing, we would like to investigate what additional evaluation

criteria (beyond note accuracy) should be incorporated into

the feedback. In fact, even beginner-level players can usu-

ally tell when they’ve hit wrong notes, as the music won’t

sound right, but they often lack the ability to make more

sophisticated judgments about the quality of their playing:

articulation, tempo control, dynamics, and interpretation

or expressiveness. Therefore, in this paper we focus on an-

alyzing performances that are relatively “correct” in terms

of wrong notes, so that they are ready for more nuanced

aspects to be evaluated.

We have gathered 83 such piano performances from 21

players, each of whom chose from among seven beginner

pieces. Each recording was evaluated by four expert piano

instructors, and also by 17 peers from among the players

themselves, with both numerical ratings and written com-

ments. In this paper we examine (1) whether instructors

and players evaluate performances differently, (2) whether

better players are also better evaluators, and (3) what ob-

jective indicators can be detected and measured by com-

puters that would reflect comparable evaluation criteria.

This dataset is unique in that the peer evaluators are also

players, and both quantitative and qualitative evaluations

are collected. Each performance has also been aligned to

its score, making it possible in the future to derive addi-
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tional objective measurements (e.g., tempo variations), and

to support further analyses relating performances to their

scores (e.g, inter-song performance analysis).

2. RELATED WORK

A recent review paper [4] offers a comprehensive discus-

sion of computer-aided instrument learning. The authors

emphasize the differences between systems that are de-

signed to measure competence and those designed to en-

hance learning, as the former only need to provide a rating,

but the latter need to provide descriptive evidence justify-

ing the evaluation. Two other review papers [5] [6] dis-

cuss the potentials of utilizing MIR techniques in music

education. Example work on piano music tutor systems

include [7] [8] [9] [10] [11].

Music performance analysis (MPA) is a broader topic,

encompassing other purposes and uses beyond assisting

learners, but a recent review paper [12] does discuss its

application potential and challenges in regard to music ed-

ucation. Another closely related topic is modeling expres-

sive music performance [13] [14] , which focuses on more

abstract and higher-level aspects of a performance.

Related to examining performance evaluations, [15]

discusses subjectivity in music performance assessment,

[16] investigates how individual raters differ in their rating

scale structure, and [17] provides insights on the benefit of

peer assessment of music performance.

3. DATASET DESCRIPTION

Our dataset includes three components: 83 piano

performance recordings in the WAV format, span-

ning seven different musical pieces; 803 evaluations

of these performances, with players’ metadata; and

83 audio-to-score alignments (with seven MusicXML

score files and 83 alignment text files) indicating the

starting time in the audio of each musical note in

each score. This dataset is publicly available at

facultystaff.richmond.edu/∼yjiang3/papers/ismir23/.

3.1 Performance Recordings

We recruited 21 participants from a local college, using

flyers and campus-wide email announcements. These par-

ticipants represent a range of piano experience, from a low

of three months to a high of 16 years. Each participant

completed a short questionnaire before recording a perfor-

mance for the project. Except for one music major and one

music minor, the participants play piano as a hobby. More

than one participant recounted the story that they took pi-

ano lessons growing up, played on-and-off throughout the

years, and recently came back to practicing it in college.

When asked to self-identify their piano skill levels, nine of

the 21 described their skills as “advanced”, eight as “inter-

mediate”, and four as “beginner”. (None chose the “pro-

fessional” category from our prompt.)

We selected seven pieces from a popular score book for

adult group piano classes [18], and asked each player to

play however many pieces they felt like from these. (This

flexibility helped recruit lower-level players who might

otherwise be intimidated by this task.) The sheet music

was shared with them weeks in advance to allow time for

practice and preparation. Table 1 provides the names of

these pieces and the number of performances of each. The

players were advised to warm up before a recording ses-

sion, and when recording, were offered the option either to

be left alone in the piano room (to decrease nervousness)

or to have the researcher present. They were allowed to re-

record multiple times until satisfied with their own playing

(e.g., with the preponderance of notes played correctly).

Piece Name #Measures #Recordings

Careless Love 16 11

Cielito Lindo 16 6

Lavender’s Blue 16 17

Over the Waves 32 11

She Wore a Yellow Ribbon 34 13

The Blues 16 17

The Entertainer 40 8

Table 1. Summary of performance recordings.

3.2 Performance Evaluations

To evaluate the quality of these recordings, we recruited

four professional piano instructors and 17 out of the 21

players (the other four were unfortunately not available for

this stage). The instructors all have doctoral degrees and

at least two decades of teaching experience. Each perfor-

mance was evaluated by all four instructors and at least

five (sometimes six) randomly chosen peers, resulting in

803 evaluations in total. The evaluators were asked to pro-

vide a numerical rating from one (poor) to five (excellent)

for each recording, and also to briefly explain the basis for

their rating, describing what criteria they considered. We

collected the evaluations through a web-based form where

users can play the recordings (grouped by score), enter

evaluations, and save their progress. The sheet music is

also linked from the form. It took between two to three

hours for each instructor to evaluate all 83 performances,

and 50 minutes on average for each peer player to evaluate

27 or 28 performances.

3.3 Audio-to-Score Alignment and Web Interface

Based on the sheet music, we created seven digital scores

in the MusicXML format, and aligned each performance

to its score. The alignment was achieved by the hidden

Markov model proposed in [19], with occasional manual

corrections. Each of the 83 alignment files contains two

columns of values: a musical time in the score, and its

played time in the recording. The alignment can also sup-

port future analyses relating performance attributes to ele-

ments in scores. For example, one could easily investigate

whether players tend to slow down at a particular measure.

To make it more convenient to explore this dataset,

we have built a demonstration web-based interface where

a user can select and play any of these performances,

while looking at the sheet music with the currently
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played notes highlighted. The evaluations of the se-

lected performance are also shown on the same page.

This interface can help anyone interested in this dataset

to find connections among performances, scores, and

evaluations. This website is publicly available at

facultystaff.richmond.edu/∼yjiang3/papers/ismir23/.

4. QUANTITATIVE ANALYSIS

4.1 Self-Identified Piano Levels

To verify the accuracy of the performers’ piano skill levels,

we separate the performances into three groups according

to their self-reported levels, and compare the evaluators’

ratings of those performances in each group. Figure 1 com-

pares three box plots, one for each group of performance

ratings, where each performance rating in a group repre-

sents the average among the four instructors. Although

the median rating increases with the skill levels, the three

distributions overlap with each other. To test whether the

difference between the advanced group’s ratings and the

intermediate group’s is statistically significant, we conduct

a one-sided Welch’s t-test and get a p-value of 0.1826 (α

= .05)—so we cannot say the former played better than

the latter. (The beginner group’s n is too small for sta-

tistical tests.) Although “beginner”, “intermediate”, and

“advanced” categories are common labels applied to self-

study courses and musical scores for amateur musicians,

this result indicates that the ambiguity and subjectivity

inherent in defining these categories make self-identified

skill levels unreliable.

Figure 1. Comparing (averaged instructor) ratings among

three self-identified groups.

4.2 Expert Evaluations

To examine how each instructor distributes their rating lev-

els, we count the ratings at each level and compare their

frequencies, as shown in Figure 2. It is clear that Instruc-

tors 1 and 2 tend to give high ratings more often than In-

structors 3 and 4; the former also avoid giving the lowest

rating almost completely. This indicates that the absolute

rating values may be subjective and skewed.

Therefore, to measure how similarly these instructors

rate, it makes more sense to compare ratings according to

relative rather than absolute values. For this purpose we

use Kendall’s τ coefficient, which focuses on the rank cor-

relation and can handle ties (with the tau-b version). Table

Figure 2. Comparing instructor rating distributions.

2 shows how each pair of instructors’ ratings are associated

with each other, with correlations sorted in descending or-

der; all p-values are close to zero, statistically significant

at the α = .01 level. These instructors show strong corre-

lations (> .5) with one another, especially Instructor 3 and

Instructor 4.

I3 & I4 I1 & I2 I2 & I4 I1 & I4 I1 & I3 I2 & I3

.806 .595 .563 .521 .514 .508

Table 2. Kendall’s τ correlations (I=Instructor).

4.3 Peer Evaluations

As described in Section 3.2, 17 of the players also provided

peer evaluations of the performances. To measure how the

players’ ratings compared to the instructors’, we calculate

the Kendall’s τ correlation between ratings provided by

each player and the average rating for the same recording

subset provided by the instructors. Let’s define kp as the

correlation for the pth player, where p = 1, 2, . . . , 17. All

kp end up ranging between .401 and .741 (p-values < .01),

with a mean of .542.

If we use kp to represent the degree of “accuracy” of

the pth player ’s ratings, we can investigate the question of

whether better players are also better evaluators. Let’s de-

fine rp as the average rating received by the pth player from

all four instructors (for all pieces by this player). We use

Spearman’s ρ to measure how rp and kp are monotonically

related, and the result is:

ρr,k = 0.152

p-value = 0.56

Although the correlation is positive, the large p-value pre-

vents us from rejecting the null hypothesis that no rela-

tionship exists between how well individuals play and how

accurately they rate performances.

5. QUALITATIVE ANALYSIS

5.1 Content Analysis and Annotation

To understand the evaluation criteria used by the instruc-

tors and the (novice) peer evaluators, we conduct a content

analysis of their written comments [20]. The process in-

volves first building an annotation model representing var-

ious evaluation criteria that appear in the text, and then
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using this model to annotate each evaluation comment.

(These two steps are iterative, as described later, in keep-

ing with best practices for textual analysis [21].) For ex-

ample, one of the comments—“The player didn’t play the

staccato notes in the left hand. No dynamic changes. A

wrong note was played.”—is annotated with staccato, dy-

namic contrast, and wrong note (terms that are then cate-

gorized under Articulation, Dynamics, and Note Accuracy

respectively).

We use specialized text analytics software (QDA Miner,

from Provalis Research) to construct the annotation model

and to annotate each comment. To define appropriate an-

notations, we find recurring words and phrases (frequency

≥ 3), and look at each original comment in context to un-

derstand the intended meaning. For example, one of the

most frequent phrases is “left hand”, and one of its re-

curring contexts is that the left hand notes were played

too loudly; therefore we create an annotation called left

hand loudness. Other key words often associated with

this aspect include “bass”, as in “... I would like the bass

[to] sound softer”. By searching for related key words

(e.g., “balance”), we have found similar contexts describ-

ing right hand loudness or just the balance in general.

We group these conceptually related annotations under the

same category called Balance. As we examine the contexts

of these frequent words and phrases one-by-one, we create

new annotations (and categories), and use them to annotate

evaluator comments.

Building annotations and annotating comments is an it-

erative process: while examining the comments, we have

discovered infrequent but useful key words like “8va” and

“cresc” that we should search for. We sometimes carve

out a new annotation from existing ones when observing

enough cases to form a pattern (e.g., we have created a

separate tempo steadiness annotation from good tempo and

inaccurate tempo.) We have also spot-checked individual

comments to make sure all evaluation criteria are suffi-

ciently represented in our annotation model.

5.2 The Annotation Model

Figure 3 shows the annotation model developed from our

dataset, containing 47 annotation terms arranged in 11 cat-

egories (and two subcategories). Many of these annota-

tions can represent both positive and negative aspects of a

performance: for example, tempo steadiness can be used

to annotate both steady tempo and unsteady tempo. This

is harmless, as our goal is to identify evaluation criteria,

not the valence of the evaluations per se. A small handful

of annotation terms exist only in the instructors’ comments

or only in the peers’ comments, and these are mostly an-

notations in the Styles category: four styles are mentioned

only by the instructors and five styles only by the peers. In

addition, dynamic shaping (20 instances), melodic shaping

(9 instances), and rubato (11 instances) only exist in the

instructors’ comments.

The annotation model derived from this dataset repre-

sents a diverse set of criteria, and it serves as a pool from

which computers can select and generate measurements.

Figure 3. The annotation model. Lower case: annotations;

bold: categories; italic: subcategories.

Many of the criteria are objective in nature: e.g., tempo

change, note accuracy, and rhythm. These have low ambi-

guity and thus computational methods can detect them in

a fairly straightforward manner; in fact, many traditional

MIR techniques can be used for measuring these criteria.

For example, we can easily track tempo changes based on

audio-to-score alignment results (although deriving per-

ceived tempo involves a few more parameters [22]). At the

other end of the spectrum, however, criteria like confidence

and style are very abstract, and thus are extremely hard for

computers to detect. The rest of the criteria fall in the mid-

dle. Dynamics, phrasing, and articulation, for example, are

directly linked to measurable features of the audio signal,

but they involve many other parameters and can be sub-

jective. Some literature addresses this duality (e.g., [23]

on articulation and [24] on dynamic shaping), but there

is no consensus on how to model such features, and at-

tempts are scarcer than the more traditional MIR work

mentioned above. Such aspects are almost never consid-

ered in computer-aided instrument learning applications.

5.3 Frequency of Evaluation Criteria

In the end, we have a total of 885 annotation instances

for the instructors’ comments, and 1015 for the peers’

comments, averaging 2.7 and 2.2 annotations per com-

ment respectively. We count the number of annotation in-

stances under each annotation category separately for the

instructors and for the peers, and calculate the frequency

with which each annotation category was used by the two

groups respectively. These percentages are shown in Fig-

ure 4. For both the instructors and the peers, Tempo, Note

Accuracy, and Rhythm are the top three categories, ac-

counting for just over 60% of the total annotations (al-

though the peers describe Tempo more frequently and

Rhythm less frequently than the instructors). For the re-

maining categories, Balance, Styles, and Confidence show

the most difference between the two groups.
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Balance is the fourth most common evaluation crite-

rion found among the instructors’ comments, account-

ing for 8.4% of the annotations, versus only 2.4% of the

peers’. Balance between hands is a well-known challenge

for piano beginners, and it can be difficult to notice on

one’s own; the percentage discrepancy between experts

and novices suggests a promising opportunity for computer

assistance. Meanwhile, Styles is the fourth most common

criterion for the peer evaluators (9.4%), but it is only the

eighth for the instructors (4.4%). Confidence accounts for

7.3% of peer annotations, but only 2.7% of instructor an-

notations. Styles and Confidence are both abstract con-

cepts. For the instructors, these two are both ranked after

Balance, Dynamics, Articulation, and Pedal, which repre-

sent concrete piano techniques, and they occupy 28.2% in

total. In contrast, all these four categories have lower per-

centages for the peers, and they occupy only 18.2% in to-

tal. This discrepancy implies that as compared to experts,

novices might be more likely to judge a performance using

abstract concepts, while experts tend to point out specific

piano techniques.

Figure 4. Comparing annotation category percentages.

We further investigate the usage of the four “technique”

criteria and the two “abstract” criteria just described by

comparing three groups among the peer evaluators: the

four peer players whose performances received the low-

est average ratings, the four peer players whose perfor-

mances received the highest average ratings, and the four

ranked in the middle. For each group, we calculate the

usage percentages as above, and focus on comparing the

six criteria. Figure 5 shows the comparison among the

three groups, as well as how they compare to the instruc-

tors. The left bars indicate a consistent positive associa-

tion between piano skill levels and the usage of piano tech-

nique criteria. Although the (opposite) trend of the right

bars is less consistent, as the middle group used abstract

criteria less frequently than the higher-skilled group, the

lower-skilled group indeed used a significantly higher per-

centage of abstract criteria than the average of all 17 peer

evaluators (16.7%). This suggests that lower-skilled piano

players lack the ability to pin down specific piano tech-

niques involved in a performance, and their evaluation cri-

teria tend to be correspondingly more general and abstract,

e.g., “There is some hesitancy in the chords. The bass clef

chords are a bit abrupt”.

Figure 5. Comparing piano technique criteria (left) and

abstract criteria (right) usage among three groups of peers

and the instructors.

6. DISCUSSION

6.1 Do Instructors and Players Evaluate

Performances Differently?

In terms of numerical ratings, the consistent high corre-

lations between the peer evaluations and the average of

the instructor evaluations (Section 4.3) suggest that even

novices have a reliable sense of what good or poor per-

formance is like. In terms of evaluation criteria, both the

peers and the instructors use Tempo, Note Accuracy, and

Rhythm the most, accounting for a little over 60% of the

total comment annotations from both groups. However,

beyond these top three criteria, the two groups exhibit dif-

ferent patterns: the peers tend to use more abstract and gen-

eral criteria like Confidence while the instructors use more

concrete and specific piano techniques like Balance (be-

tween hands). It is unsurprising that instructors would use

more technical criteria, given their own training and teach-

ing experience, and computer-generated feedback based on

these criteria could be particularly illuminating to individ-

uals seeking to improve their playing.

6.2 Are Better Players Also Better Evaluators?

For the sake of this discussion, we define good evalua-

tions as evaluations similar to the ones done by the instruc-

tors. In terms of ratings, we do not find enough evidence

confirming better player are also better evaluators—even

players of poor performances can provide accurate ratings.

However, in terms of evaluation criteria, we have found

evidence that higher-skilled players tend to provide better
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evaluations. Specifically, they are more capable of judging

a performance based on piano techniques, which are in line

with piano instructors’ evaluations.

6.3 Computer-Aided Feedback

These results suggest that there is a consistent standard of

good and poor performances—at least for beginner pieces.

However, numerical ratings have limited value for helping

students learn. In fact, students take private music lessons

not to be given a rating, but to seek specific formative feed-

back for improvement. Building a machine that can pro-

vide comparable feedback would offer much greater value

to end users.

Much of the terminology in the annotation model is

score-dependent, verifying whether or not the performer

has followed elements in the sheet music. The basic el-

ements are notes, rhythm, and tempo/timing, which also

correspond with the top three evaluation criteria. Relevant

MIR tasks for detecting such errors include music tran-

scription [25], source separation [26], and audio-to-score

alignment [27]. Other typical elements in the sheet mu-

sic are dynamics, articulation, and pedaling, and some at-

tempts (such as [23] [28] [29]) have been made at modeling

and detecting them.

However, not every element or aspect worth evaluating

is explicitly indicated in the score. For example, pedal-

ing and balance between hands are often only implied in

the score, and can also be up to personal interpretation by

the performer. In such instances, text-based feedback can

be of limited utility, and what a computer may be able to

do more effectively is provide visualized feedback. The

value of such feedback lies in making implicit aspects of

a performance explicit to the player, rather than instruct-

ing the player what to do. For example, the computer

could show a tempo curve indicating (intentional or unin-

tentional) tempo changes. Such visualizations can be espe-

cially helpful to beginners, who might not be able to notice

such aspects easily.

6.4 Peer Evaluation for Education

At the end of each peer evaluation session, we asked the

evaluator two open-ended questions: “How do you feel af-

ter listening to so many recordings in a row?” and “How

do you feel about this process compared to how you eval-

uate your own playing?” Most evaluators expressed that it

was a positive experience, with words like “fun”, “very in-

teresting”, and “enjoyed it”. A couple of them mentioned

they were able to pay more attention to the elements in

the sheet music when evaluating others. Four of them in-

dicated that the process of comparing multiple recordings

helped them judge their own playing better. This over-

all positive response suggests that there is educational po-

tential for peer evaluation platforms where piano learners

could anonymously give each other feedback.

6.5 Limitations

There are some inherent limitations in this project. First,

the pieces we focus on are all at the beginner level, mean-

ing they are relatively short and involve relatively few so-

phisticated piano techniques. It is possible that our findings

might not apply to performances (or evaluations) of more

advanced pieces. Second, the recording process might in-

volve some bias against more advanced players who felt

confident and could sight read, and thus did not prepare as

much as the beginners. Third, the size of the dataset is rela-

tively small. This facilitated our process of careful, manual

content analysis, but imposes some limits on the statistical

analysis.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we contribute a unique dataset of amateur pi-

ano performance recordings and corresponding expert and

peer evaluations. This dataset allows for interesting multi-

faceted analysis of nuances in the peer evaluations, because

the peer evaluators are also players, and both quantita-

tive and qualitative evaluations are recorded. Through the

initial analyses presented in this paper, we find that even

novices exhibit reliable judgement at distinguishing good

performances from poor ones, but higher-skilled novices

tend to base their judgement on piano techniques (as ex-

perts do), while lower-skilled novices rely on more sub-

jective and/or abstract impressions. Most evaluation cri-

teria used by experts are concrete, and are therefore pre-

cisely the kind that can be detected and measured by soft-

ware evaluating an audio signal and its relationship to the

score. Visualizing these aspects could provide valuable as-

sistance to beginners seeking constructive insights on their

playing. Despite some limitations to the generalizability

of its findings, this paper lays the groundwork for building

more advanced computer-aided instrument learning soft-

ware. In future work, we plan to combine the audio-to-

score alignments in this dataset with other MIR techniques

to derive specific measurements reflecting experts’ evalua-

tion criteria. Once that is achieved, we then plan to com-

pare those computer-generated evaluations of these record-

ings (including measurements and/or visualizations) to the

human annotations.
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ABSTRACT

Music retrieval and recommendation applications often

rely on content features encoded as embeddings, which

provide vector representations of items in a music dataset.

Numerous complementary embeddings can be derived

from processing items originally represented in several

modalities, e.g., audio signals, user interaction data, or ed-

itorial data. However, data of any given modality might

not be available for all items in any music dataset. In this

work, we propose a method based on contrastive learning

to combine embeddings from multiple modalities and ex-

plore the impact of the presence or absence of embeddings

from diverse modalities in an artist similarity task. Experi-

ments on two datasets suggest that our contrastive method

outperforms single-modality embeddings and baseline al-

gorithms for combining modalities, both in terms of artist

retrieval accuracy and coverage. Improvements with re-

spect to other methods are particularly significant for less

popular query artists. We demonstrate our method success-

fully combines complementary information from diverse

modalities, and is more robust to missing modality data

(i.e., it better handles the retrieval of artists with different

modality embeddings than the query artist’s).

1. INTRODUCTION AND RELATED WORK

The MIR community has dedicated significant effort

to defining and computing music similarity in the last

20 years. Music similarity can be used in multiple down-

stream tasks, from playlist continuation, music visualiza-

tion/navigation, music categorization for organizing cata-

logs, or for personalized recommendations. The notion of

similarity is subjective and there is no consensus on how to

define and evaluate it [1]. To evaluate the performance of a

music similarity algorithm, some previous works either fo-

cus on content-based aspects, such as melody or harmony.

Other works measure similarity based on cultural aspects,

such as based on the co-occurrence of items in playlists or

on editorial data –this is the approach of our work.

© A. Ferraro, J. Kim, S. Oramas, A. Ehmann and F.

Gouyon. Licensed under a Creative Commons Attribution 4.0 Interna-

tional License (CC BY 4.0). Attribution: A. Ferraro, J. Kim, S. Ora-

mas, A. Ehmann and F. Gouyon, “Contrastive learning for cross-modal

artist retrieval”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

Multiple methods have been proposed to compute mu-

sic similarity based on a variety of data types related to the

music, e.g., based on audio descriptors [2], document sim-

ilarity [3], or graphs of musical connections [4, 5]. Some

relatively recent works propose ways to produce embed-

dings –that can be used to compute music similarity– in

a supervised or unsupervised way, by training models on

large amounts of data (such as audio, text or image). Such

pre-trained models, which are often released publicly, may

produce feature representations –i.e. embeddings– that are

effective for previously unseen tasks. Such embeddings

can be computed from diverse types of modalities related

to music such as audio [6–8], tags [9], album covers im-

ages [10], or biographies [4]. The multiple modalities of

data that can describe a music item –such as audio, tags,

or listening interactions– may contain complementary in-

formation. For example, the quality and scale of audio vs

collaborative data has been shown to have significant influ-

ence in autotagging tasks [11]. It therefore appears bene-

ficial to combine diverse complementary modalities to ob-

tain a more informative representation of music items. In

fact, recent research identifies the combination of diverse

sources of data as specially promising for mitigating limi-

tations and issues in music recommendation research [12].

Another aspect to take into account is that in any given

music dataset, data of diverse modalities might be avail-

able for different subsets of items. Therefore, when query-

ing with an item represented in a given modality, the max-

imum coverage for retrieval is limited to items for which

that same modality is available, leaving out a potentially

significant –and relevant– part of the dataset. For example,

the availability of listening interactions or users’ explicit

feedback is highly dependent on item popularity. There-

fore, for artists with very little listening and user feed-

back, it may not be possible to obtain embeddings from

that modality. Embeddings from other modalities may suf-

fer from the same issue, either because there is no data

available to produce an embedding or because the quality

of the available information is very low. For instance in

the case of a model trained on tag annotations to produce

artist embeddings, where the output embedding may not

be very informative for those artists that have a single or

few tag annotations. Such issues are particularly common

and problematic emerging or more underground artists, for

which the available information is more limited.

In order to mitigate the issue of availability of some

modalities, it is important to combine and take full ad-
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vantage of all information available so that when querying

with an artist that has only one modality available, we can

also retrieve artists for which we have a different modal-

ity information. Therefore, the focus of this work is to

combine diverse modalities into a common shared space

that is beneficial for 1) leveraging each modality informa-

tion from the artists, and 2) allowing to operate on a single

space that covers the full population of artists, ensuring

that whether or not an artist is retrieved for another does

not depend on the number of modalities available.

The problem of combining embeddings from diverse

modalities in a shared representation has received some at-

tention in the last few years. In the music domain, there

have been some works on combining embeddings by sim-

ple concatenation [13] or predicting one modality from an-

other [14]. Contrastive learning techniques go beyond sim-

ple concatenation or prediction, trying to learn a shared

representation between embeddings from different modal-

ities. Some examples of research related to multimodal

contrastive learning can be found in [10], where embed-

dings from a shared multimodal space are used as ad-

ditional features for classification, or in [15, 16] where,

e.g., music audio can be retrieved from natural language

descriptions. In this work, we propose to apply a con-

trastive learning method that maps embeddings from di-

verse modalities to a shared embedding space, extending

the advantages of multiple modalities to populations that

would not be covered otherwise.

In summary, in this work we propose an approach to

combine the multiple encoders of a contrastive learning

method, showcasing several improvements over baselines

and single-modality approaches in an artist similarity task.

We show under two different contexts –using an open and

an in-house dataset– that our proposed approach:

• achieves higher performance in terms of accuracy

and coverage of retrieved artists (§ 3.1),

• successfully combines complementary information

from diverse modalities (§ 3.2),

• is more robust to missing modality data (§ 3.3),

• particularly increases the performance for less pop-

ular query artists (§ 3.4).

2. METHODOLOGY

2.1 Single-Modality Embeddings and Contrastive

Method

In this work, we use three modalities, namely: tags, user-

listening interactions (i.e. collaborative filtering data, re-

ferred to as CF), and audio information. In all cases, we

use pre-trained models to obtain embeddings for each of

the modalities. We evaluate artist similarity performance

using the embeddings from the pre-trained models directly,

and compare to the performance when using the embed-

dings produced by our contrastive method which is trained

with the same embeddings from pre-trained models.

In these experiments we apply a contrastive learning

loss based on InfoNCE [17]. Specifically, we define the

contrastive loss between two modalities, ψψψa and ψψψb, as:

Lψψψa,ψψψb
=

M∑

i=1

− log
Ξ(ψψψi

a
,ψψψi

b
,τ)

2M∑

k=1

⊮[k ̸=i]Ξ(ψψψi
a
,ζζζk,τ)

, where M is the

batch size and τ is the temperature parameter. We define

Ξ(a,b, τ) = exp(cos(a,b)τ−1), based on the cosine sim-

ilarity. ζζζk is defined as ψψψka, if k ≤ M and else ψψψk−Mb .

This loss function attempts to minimize the distance be-

tween the modalities of the same artist while maximizing

the distance with any modality from other artists.

We use three encoders –one for each modality– that

will produce three representations in our shared space for

each artist. During training 1 we minimize the sum of the

pairwise losses between each of the modalities as in [18]:

Ltot = LAudio-Tag + LAudio-CF + LTag-CF

Once the model is trained with the contrastive method

and we want to use it for inference, for a given artist, we

aggregate the output of each internal encoder by averaging

all available information.

2.2 Training Data

In order to investigate the effectiveness of our contrastive

method under different situations, we train our model us-

ing two independent datasets: We use a dataset based on

public data to facilitate the reproducibility of some of the

results. And we also use an in-house dataset that contains

multimodal information for a larger set of artists.

Training our model requires full coverage of the three

modalities for all artists –tag-based embeddings, CF em-

beddings, and audio embeddings. For the public dataset,

we use the Million Song Dataset (MSD) [19] and its con-

nections with other datasets to collect tags, audio and CF

embeddings. We collected audio track embeddings using

the public unsupervised model from [6] to extract embed-

dings from MSD audio previews, then we averaged all au-

dio tracks embeddings for each artist. The tagging data

was collected from the MSD500 dataset [11] and embed-

dings were computed using PMI factorization [13] of 500

tags. The CF embeddings were obtained using weighted

matrix factorization [20] based on the Echonest Profile

dataset, 2 with Gaussian process-based Bayesian hyperpa-

rameter tuning [21]. We gathered information from the

three modalities for 17, 478 artists.

For the in-house dataset (hereafter, OWN) we collected

tags, CF, and audio information for 38, 301 artists. This

dataset is larger than MSD and includes what we believe

is higher-quality tags and CF data, which allows us to

compare the performance of our approach in a different

setting. The CF information is computed from very large

amounts of user-listening interactions on a streaming plat-

form. The audio embeddings are computed using the su-

pervised model 3 described in [6]. The tag embeddings are

1 For both datasets we use Adam optimization with a learning rate of
0.0001 and temperature of 0.1. We use a fully connected layer of 256 for
the CF encoder, two layers with 512 and 256 for the Audio encoder and
4 attention heads of 256 for the tag encoder. The learned space has 200
dimentions. Batch size for COWN is 2048 and for CMSD is 128.

2 Specifically, we aggregated the per-song listening counts correspond-
ing artists such that we obtain the ‘user-artist’ listening matrix.

3 i.e. a different model for audio embeddings than when training on
MSD.
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computed using PMI factorization from a total of 6, 421
different tags, which are a combination of manual and au-

tomatic annotations. Since our pre-trained models for au-

dio and CF are at the track level, we compute artist embed-

dings by averaging over artist track embeddings.

In the remainder of this work, we refer to the model

trained with the contrastive method with in-house data as

COWN and the model trained with public data as CMSD.

2.3 Evaluation Dataset

The ground truth for artist similarity is defined herein by

the OLGA public dataset [22], containing artist similarity

information collected from AllMusic. Our evaluations are

therefore based on a cultural ground-truth, following [5].

We collected data from the MSD dataset for the orig-

inal 17, 646 artists in OLGA. We obtained tag data from

the MSD500 for 10, 971 (62%) artists, user interaction

data from the Echonest Profile dataset for 15, 389 (87%)

artists, and audio embeddings using MSD audio previews

for 100% of the artists. 4

We also create a subset of OLGA where all artists con-

tain complete tags, user interaction, and audio information

from MSD. We refer to this subset as OLGA Full Modal-

ity Coverage (FMC), which contains 9, 474 artists and it

is also mapped to our internal dataset. The OLGA FMC

subset is used to compare the results of multiple methods

pre-trained on different and independent datasets.

2.4 Evaluation Conditions

In order to provide insights on the performance of the con-

trastive method, we conduct analyses under 3 different sit-

uations, varying the degree of availability of the different

modalities in the evaluation data:

Raw evaluation dataset: In one condition, we compare

the methods using all the artists in the OLGA dataset. In

this case, we are interested to understand performance in

a scenario of a real –uncontrolled– evaluation dataset, ac-

counting for some organic imbalance of the availability of

data in different modalities.

Full Modality Coverage: In another condition, we use the

OLGA FMC subset where all artists contain CF, tags, and

audio embeddings in both MSD and OWN datasets. In this

case, we want to understand performance while factoring

out the potential influence of one or another modality being

only partially available in evaluation.

Systematic variation of modality coverage: We also

perform multiple comparisons by grouping artists from

OLGA depending on how many modalities are available.

Here, we want to look at how much the contrastive method

and the baselines are capable of doing cross-modality re-

trieval when using different modalities as input. In par-

ticular, we want to see whether or not they are capable of

retrieving artists that have different modality information

4 Note that we don’t control for artist separation between MSD, OWN
and OLGA. But even if some artists may be present in both train and
test sets, the artist similarity information from OLGA is only used for
evaluation, and is never used during the training of the single-modality
embeddings nor the contrastive models on either MSD or OWN.

available compared to the query artists. Therefore, in this

part, we create 7 groups of artists –at random– of equal size

with each group containing one, two, or three modalities

(namely, CF, audio, tag, CF+audio, CF+tag, audio+tag,

audio+CF+tag). We refer to these groups as ‘Modality

Groups’. It is important to highlight the artificiality of this

setting. We are considering an extreme case only to eval-

uate cross-modality retrieval capabilities of the methods.

We are not considering here the accuracy of these results

since it is already evaluated in the other analyses.

2.5 Baseline multimodal approaches

For multi-modal baselines, we employ two conventional

models: PCA, and Gaussian random projection [23,

24] (which we refer to as Rand). 5 For fitting these models,

we consider artists who have access to all modalities. Their

multimodal embeddings are concatenated and treated as a

single feature vector. It yields a dimensionality of 2, 063
for the MSD dataset, and 2, 528 for the OWN dataset. We

set the reduced dimensionality to 200, which is the same

size as the embeddings of the contrastive model. If an artist

has a missing modality in the prediction phase, we employ

the global mean embedding of the missing modality. 6

2.6 Metrics

Accuracy: We consider nDCG@200 to measure how ac-

curate the retrieved artists are compared to the ground truth

while taking into account the position in the ranking of the

retrieved artists, a metric considered robust to missing rel-

evance information [26]. 7

Distribution: We also compute the Gini@200 index, mea-

suring the distribution of the top 200 retrieved artists in

each experimental condition across the whole set of artists.

A lower value of Gini indicates that the recommendations

across artists are more uniformly distributed –covering

more artists retrieved– while a higher value of Gini indi-

cates that the recommendations are focused on only the

few same artists.

We compute the confidence interval using the bootstrap

method [27] on the evaluation artist population. We report

them in Figure 1 at 95% confidence level.

Expected Contrastive Loss: We propose an additional

metric that we named Expected Contrastive Loss (ECL).

We use this measure to analyze to what extent an artist

is coherent with respect to their multimodal representa-

tions. From how we defined the loss in Section 2.1, a

high loss value implies that the artist is relatively diffi-

cult to be distinguished from other artists. Once the train-

ing is reasonably progressed, we employ ECL to quan-

tify how “coherent” the artist is with respect to their in-

ternal representations obtained from the different modali-

ties, which is defined as: ECL(i, u, v) = duvii −Ej\i[d
uv
ij ],

5 For both algorithms, we employ the standard implementation pro-
vided from scikit-learn [25].

6 This does not happen in FMC
7 We focus on nDCG@200 in this work, as we experimentally ob-

served high correlation with other retrieval metrics such as precision, re-
call, and R-Precision.
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where i and j denote artist index, while u and v refer to

the modality index. duvij means the cosine distance be-

tween artist i from modality u and artists j from modal-

ity v. Taking expectation over all the possible modal-

ity pairs leads to the final coherency measure for artist i:

ECL(i) = Eu,v\u[ECL(i, u, v)].

Clustering: We further analyze the multimodal embed-

ding space of the contrastive model, by investigating how

well the artist embeddings are clustered. The contrastive

method essentially can be seen as a “supervised” cluster-

ing task, where we minimize the distance among “posi-

tive points” (i.e., multimodal embeddings from an artist)

and maximize the distance between those to the “negative

points” (i.e., embeddings belonging to the other artists). It

implies that an artist will get a higher training loss when

the embeddings are dispersed and overlapped with the em-

bedding cluster of other artists, while the opposite cases

will get lower values. The model will fit the multimodal

embedding space such that the artist embeddings poorly

clustered initially have more concentrated and distant clus-

ters. While the contrastive learning implements this natu-

rally by its loss function, there are other well-known mea-

sures for the validation of the clustering methods, such as

intra-cluster distance (CDintra) indicating how an artist

embeddings are well clustered together, and inter-cluster

distance (CDinter) indicating how an artist-specific em-

bedding cluster is far and distinct from others’. 8

3. RESULTS

3.1 Performance comparison of contrastive method

We now look at the performance of the contrastive method

when some modality information is missing in the evalu-

ation dataset (using the raw OLGA dataset) and when all

modalities are available for each artist (FMC subset). We

also compare the performance of the contrastive method to

the baseline methods and to single-modality embeddings.

3.1.1 Performance with incomplete modality information

Focusing on the different combinations of input modali-

ties to the contrastive method, we can see in Table 1 that

the highest nDCG result is obtained when combining all

modalities as input. We therefore focus only on this model

for the remainder of the work.

Figure 1a shows the results for all artists in OLGA.

We can see that when using features from MSD, the con-

trastive method outperforms the baselines and the original

embeddings in all the metrics. The contrastive method al-

ways gives a better Gini compared to the other methods

–which means that the distribution of retrieved artists is

more uniform– while outperforming the other models in

nDCG. 9

8 we compute CDintra as the mean cosine distance between multi-
modal embeddings of an artist to their centroid in the multimodal space
of learned contrastive model. CDinter is computed as the mean distance
between the centroids of target artist and of all the other artists.

9 OWN-OGLA is omitted since we observe a similar behaviour.
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Figure 1: Performance comparison between contrastive

and other methods. Training with MSD (a and b) or with

OWN (c), Evaluation on OLGA (a) or on FMC (b and c).

OLGA FMC

nDCG@200 Gini nDCG@200 Gini

CA+CF+T 0.2387 0.2264 0.3560 0.1666

CA+T 0.2282 0.2035 0.3407 0.1559

CA+CF 0.1381 0.3425 0.2319 0.1873

CCF+T 0.1781 0.3467 0.3082 0.1917

CA 0.2338 0.1857 0.3471 0.1353

CT 0.1232 0.4939 0.2554 0.1745

CCF 0.1381 0.3425 0.2319 0.1873

Table 1: Evaluation of the contrastive method trained with

MSD data using all combinations of modalities for OLGA

dataset and FMC subset.

3.1.2 Performance with complete modality information

When we look at the results with Full Modality Coverage

(Figures 1b and 1c), the contrastive method outperforms

the baselines and the pre-trained models in all the metrics

both when trained with MSD data or with OWN data.

When looking at baseline performance between OLGA

and FMC (Figures 1a and 1b), we can see that in the

latter, baselines are relatively close to the best single-

modality embeddings, but in the former (i.e. with incom-

plete modality information) their performance drops sig-

nificantly lower than the best single-modality embeddings.

This is something we do not observe with the contrastive

method, which suggests that the baseline models are more

limited in the capabilities of retrieving artists that miss

some of the modalities from the query artist, while our con-

trastive method may be more robust to missing modality

information. We investigate this further in Section 3.3.

3.2 Combining complementary modality information

If we focus only on the single-modality approaches, and

MSD pre-training, Audio gives the best single-modality

performance in both OLGA and FMC (Figure 1a and 1b).

On the other hand, when pre-trained with OWN, CF is

slightly better than Audio and Tag (Figure 1c). These re-

sults suggest that performance is highly dependent on the

quality of the data used to pre-train the single-modality

embeddings. Results from Figure 1b and 1c also sug-
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Audio CF Tag Rand PCA CMSD COWN

Entropy 0.76 0.79 0.79 0.73 0.96 1.86 1.59

Table 2: Entropy of each model for Modality Groups.

Higher values indicate better distributed retrieved artists.

(a) Contrastive - MSD training (b) Contrastive - OWN training

(c) PCA - MSD training (d) PCA - OWN training

Figure 2: Analysis of modality-group dependency ratio

when restricting the information available for each group

to one, two, or three modalities. Rows indicate the groups

used to make the queries and the columns are the groups of

retrieved artists. Darker green indicates a higher concen-

tration of the retrieved artists in that cell. The color scale

is normalized across all figures. Groups of artists are ran-

domized, so an ideal situation is a homogeneous color in

the full matrix.

gest that, whichever single-modality embedding is best,

our contrastive method is able to successfully build on top

of it and still gain in performance by combining comple-

mentary information from other embeddings.

3.3 Robustness to missing modality data

In this subsection, we further analyze how the contrastive

method would be able to retrieve artists depending on the

available information for the query artists and the candi-

dates for retrieval. In Figure 2, we can see how artists

are retrieved from each of the Modality Groups when only

considering the top 5 results for each query artist. Typ-

ically we see that with the contrastive method, the same

group used for query comprises between 15-38% of the

retrieved artists. We see however an exception for the

CF group which obtains a larger portion of the retrieved

artists (59%) when using OWN data to train the models.

When we do a similar comparison for the PCA baseline

method, we see in Figure 2 that there are higher percent-
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Figure 4: Relative retrieval improvement against CF

modality. The x axis represents the grouped popularity

quantile in 20 levels, meaning the first group includes

artists whose popularity is under 5% percentile, while the

top 5% popular artists belongs to the last group. The y axis

is proportional improvement of nDCG@200 compared to

the CF embedding model. The dotted horizontal line indi-

cates the retrieval performance of CF modality. FMC and

OLGA are evaluation datasets. MSD and OWN are train-

ing conditions.

ages in the diagonal of the matrix. This indicates that most

of the retrieved artists are concentrated in the same modal-

ity group used to make the query. Therefore, these results

highlight the difficulty for the PCA baseline method to re-

trieve artists beyond the query artist’s modality.

In Table 2 we compare the entropy of each model for the

Modality Groups. A higher entropy indicates that retrieved

artists are better distributed across the different modality

groups, i.e. that retrieval is less biased by the query modal-

ity –or more robust to partial modality data in the query.

We can see that the contrastive model is more robust to

missing modality data than the single-modality embed-

dings and the baseline approaches to combining modali-

ties. This is true when trained with MSD or with OWN.
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3.4 Effect of Popularity

Artist popularity may be a deterministic factor in artist re-

trieval, both for training and evaluation. Intuitively, we

likely have more data about popular artists, which implies

more multimodal data is available for training. At the same

time, the scale of evaluation metric themselves can be in-

flated as more popular artists would have more ground

truths (annotated as ‘similar artists’). To confirm this, we

compute a proxy measure for the artist popularity (POP) as

POP(artist) = log(#listen + 1), 10 and then further com-

pare it to other training and evaluation measures.

Firstly, we compare POP with ECL and the retrieval

performance. Figure 3 shows that there is correlation

among POP, ECL, and nDCG. In particular, ECL has a

negative correlation with nDCG. This is a desirable out-

come as a model that minimizes the contrastive loss rec-

ommends “similar” artists even though such a model is not

being explicitly shown artist-relatedness ground truth dur-

ing training. Meanwhile, POP also correlates with nDCG,

which demonstrates the confounding effect of popularity

to the task itself.

Further, we investigate how multimodal models interact

with artists with different popularities. One of the benefits

of employing multiple modalities is the potential mitiga-

tion of the information void for “cold-start” artists from

their music audio data. For MIR applications, audio is

likely accessible even when some of the other modalities

are not readily available. For instance, the CF modality

is not available before artists’ songs are consumed by the

listeners. To confirm whether the audio and further multi-

modal embedding models would benefit less popular artists

via multimodality, we divided the artists in 20 groups by

popularity quantiles. For each group, we further compute

the relative improvement of retrieval performance (nDCG)

compared to the CF single modality model.

Figure 4 suggests that the original audio embedding

achieves better performance for the less popular artists

in all training and evaluation conditions. The contrastive

model shows improvements for the majority of the groups

compared to the audio, while it may have smaller or no

improvement over audio in the least popular group for the

MSD dataset. In the OWN dataset, a similar trend is ob-

served where the contrastive model shows a small decline

for the most popular groups compared to the original CF

embeddings. The two baseline models indicate relatively

flat results except in the case of the MSD-FMC subset,

which implies that their prediction may be more reliant on

the CF modality. For the MSD-FMC subset, both baselines

follow similar trends to the audio and contrastive model.

3.5 Multimodal Embedding Space Analysis

We conduct a correlation study of multiple measures

where, for each artist, we compute clustering measures

and other key indicators such as contrastive loss ECL, re-

trieval performance (nDCG@200), and finally the popular-

10 #listen denotes the total listening count of the artist, computed from
the MSD-Echonest Profile dataset.
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ity measure. In this way, we expect to obtain a better un-

derstanding of what contrastive learning achieves in terms

of clustering of embeddings, and how they are connected

to retrieval performance and popularity.

The result of the correlation study can be found in Fig-

ure 5. We see that the ECL is highly correlated toCDintra,

while almost independent to CDinter. Notably, in terms

of magnitude, all other measures (ECL, CDintra, and

POP) are relatively more correlated to nDCG compared to

CDinter, and also correlated to each other. 11

These relations suggest that our contrastive learning

method aims at producing an artist embedding space where

the diverse modalities of an artist occupy a coherent region,

but not necessarily a region that is unique to the artist.

CDinter shows lower correlation with most of the other

measures, which confirms its relatively small connection to

the contrastive learning and the artist retrieval downstream

task. We hypothesize that this is because the maximization

of CDinter is constrained by the artist similarity inherent

in the multimodal information and ultimately preserved.

This is desirable if the ultimate goal is a representation that

can measure artist similarity.

4. CONCLUSION AND FUTURE WORK

In this work, we propose a method based on contrastive

learning to combine multiple artist modalities into a sin-

gle representation. In an artist similarity task, we show

our method yields clear improvements over other methods

in terms of retrieval accuracy and coverage, and success-

fully combines complementary information from diverse

modalities. In particular, we investigate retrieval bias to-

wards the query’s modality. Although our method exhibits

a slight bias towards retrieving artists with similar modal-

ity to the query, we show it handles cross-modal retrieval

better than other methods. Future work may be dedicated

to further mitigate this bias. Additionally, we show that our

method is particularly beneficial for less popular artists.

Our method appears to generate an artist representation

space with high local coherence for intra-artist modalities,

but at the cost of inter-artist separation. Depending on the

final application, this is a property that could perhaps be

managed by iterating on the contrastive learning method,

for instance, by adapting the loss function or by adapting

the size of the training sample batch as suggested in [28].

11 We focus on the magnitude, as the goal of this study is to investi-
gate the degree to which some of the key indicators are associated with
clustering quality measures in absolute manner
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ABSTRACT

The concept of form in music encompasses a wide range
of musical aspects, such as phrases and (hierarchical) seg-
mentation, formal functions, cadences and voice-leading
schemata, form templates, and repetition structure. In an
effort towards a unified model of form, this paper proposes
an integration of repetition structure (i.e., which segments
of a piece occur several times) and formal templates (such
as AABA). While repetition structure can be modeled us-
ing context-free grammars, most prior approaches allow
for arbitrary grammar rules. Constraining the structure of
the inferred rules to conform to a small set of templates
(meta-rules) not only reduces the space of possible rules
that need to be considered but also ensures that the result-
ing repetition grammar remains interpretable in the context
of musical form. The resulting formalism can be extended
to cases of varied repetition and thus constitutes a building
block for a larger model of form.

1. INTRODUCTION

Repetition is one of the most central aspects of music [1]
and constitutes a constant across almost all cultures, styles
and genres. The repetition of material is one of the major
compositional devices for the arrangement of parts in over-
arching musical form [2, 3, 4], be it a folksong, a minuet,
a sonata, a jazz standard, or a pop song. In general, mu-
sical form could be characterized in terms of exhaustive
segmentation, hierarchical grouping structure, rhythmic-
hypermetrical structuring, the form functionality of seg-
ments [3], and repetition structure. For the purpose of this
paper, three aspects of form are considered: a hierarchi-
cal organization [5], which is also reflected in hierarchical
harmonic structure [6]; repetition of formal constituents,
which is one of the most prominent and salient features of
form perception in human music cognition [1]; and pro-
totypes of formal organization (such as AABA) which can
characterize classical forms [3] but are also common struc-
tures in pop, jazz, and folk songs.

© C. Finkensiep, M. Haeberle, F. Eisenbrand, M. Neuwirth,
M. Rohrmeier. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: C. Finkensiep, M. Hae-
berle, F. Eisenbrand, M. Neuwirth, M. Rohrmeier, “Repetition-Structure
Inference with Formal Prototypes”, in Proc. of the 24th Int. Society for

Music Information Retrieval Conf., Milan, Italy, 2023.
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Figure 1: A German 19th-century folksong melody on the
lyrics “Stille, stille, kein Geräusch gemacht” or “Bier her,
Bier her, oder ich fall um.”

The GTTM [5] defines grouping structure in terms of
a tree of hierarchical containment relations that provides
an exhaustive segmentation of the piece. GTTM’s prefer-
ence rules for grouping structure include Gestalt principles
[7] as well as repetition. In addition to grouping structure,
repetition structure is defined as a hierarchical grouping
tree that captures (optimal) reuse of material (exact or in
variation) in terms of groups of musical units and recur-
sive groups of groups. Repetition structure provides a full
grouping of a piece, however, it may potentially result in
a different tree than what is obtained by a general formal
analysis of a piece (see Figure 6). For human judgement of
form in general, repetition is not the only factor, as features
of (hyper-)metrical structure, form functions, or harmony
may play a role as well (see also below in section 4.2). Ac-
cordingly, the objective of a computational model of repe-
tition structure as an aspect of musical form may ultimately
require to take such aspects into account as well.

Repetition structure plays a role within a single piece as
well as over a corpus of pieces since abstract repetition pat-
terns generalize over a whole dataset or style. The melody
shown in Figure 1, for example, exhibits repetition of parts
on several levels: On the highest level, the melody follows
an ABA form, as the first four measures are literally re-
peated at the end (mm. 9-12). The B part (mm. 5-8) itself
consists of a repetition of a two-measure phrase (yellow).
Similarly, the first measure of the A part is repeated in the
second measure (blue). Even on the level of individual
notes, the direct repetition of a note is a prominent feature
of mm. 5 and 7.

In the context of form, repetition structure refers to the
re-occurrence of formal constituents (such as phrases and
sections) that form a hierarchical segmentation structure,
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Figure 2: A possible repetition tree of the melody in Figure 1. The leaves of the tree encode pitch and duration of the
melody notes. The second occurence of part A is identical to the first (not shown here).

as opposed to motivic or thematic material, for example.
An example of such a segmentation structure for the ex-
ample piece (Figure 1) is shown in Figure 2. Every formal
segment of the piece corresponds to a subtree in the repeti-
tion tree. Note that all occurrences of the same segment
share the same label and have exactly the same subtree
structure. For this reason, the repetition structure shown
in the tree can be more compactly described as a restricted
context-free grammar (CFG) which has one non-terminal
symbol for each segment (with terminal symbols for the
notes of the piece) and exactly one rule for each symbol,
encoding the decomposition of the corresponding segment.
This relationship between the repetition structure of a piece
and a compact representation of the piece as a CFG has
been utilized for compression-based pattern discovery al-
gorithms such as SEQUITUR [8].

Another aspect of the repetition tree shown in Figure 2
is that its rules use a limited set of formal prototypes, such
as αβα (e.g., Piece −→ ABA), ααβ (A −→ CCD), or αα
(B−→GG). In order to avoid confusion with the letters for
specific form parts, we denote these form templates with
greek letters, e.g., αβα, ααβ, or αα. A concrete instance
of a form template is denoted by applying the template to
specific segments: CCD = ααβ(C,D). While the rules
in a piece’s repetition grammar are specific to a particular
segment in that particular piece, the form templates estab-
lish a relation between different rules with the same shape,
within the same piece or across different pieces. We there-
fore call them meta rules.

This paper is a contribution towards an integrated com-
putational model of musical form, combining two impor-
tant aspects of form: repetition and formal prototypes. The
model characterizes the relationship between meta rules
and hierarchical repetition structure and provides a proof

of concept algorithm and evaluation for repetition structure
inference based on minimal description length [9].

2. RELATED WORK

Identification of repetition structure is closely related to
compression, as identification of redundant information is
important to achieve shorter encodings. An early exam-
ple of grammar-based compression is SEQUITUR, an al-
gorithm that infers a (not globally optimal) grammar for

a given sequence in linear time [8, 10]. For an overview
of approximate grammar-based compression, see [11, 12].
Besides inference of segmentation structure, grammar-
based compression algorithms have been used for tasks
such as error detection and tune classification [12, 13].
The principle of minimum description length has also been
used outside of grammar-based approaches, e.g., in com-
bination with hidden Markov models [14]. The approach
presented in this paper differs from previous smallest-
grammar approaches in two ways: the shape of the gram-
mar rules is not arbitrary but constrained to a set of for-
mal prototypes, and this constrained model is evaluated by
inferring the global optimum instead of an approximation,
which is generally NP-hard and thus only feasible for short
sequences.

The segmentation structure of a piece can also be in-
ferred based on criteria other than repetition. The GTTM
[5] defines grouping structure based on a set of well-
formedness and preference rules for recursively combining
events into larger segments. In the MIR community, the
analysis of musical form is known as music structure anal-

ysis (MSA) [15, 16, 17, 18, 19, 20, 21, 22]. MSA comes
in a variety of tasks, involving boundary detection, (hi-
erarchical) segmentation, the identification of segment la-
bels and relations, and combinations of these tasks. While
MSA uses a wide spectrum of supervised and unsupervised
methods, from matrix factorization to deep learning, the
definition of musical form in this context is usually given
implicitly in the form of a dataset (e.g., [21, 22]) on which
the model may be trained, and on which it is evaluated.
The present paper, in contrast, presents a theoretical contri-
bution towards an explicit definition of musical form, and
the resulting model is not intended as a solution to a com-
putational problem, such as performing a general segmen-
tation and labeling task. As a consequence, our evalua-
tion focuses on exploring the characteristic properties of
the model.

3. METHODS AND DATA

3.1 Problem Description

A specific repetition structure for a given piece can be
characterized through a piece-specific context-free gram-
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m1 : αα m2 : αβ

m3 : ααα m4 : αβα

m5 : ααβ m6 : αββ

m7 : ααβα m8 : αββα

Table 1: The set of meta rules used in this paper.

mar that generates exactly one string — the piece. We call
such a grammar a local grammar for the piece. It consists
of:

• a set of terminal symbols T , corresponding to the
unique atomic segments of the piece; 1

• a set of non-terminal symbols N , corresponding to
the unique composite segments of the piece;

• a starting symbol P that stands for the full piece;
• a set of production rules R.

Since each non-terminal symbol stands for a specific seg-
ment, R contains exactly one rule for each non-terminal
symbol, signifying the decomposition of the segment and
enforcing that all occurrences of the segment are decom-
posed identically. As a consequence, the rules are not al-
lowed to be (mutually) recursive since a segment cannot
contain itself as a proper subsegment. 2

In order to establish a relation between local repetition
grammars and general formal prototypes, the right-hand
side (RHS) of each rule must be an instance of a meta rule.
Meta rules are generally of the shape {α, β, γ, . . .}+ and
are instantiated by creating a bijective mapping between
letters and specific non-terminal symbols. For example,
the meta rule ααβα encodes the formal prototype AABA
and can be instantiated as

ααβα(S, T ) = ααβα{α 7→ S, β 7→ T} = SSTS (1)

where S ̸= T . Thus, a local grammar can express that a
piece has an overarching AABA structure by using a rule

P −→ ααβα(S, T ) (2)

that takes the starting symbol P to an instance of ααβα
with α = S and β = T . The set of meta rules can be cho-
sen freely to encode a set of typical formal prototypes. The
meta rules used in the following experiments are shown in
Table 1.

The goal of repetition structure inference is to find a
local grammar for a given piece according to some op-
timality criterion, such as musical plausibility, probabil-
ity, or description length (DL). In accordance with prior
approaches that use repetition grammars, our proof-of-
concept implementation searches for local grammars with

1 In the case of melodies, these atomic segments correspond to notes
and rests, but they could also correspond to polyphonic events (slices), or
previously annotated elementary phrases.

2 A unary identity rule (e.g. X −→ X) is not permitted. Other unary
rules are not possible because of the one-to-one correspondence between
segments and grammar symbols.

minimum description length, defined in analogy to [13] by
counting the symbols needed to encode the grammar:

DL(R) =
∑

r∈R

2 + |params(r)| (3)

where params(r) denotes the parameters of the meta rule
on the RHS of rule r. That is, for each rule we count one
symbol for the meta rule, one symbol for each parameter
of the meta rule, and one separator symbol 3 marking the
end of the rule. For example, the rule in Equation 2 has
a description length of 4: one meta-rule symbol (ααβα
or m7) 4 , two parameters (S and T ) and the separator. It
is not necessary to encode the left-hand side (LHS) of a
rule since there exists a canonical order of rules, starting
with the rule for P and then listing the rules in the order
in which their LHS symbols are introduced on the RHS of
other rules.

3.2 Algorithm

The minimal grammar for a given piece is found in a two-
stage process. First, a set of possible rules for each unique
segment of the piece is computed. Second, a set of rules
is selected from these candidates, ensuring that the result-
ing grammar is consistent and minimizing the cost of the
selected rules.

Algorithm 1 Enumerating all rule candidates.
1: function PARSE(input)
2: subs ← uniqueSubsequences(input)
3: chart ← {}
4: for seq ∈ sortByLength(subs) do

5: for s from 1 to |seq | − 1 do

6: cs ← COMPLETE(seq [: s], seq [s+ 1 :])
7: chart [seq ]← cs

8: return chart

9: function COMPLETE(left , right)
10: il ← chart [left ]incomplete

11: ir ← chart [right ]incomplete

12: bs ← binaryRules(left , right)
13: is ← incompleteConstituents(left , right , il , ir)
14: ns ← nAryRules(left , right , il , ir)
15: return (complete = bs ∪ ns, incomplete = is)

The first stage (Algorithm 1) begins with collecting all
unique subsegments of the piece. For each of these subseg-
ments, all possible decompositions according to the meta
rules are computed using dynamic programming, analo-
gous to the CYK algorithm: The segment is split at ev-
ery possible split point (l. 5), generating two subsegments
left and right of the split point. For binary meta rules
(αα and αβ), an instance of the rule can be identified di-
rectly by comparing the subsegments (l. 12). Meta rules

3 The separator is not strictly necessary since the length of the rule
is known from the meta rule, but it is included here to stay as close as
possible to [13].

4 ααβα is counted as one symbol since the set of meta rules is as-
sumed to be fixed and cannot be freely extended.
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of higher arity are decomposed into binary parts. For ex-
ample, the meta rule αβα can be decomposed into an in-
complete constituent αβ∗ and another α. When a segment
S = S1S2 has a decomposition into αβ(S1, S2), it ad-
ditionally stores an αβ∗(S1, S2) item (l. 13). At a later
point, a larger segment T = SS3 = S1S2S3 retrieves the
item S −→ αβ∗(S1, S2), checks whether S3 = S1, and
accordingly stores a rule T −→ αβα(S1, S2). Similarly,
all larger meta rules are constructed from incomplete con-
stituents such as αβ∗ and αα∗ (l. 14).

Once the possible decompositions of each subsequence
are known, the second stage of the algorithm converts the
set of possible rules into an integer linear program (ILP)
which then extracts a set of rules with minimal cost. Each
subsequence of the input of lenght ≥ 2 corresponds to
a potential non-terminal symbol, so one binary indicator
variable ssymb for each symbol symb encodes the inclu-
sion of the symbol in the grammar. Similarly, the inclu-
sion of each candidate rule is indicated by a binary variable
srule . The optimization problem is then given by

min
r∈{0,1}|rules|

s∈{0,1}|symbols|

∑

rule∈rules

rrule ·DL(rule)

s.t. ssymb =
∑

rule∈rules
LHS(rule)=symb

rrule

rrule ≤
∑

symb∈RHS(rule)

ssymb

|RHS(rule)|

sstart = 1.

(4)

Two constraints define the relationship between symbols
and rules: each included symbol requires exactly one cor-
responding rule; and each included rule requires the sym-
bols on its right-hand side. 5 A third constraint requires
the presence of the starting symbol which corresponds to
the full input sequence. The rules and symbols are then
selected by minimizing the total cost of the included rules
as defined in Equation 3.

4. RESULTS AND DISCUSSION

4.1 Quantitative Evaluation on a Dataset

For evaluating the above approach, we infer the minimal
grammars (under the meta rules from Table 1) for the 298
shortest melodies from the Essen folksong collection [23],
with a length of 8 to 24 notes. The melodies are repre-
sented as sequences of notes (including rests), consisting
of pitch (or a rest symbol) and duration. Other aspects,
such as the position of a note in a measure, are not taken
into account. The minimization algorithm is implemented
in Julia and is available online. 6 For ILP optimization
we use the JuMP framework [24] together with the Gurobi
solver backend. 7

5 The logical conjunction of the RHS symbols is expressed as a nor-
malized sum instead of a product in order to maintain linear relationships
between the variables in the program.

6 https://github.com/DCMLab/form-repetition-ismir23
7 Gurobi requires a license, which is provided freely for academic pur-

poses. Alternatively, the JuMP framework supports using different solver

(a) Grammar size vs. input length.

(b) Optimal grammar size vs. Monte-Carlo minimum.

Figure 3: Comparison of the description length of the min-
imal local grammars to (a) the input sequence length and
(b) local grammars obtained through Monte-Carlo mini-
mization.

Since the local repetition grammar formalism is not de-
signed to obtain optimal compression of the input sequence
(but uses description length as a rather arbitrary proxy for
the plausibility of a specific segmentation), we cannot ex-
pect very good compression rates. Indeed, when compar-
ing the length of the input sequences to the total description
length of the corresponding minimal grammar, the gram-
mars are usually larger than the original piece (Figure 3a)
with a average ratio of 2.47 (geometric mean). This indi-
cates that restricting the grammars to a small set of meta
rules is not sufficient to achieve an actual compression of
the dataset, at least when only considering exact repetition.

Since finding the global minimum is expensive (see be-
low), most grammar-based compression algorithms only
attempt to approximate the global optimum [8, 12, 13].
We estimate the payoff of inferring the global optimum
by comparing the optimal description lengths to approx-
imate solutions obtained by a Monte-Carlo minimization
process: Beginning with the start symbol, the rule for each
required symbol is chosen randomly from the set of possi-
ble rules, and the corresponding RHS symbols are added to
the list of required symbols. This process is repeated until
all required symbols are covered. Out of 10,000 randomly
sampled grammars for each piece, the smallest grammar
is selected. The results are shown in Figure 3b. For the

backends.
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(a) Runtime relative to input length.

(b) Runtime relative to possible rules.

Figure 4: The measured runtime of the optimization step
relative to (a) the length of the input sequence and (b) the
number of possible rules for the sequence. Note that in
both cases, the time axis is scaled logarithmically, so the
fitted exponential curves appear as straight lines.

given dataset, the Monte-Carlo minimum is on average
1.08 times longer than the true grammar. In many cases,
the Monte-Carlo process finds a true optimum, since the
sample size of 10,000 is large enough to find an optimal
solution by chance. However, with growing input size,
the range of possible grammars grows exponentially, in the
worst case. 8 So, while a Monte-Carlo estimate can be a
useful approximation on short sequences, it cannot keep
up with the size of the search space for longer sequences,
unless the sample size is increased exponentially as well.

The runtime behavior of the optimization problem is
shown in Figure 4. The problem of finding an unrestricted
minimal CFG is known to be NP-hard [13]. The runtime
for the restricted case relative to the input length is shown
in Figure 4a with logarithmic scaling. Since the actual size
of the optimization problem depends not only on the in-
put length but also on the amount of redundancy within
the sequence, Figure 4b shows the runtime relative to the
number of possible rules obtained in the first stage of the
algorithm. In both cases, the runtime grows approximately
exponentially with the number of rules. This is supported
by an exponential regression in both figures, fit as a linear
function in logarithmic space which minimizes the squared

8 The number of subsequences grows quadratically, and the number of
possible grammars is a product over all substrings.

(a) Overall meta rule usage.

(b) Meta rules used at the top of the form tree.

Figure 5: The meta rules used in the inferred minimal
grammars for the melodies in the dataset.

ratio between measured and predicted runtime instead of
the squared difference.

The distribution of meta rules in the inferred grammars
is shown in Figure 5a. By far the most common rule type
is αβ, which is not surprising since it is the only rule type
that does not require any form of repetition. The rule type
αα is used very infrequently, which may seem surprising
due to its simplicity. However, all other rules (except for
αββα and ααα which are similarly rare) have one part
that does not need to be repeated and are thus applicable
to a wider range of situations. The distribution of starting-
rule types is shown in Figure 5b. These rule types cor-
respond to the overarching form of the melody in terms of
exact repetition. The even stronger prevalence of αβ in this
case indicates that there is very little exact repetition on the
highest form level in the given dataset of melodies, which
might be biased due to the focus on short melodies. On the
other hand, this lack of repetition indicates that a model of
formal segmentation cannot be exclusively based on repe-
tition but needs to take into account at least the possibility
of varied repetition, as well as other markers of form such
as cadences and meter.

4.2 Qualitative Evaluation on an Example Melody

Table 2 displays the minimal grammar for the example
piece in Figure 1. Compared to the overall distribution of
meta rules, the grammar uses many repeating rules, which
reveals that the piece features an unusual amount of inter-
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S198

S277

. . .

S398

g2S347

S136

f4e4f4f4

d4d4

S398

g2S347

S136

f4e4f4f4

d4d4

S277

S164

e1g4

S98

S18

f4e4f4

S173

e2g2

S173

e2g2

Figure 6: The minimal tree for the example piece in Figure 1.

rule meta rule cost

r1 S198 −→ S277 S398 αββα(S277, S398) 4
r2 S277 −→ S98 S164 αβ(S98, S164) 4
r3 S398 −→ S347 g2 αβ(S347, g2) 4
r4 S98 −→ S173 S18 ααβ(S173, S18) 4
r5 S164 −→ g4 e1 αβ(g4, e1) 4
r6 S347 −→ d4 S136 ααβ(d4, S136) 4
r7 S173 −→ g2 e2 αβ(g2, e2) 4
r8 S18 −→ f4 e4 αβα(f4, e4) 4
r9 S136 −→ f4 e4 ααβα(f4, e4) 4

Table 2: The minimal grammar for the example piece in
Figure 1.

nal repetition. As the derivation tree in Figure 6 shows, the
optimal solution found by the algorithm captures many as-
pects of the human intuition. Similar to the hand-annotated
segmentation in Figure 2, the minimal tree captures the
overarching repetition of mm. 1-4 and mm. 9-12 as well as
mm. 5-6 and mm. 7-8. However, whereas the human intu-
ition groups the single note repetitions together and splits
non-repeating segments according to bar units (mm. 5, 7),
the algorithm finds that other groupings provide an even
more economic description length in terms of rule usage,
which leads to a somewhat counter-intuitive dangling half
note g at the end of the phrase. This illustrates that human
decisions in terms of repetition structure do not purely opti-
mize repetition, but that they take rhythmic-metric bound-
aries into account. Therefore, the objective of a model of
repetition structure that captures or comes close to the hu-
man intuition needs to be further developed to also incor-
porate such features. A candidate model may be the hier-
archical model of rhythmic structure as a formal grammar
[25].

5. CONCLUSION

In this paper we have presented a computational model of
musical repetition structure as an aspect of musical form.
Since repetition structure is an aspect of human music cog-
nition, the overarching objective of our approach is to ap-
proach human listening. The model captures repetition
structure with a special form of context-free grammar, in
which the rewrite of each category is only defined once

such that it captures a unique repeating fragment of a given
piece. A set of meta-rules defines the generic types of rep-
etition patterns that could occur within a piece. The model
is very generic and can also be applied to more complex
textures as well as music of all styles and cultures, as long
as a representation as a sequence of symbols is meaningful.

Inferring the optimal grammar with respect to a suitable
objective criterion (such as description length) is able to ef-
fectively capture the repetition structure in a piece. Other
objective criteria (e.g., prior probabilities of meta rules)
can be used in a similar way since the algorithm does not
depend on a fixed cost function. On the other hand, maxi-
mizing the redundancy that is captured by a segmentation
does not ensure that the segmentation is a good analysis of
the form of a piece. For one, not all repetition and reuse of
material is exact, which is evident from the low proportion
of repeating meta rules used in the example dataset. Sim-
ple forms of varied repetition could be integrated in our
model relatively easily: given a suitable measure of sim-
ilarity, not only identical segments are grouped together
but also sufficiently similar segments. More sophisticated
versions of this model could capture how variations are
produced through the generative process of the grammar
(e.g., by making different decisions in different subtrees),
or how only certain aspects of a segment are repeated while
others change (e.g., using the same rhythm with a differ-
ent melodic contour). Furthermore, even when all repeti-
tions are exact (as in the example piece), capturing repeti-
tion is not the only criterion for grouping tokens into for-
mal segments, as other criteria such as cadences, rhythm
and meter, formal function, or harmonic and contrapuntal
schemata interact with grouping as well.

The runtime complexity of finding the smallest gram-
mar for a given piece is generally exponential. For suffi-
ciently short pieces, exact inference can be approximated
probabilistically, but there is no guarantee that the result-
ing suboptimal grammars resemble the true optimum. For
larger inputs, the search space grows exponentially, so
naive Monte-Carlo approximation can become arbitrarily
bad. This indicates that further research is required to
find plausible estimates of formal structure, integrating the
technical aspect of optimization with the musical problem
of defining what constitutes a plausible analysis.
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ABSTRACT

Most melodies from the Western common practice period

have a harmonic background, i.e., a succession of chords

that fit the melody. In this paper we provide a novel ap-

proach to infer this harmonic background from the score

notation of a melody. We first construct a pitch context

vector for each note in the melody. This vector summarises

the pitches that are in the preceding and following contexts

of the note. Next, we use these pitch context vectors to gen-

erate a list of candidate chords for each note. The candidate

chords fit the pitch context of a given note each with a com-

puted strength. Finally, we find an optimal path through

the chord candidates, employing a score function for the

fitness of a given candidate chord. The algorithm chooses

one chord for each note, optimizing the total score. A set

of heuristics is incorporated in the score function. The sys-

tem is heavily parameterised, extremely flexible, and does

not need training. This creates a framework to experiment

with harmonization of melodies. The output is evaluated

by an expert survey, which yields convincing and positive

results.

1. INTRODUCTION

One of the essential aspects of Western folk music is that

it is in oral circulation among practitioners regardless of

formal music training. As such, the transmitted music is

expected to conform to melodic patterns which belong to

Western music traditions. This is most tangible in the per-

ception of rules of tonality, including the perception of sta-

ble scale tones, modes, and key centres [1]. These factors

dictate the implied harmonic movement within the melody.

Detecting this implied harmony is an integral part of the

accompaniment of folk music. With this knowledge, it is

possible to create musically meaningful harmonic progres-

sions, using symbolic chord representations to accompany

a melody.

In this paper, our aim is to explicitly design a model

of how to generate a sequence of accompanying chords

for a given melody, such that e.g., a guitarist could play

© P. van Kranenburg and E. Kearns. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: P. van Kranenburg and E. Kearns, “Algorithmic Harmonization

of Tonal Melodies using Weighted Pitch Context Vectors”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

along. Most of the recent work on this task involves ma-

chine learning in which a model is trained on a set of ex-

amples. In contrast, an essential aspect of our approach is

to explicitly incorporate musical expert knowledge into the

model. Our model is heavily parameterized. This has the

advantage of allowing the user to have full control over the

process. A disadvantage could be that the resulting model

lacks the flexibility to handle various situations, which of-

ten is a reason to train a neural network instead of hand-

crafting a model. Our results show, however, that our cur-

rent model is capable of generating convincing chord se-

quences for a given melody.

The model can be employed in a wide range of appli-

cations. It allows a musician to quickly obtain a suitable

accompaniment for a given melody. This can be accom-

plished by using the default parameter settings that are es-

tablished in this paper, but the model also allows to tune

the parameters to get a certain desired effect. In Section 5

of this paper we provide an example in which the number

of generated chords greatly varies, while each generated

chord sequence is acceptable to accompany the melody.

Thus, the generated harmony can be adjusted to various

levels of mastering an instrument.

From a music theory perspective, our model can be

considered an experimental framework to explore general

principles of harmonization. In this approach, the model is

used to better understand these principles. It is extremely

instructive to add a heuristic to the model, or to adjust a

parameter, and to examine the cases in which this leads to

strong chord sequences, but even more so to examine the

cases that are not acceptable. These are conditions under

which the general rule apparently fails. In the current pa-

per, we do not elaborate on this use of our model, but it

is an important affordance that we do not want to be left

unmentioned.

We also can imagine the system being used in an artis-

tic way, rather than to just generate an accompaniment for

practical use. In the current implementation, we incorpo-

rate well-established principles of harmonization, but it is

very well possible to include other heuristics that generate

chord sequences that, although not adhering to the general

principles of Western tonality, could be considered an artis-

tic contribution, or an inspiration for a new composition.

Finally, we mention the possible educational use of the

model. By exploring the generated chord sequences, stu-

dents can get ideas to improve or enrich their own compo-

sitions or improvisation.
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2. RELATED WORK

Multiple approaches have been taken for the task of au-

tomatic harmonization [2]. Early applications of formal

grammars and rule-based algorithms for automatic harmo-

nization [3, 4] mainly sought to compose chorales in the

style of Bach. This was achieved by harmonizing the so-

prano melody line using a set of rules to ascertain harmonic

choices. These rules and heuristics are informed by obser-

vation of chorales, and enhanced by rules found in trea-

tises. The resulting systems output successful harmoniza-

tions of existing melodies, as well as new compositions.

Context free grammars have found use for this task.

Koops [5] adopts this approach in his HarmTrace and

FHarm models to derive the harmonic function of a chord

in its tonal context according to a set of predefined rules.

Temperley [6] proposed a rule-based algorithm to har-

monize a melody by dividing the piece temporally into seg-

ments (chord spans). All possible roots are then assigned

a score according to a set of four rules. The model prefers

root relations which best conform to the circle of fifths.

The model also predominantly chooses chord spans which

begin on the metrical downbeat, and identifies and prefers

ornamental dissonances which can be resolved in the sub-

sequent chord span. While approach is related to Temper-

ley’s algorithm, it is more flexible as it does not hard-code

one musical model, but instead allows basically any kind of

musical preference by redefining the chord transition scor-

ing function. Our approach is also more practical since it

not only generates a sequence of root notes, but also the

chord qualities.

Most of the more recent approaches are based on some

form of machine learning, sometimes explicitly stating

the aim to include a “minimal use of music knowledge”

[7]. These approaches include Statistical Grammar learn-

ing [7], Hidden Markov Models [8–10], and neural net-

works [11, 12]. [13] presents a hybrid approach based on

Markov chains, combining a music theoretic framework

with learning from data. Our approach is distinct in that

it does not require learning at all, and thus allows for full

control over the process of generating the sequences.

3. DATA

The algorithm is evaluated using MTC-FS-INST-2.0,

which forms part of the Meertens Tune Collections [14].

The data set consists of c. eighteen thousand melodies,

both vocal and instrumental, collected from Dutch sources.

The melodies have a variety of time signatures and

modes. We use the pre-computed features as distributed

in MTCFeatures. 1 Since our model relies on notated me-

ter, we only use the melodies with a meter.

3.1 Music Representation

We represent the melodies as sequences of feature val-

ues, one value per note. In this paper, we use three fea-

tures as provided by MTCFeatures, namely pitch40,

1 https://zenodo.org/record/3551003
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Figure 1. Example melody with the values for pitch40,

beatstrength, and beatinsong per note.

beatstrength, and beatinsong, which gives on-

set times in units of the beat. The base-40 representation

of pitch preserves the pitch spelling [15]. It includes 40

values per octave representing 40 possible pitches starting

with C♭♭ and ending with B×. We map all pitch values into

one octave. We use the encoding as designed by Hewlett

with one adaptation: we give the first pitch (C♭♭) index 0

instead of index 1, which has a practical advantage when

doing the implementation in Python.

We use the beatstrength as computed by the music21

meter model [16, 17]. Music21 is a Python library for pro-

cessing symbolic musical scores. We heavily use this li-

brary. In the meter model of music21, a beatstrength is

computed for each note, which indicates the metric weight

at the moment of onset of the note. The main accent in the

measure gets value 1.0, secondary accents get value 0.5,

lower metric positions get 0.25, 0.125, etc. Figure 1 shows

an example.

4. METHOD

Our approach to generate a sequence of chords for a given

melody consists of three stages: First, we construct for

each note a vector summarising the pitch context of that

note. Second, we generate for each note a list of poten-

tial chords from the pitch context vector. Each chord gets

a score indicating the extent to which it fits the pitch con-

text. Finally, for each note, we choose one of the candi-

date chords, based on its score, and on a chord transition

score, such that the sum of all transition scores across the

sequence of chords is maximized.

The evaluation also consists of several steps. First, we

tune the various parameters on a randomly chosen set of

melodies. Next, we use the best parameter setting to gen-

erate chord sequences for an independent, disjoint set of

melodies. We then provide six music experts with the re-

sults and to provide us with a rating of each harmonization

on a five-level rating scale. Finally, we use statistics to ex-

plore and summarise the responses.
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In the following of this section, we will explain each of

these steps in detail.

4.1 Weighted Pitch Context Vectors

For a given note, which we indicate as the focus note, we

consider both a preceding and a following context. These

consist of the sequences of notes that are preceding, and

respectively following the focus note. For both the pre-

ceding and the following context we construct a weighted

pitch context vector. Each of these vectors has 40 elements

corresponding to the 40 pitches in base-40 representation.

The value of each of the elements represents the “amount”

of the corresponding pitch that is present in the context of

the focus note. The full context vector is a 80-dimensional

vector which is the concatenation of the preceding and fol-

lowing context vectors.

4.1.1 Length of Contexts

Choosing the length of the contexts is not straightforward.

It is, in fact, an important parameter in our model. The

music21 meter model provides metric information for each

note, notably concerning the beat and the beatstrength of

a note (as explained in Section 3.1). This allows us to ex-

press the length of the context as a number of beats. This

seems a good approach since the beat is a perceptually

meaningful unit. Alternatives would be a fixed number of

notes or a certain amount of score time. We did not explore

these for the current study.

We experimented with different values for the context

length, as well as with a variable context length based on

the beatstrengths of the surrounding notes. We found that

the latter approach, with variable length, yielded the best

results in terms of acceptable chord sequences. In our re-

sulting implementation the context length is computed as

follows. We start with the focus note. For the preceding

context, we consider the notes before the focus note in re-

versed order, starting with the note directly before the fo-

cus note, and we keep adding the notes to the context until

(and including) we reach a note with beatstrength 1.0. For

the following context, the same procedure is followed, ex-

cept that the first encountered note with beatstrength of 1.0

is not included in the context. In our implementation, there

is also a parameter whether to include the focus note itself

into the context or not. Since the current aim is to generate

a chord for the focus note, we always add the focus note to

the contexts.

The consequence of this procedure is that for a note on

the main accent of the measure (i.e., the first note), the pre-

ceding context is the entire previous measure, and the fol-

lowing context is the remainder of the measure of the focus

note. In contrast, for notes that are not on the main ac-

cent, the preceding context includes all the previous notes

in the same measure, while the following context includes

the remaining notes in the measure. To a certain extent,

this accounts for harmonic progression at different metric

levels.

4.1.2 Weighting of Context Notes

The contribution of each context note to the value of

the corresponding pitch in the pitch context vector is de-

termined by two components: the metric weight (beat-

strength) of the context note, and the distance to the focus

note.

Intuitively, the duration of a context note has an impact

on its importance in the context of the corresponding focus

note. Therefore, we do not simply take the beatstrength

of the moment of onset of the context note as weighting

factor. Instead, we compute a metric grid, which is a suc-

cession of evenly spaced moments in score time. The basic

unit of the grid, i.e., the distance between two subsequent

positions in the grid, is the greatest common divisor of all

note durations. Therefore, each note of the melody starts

at a position in the grid, and the “span” of the note mostly

includes several grid positions. The metric weighting fac-

tor of a context note is the sum of metric weights (beat-

strengths) of all positions of the metric grid that are in the

“span” of the note. Thus, the duration of the note, as well

as the metric importance of the note are incorporated in the

weighting. This approach also accounts for syncopation.

During the span of a syncopated note, a grid-position with

higher metric weight than the metric weight at the start of

the note occurs. This is included in the sum.

Also intuitively, the further a note is away from the fo-

cus note, the lower the importance in the context of the fo-

cus note. In our model, we use a linearly decreasing win-

dowing function. The metric weighting factor of a given

context note is multiplied by the value of this window func-

tion at the position of the onset of the context note. The

value of the window function during the span of the focus

note is 1.0, and is linearly decreasing towards the end of

the context. The value at the end of the context is a pa-

rameter in our model. We set this to a value slightly higher

than 0.0 in order to have some influence from the notes that

are at the outer boundaries of the contexts.

4.2 Generating Candidate Chords

Once we have computed a pitch context vector consisting

of a preceding and following pitch context for each of the

notes in a melody, we use these vectors to generate a set of

candidate chords for each of the notes in a melody.

In our current implementation, we consider four types

of chords: diminished triad, minor triad, major triad, and

dominant seventh chord, and we consider three types of

context: preceding context, following context, and full

context. The full context just is a superposition, i.e., an

element-wise sum, of the preceding and following con-

texts. Discerning these three types of contexts is a crucial

element in our model. It allows the method to determine

the position of a chord change. If the set of chords that

is implied by the preceding context is sufficiently differ-

ent from the set of chords that is implied by the following

context, a chord change is likely, while the presence of a

chord that sufficiently fits the full context likely results in

a continuation.
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Figure 2. Example of a Pitch Context Vector. The vector consists of two parts, wpcpre and wpcpost, which represent

respectively the preceding and the following context. The full Pitch Context Vector is a concatenation of the two parts.

Each element in the vector gets a value representing the ‘amount’ of the corresponding pitch that is present in the context.

Thus, considering 40 possible root notes, we have 160

(40*4) possible chords for each of the preceding, follow-

ing, and full contexts.

4.2.1 Candidate Chord Score and Strength

For each focus note, we construct a 120*4 matrix, con-

taining a score for each possible chord in each possible

context.

The score of a chord with respect to a context vector is

determined by two factors: first, the extent to which the

chord pitches match the pitches in the context vector, and,

second, whether the root note of the chord is present in

the local scale. We will explain these two factors in the

following.

For each chord quality (diminished, minor, major, and

dominant), a chord mask is defined. This is a 40-

dimensional binary vector with ones at the positions of the

corresponding chord tones. E.g., for a major chord on C♭♭

the positions 0, 12, and 23, corresponding with C♭♭, E♭♭ and

G♭♭ are assigned value 1, while other positions get value 0.

To compute the score of this chord for a given context, we

multiply the mask element-wise with the pitch context vec-

tor, and we sum the resulting values. The resulting value

represents the overlap between the context and the chord.

To compute the scores for all possible root notes, we

subsequently rotate the mask over all possible 40 shifts,

and compute for each shift the sum of products. We do

this for the preceding context vector, the following context

vector, and the full context vector. For the repertoire we

have, we do not perform all 40 shifts, we only take into

account natural root notes, root notes with one flat, and

root notes with one sharp.

Next to these scores, we also compute a strength value

for each of the possible chords. The strength takes a value

between 0 and 1, and is computed as the ratio of the sum of

the pitch context values for the chord tones (as determined

by the mask) and the sum of all pitch context values. E.g, if

a pitch context vector has some weight for C, E, G, and A, a

C major chord would get a high score, but a strength lower

than 1.0, because there is also weight for the A, which is

not a chord tone.

To obtain a single score for each chord candidate, we

simply multiply the score with the corresponding strength.

This implies a penalty for non-chord tones within the pitch

context.

We normalize the score matrix for a given focus note

by dividing all scores by the highest score. Thus, the best

fitting candidate always has a score of 1.0.

4.2.2 Local Scale

A second factor that determines the possible candidate

chords is the local scale. As with the chord mask, we de-

fine a scale as a 40-dimensional binary vector. The ele-

ments with value 1 are the scale tones. For each note in the

melody we derive a local scale vector. This records the al-

terations of the stemtones that are ‘in use’ at that position in

the melody. For each stemtone ∈ {A,B,C,D,E, F,G},
we look for the occurrence closest to the focus note, ac-

cepting all possible alterations, and we record the alter-

ation in the scale vector. This accounts for modulations.

E.g., if in a melody in D major a G♯ occurs, which is even-

tually cancelled back to a G, the notes that are closer to

the G♯ have a 1 at position 26 in the local scale vector (the

base40 representation of G♯) while the notes closer to the

G have a 1 at position 25.

One problem is posed if a stemtone is missing alto-

gether in a melody. For example, the melody in Figure 1

lacks the note F. The key signature suggests a F♯, but that

is not available to our algorithm. In these cases, we add

the tone with the most likely alteration to the scale vector.

For sharps, we find this by following the circle of fifths

upwards from the missing tone and check the alteration of

the next tone. For example, if a C♯ is present in the local

scale, we infer that the scale should have a F♯, and not a F

natural. For flats, we do the same, but we inspect the circle

of fifths in reversed order. For edge cases, we include both

the natural and altered tone in the scale. E.g., if stemtone G

is missing throughout the melody, and the scale does have

a C♯ and a D natural, we include both the G natural and the

G♯ as possible scale tones in the local scale vector.

We use the local scale for a given focus note to elimi-

nate those chord candidates that have a root which is not in

the scale, by setting its score to 0.0. E.g., a C♯ diminished

chord fits a context vector with weight for pitches E and
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G, but we eliminate this candidate for a melody in C ma-

jor because C♯ is not in the scale (except when sometime

during the melody the C is temporarily raised).

4.3 The Chord Transition Score

The result of the procedure as described in the previous

section is a sequence of matrices, one for each melody

note, containing a score for each possible chord for that

melody note. The next challenge is to choose one chord

for each melody note out of these 120*4 possibilities. For

that, we employ a chord transition scoring function (TRS),

which computes a score for a given succession of chords,

c1 and c2 for two subsequent melody notes, n1 and n2.

This transition scoring function can be considered a

model of what would be a good chord transition. We im-

plement this function as a series of heuristics, each penal-

izing the score if an aspect of the transition is undesired.

We discern two kinds of penalty which could be described

as a “total ban” and a “discouragement” respectively. For

a total ban, we assign a very low score (-10 in our imple-

mentation), which forbids the transition in almost all cases.

For a discouragement, we multiply the score by multiplier

∈ [0, 1]. The lower the multiplier, the higher the penalty for

the undesired aspect of the chord transition. In our model

we include the following heuristics.

• The initial transition score is the candidate score of c2
for note n2, as computed in the previous step.

• If the root note of c2 differs from the root of c1, multiply

with 0.8. This stimulates continuation of a chord.

• If the root notes of both chords are the same, but the

chord qualities differ, multiply with 0.1. Except for a

change from major to dominant.

• For a root movement other than a prime, a fourth, or a

fifth, multiply by 0.75. Root movements of fourths and

fifths generally account for good harmonic progression.

• If c1 is a dominant chord and the root of c2 is not a

fourth higher, multiply by 0.1. We strongly want a V-I

relation after a dominant chord.

• If the root of c2 is a fourth up, and c1 is not major or

dominant, multiply by 0.8.

• If c1 is diminished, and the root of c2 is not a semitone

up, multiply by 0.1. We strongly want a VII-I relation

after a diminished chord.

• If the beatstrength of n2 is below a threshold, do not

allow a chord change (score -10), except for a transi-

tion from major to dominant with the same root. The

threshold is determined by the meter. For 2/4, 2/8, and

2/2 meter we take 0.25, for all other meters 0.5.

• Do not allow a chord change (score -10) if n2 is not a

chord tone in c2, and if the beatstrength of n2 is 0.5 or

higher. The seventh of a dominant chord is not consid-

ered a chord tone. On strong metric positions, we want

chord tones in the melody.

• As an exception to the previous rule, do always allow a

chord change to c2 if the next note after n2 is a chord

tone of c2, and has a lower beatstrength than n2. This

allows for appoggiaturas.

• Do not allow (score -10) a chord that starts at a low

beatstrength (<1.0) to continue past a note with higher

beatstrength. Except for a chord that starts on an up-

beat. This prevents chord syncopation.

• If the final root change is not a fourth up, or a fifth down,

multiply with 0.1.

• If the final root change is a fifth up (a plagal cadence),

multiply with 0.8.

• Only allow the root or the third of c2 as melody note if

n2 is the final note of the melody. If this is not the case

assign score -10. If the final note is the third, multiply

with 0.75.

4.4 Finding the Optimal Sequence

We designed an algorithm that optimizes the score for a se-

quence of chord transitions. It takes the sequence of chord

score matrices as input and uses the chord transition scor-

ing function. Algorithm 1 shows the pseudo code of our

algorithm. We fill a matrix, Score, which contains for each

note, and for each possible chord, the total score of the

chord sequence up until that note and that chord. In paral-

lel, we fill a traceback matrix, Trace, which for each note,

and for each chord, points to the chord of the previous note

which is the previous chord in the sequence (i.e., max-

imises the total score of the chord sequence). After both

the Score and Trace matrices are filled, we find the chord

sequence by finding the chord with the maximal score for

the final note, and following the trace back according to

the pointers in the Trace matrix.

Algorithm 1 Algorithm to find the optimal sequence of

chord transitions, in which l is the length of the melody in

number of notes, Cand is the sequence of matrices with

scores for the chord candidates, and TRS is the Chord

Transition Scoring Function as defined in Section 4.3.

Require: Cand : ARRAY[l][120][4] of float

function HARMSCORE(Cand)

declare Score : ARRAY[l][120][4] of float

declare Trace : ARRAY[l][120][4][2] of int

Score[0]← Cand[0]

for n in {1, 2, . . . , l − 1} do

ixs1← indices of cells in Cand[n− 1] > 0

ixs2← indices of cells in Cand[n] >0

for (p2, c2) in ixs2 do

declare S : ARRAY[120][4] of float

for (p1, c1) in ixs1 do

trs← TRS(Cand, p1, c1, p2, c2)

S[p1][c1]← Score[n− 1][p1][c1] +trs

end for

(pm, cm)← argmax(S)

Score[n][p2][c2]← max(S)

Trace[n][p2][c2]← (pm, cm)
end for

end for

return Score, Trace

end function
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Figure 3. Example of harmonic progressions at various

levels of abstraction.

4.5 Evaluation

To evaluate our algorithm, we first tuned the various pa-

rameters ourselves by inspecting the parameter space and

chose settings which seemed to yield good results. The

values as reported in Section 4.3 are the result of this pro-

cess.

Next, we randomly chose another unrelated set of 50

melodies and computed chord sequences for these using

the parameter values from the previous step. We then asked

six music experts to evaluate each harmonization. All eval-

uators are practicing musicians on a professional level, and

have extensive experience in musical analysis. They were

given a five level scale and a set of directions in order to

rate the harmonizations:

1. Bad. Numerous basic mistakes.

2. Somethings are good but contains a number of in-

correct chord choices.

3. Largely okay, small number of incorrect chord

choices.

4. Acceptable harmonization.

5. Excellent harmonization. No improvements to be

made.

Evaluators were also given a set of directions on how to

rate the harmonizations. They were asked to judge to what

extent the chords fit the melody, with an emphasis on the

correctness of chords with regards to the local context, as

opposed to creativity. They were not to take voice leading

into consideration for the chord correctness, as the bass

line is not modelled in this version of the algorithm.

We then use these ratings to compute inter-rater agree-

ment and explore the extremes.

5. RESULTS

5.1 Parameter Exploration

Exploring the parameter space of our model is an interest-

ing endeavor which appears meaningful in itself. It allows

a better understanding of general textbook rules for harmo-

nizing melodies. By implementing and manipulating these

principles in our scoring function we can observe the im-

pact of the rigorous application of these principles.

As an example, there are various ways to influence the

change rate of chords. Figure 3 shows three sequences of

chords at different levels of abstraction. For the middle

sequence we used the default parameters as established in

1 2 3 4 50

20

40
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80

100

Fr
eq

ue
nc
y

Figure 4. Distribution of ratings.

the previous sections. The other sequences have been ob-

tained by changing the following parameters with respect

to the defaults. The top sequence is generated by tolerating

chord changes at every metric level, and by not penalizing

root changes. For the bottom sequence we set the context

lengths to the length of the entire melody, i.e., all preceding

notes are in the preceding context and all following notes

are in the following context of a given note. These three

sequences show which harmonies are implied by the same

melody at different time scales. This could be employed

in a hierarchic strategy of harmonization, by e.g. first gen-

erating a sequence on a high level to find modulations and

extended harmonic sections, and subsequently using that

high level sequence as a background for the selection of

more fine-grained chord sequences.

5.2 Expert Ratings

Figure 4 shows the distribution of the ratings of the ex-

perts. The average over all ratings is 3.52 and the standard

deviation is 1.05. It can be observed that only a minority

of the harmonizations got a rating lower than 3. Only one

harmonization (no. 48) has a highest rating of 2 across the

raters, and only six have a highest rating of 3. All 45 others

got a 4 or 5 as highest rating. 22 sequences got a 1 or 2 as

lowest rating, and 28 sequences 3 or higher. It appears that

our algorithm produces an acceptable output, but there are

still some issues to address. Some problems we observed

are related to tonality, e.g., starting and ending in a differ-

ent key (mostly the parallel), or including a leading tone

at inappropriate places. Also, a low harmonic movement

might be unsatisfactory.

6. CONCLUDING REMARKS

We presented a successful approach to generate a sequence

of chords to accompany a folk-like melody by leveraging

musical expert knowledge and a dynamic programming al-

gorithm to find an optimal trace through the chord space. 2

There are many directions to further build on the current

model. We plan to address the observed shortcomings in a

next version. Our framework can be used to explore theory

on harmonization or to model implied harmony. It also

can serve as tool in educational settings, and of course to

generate a accompaniment for a performance.

2 The full code of our implementation as well as the test set, the ex-
pert ratings, and a demo are available at: https://github.com/

pvankranenburg/ismir2023.
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ABSTRACT

This paper proposes a text-to-lyrics generation method, aim-

ing to provide lyric writing support by suggesting the gen-

erated lyrics to users who struggle to find the right words

to convey their message. Previous studies on lyrics genera-

tion have focused on generating lyrics based on semantic

constraints such as specific keywords, lyric style, and top-

ics. However, these methods had limitations because users

could not freely input their intentions as text. Even if such

intentions can be given as input text, the lyrics generated

from the input tend to contain similar wording, making it

difficult to inspire the user. Our method is therefore devel-

oped to generate lyrics that (1) convey a message similar

to the input text and (2) contain wording different from

the input text. A straightforward approach of training a

text-to-lyrics encoder-decoder is not feasible since there

is no text-lyric paired data for this purpose. To overcome

this issue, we divide the text-to-lyrics generation process

into a two-step pipeline, eliminating the need for text-lyric

paired data. (a) First, we use an existing text-to-image

generation technique as a text analyzer to obtain an image

that captures the meaning of the input text, ignoring the

wording. (b) Next, we use our proposed image-to-lyrics

encoder-decoder (I2L) to generate lyrics from the obtained

image while preserving its meaning. The training of this

I2L model only requires pairs of “lyrics” and “images gen-

erated from lyrics”, which are readily prepared. In addition,

we propose for the first time a lyrics generation method that

reduces the risk of plagiarism by prohibiting the generation

of uncommon phrases in the training data. Experimental

results show that the proposed method can generate lyrics

with different phrasing while conveying a message similar

to the input text.

1. INTRODUCTION

Automatic lyrics generation methods have been proposed

as an important research topic in lyrics information pro-

cessing [1]. With the aim of supporting users who already

know what they want to convey in their lyrics but struggle to

find the appropriate words, the methods are used in writing

© K. Watanabe and M. Goto. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribution:

K. Watanabe and M. Goto, “Text-to-lyrics generation with image-based

semantics and reduced risk of plagiarism”, in Proc. of the 24th Int. Society

for Music Information Retrieval Conf., Milan, Italy, 2023.

Input Text Image
(Intermediate Representation) Generated Lyrics

Driving a car on the seaside
I 'm driving in my car

Just like a fish on an ocean floor.

(a) Existing image generation 
such as Stable Diffusion

(b) Image-to-Lyrics
Encode-Decoder

Figure 1. Overview of the proposed text-to-lyrics genera-

tion method.

support systems providing them with generated lyrics as a

source of new inspiration [2–8]. Most previous studies have

focused on lyrics generation that is conditioned by semantic

constraints, including specific keywords, lyric style, and

topics. For example, Watanabe et al.’s system generates

lyrics based on pre-defined topics selected by the user, but

the limited range of topics results in similar styles of gen-

erated lyrics [2]. Oliveira et al.’s system generates poems

based on keywords entered by the user, but it cannot gener-

ate poems based on sentences or paragraphs representing

the user’s intention [3, 4].

To provide more flexible lyric writing support, we pro-

pose generating lyrics based on freely formatted text entered

by the user. We believe this approach surpasses the use of

semantic constraints such as topics and keywords in terms

of flexibility. While existing paraphrase systems [9] can be

considered useful for this approach, the paraphrased lyrics

may not provide sufficient inspiration because they tend to

be similar in wording to the input text. For example, even if

a similar phrase “Driving a car along the coastline” is gen-

erated from the input text “Driving a car on the seaside”,

the user is unlikely to get new inspiration.

Therefore, the aim of this study is to develop a method

for generating lyrics that not only have meanings similar

to the input text but also use wording different from the

input text. For example, if a user freely enters text that

represents the content of the lyrics, such as “Driving a car

on the seaside”, our method generates lyrics with different

wording, such as “I’m driving in my car. Just like a fish

on an ocean floor.”. As a simple way to achieve this aim,

Transformer-based encoder-decoders [10] could be used for

generating lyrics from text, but they require large text-lyric

paired data for training, which is currently unavailable. To

address this issue, we could use text summarization and

machine translation to generate text from lyrics and obtain

paired data automatically. However, since the generated text
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and lyric pairs have similar wording, an encoder-decoder

trained using those paired data may generate lyrics with

wording similar to the input text.

To achieve text-to-lyrics generation without using any

paired text data for training, we propose a two-step pipeline

framework: (a) using an existing text analyzer to obtain

only the semantic representation from the input text, and

(b) generating lyrics from the obtained representation. The

core idea of this framework is to leverage a text-to-image

generation technique such as Stable Diffusion [11] as the

text analyzer. An image generated from the input text can

serve as a reasonable intermediate representation that cap-

tures the meaning of the text while ignoring the details

of its wording (Figure 1 (a)). Using the generated image,

our image-to-lyrics encoder-decoder generates semantically

related lyrics (Figure 1 (b)). It needs many image-lyric

pairs as training data, but we can readily prepare those pairs

by generating images from lyrics of many songs. This is

an advantage of using text-to-image generation. Another

advantage is that it can generate images without regard to

the input text’s format, i.e., whether it is a word, phrase,

sentence, or paragraph. We can thus provide flexible lyric

writing support that is not constrained by the format of the

input text.

Machine learning-based generation methods may inad-

vertently output portions of the training data directly with-

out modification. This output can be considered plagiarism

in some cases [12, 13]. Therefore, this paper also proposes

an anti-plagiarism method to reduce this risk. We assume

that generating common phrases (word sequences having

high commonness [14]) used in many songs is not plagia-

rism, and reduce the risk of plagiarism by prohibiting the

generation of uncommon phrases used in only a few songs.

To the best of our knowledge, this is the first study to include

such an anti-plagiarism method in lyrics generation.

Experimental results show that our text-to-lyrics gen-

eration method can generate lyrics with meaning similar

to the input text but expressed differently. Another exper-

iment shows that lyrics generated without using our anti-

plagiarism method would result in plagiarizing uncommon

phrases in the training data, but those undesirable phrases

can successfully be removed by our method.

2. RELATED WORK

While natural language generation methods such as machine

translations and chat systems have been actively studied

and their performance greatly improved by deep neural

networks (DNNs), automatic lyrics generation has also at-

tracted attention as a research topic [1]. Most studies of

lyrics generation have focused on lyric-specific musical

constraints such as melody [15–20], rhyme [6, 8, 21–25],

and audio signal [26–28]. While these lyric-specific musi-

cal constraints are an important aspect of lyrics generation,

the main focus of this study is on the controllability of the

semantic content of the generated lyrics.

Other studies have focused on lyrics generation that is

conditioned by semantic constraints such as input keywords,

styles, and topics [2–5, 29–32]. However, although these

constraints allow some control over the semantic content of

the generated lyrics, there may be differences between the

user’s intentions and the semantic content of the generated

lyrics. To improve the usability of the lyrics generation

method as a creative tool, we believe that users should be

able to enter freely formatted text (words, phrases, sen-

tences, paragraphs, etc.). Our proposed method therefore

allows any text format, giving users greater control over the

semantic content of the generated lyrics.

Some studies have proposed methods for generating

lyrics that are semantically related to the input text [6, 7].

Ram et al. proposed a fine-tuned T5 model [9] that gen-

erates single-line lyrics that follow several lines of input

lyrics [6]. This method allows the user not only to en-

ter sentences but also to control the rhyme and syllable

count of the generated lyrics by adding special tokens at

the end of the input sentence. In contrast to that method,

in which the generated lyrics are a continuation of the in-

put lyrics, ours generates lyrics that capture the semantic

content of the input text. Zhang et al.’s research motivation

is similar to ours, as they have also proposed a method for

generating lyrics that capture the semantic content of the

input text (which they refer to as passage-level text) [7].

To overcome the problem of the lack of text-lyric paired

data for training the text-to-lyrics encoder-decoder, they

collected lyrics data and passage-level text data (such as

short novels and essays) separately and utilized an unsu-

pervised machine translation framework. Specifically, they

prepared two encoder-decoders, one for lyric text and one

for passage-level text. They then aligned the latent rep-

resentation space of these two encoder-decoders to build

a text-to-lyrics encoder-decoder. In this paper, we pro-

pose a novel approach to develop a text-to-lyrics generation

method that requires only lyrics data. While Zhang et al.’s

method requires the collection of both lyrics and input texts,

ours does not require additional text data, thus simplifying

the development of the lyrics generation method.

3. TEXT-TO-LYRICS GENERATION WITH

IMAGE-BASED SEMANTICS

As described in Section 1, the proposed text-to-lyrics gen-

eration method first generates an image from the input text

by leveraging an existing text-to-image generation method.

It then generates lyrics from the generated image by using

our own image-to-lyrics encoder-decoder that we call I2L.

Since the image serves as an intermediate representation to

extract the meaning of the input text, the generated lyrics

can have similar meaning but different wording.

The network structure of the I2L is illustrated in Figure 2.

By assuming that one paragraph of lyrics can be represented

in a single image, we set the unit of the generated lyrics to

a paragraph.

We first uses the animation-style image generation

method Anything V3.0. 1 to obtain an image having a uni-

form style. The reasons for using Anything V3.0 here are

1 A fine-tuned Stable Diffusion model. https://huggingface.
co/Linaqruf/anything-v3.0
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Fully Connected Layer

Softmax Activation
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Word + Positional
Embedding
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…

…

Sequence of image patches
Resize the image to 224×224 pixels and divide it into 

patches of 32×32 pixels each, for a total of 49 patches.

Pre-trained Vision Transformer

(Freezed Parameters)

Transformer Decoder

(Trainable Parameters)

(※Extra embedding)

Figure 2. Image-to-lyrics encoder-decoder (I2L) for generating lyrics from an image that is generated from the input text.

(1) it can generate images that represent the input text with-

out prompt engineering, and (2) the use of images with

a uniform style facilitates I2L training. The image has a

resolution of 512× 512 and corresponds to a paragraph of

the English lyrics.

As shown in Figure 2, we then segment the generated im-

age into 49 patches and compute the features of the image

patches by using a pre-trained Vision Transformer 2 [33] to

obtain 50 features (each with 768 dimensions) per image.

These 50 image features are fed into the multi-head atten-

tion layer of the Transformer decoder [10]. We feed each

word in a paragraph into the word embedding and positional

embedding layers to compute the word vectors, and feed

each word vector into the masked multi-head attention layer

of the Transformer decoder. The output of the Transformer

decoder is fed into the fully connected layer FC to obtain

a vector of vocabulary size dimensions. Finally, we apply

the softmax activation function to this vector to calculate

the word probability distribution.

3.1 Parameters

We use 768 as the number of embedding dimensions, 6

as the number of multi-heads, 2 as the number of decoder

layers, 1024 as the number of feedforward layer dimensions,

and GELU as the activation function. For optimization we

use AdamW [34] with a mini-batch size of 8, a learning

rate of 0.001, and a warm-up step of one epoch. Training

was run for 40 epochs, and the I2L used for testing was the

one that achieved the best loss on the development set.

We dare to train our Transformer decoder from scratch

using only the lyrics data we have, without reusing available

pre-trained large-scale language models (LLMs) such as

BERT [35] or GPT-2 [36]. This is because when the training

data of LLMs contain copyrighted literary works such as

novels, poems, or essays, reusing pre-trained LLMs can

result in plagiarizing those works. Since we would like to

reduce the risk of plagiarism as described in Section 3.4,

we cannot leverage pre-trained LLMs.

2 https://huggingface.co/google/vit-base-patch

32-224-in21k

3.2 Training data

We sample 129,747 English songs from the Music Lyrics

Database V.1.2.7 3 so that each song contains at least three

paragraphs. The resulting dataset contains 927,535 para-

graphs. This means that we can obtain 927,535 images

by using Anything V3.0. We then split these songs into

training (90%) and development (10%) sets. We use the top

52,832 words with the highest document-frequency as the

vocabulary for training, and convert the other words to a spe-

cial symbol ⟨unknown⟩. This vocabulary includes ⟨L⟩ tags

for line breaks, ⟨P⟩ tags for the beginning of paragraphs,

and ⟨/P⟩ tags for the end of paragraphs.

We applied the same procedure not only to the lyrics of

English songs but also to the lyrics of 142,772 Japanese

songs. This Japanese dataset contains 1,078,500 paragraphs,

and the vocabulary size is 50,989 words. To extract word

boundaries for Japanese lyrics, we apply the CaboCha

parser [37]. Japanese lyrics are pre-translated into English

by a Japanese-English translator 4 for use with Anything

V3.0. We use these English and Japanese lyrics datasets to

train two I2Ls (one for each language).

3.3 Decoding algorithm

We expect that generating and suggesting different varia-

tions of lyrics can give users new ideas for writing lyrics.

To generate such different variations, we use a sampling

method rather than a beam search method. In the sampling

method, we sample each word according to the probability

distribution calculated by the Transformer decoder. Sam-

pling words according to a probability distribution allows

a wide variety of words to be included in the generated

lyrics, although some words that make the generated lyrics

meaningless may be included. To avoid generating such

meaningless lyrics, we use a Top-p sampling method that

prohibits sampling words with low generation probabili-

ties [38]. We can generate several lyrics simultaneously by

3 https://www.odditysoftware.com/page-datasales

1.htm
4 https://huggingface.co/staka/fugumt-en-ja
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running Top-p sampling in parallel. The probability distri-

bution for word sampling in Top-p sampling is calculated

using the formula softmax(z/τ): where z is the output

of the fully connected layer FC and τ is the temperature

parameter. If τ is less than 1, common words with high

probability values are more likely to be sampled. In model

training we set τ to 1, while in lyrics generation the user

can set τ freely.

3.4 Anti-plagiarism method for lyrics generation

One of concerns with lyrics generation based on machine

learning is the risk of plagiarism since the generated lyrics

may contain phrases that are identical to existing lyrics

phrases in training data, potentially leading to copyright

infringement issues. To address this issue, we propose a

method to reduce the risk of plagiarism in machine learning-

based lyrics generation. This method not only allows the

generation of new phrases that are not present in the training

data, but also permits the use of commonly used phrases

such as “I love you” in the generated lyrics. In contrast, it

prohibits the use of uncommon phrases that we consider to

be a form of plagiarism. To achieve this, we create a list of

uncommon phrases, UncommonPhrase, and prohibit the

generation of phrases that are included in this list.

First, we define the uncommon phrases included in

UncommonPhrase, as well as the new phrases and com-

mon phrases that are allowed to be generated. A phrase is

defined by a word n-gram, denoted by {w1, ..., wn}, where

w is a word. We categorize a phrase as “new”, “common”,

or “uncommon” according to SN({w1, ..., wn}) defined

as the number of songs in which the n-gram occurs in the

training data:

• If SN({w1, ..., wn}) = 0, this n-gram is a new

phrase (i.e., it does not appear in the training data).

• If 3 < SN({w1, ..., wn}), this n-gram is a common

phrase (i.e., it appears frequently in the training data).

• If 1 ≤ SN({w1, ..., wn}) ≤ 3, this n-gram is an

uncommon phrase (i.e., it appears infrequently in the

training data). 5

Note that there is a possibility of mistaking uncommon

phrases for common phrases when duplicate lyrics are con-

tained in the training data, which results in larger SN values

than they should be. It could happen when different artists

sing the same lyrics, the same lyrics is repeatedly regis-

tered, and so on. We therefore identify duplicate lyrics

according to the following two criteria: (1) we assume that

pairs of lyrics with the same 20-grams are duplicates, and

(2) we assume that pairs of lyrics with a normalized edit

distance [39] of less than 0.5 are duplicates. To calculate

SN accurately, we then concatenate the identified duplicate

lyrics and replace those lyrics with the single concatenated

lyrics. When lyrics that do not duplicate are mistaken for

5 In this study, we tentatively set the threshold for SN at 3. Since
there is no established legal rule, we believe that this threshold will be
determined by social consensus in the future. Providing the technical basis
for such discussions is also a contribution of this study.

duplicate lyrics, a common phrase can be mistaken for an

uncommon phrase, but it is better than vice versa from

the anti-plagiarism viewpoint. This reduced the number of

English songs in our lyrics data from 129,747 to 108,497. 6

Based on this SN criteria, we collect uncommon phrases

from our training data. However, it is important to note that

even if a word 3-gram is a common phrase, it may become

an uncommon phrase when it becomes a word 4-gram. For

instance, “I love you” is a common 3-gram with a large

SN , while “I love you darling” is an uncommon 4-gram

with a small SN . Therefore we do not use a single value

of n but instead consider all values of n within a range

from 1 to sufficiently large values. However, it is difficult to

store all uncommon phrases in memory because the number

of n-grams that have to be listed increases with n. To

overcome the memory limitation problem, we propose to

use the following procedure to minimize the number of

uncommon phrases we need to store in memory: (1) we start

by examining 1-grams, then move on to 2-grams, 3-grams,

and so on until we have looked at all possible n-grams in

the training data. (2) For each target n-gram, we generate

all possible sub-n-grams of length 1, 2, ..., n− 1. If any of

these sub-n-grams are already in UncommonPhrase, we

can skip adding the target n-gram to UncommonPhrase
because we know it is uncommon. Otherwise, we add

the target n-gram to UncommonPhrase. Following this

procedure, we collected approximately 22.3M uncommon

n-grams with n ranging from 1 to 21 for English lyrics. 7

After creating UncommonPhrase using the above

procedure, we prohibit their generation during Top-p
sampling by the following two steps: (1) During word

generation, we check whether any sub-n-grams derived

from the word sequence {w1, ..., wt} are included in

UncommonPhrase. (2) If any of these sub-n-grams

are found in UncommonPhrase, we prohibit the gen-

eration of word wt by setting its generation probability

P (wt|{w1, ..., wt−1}) to zero.

4. QUANTITATIVE EVALUATION

The proposed text-to-lyrics generation method was quanti-

tatively evaluated using two metrics:

Test-set perplexity (PPL): This is a standard evaluation

measure for encoder-decoders. The PPL metric measures

the degree of predictability of the phrasing in the original

text in the test set [40]. A smaller PPL value is better since

it indicates that the encoder-decoder has a higher ability to

generate lyrics that capture the meaning of the input text.

Normalized edit distance (NED): The normalized edit

distance [39] between the generated lyrics and the input

text is calculated to evaluate whether the proposed method

generates lyrics that differ in wording from the input text.

A larger NED is better since it indicates that the generated

lyrics have wording more different from the input text.

6 For Japanese lyrics, the number of songs was reduced from 142,772
to 119,595.

7 For Japanese lyrics, we collected approximately 18.2M uncommon
n-grams with n ranging from 1 to 19.
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English Japanese

Method PPL NED PPL NED

I2L (proposed) 84.86 0.78 231.49 0.92

S2L 346.73 0.69 306.19 0.86

B2L 544.21 0.71 1051.58 0.66

H2H 163.98 0.68 583.13 0.90

Table 1. Results of quantitative evaluation.

4.1 Experimental dataset

To evaluate the proposed lyrics generation method, we con-

structed a small test dataset consisting of pairs of lyrics and

input text representing the semantic content of the lyrics.

Since such a dataset is not available, for English songs, we

prepared a test dataset that included plot texts from 20 Dis-

ney animated films, taken from Wikipedia, along with their

corresponding theme song lyrics. We here assume that the

lyrics of each theme song are written based on the content

of that film. For Japanese songs, we prepared 51 Japanese

animation plot texts and their theme song lyrics.

4.2 Methods Compared

To compare the proposed method with possible differ-

ent methods, we prepared the following encoder-decoders

trained on paired data created in different suitable ways.

Image-to-Lyrics encoder-decoder (I2L) This is the pro-

posed encoder-decoder trained on image-lyric paired data.

Summary-to-Lyrics encoder-decoder (S2L) We con-

verted each lyric paragraph in the training data into a

summary using a text summarization method 8 to create

summary-lyric paired data. The data is then used to train a

Transformer-based summary-to-lyric encoder-decoder.

Back-translated-lyrics-to-Lyrics encoder-decoder (B2L)

We translated each lyric paragraph in the training data from

English to Japanese to English by using English-Japanese

and Japanese-English translation methods 9 to create paired

data of the back-translated lyrics and the original lyrics.

The data is then used to train a Transformer-based back-

translated-lyrics-to-lyrics encoder-decoder.

Half-to-Half encoder-decoder (H2H) Inspired by an exist-

ing text-to-lyrics encoder-decoder training method [6], we

first split each lyrics paragraph in the training data into first

and second halves. We then used this split lyrics data to

train a Transformer-based encoder-decoder that generates

the second half lyrics from the first half lyrics.

Since the above S2L, B2L, and H2H are also

Transformer-based encoder-decoders, their parameter set-

tings are the same as for the proposed I2L. Given one input

text, five lyrics were generated by each method. The pa-

rameter p for Top-p sampling was set to 0.9 and τ was set

to 0.4. The generation process stops when the symbol ⟨/P⟩

8 https://huggingface.co/google/pegasus-xsum for
the English summarization. https://huggingface.co/tsmatz/
mt5\_summarize\_japanese for the Japanese summarization.

9 https://huggingface.co/staka/fugumt-en-ja for
the English to Japanese translation. https://huggingface.co/s
taka/fugumt-ja-en for the Japanese to English translation.
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Figure 3. The percentage of generated lyric n-grams that

are included in UncommonPhrase, a list of phrases that

should not be generated (plagiarized). For example, 18.4%

at English 4-grams means that among all 4-gram phrases in

the generated lyrics, 18.4% are uncommon phrases, though

81.6% are new or common phrases.

(end of paragraph) is generated. For this comparison, we

did not use the proposed anti-plagiarism method.

4.3 Experimental results

Table 1 indicates that the proposed I2L method had the best

PPL in both the English and Japanese experiments and that

the NED between the lyrics generated by this method and

the input text was the largest (pt < 0.05 based on the paired

t-test). As expected, the NEDs were smaller for the S2L

and B2L methods, which were trained on paired data where

the wording of the input text and lyric pairs was similar. In

contrast, although the H2H method can generate lyrics with

wording different from the input text, it cannot generate

lyrics that are semantically related to the input text like the

proposed method can. These findings confirm that image-

lyric pairs are more effective than other paired data sets as

training data for encoder-decoders generating lyrics that are

semantically related to the input text but differ from it in

wording.

5. EFFECTIVENESS OF THE PROPOSED

ANTI-PLAGIARISM METHOD

We examined whether the absence of the anti-plagiarism

method proposed in Section 3.4 results in plagiarizing un-

common phrases found in existing lyrics. In the lyrics

generated by the I2L method in Section 4, we calculated the

percentage of n-grams included in UncommonPhrase.

The results with n ranging from 1 to 12 are shown in

Figure 3. The percentage of uncommon 1-grams and 2-

grams in the generated lyrics is almost 0%. This indicates

that almost all of the generated 1-grams and 2-grams are

common phrases used in many existing lyrics, even with-

out the use of the anti-plagiarism method. On the other

hand, the percentage of uncommon 3-grams to 8-grams

ranged between 3% and 18%. This suggests that many

phrases in the generated lyrics may plagiarize if the pro-

posed anti-plagiarism method is not applied. Furthermore,

as n increases beyond 9, the n-gram combinations become

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

402



Input text Image (intermediate representation) Generated lyrics

A group of explorers are

walking through the grass neutral.
⇒ ⇒

Out in the country, out of sight

We’ve got to get this together right now

I’m going out with you today

And some day we’ll make a lot better way

We meet again I guess our love is forever. ⇒ ⇒

This is the last time

We’ve been together for long years

I’m here with you

To be forever yours

Table 2. Examples of lyrics generated by our text-to-lyrics generation method with the anti-plagiarism method.

so vast that the generated n-grams are rarely included in

UncommonPhrase. These results confirm that our ma-

chine learning-based lyrics generation method tends to sam-

ple common words, but the generated 3- to 8-gram phrases,

even though they are composed of common words, may be

uncommon enough to raise suspicion of plagiarism. Using

the proposed anti-plagiarism method, in contrast, ensures

that uncommon phrases contained in UncommonPhrase
are never generated, thereby reducing the risk of plagiarism.

While the proposed anti-plagiarism method is effective,

it is important to note that it is not intended to be a fool-

proof solution that ensures legal compliance. Rather, it is

designed to provide a helpful guideline for those who wish

to generate original lyrics while reducing the risk of plagia-

rism. We hope that our approach can contribute to further

discussions on a reasonable balance between encouraging

creativity and respecting intellectual property rights.

6. QUALITATIVE EVALUATION

Table 2 shows two examples of lyrics generated using the

proposed method. Given the input text, our method can

generate any number of lines of lyrics, but here four lines

are generated by stopping the generation process when four

⟨L⟩ (line break) symbols and the ⟨/P⟩ (end of paragraph)

symbol are generated. In the first example, the input text is

taken from the SICK dataset [41], while in the second ex-

ample the input text is taken from lyrics in the RWC Music

Database [42]. In both examples, our method can generate

lyrics that reflect the content of the input text. In the first

example, it generates an image that represents the scene de-

scribed in the input text and generates corresponding lyrics

that reflect the image. In contrast, in the second example,

our method generates an image of a person with emotional

expression corresponding to the input text and generates

lyrics that express the emotion depicted in the image. Other

examples can be found in the supplementary material A. 10

In addition to the quantitative evaluation and the gen-

erated examples, we evaluated the similarity between the

input text and the generated lyrics through a human eval-

uator. To prepare the input text in an objective way, we

collected the titles of the “Hot 100 Songs” in 2022 on the

Billboard year-end charts 11 , extracted the first verse from

10 https://github.com/KentoW/ISMIR2023
11 https://www.billboard.com/charts/year-end/202

their lyrics, and summarized each verse into a short sen-

tence using ChatGPT. 12 Since 9 songs contained explicit

content in either the input text or the generated lyrics, they

were excluded for ethical reasons. 13 We then showed the

evaluator the input text and the lyrics generated from it, and

asked to classify whether the impressions of the two were

similar or not. As a result, the impressions of the input text

and the generated lyrics were judged to be similar for 52

of the 91 songs, confirming that the proposed method can

generate lyrics that express the content of the input text to

some extent. In cases where the impressions were classi-

fied as dissimilar, most of the input texts contain complex

situations or abstract content that is difficult to generate

as images. Thus, the limitation of this approach is that it

cannot generate lyrics for input texts that are difficult to

represent as images. Nevertheless, our method is useful

as a writing support tool for many situations where users

have intentions that can be represented as images, and is

also valuable because it pioneered a novel lyric generation

approach. Detailed results of the generated lyrics and the

judgments are included in the supplementary material B. 14

7. CONCLUSION

This paper has described a method for generating lyrics that

are similar in meaning to the input text but expressed differ-

ently. The contributions of this study are as follows: (1) We

proposed a novel two-step pipeline framework. First, we

apply text-to-image generation as a text analyzer to extract

only the semantic content from the input text. Next, we use

our proposed image-to-lyrics encoder-decoder to generate

lyrics that capture the semantics of the generated image.

(2) We proposed a method to reduce the risk of plagiarism

by prohibiting the generation of uncommon phrases in the

training data and verified its effectiveness. (3) We quantita-

tively showed that our proposed method outperforms other

methods in generating lyrics for our purpose.

Future work will develop the flexible lyric writing sup-

port system incorporating the proposed lyrics generation

method.

2/hot-100-songs/
12 https://chat.openai.com/chat
13 As future work, we plan to incorporate a filtering function that uses

explicit lyrics detection [43–46].
14 https://github.com/KentoW/ISMIR2023
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ABSTRACT

Automatic music captioning, which generates natural lan-

guage descriptions for given music tracks, holds signif-

icant potential for enhancing the understanding and or-

ganization of large volumes of musical data. Despite its

importance, researchers face challenges due to the costly

and time-consuming collection process of existing music-

language datasets, which are limited in size. To address

this data scarcity issue, we propose the use of large lan-

guage models (LLMs) to artificially generate the descrip-

tion sentences from large-scale tag datasets. This results

in approximately 2.2M captions paired with 0.5M audio

clips. We term it Large Language Model based Pseudo mu-

sic caption dataset, shortly, LP-MusicCaps. We conduct

a systemic evaluation of the large-scale music captioning

dataset with various quantitative evaluation metrics used in

the field of natural language processing as well as human

evaluation. In addition, we trained a transformer-based mu-

sic captioning model with the dataset and evaluated it un-

der zero-shot and transfer-learning settings. The results

demonstrate that our proposed approach outperforms the

supervised baseline model. 1

1. INTRODUCTION

Music captioning is a music information retrieval (MIR)

task of generating natural language descriptions of given

music tracks. The text descriptions are usually sentences,

distinguishing the task from other music semantic under-

standing tasks such as music tagging. Recently, there have

been some progress in music captioning including track-

level captioning [1, 2] and playlist-level captioning [3–6].

These approaches usually utilize a deep encoder-decoder

framework which is originally developed for neural ma-

chine translation [7]. Choi et al. [3] used a pre-trained

music tagging model as a music encoder and an RNN

1 Our dataset and codes are available at https://github.com/
seungheondoh/lp-music-caps

© SeungHeon Doh, Keunwoo Choi, Jongpil Lee, Juhan

Nam. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: SeungHeon Doh, Keunwoo Choi,

Jongpil Lee, Juhan Nam, “LP-MusicCaps: LLM-Based Pseudo Music

Captioning”, in Proc. of the 24th Int. Society for Music Information Re-

trieval Conf., Milan, Italy, 2023.

Figure 1. The generation process of pseudo captions by

feeding a large language model with instructions and

manually-annotated labels.

layer initialized with pre-trained word embeddings for text

generation. Manco et al. [1] introduced a temporal atten-

tion mechanism for alignment between audio and text by

pairing a pre-trained harmonic CNN encoder [8] with an

LSTM layer. Gabbolini et al. [5] generated playlist titles

and descriptions using pre-trained GPT-2 [9].

Currently, the primary challenge of track-level music

captioning is the scarcity of large-scale public datasets.

Manco et al. [1] used private production music datasets.

Huang et al. [10] also used a private dataset with 44M

music-text pairs on YouTube, but this approach is hardly

reproducible or affordable for other researchers. To address

this data issue, a community-driven data collection initia-

tive has been proposed [11]. As of now, the only publicly

available dataset for track-level music captioning is Music-

Caps [12], which includes high-quality music descriptions

from ten musicians. However, it is limited to 5521 music-

caption pairs as it was originally created as an evaluation

set for a text-prompt music generator.

With the scale of the aforementioned datasets, it re-

mains difficult to train a music captioning model success-

fully. A workaround for this situation is to use music tag-

ging datasets and generate sentences with tag concatena-

tion [2,13] or prompt template [14]. As relying on tagging

datasets, however, the tag-to-sentence approaches would

have the same limitation tagging datasets have. For exam-

ple, high false-negative rates of tagging datasets [15]. Tag-
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ging datasets also has some typical issues text data have,

for example, synonyms, punctuation, and singular/plural

inconsistencies. Without proper treatment, these can limit

the performance of the corresponding music captioning

models.

A potential solution is to use strong language models,

i.e., large language models (LLMs). LLMs refer to the re-

cent large-scale models with over a billion parameters that

exhibit strong few-shot and zero-shot performance [9, 16].

Large language models are usually trained with text data

from various domains such as Wikipedia, GitHub, chat

logs, medical articles, law articles, books, and crawled

web pages [17]. When successfully trained, they demon-

strate an understanding of words in various domains [9].

There have been similar and successful use cases of LLMs

for general audio understanding [18] and music genera-

tion [19].

Motivated by the recent success of LLMs, we propose

creating a music captioning dataset by applying LLMs

carefully to tagging datasets. Our goal is to obtain cap-

tions that are i) semantically consistent with the provided

tags, ii) grammatically correct, and iii) with clean and en-

riched vocabulary. This dataset-level approach is rather

pragmatic than sophisticated; it alleviates the difficulty of

music captioning tasks not by theory or model, but by

data. The aforementioned ambiguous aspects of the mu-

sic captioning task are addressed by the powerful LLMs

that cost reasonably [20], considering the training cost mu-

sic researchers would spend otherwise. Once the creation

is complete, it is straightforward to train some music cap-

tioning models by supervised learning.

There are some existing works in the pseudo-labeling

using language models. Huang et al. [19] introduced the

MuLaMCap dataset, which consists of 400k music-caption

pairs generated using the large language model and the

music-language joint embedding model. They utilized a

large language model (LaMDA [21]) to generate 4M sen-

tences using 150k song metadata as input in the format

of {title} by {artist}. Then the text and music-

audio joint embedding model, MuLan, calculates the sim-

ilarity between music and generated captions, annotating

pairs with high similarity [10]. However, it is not possi-

ble to reproduce or evaluate this work as the adopted lan-

guage model as well as the final music-audio embedding

model are not publicly available. Moreover, using metadata

has some issues – a popularity-biased, limited coverage

and a low reliability – as we discuss later in Section 2.1.

Wu et al. [22] introduce keyword-to-caption augmentation

(K2C Aug) to generate captions based on the ground truth

tags of audio clips in AudioSet. They used a pre-trained

T5 model without any instruction. Finally, Mel et al.. [18]

introduce WavCaps, a 400k audio captioning dataset us-

ing ChatGPT [23]. However, previous approaches only re-

ported task performance and did not directly evaluate the

quality of generated captions.

We propose a solution in this paper with three-fold key

contribution. First, we propose an LLM-based approach to

generate a music captioning dataset, LP-MusicCaps. Sec-

ond, we propose a systemic evaluation scheme for mu-

sic captions generated by LLMs. Third, we demonstrate

that models trained on LP-MusicCaps perform well in both

zero-shot and transfer learning scenarios, justifying the use

of LLM-based pseudo-music captions.

2. PSEUDO CAPTION GENERATION USING

LARGE LANGUAGE MODELS

In this section, we introduce how music-specific pseudo

captions are created using a large language model in the

proposed method.

2.1 Large Language Model for Data Generation

We first take multi-label tags from existing music tagging

datasets. The list of tags are appended with a carefully writ-

ten task instruction as an input (prompt) to a large language

model. The model then generates and returns sentences

that (may) describe the music in a way the task instruc-

tion conditions. Table 1 shows examples of generated cap-

tions according to multi-label tags and task instructions.

For the language model, we choose GPT-3.5 Turbo [23] for

its strong performance in various tasks. During its training,

it was first trained with a large corpus and immense com-

puting power, then fine-tuned by reinforcement learning

with human feedback (RLHF) [24] for better interaction

with given instruction. As a result, GPT-3.5 Turbo demon-

strates state-of-the-art zero-shot abilities in understanding,

reasoning, and generating human-like responses to natural

language inputs.

Since LLMs contain a wide range of information, music

captions may be generated based on some famous musical

entities such as the artist name or album name. However,

LLMs may generate inaccurate text in a confident tone

which is hard to detect without ground truth. This issue,

known as hallucination, can be a fun aspect when using

LLMs for creative purposes [25]. However, hallucination

should be avoided in an application like ours as the result-

ing captions should be factual. Therefore, we do not use

any metadata unlike a previous work [19]. We also added

a question to measure hallucination in the proposed evalu-

ation scheme.

2.2 Task Instruction Design

Our proposed caption generation follows the formulation:

ỹcap = fLLM(ytag, i), where ytag and ỹcap refer to the multi-

label tag and the generated caption, respectively, and i is

the task instruction provided. Given that the output can

vary based on the task instruction, even with the same

model and input, task instructions become a crucial as-

pect of data generation. Therefore, we define four different

tasks and generate captions accordingly.

Writing: Write a song description sentence including the

following attributes. {input tags}

Summary: Write a single sentence that summarizes a song

with the following attributes. Don’t write the artist name or

album name. {input tags}
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Input tags

video game theme, no singer, instrumental, analog sounding, small keyboard, beatboxing, playful, cheerful, groovy

Result of "Writing" Instruction

This instrumental track has a joyful and playful vibe, perfect for a video game theme. With no singer, the analog-sounding music features a

small keyboard and beatboxing, creating a groovy and cheerful atmosphere.

Result of "Summary" Instruction

A cheerful and groovy instrumental track with playful beatboxing and an analog sound, featuring a small keyboard and video game-inspired

theme.

Result of "Paraphrase" Instruction

This upbeat instrumental tune captures the essence of a fun-filled video game theme, incorporating analog-sounding beats,

playful beatboxing rhythms, and a groovy small keyboard melody, all without the need for a singer.

Result of "Attribute Prediction" Instruction

{"new_attribute": ["8-bit sound", "chiptune style", "retro vibe"],

"description": "This instrumental tune is straight out of a video game with its analog sounding melodies and small keyboard tinkles.

Beatboxing adds a playful element to the groovy, cheerful vibe. Reminiscent of classic 8-bit sound and chiptune style, this retro vibe

is sure to put a smile on your face."}

Ground Truth

This is a video game theme cover. The theme belongs to the Super Mario franchise. The main theme is being played on an analog sounding

small keyboard. There is an added rhythmic background of beatboxing in this version. The atmosphere is playful. This piece could be used

in the background of arcade gaming social media content.

Table 1. An example of generated captions from MusicCaps dataset.

Paraphrase: Write a song description sentence including

the following attributes. Creative paraphrasing is accept-

able. {input tags}

Attribute Prediction: Write the answer as a Python dic-

tionary with new_attribute and description as keys. For

new_attribute, write new attributes that show high co-

occurrence with the following attributes. For description,

write a song description sentence including the following

attributes and new attributes. {input tags}

In every instruction, we add ‘include / with the follow-

ing attributes’ to prevent hallucination. The “Writing” task

instruction is a simple prompt that uses tags to generate a

sentence. The “Summary” task instruction aims to com-

press information into a short length. The “Paraphrase”

task instruction expands the vocabulary. Finally, the “At-

tribute Prediction” task instruction predicts new tags based

on tag co-occurrence in large corpora (i.e. the training data

of GPT-3.5 Turbo), which is expected to address the is-

sue of high false-negative rates in existing tagging datasets

while mitigating the risk of hallucination. In this instruc-

tion, ‘new attributes’ exists to bridge the description and

the input, and we only use the ‘description’ as caption.

3. EVALUATION OF PSEUDO CAPTIONS

It is crucial to ensure the quality of generated captions, es-

pecially since they are supposed to be used as ground truth.

In this section, we introduce a holistic evaluation scheme

that includes objective and subjective assessment – and its

result on the captions from the proposed method.

3.1 Objective Evaluation

We conduct evaluation on the generated captions using

MusicCaps dataset [12]. It has audio (x), tag list (ytag), and

ground truth caption (ycap). The pseudo captions (ỹcap) are

generated with four pre-defined instructions as explained

in Section 2.2 for all items in the evaluation split. During

the evaluation, the generated captions are compared to the

ground truth captions with respect to n-gram, neural met-

rics. We also report diversity metrics.

Following the previous work [5], we measure four n-

gram metrics [26–28]: BLEU1 to 4 (B1, B2, B3, B4), ME-

TEOR (M), and ROUGE-L (R-L). They are all based on

n-gram precision and recall between the ground truth and

generated captions. These metrics capture different aspects

of the caption quality. BLEU and METEOR focus on n-

gram overlap between the generated and ground truth cap-

tions, while ROUGE-L measures the longest common sub-

sequence between the two.

In addition, we use BERT-Score (BERT-S) based on

pre-trained BERT embeddings to represent and match the

tokens in the ground truth with respect to the generated

caption [29]. By computing the similarity between the

BERT embeddings of each token, BERT-Score can better

capture the semantic similarity between the generated and

ground truth captions than n-gram metrics; as it is more ro-

bust to synonyms, paraphrasing, and word order variations.

Finally, we evaluate the diversity of the generated cap-

tions by measuring how many different words are used.

novelv indicates the percentage of new vocabulary in gen-

erated captions that are not among the training vocabulary.

Vocab is the number of unique words used in all the gener-

ated captions. It is worth noting that diversity metrics are

generally considered as subsidiaries and do not capture the

overall quality of the generated captions.

3.2 Subjective Evaluation

Following the previous work [12], we set up an A-vs-B hu-

man rating task, in which a participant is presented with a

10-second single music clip and two text descriptions. We

randomly selected 240 music samples from the MusicCaps

evaluation dataset. Since the research goal is to generate
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Supervised Metrics Diversity Metrics Length

Methods LM Params B1↑ B2↑ B3↑ B4↑ M↑ R-L↑ BERT-S↑ Vocab↑ Novelv↑ Avg.Token

Baseline

Tag Concat [2, 13] - - 20.25 13.57 8.64 5.42 23.24 19.52 86.24 3506 46.92 20.6±11.2

Template [14] - - 25.41 16.15 10.00 6.15 25.57 21.36 87.92 3507 46.93 25.6±11.2

K2C Aug. [22] T5 220M 6.07 3.01 1.58 0.85 14.23 17.92 86.33 3760 67.66 14.7±5.1

Proposed Instruction

Writing GPT3.5 175B+ 36.84 19.85 11.37 6.74 31.44 25.36 89.26 5521 56.17 44.4±17.3

Summary GPT3.5 175B+ 26.12 14.58 8.80 5.52 27.58 25.83 89.88 4198 49.52 28.6±10.7

Pharapase GPT3.5 175B+ 36.51 18.73 10.33 5.87 30.36 23.40 88.71 6165 59.95 47.9±18.7

Attribute Prediction GPT3.5 175B+ 35.26 18.16 9.69 5.41 34.09 23.19 88.56 6995 63.16 66.2±21.6

Table 2. Performance of existing pseudo caption generation methods and the proposed method. LM stand for the language

model. Avg.Token stand for the average number of token per caption.

Figure 2. A-vs-B test results. Each method is compared to ground truth in terms of having more true positives and fewer

false positives. The proposed methods (b, c, d, e) show comparable win+tie performance to ground truth.

music captions that can be used as pseudo-ground truth,

one description is always fixed to the ground truth and the

other is chosen from 5 types of generated captions includ-

ing the K2C Augmentation [22] and the four proposed in-

struction methods. This yields up to 1200 (= 240 x 5) ques-

tions. We hired 24 participants who are music researchers

or professionals in the music industry. Each of them rated

20 randomly selected questions. As a result, we collected a

total of 480 ratings. The rater was asked to evaluate caption

quality on two different aspects: (Q1) More True Positive:

which caption describes the music with more accurate at-

tributes? (Q2) Less False Positive: which caption describes

the music less wrong? For example, if a method produces

long and diverse sentences with many music attributes, it

may be advantageous for Q1 but disadvantageous for Q2.

Conversely, if a method conservatively produces short sen-

tences with few music attributes, it may be advantageous

for Q2 but disadvantageous for Q1. We determine the rank-

ing of conditions by counting the number of wins, ties, and

loses in the pairwise tests.

3.3 Results

We compare our LLM-based caption generation with two

template-based methods (tag concatenation, prompt tem-

plate 2 ) and K2C augmentation [22]. In Table 2, we present

the captioning result for MusicCaps [12] evaluation set.

When comparing our proposed method with existing meth-

2 Template example: the music is characterized by {input tags}

ods, we observe significant differences in n-gram metrics.

This is because the tag concatenation fails to complete the

sentence structure. In the case of K2C Augmentation, due

to the absence of instruction, the input tag is excluded from

the generated caption, or a sentence unrelated to the song

description sentence is created. In contrast, the template-

based model shows improved performance as the musi-

cal context exists in the template. We next consider diver-

sity metric with BERT-Score. Our proposed method shows

higher values in BERT-Score while generating diverse vo-

cabularies. This indicates that the newly created vocabu-

lary does not harm the music semantics.

Comparing within the proposed different task instruc-

tions, we can observe that each instruction performs a dif-

ferent role. “Writing” shows a high n-gram performance

as it faithfully uses input tags to generate captions. “Sum-

mary” has the smallest average number of tokens due to

its compression of information, but it shows competitive

performance in ROUGE-L which is specialized to summa-

rizing, as well as the highest BERT-Score. “Paraphrase”

generates many synonyms, resulting in a large vocabulary

size and the use of novel vocabulary. “Attribute Prediction”

predicts new tags based on the co-occurrence of tags. This

instruction shows lower performance in BLEU but compet-

itive results in METEOR, which utilizes a thesaurus, such

as WordNet, to consider the accuracy scores of words with

similar meanings, indicating that newly predicted tags have

similar semantic with ground truth.

Figure 2 shows the subjective A-vs-B test results. Each
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Dataset # item Duration (h) C/A Avg. Token

General Audio Domain

AudioCaps [30] 51k 144.9 1 9.0±N/A

LAION-Audio [22] 630k 4325.4 1-2 N/A

WavCaps [18] 403k 7568.9 1 7.8±N/A

Music Domain

MusicCaps [12] 6k 15.3 1 48.9±17.3

MuLaMCap∗ [19] 393k 1091.0 12 N/A

LP-MusicCaps-MC 6k 15.3 4 44.9±21.3

LP-MusicCaps-MTT 22k 180.3 4 24.8±13.6

LP-MusicCaps-MSD 514k 4283.1 4 37.3±26.8

Table 3. Comparison of audio-caption pair datasets. C/A

stands for the number of caption per audio. *Although we

include MuLaMCap in the table for comparison, it is not

publicly accessible.

method is compared to the ground truth in terms of having

more true positives (Q1) and fewer false positives (Q2). For

the first question, compared to the baseline K2C augmen-

tation, the proposed methods using the instructions show

an overwhelmingly higher win+tie score. This indicates

the importance of music-specific instructions when utiliz-

ing LLM. In particular, “Paraphrase” and “Attribute Pre-

diction” achieve high win scores by incorporating new in-

formation that is different from the existing vocabulary. In

the second question, all caption generation methods except

“Attribute Prediction” show higher win+tie scores than

lose scores. This advocates the trustworthiness of LLM-

based caption generation as it shows a similar or less false-

positive rate to the ground truth. With its longest aver-

age length, “Attribute Prediction” turns out to be ‘too cre-

ative’ and shows a slightly higher false-positive rate than

the ground truth.

4. DATASET: LP-MusicCaps

Based on the proposed pseudo caption generation method,

we introduce LP-MusicCaps, an LLM-based Pseudo mu-

sic caption dataset. We construct the music-to-caption pairs

using three existing multi-label tag datasets and four task

instructions. The data sources are MusicCaps [12], Mag-

natagtune [31], and Million Song Dataset [32] ECALS

subset [13]. We respectively refer to them as MC, MTT,

and MSD. MC contains 5,521 music examples, 3 each of

which is labeled with 13,219 unique aspects written by mu-

sic experts. MTT [31] consists of 26k music clips from

5,223 unique songs including genre, instrument, vocal,

mood, perceptual tempo, origin, and sonority features. We

used the full 188 tag vocabulary and did not generate cap-

tions for tracks that do not have associated tags (decreased

to 22k). MSD consists of 0.52 million 30-second clips and

1054 tag vocabulary [13]. The tag vocabulary covers var-

ious categories including genre, style, instrument, vocal,

mood, theme, and culture. Each dataset uses an average of

10.7 / 3.3 / 10.2 labels per music clip for generating pseudo

captions, respectively.

Table 3 provides a comparison of statistics between

the LP-MusicCaps family and other audio-caption pair

3 We only use 5495 out of the total due to the loss of 26 data samples.

Figure 3. A cross-modal encoder-decoder architecture.

datasets. When comparing the two domains, Audio-

Caps [30] and MusicCaps have high-quality human anno-

tated captions, but they have fewer captions with shorter

audio duration. When comparing large-scale datasets, the

music domain lacks available datasets compared to the

general audio domain (such as LAION-Audio [22] and

WavCaps [18]). Although MuLaMCap has an overwhelm-

ing amount of annotated captions, it is not publicly avail-

able. In contrast, LM-MusicCaps is publicly accessible

and provided with various scales. LP-MusicCaps-MC has

a similar caption length to manually written captions

while having four times more captions per audio. LP-

MusicCaps-MTT is a medium-sized dataset with audio

download link, and LP-MusicCaps-MSD has the largest

audio duration among various captions in the music do-

main caption dataset.

5. AUTOMATIC MUSIC CAPTIONING

We trained a music captioning model and evaluated it un-

der zero-shot and transfer-learning settings. This section

reports the experimental results.

5.1 Encoder-Decoder Model

We used a cross-modal encoder-decoder transformer ar-

chitecture that has achieved outstanding results on various

natural language processing tasks [33], lyrics interpreta-

tion [34], and speech recognition [35], as shown in Fig-

ure 3. Similar to Whisper [35], the encoder takes a log-

mel spectrogram with six convolution layers with a filter

width of 3 and the GELU [36] activation function. With

the exception of the first layer, each convolution layer has

a stride of two. The output of the convolution layers is

combined with the sinusoidal position encoding and then

processed by the encoder transformer blocks. Following

the BARTbase architecture, our encoder and decoder both

have 768 widths and 6 transformer blocks. The decoder
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Supervised Metrics Diversity Metrics Length

Model B1↑ B2↑ B3↑ B4↑ M↑ R-L↑ BERT-S↑ Vocab↑ Novelv↑ Novelc↑ Avg.Token

Baseline

Supervised Model 28.51 13.76 7.59 4.79 20.62 19.22 87.05 2240 0.54 69.00 46.7±16.5

Zeroshot Captioning

Tag Concat [2, 13] 4.33 0.84 0.26 0.00 3.10 2.01 79.30 802 46.38 100.00 23.8±12.1

Template [14] 7.22 1.58 0.46 0.00 5.28 6.81 81.69 787 45.24 100.00 25.8±12.4

K2C-Aug [22] 7.67 2.10 0.49 0.10 7.94 11.37 82.99 2718 81.97 100.00 19.9±7.6

LP-MusicCaps (Ours) 19.77 6.70 2.17 0.79 12.88 13.03 84.51 1686 47.21 100.00 45.3±28.0

Tansfer Learning

Tag Concat [2, 13] 28.65 14.68 8.68 5.82 21.88 21.31 87.67 1637 3.30 96.07 41.8±14.3

Template [14] 28.41 14.49 8.59 5.78 21.88 21.25 87.72 1545 3.62 96.77 41.1±13.2

K2C-Aug [22] 29.50 14.99 8.70 5.73 21.97 20.92 87.50 2259 1.42 84.95 44.1±15.0

LP-MusicCaps (Ours) 29.09 14.87 8.93 6.05 22.39 21.49 87.78 1695 1.47 96.06 42.5±14.3

Table 4. Music captioning results on the MusicCaps eval-set. Avg.Token stands for the average number of token per caption.

processes tokenized text captions using transformer blocks

with a multi-head attention module that includes a mask

to hide future tokens for causality. The music and caption

representations are fed into the cross-modal attention layer,

and the head of the language model in the decoder predicts

the next token autoregressively using the cross-entropy

loss, formulated as: L = −
∑T

t=1
log pθ(yt | y1:t−1, x)

where x is the paired audio clip and yt is the ground truth

token at time t in a caption with length T .

5.2 Experimental Setup

To evaluate the impact of the proposed dataset on the music

captioning task, we compare a supervised model trained on

the MusicCaps [12] training split and a pre-trained model

trained on an LP-MusicCaps-MSD dataset. For the pre-

trained model, we perform both a zero-shot captioning task

that does not use any MusicCaps [12] dataset and a fine-

tuning task that updates the model using MusicCaps [12]

training split. For comparison with other pseudo caption

generation methods, we report results on baseline models

trained with the same architecture and amount of audio,

but different pseudo captions. In addition to all the metrics

we used in Section 3.1, we compute Novelc, the percentage

of generated captions that were not present in the training

set [37]. It measures whether the captioning model is sim-

ply copying the training data or not.

For all the experiments, the input of the encoder is a

10-second audio signal at 16 kHz sampling rate. It is con-

verted to a log-scaled mel spectrogram with 128 mel bins,

1024-point FFT with a hann window, and a hop size of

10 ms. All models are optimized using AdamW with a

learning rate of 1e-4. We use a cosine learning rate decay

to zero after a warmup over the first 1000 updates. For the

pre-training dataset, we use 256 batch-size and the models

are trained for 32,768 updates. We adopt a balanced sam-

pling [38], which uniformly samples an anchor tag first and

then selects an annotated item. For supervised and transfer

learning, we use a 64 batch size, 100 epochs. We use beam

search with 5 beams for the inference of all models.

5.3 Results

When comparing within zero-shot captioning models, the

model trained on the proposed LP-MusicCaps dataset

shows a strong performance in general. The model using

tag concatenation shows the lowest performance as it fails

to generate musical sentences. In case of the model using a

prompt template, it demonstrates a slightly higher BERT-

Score, while still exhibiting poor performance in terms of

n-gram metrics due to its limited vocabulary. The model

using K2C augmentation outperforms the other two meth-

ods but still falls short due to its lack of a musical context.

In general, zero-shot models does not perform as well as

the supervised baseline in most of the metrics with few ex-

ceptions.

Among the transfer captioning models, the model with

LP-MusicCaps pre-training achieves strong performance

overall by winning in the BERT-Score and most of the

n-gram metrics. It is noteworthy that our proposed model

shows a meaningful increase in BERT-Score compared to

the supervised model. This improvement is likely a result

of successful semantic understanding rather than word-to-

word matching. Moreover, by the improvement of Novelc,

the LP-MusicCaps model demonstrates that it can generate

new captions instead of repeating the phrases in the train-

ing dataset. This advantage is observed in both the zero-

shot and supervised tasks in transfer learning models.

6. CONCLUSION

We proposed a tag-to-pseudo caption generation approach

with large language models to address the data scarcity is-

sue in automatic music captioning. We conducted a sys-

temic evaluation of the LLM-based augmentation, result-

ing in the creation of the LP-MusicCaps dataset, a large-

scale pseudo-music caption dataset. We also trained a mu-

sic captioning model with LP-MusicCaps and showed im-

proved generalization. Our proposed approach has the po-

tential to significantly reduce the cost and time required

for music-language dataset collection and facilitate further

research in the field of connecting music and language,

including representation learning, captioning, and gener-

ation. However, further collaboration with the community

and human evaluation is essential to enhance the quality

and accuracy of the generated captions. Additionally, we

believe that exploring the use of LLMs for other topics un-

der music information retrieval and music recommenda-

tion could lead to novel and exciting applications.
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ABSTRACT

Contrastive learning has recently appeared as a well-suited

method to find representations of music audio signals that

are suitable for structural segmentation. However, most

existing unsupervised training strategies omit the notion of

repetition and therefore fail at encompassing this essential

aspect of music structure. This work introduces a triplet

mining method which explicitly considers repeating se-

quences occurring inside a music track by leveraging com-

mon audio descriptors. We study its impact on the learned

representations through downstream music segmentation.

Because musical repetitions can be of different natures, we

give further insight on the role of the audio descriptors em-

ployed at the triplet mining stage as well as the trade-off

existing between the quality of the triplets mined and the

quantity of unlabelled data used for training. We observe

that our method requires less non-annotated data while re-

maining competitive against other unsupervised methods

trained on a larger corpus.

1. INTRODUCTION

The task of music structure analysis consists in locating

the boundaries between consecutive segments and group-

ing them into relevant categories, called musical sections.

This problem has gained attention in the field of music in-

formation retrieval and has numerous applications, such

as music generation [1, 2], music recommendation [3] or

music similarity estimation [4]. Structure is also strongly

linked to other musical elements such as harmony, melody

and rhythm [5] and has been leveraged to address other

tasks such as beat and downbeat tracking [6] or chord tran-

scription [7].

Most methods that have been proposed for the task of

music structure analysis can be categorized according to

the structure trait they rely on, namely: homogeneity, nov-
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elty and repetition [8]. The homogeneity rule states that

musical attributes should be relatively homogeneous inside

musical segments or sections. Consequently, transitions

from one segment to the next should result in points of im-

portant changes in musical features (i.e. novelty). The idea

of repetition in structure assumes that sections of the same

type are rather similar sequences. In other words, musical

sections are generally characterized by the degree at which

they repeat throughout the entire music piece, which has

been the starting point of many algorithms to infer song

structures [9–11]. However, both the extent to which two

sequences can be considered as repetitions, or how homo-

geneous a given musical segment is, imply a certain def-

inition of similarity between time instants. Such similar-

ity criteria are usually derived from frame representations

based on common audio descriptors such as harmonic and

timbral features, or their combinations [8].

A line of work has focused on finding better-suited au-

dio representations so as to make sure that frames from the

same musical sections yield similar features and therefore,

sharpen transitions between consecutive musical segments.

Methods based on contrastive learning have recently been

proposed to find such representations [12–15], as they can

leverage commonalities from large quantities of music data

to learn a distance metric that complies with the aforemen-

tioned requirements. Training such models either involves

the use of structural annotations [13] or some pre-defined

proxies to select frames that should be brought close to one

another in the latent space [12,15]. In the latter case, these

heuristics mainly rely on the homogeneity principle and

discard the notion of repetition occurring inside a track,

preventing them from fully exploiting unlabelled data.

The method introduced in this work aims at bridging

the gap between current unsupervised deep metric learning

methods for music segmentation and both ideas of homo-

geneity and repetition that are inherent to musical struc-

ture. As in previous work [12, 15], a contrastive learning

pipeline using a triplet loss is adopted. However, triplets

are mined by seeking repeating sequences inside the input

track with respect to various hand-crafted audio features.

In a preliminary analysis, a qualitative evaluation of the

triplets generated is performed by direct comparison with

structural annotations of a manually annotated test dataset.

We then measure how these representations impact down-
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stream segmentation on two datasets for music structure

analysis. Finally, we demonstrate that our approach re-

quires less non-annotated data than previous similar meth-

ods. We also give further insight on how the choice of the

input features used to mine triplets affects training and its

relationship with the music genre that the resulting repre-

sentations are tested on.

2. RELATED WORK

Numerous methods for music structure analysis rely on

measuring similarity between every point of a music

recording to retrieve homogeneous segments and tran-

sitions between them. Since music is naturally multi-

dimensional, many factors such as harmony, timbre or in-

strumentation can be associated with boundaries between

musical sections [16]. Therefore, several strategies have

been adopted to capture short-term similar regions, and it

has been shown that sharp timbre changes can be a good

cue for section transitions [17–19].

However, not all boundaries can be explained solely

by such changes in musical features, as the perception of

structure is also greatly affected by additional character-

istics of a music recording such as parallelism, pauses or

musical rules proper to the music genre considered [16].

Therefore, other approaches tend to rely on the repetition

principle to characterise the structure of a music piece.

For example, early work on music segmentation has at-

tempted to find audio representations to identify repeating

elements inside music recordings, such as pitch estimation

or polyphonic transcription [10]. Generally, repetition-

based methods rely on harmony-related information from

the audio, as the instrumentation or other factors are sub-

ject to variations between different occurrences of a given

musical section [18, 20].

Several algorithms have also been proposed to unify

these two types of approaches by recognizing similar re-

gions and repetitions of varying lengths. For example, inte-

grating structural information at different scales into frame

representations has led to considerable improvements in

the recognition of musical segments [21, 22].

Even though these methods are theoretically well

grounded and have proven to be efficient on commonly

used datasets, the traditional hand-crafted descriptors they

use can fail at accommodating different structure types and

music genres. On the other hand, deep learning-based

methods are able to extract efficient features from large

quantities of data, thus, surpassing traditional audio de-

scriptors [12]. Approaches based on contrastive learning

also have the advantage to be easily incorporated into the

classical music structure analysis pipeline, by simply re-

placing the original input features by the deep embeddings

they learn from training data. To this end, Wang et al. [13]

use structural annotations from a labelled training dataset

to find positive and negative pairs of frames and a multi-

similarity loss function [23]. They additionally employ a

mining mechanism to further improve convergence of their

model. Using structural annotations allows for explicitly

enforcing frames of identical sections to yield similar fea-

tures regardless of their appearance throughout the track.

Despite not relying on annotations, the method in this work

is similar to theirs, in the sense that it explicitly considers

section repetitions inside a music recording.

A similar method proposed by McCallum [12] proceeds

in an unsupervised manner with a triplet loss. This time,

positive and negative frames are sampled using time prox-

imity as a proxy: frames occurring within a small time

interval are more likely to belong to the same musical

sections than those separated by a larger amount of time.

While this assumption generally holds true, it completely

discards the notion of repetition, which can limit the effi-

cacy of the approach. In the present work, this limitation is

addressed by using pairwise frame similarity measures as

prior information to guide the triplet sampling mechanism.

This temporal-based mining method [12] is used as a base-

line in this work and referred to as temporal sampling.

3. METHOD

The core of the triplet mining method proposed in this

work resides in the estimation of a self-similarity matrix,

which should reflect as much as possible section label as-

signment corresponding to structural annotations. This

approximation of ideal pairwise frame similarities should

yield high values for frames belonging to the same musi-

cal section, and low values otherwise. This self-similarity

matrix is used as a probability mass function according to

which are sampled, for each given frame, positive and neg-

ative examples across the whole input track.

3.1 Triplet loss

The method proposed in this work consists in finding

triplets of audio feature patches (xa, xp, xn) where xa is

the anchor, xp is a positive example from the same mu-

sical section and xn the negative example sampled from

a different one without using structural annotations. The

models are trained using the triplet loss, which for a given

triplet T = (xa, xp, xn) is expressed as:

L(T ) = [d(f(xa), f(xp))−d(f(xa), f(xn))+δ]+ , (1)

where d(x, y) is a pre-defined distance metric, [.]+ denotes

the Hinge loss, δ > 0 is the margin parameter, and f(x)
is the projection of x into the embedding space by a deep

neural network.

3.2 Finding repetitions

The choice of the input features from which frame-wise

similarities are extracted greatly influences the final triplet

sampling mechanism. As the goal is to jointly detect ho-

mogeneous regions and overall repetitions throughout the

input track, we employ a combination of timbral and har-

monic features as done in previous work [24, 25]. These

features are beat-synchronized beforehand, using the algo-

rithm from Korzeniowski et al. [26] implemented in the

madmom package [27]. One way to emphasize repeti-

tion is to encode features into time-delay embeddings, so

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

418



that pairwise comparisons are performed over short time-

windows: given a sequence X = {Xi}i∈{1,...,N} of fea-

ture vectors, the ith time embedding vector X̃i is obtained

by stacking the m feature vectors ranging from i−(m−1)
to i:

X̃i =
[

X
T
i X

T
i−1 . . .X

T
i−(m−1)

]T

, (2)

where m denotes the embedding dimension, ruling how

much of past information is considered. Such transforma-

tions have successfully been used for music structure anal-

ysis [22], structure-based music similarity [4] and more

generally in the field of non-linear time series analysis

[28]. The final representation’s temporal dimension re-

mains N , as X is first zero-padded before transformation.

Then, a self-similarity matrix is built from the obtained se-

quence of time-lag features such that:

M(i, j) =

{

exp
(

−
d(X̃i,X̃j)

b

)

, X̃j ∈ NNk(X̃i)

0, X̃j /∈ NNk(X̃i)
(3)

where d(x, y) is the euclidean distance, b the bandwidth

parameter, NNk(x) denotes the k-nearest neighbors of x
and i, j = 1, . . . , N . The self-similarity matrix M is then

filtered with a sigmoid activation, such that:

M̂(i, j) = σ

(

M(i, j)

maxk M(i, k)

)

, (4)

where i, j = 1, . . . , N and the σ function defined as:

σ(x) =
1

1 + e−α(x−β)
, (5)

where α > 0 is a parameter ruling the steepness of the

curve and β ∈ [0, 1] a threshold above which the compo-

nents of S are set to values close to 1. This process is ap-

plied both using MFCC and chroma features, from which

we obtain their respective filtered self-similarity matrices

SM and SC using Equation (4) (first row of Figure 1). The

matrix S is then obtained by linear combination, such that:

S = γSM + (1− γ)SC , (6)

where γ ∈ [0, 1] weights the contributions of each feature

type. The matrix S (second row, left column of Figure

1) is row-wise min-max normalized and filtered with the

sigmoid function defined in Equation (5), diagonal stripes

indicating repeating sequences are enhanced by median fil-

tering similar to the one used by McFee et al. [18].

3.3 Imposing segment homogeneity

The obtained pairwise similarity S provides information

about the repetitions present inside the input track. How-

ever, using it as it is to mine positive (large S(a, p)) and

negative examples (small S(a, n)) would result in many

trivial triplets, as positives would be located at exact points

of repetitions. Therefore, a dilation operation is applied

to the matrix S to enlarge these detected regions of repe-

tition. Similar to the method by Serra et al. [22], a two-

dimensional Gaussian kernel G of size K is convolved

with S:

Sp = S ∗G, (7)
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Figure 1. Example of the self-similarity approximation

process for The Beatles — Baby’s In Black. Top to bot-

tom, left to right: self-similarity lag-matrices obtained us-

ing MFCC (SM ), chroma features (SC), median filtered

combination (S), reference self-similarity matrix (super-

vised scenario), positive matrix (Sp), negative matrix (Sn),

positive (Tp) and negative (Tn) sampling matrices using

temporal sampling [12]. White dotted lines denote bound-

ary instants.

This has the effect of blurring the regions of S around its

diagonal stripes, which approximates the width of the cor-

responding musical segments in a more uniform manner

than directly using the unfiltered matrix S. The size of the

kernel K logically impacts the extent to which this dilation

is performed. It was found that setting K = 8 (beats) pro-

vided a good balance between the amount of dilation and

its alignment with segment boundaries (third row, left col-

umn of Figure 1), as it blurs repetitions over 2 bars when

songs follow a 4/4 time signature 1 .

1 Such value might induce a bias towards specific western music gen-
res. This parameter should ideally be adapted to each training track.
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3.4 Negative mining

While the matrix Sp guides the selection of positive ex-

amples for any frame of the input track, the triplet loss re-

quires to find a third point with a different label, called neg-

ative example. In our case, such example should belong to

a different musical section, which could be easily solved by

searching for the least similar frames from the anchor (i.e.

using the matrix Sn = 1−Sp for sampling). However, do-

ing so is likely to result in trivial triplets where the relative

difference between d(f(xa), f(xp)) and d(f(xa), f(xn))
from Equation (1) might already be larger than the margin

δ, thus, yielding small gradients that prevent the network

from learning features that are discriminative enough [29].

Instead, we enforce negative examples to be chosen close

to the anchor’s location while still avoiding homogeneous

regions indicated by the positive matrix Sp. To this end,

the negative sampling matrix Sn is obtained by applying

an exponential decay to 1− Sp such that:

Sn(i, j) = (1− Sp(i, j))e
−λmax( |i−j|

N
,Sp(i,j)), (8)

where λ > 0 is a parameter that defines the strength of

the smoothing. As a consequence, components near the

main diagonal of Sn (third row, right column of Figure 1)

receive greater values than those close the opposite edges,

thus favoring frames located within consecutive segments

of that of the anchor.

The final sampling process works as follows: given an

anchor point ia chosen among the N frames of the in-

put track, the weight attributed to a certain index ik when

sampling the positive example follows the discrete prob-

ability distribution defined by the a-th row of Sp, such

that Pr(I = ik) = Sp(a, k). The negative example is

chosen in a similar fashion with the matrix Sn, such that

Pr(I = ik) = Sn(a, k).

4. EXPERIMENTAL SETTING

This section details the experiments performed to as-

sess the efficacy of the proposed triplet mining method.

First, a preliminary evaluation of the triplets generated is

done against structural annotations from a commonly used

dataset for music structure analysis. Secondly, we train two

separate convolutional neural networks using triplets ob-

tained by temporal sampling and those from our method.

The obtained embeddings are fed as input to a downstream

music segmentation algorithm and performance on both

boundary detection and structural grouping is measured.

Finally, to gain more insight on the quality of the triplets

generated, training is performed on different fractions of

the unlabelled training dataset.

4.1 Datasets

Since this work falls under the scope of unsupervised

learning, a non annotated external audio collection is used

for training. It is composed of 20, 000 tracks, spanning

various musical genres such as rock, popular, rap, jazz,

electronic or classical. These were retrieved from publicly

available playlists and the audio obtained from YOUTUBE.

Care has been taken to discard any track from this exter-

nal collection also present in one of the following testing

datasets. Training is separately done on 10%, 50% and

100% of this dataset.

SALAMI: the Structural Annotations for Large

Amounts of Music Information (SALAMI) [30] contains

1, 359 tracks ranging from classical, jazz, popular to world

and live music. For evaluation, we use the upper anno-

tations of a subset of 884 songs labelled by two different

annotators.

JSD: the Jazz Structure Dataset [31] gathers 340 jazz

recordings provided with two-level annotations: the cho-

rus level (a full cycle of the harmonic schema, which is the

annotation level used for evaluation) and a solo level, con-

sisting of one more choruses. These annotations follow the

common jazz structure schema that includes the introduc-

tion of the main melody (theme), followed by alternating

solos from the different musicians and a final return to-

wards the main theme at the end of the track.

4.2 Evaluation metrics

Common evaluation metrics for automatic structure analy-

sis are employed throughout our experiments. For bound-

ary detection, we report the F-measure 2 of the trimmed 3

boundary detection hit-rate with a 0.5 and 3-second tol-

erance windows (HR.5F, HR3F respectively). For struc-

tural grouping, we report the F-measure of frame pair-

wise clustering [21] (PFC), which gives another view on

flat segmentation performance in terms of frame-wise sec-

tion assignment. Additionally, the normalized conditional

entropy score (NCE) [33] is also calculated, in order to

indicate from a probabilistic perspective the amount of

information shared between predicted label distributions

and their corresponding reference annotations. In the case

where the test dataset has more than one annotator, the best

score across annotators is kept, as the goal of the evaluation

process is to measure how close to human ground-truth the

predicted segmentations are. The average score obtained

per metric is reported and the statistical significance is as-

sessed using a paired-sample T-test with p < 0.05.

4.3 Implementation details

Input features: All tracks are resampled at 22.05
kHz. We use log-scaled Mel-spectrograms as input to the

deep network, with a window and hop size of 2048 and

256 respectively. We compute 60 Mel-band coefficients

per frame. Feature patches are composed of 512 frames

(≃ 5.94s) and centered at each detected beat location.

Mining parameters: Chroma features are extracted us-

ing a minimum frequency of 27.5 Hz over 8 octaves. 20
MFCC coefficients are calculated per frame and the very

first one is discarded. Both are calculated with the librosa

2 All evaluations are done using the mir_eval package [32].
3 The first and last boundaries are discarded during evaluation, as they

correspond to the beginning and the end of the track and therefore, do not
provide any information regarding the system’s performance.
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library [34]. The features are encoded into time-delay rep-

resentations using context values of m = 16 and m = 8
beats respectively. The parameters α and β of the sigmoid

filtering step are set to 60 and 0.85. We give equal weight

to each feature by setting the γ = 0.5 in Equation (6). Fi-

nally, the negative matrix Sn is calculated with a smooth-

ing parameter λ = 5. These parameters were found using

simple grid searches and visual inspections of the obtained

self-similarity matrices.

Network architecture: The encoder consists of a con-

volutional neural network composed of 3 convolutional

layers, each followed by a max-pooling layer and Elu ac-

tivation, and two fully-connected layers comprising 128
units with Elu and linear activations respectively. All con-

volutional layers use a kernel size of size (3, 3) with 32
filters each. The output embeddings are ℓ2-normalized be-

fore calculating the triplet loss. The models are imple-

mented 4 with Pytorch 1.7.1 [35]. The SGD optimizer

with 10−4 weight decay and 0.9 momentum is used, the

models are trained for a maximum of 200 epochs, where

each batch is composed of 256 triplets obtained from one

single track. Similar to previous work [12], the margin

parameter δ is set to 0.1 and the embedding dimension to

d = 128.

Downstream segmentation: For all experiments, the

embeddings returned by each model are fed as input to

spectral clustering [24], as this algorithm jointly performs

both boundary detection and structural grouping in an un-

supervised manner and has proven to be efficient in previ-

ous studies [13, 14]. This also allows one to compare the

influence of each of the tested representations into a sin-

gle unified framework. The original algorithm takes two

distinct beat-synchronized audio features as input (MFCC

and CQT). We consider this method as a second baseline

which we denote as LSD (Laplacian Structural Decom-

position). However in our case, it is directly applied to

the self-similarity Sp of each track. When this algorithm

is combined with deep representations, we simply replace

both input features by the embedding matrix. Finally, be-

cause spectral clustering outputs multiple levels of seg-

mentation, only the one maximizing the considered metric

is reported (HR.5F and HR3F for boundary detection, PFC

and NCE for structural grouping).

5. RESULTS

5.1 Preliminary evaluation

We generate 256 triplets per track contained in the

SALAMI dataset and report the proportions of true pos-

itives, true negatives and correct triplets in Table 1. For

comparison purposes, we also provide a random base-

line, where each anchor, positive and negative example is

uniformly sampled over the whole track. The sampling

method proposed significantly improves the selection of

negative examples compared to the temporal sampling ap-

proach. However, random negative sampling performs bet-

ter than our approach. This was to be expected, since

4 Code: github.com/morgan76/Triplet_Mining

the latter samples negatives over the whole track while

our method greatly narrows down the number of proba-

ble candidates (see Equation (8)). Conversely, the tempo-

ral sampling returns a higher proportion of true positives

than ours, since these are sampled in a relatively short time

window around their respective anchor, thus omitting any

section repetition occurring inside the input track. All in

all, our approach returns a much higher proportion of cor-

rect triplets than either of the comparison strategies while

guaranteeing that positive examples are located within the

right musical sections and the negative within a relatively

short time window around their anchor’s.

Sampling TP TN CT

Random .401± .22 .595± .21 .194± .06

Temporal [12] .886± .32 .398± .49 .325± .47

Ours .800± .40 .583 ± .49 .432 ± .50

Table 1. Triplet mining results on upper annotation level

of SALAMI dataset. TP, TN, CT: proportions of true pos-

itives, true negatives and correct triplets respectively. Re-

sults highlighted in bold denote statistically significant im-

provements over temporal sampling according to a paired-

sample T-test with p < 0.05.

5.2 Segmentation and structural grouping

Table 2 shows the performance of our approach against

temporal sampling on the upper annotations of the

SALAMI dataset. Regardless of the amount of training

data, our method constantly improves both boundary de-

tection and structural grouping in a significant manner. It

is also interesting to see that such improvement is already

achieved when the proposed method uses only 10% of the

training dataset. This corroborates the results from Section

5.1, showing that improving the triplets quality provides a

cleaner training signal and makes learning more efficient.

Method (Split) HR.5F HR3F PFC NCE

LSD .195 .486 .707 .682

Temp. (10%) [12] .280 .665 .770 .677

Ours (10%) .291 .676 .777 .691
Temp. (50%) [12] .288 .671 .773 .678

Ours (50%) .296 .682 .778 .690
Temp. (100%) [12] .284 .670 .773 .678

Ours (100%) .297 .683 .781 .694

Table 2. Flat segmentation results on SALAMI (upper an-

notations). Results in bold denote statistically significant

improvement over temporal sampling on same split (de-

noted as Temp.).

From a more qualitative perspective, Figure 2 shows

examples of self-similarity matrices derived from the em-

beddings trained with temporal sampling and our method.

In the latter case, consecutive musical sections are better

discriminated (clearer block structures on the main diago-

nal). Section repetitions (visible as diagonal stripes and

off-diagonal blocks) are more straightforward to recog-
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nize, especially those with relatively small durations (sec-

tions A, B or D).

Method (Split) HR.5F HR3F PFC NCE

LSD .195 .486 .707 .682

Temp. (10%) [12] .221 .568 .739 .745

Ours (10%) .219 .586 .744 .749

Temp. (50%) [12] .243 .586 .763 .766

Ours (50%) .222 .583 .755 .758

Temp. (100%) [12] .229 .590 .766 .767

Ours (100%) .225 .592 .754 .760

Table 3. Flat segmentation results on JSD (chorus annota-

tion level). Results in bold denote statistically significant

improvement over temporal sampling (denoted as Temp.)

on same split.

Results on the JSD dataset are given in Table 3. Here,

the improvements made are not as consistent. However,

when using only 10% of the training dataset, the perfor-

mance of our approach remains within the same range than

that of the baseline when trained on larger splits. Com-

pared to the results obtained on SALAMI, the small im-

provements made here can be associated with the way

structure is defined in terms of feature similarity in jazz.

Z D' A B C D A B C D A B C D Z

Z
D'
A
B
C
D
A
B
C
D
A
B
C

D

Z

Temporal sampling

Z D' A B C D A B C D A B C D Z

Ours

Figure 2. Example of self-similarity matrices for the track

SALAMI 1380. Left: encoder trained with temporal sam-

pling. Right: encoder trained using the proposed triplet

mining method. White dotted lines denote boundary in-

stants.

5.3 Discussion on mining parameters

Impact on triplet selection: The sampling parame-

ters could further be tuned to improve performance. More

specifically, the audio descriptors employed at the first

stage and their combination could be adapted to the train-

ing data in order to better emphasize more specific aspects

of the audio. For example, some music genres such as

pop music or rock generally rely on the repetition of cer-

tain chord progressions [1]. However, introducing a degree

of timbral homogeneity allows for differentiating two sec-

tions that are semantically similar, such as in the example

from Figure 1, ’refrain’ and ’refrain-Solo’. Putting more

emphasis on timbral features might be better adapted to

music genres such as jazz, where structure is highly influ-

enced by changes in soloists. As an example, Figure 3 dis-

plays the positive sampling matrices obtained when vary-

ing the γ parameter from Equation (6). It is clear to see

that favoring timbral similarity helps better approximating

segment transitions and mutual dissimilarities between the

successive solos of saxophone, piano and guitar.

intro
them

e_1 s_sa
x

s_pia
no

s_gu
itar

them
e_2

intro

theme_1

s_sax

s_piano

s_guitar

theme_2

PM

intro
them

e_1 s_sa
x

s_pia
no

s_gu
itar

them
e_2

PC

Figure 3. Example of positive sampling matrices for

Michael Brecker — Song for Bilbao. Left: emphasis on

timbral content (γ = 0.9). Right: emphasis on harmonic

content (γ = 0.1). White dotted lines denote boundary

instants.

Impact on segmentation: To illustrate how the bal-

ance between harmonic and timbral features impacts the

final segmentation, the encoder is trained on the 10% and

50% splits of the dataset with γ = 0.9, thus putting a

stronger emphasis on the MFCC-based similarity at the

triplet mining stage. All other parameters are kept to their

initial values described in Section 4.3. The segmentation

results summarized in Table 4 show that the choice of the

parameter γ does impact the training process. In this case,

putting more weight on timbral information seems to make

the representations more sensitive to timbral changes and

improves boundary detection (HR3F) in a significant man-

ner compared to temporal sampling.

Method (Split) HR.5F HR3F PFC NCE

Temp. (10%) [12] .221 .568 .739 .745

Ours (10%, γ = 0.9) .223 .585 .743 .750

Temp. (50%) [12] .243 .586 .763 .766

Ours (50%, γ = 0.9) .234 .607 .769 .772

Table 4. Flat segmentation results on JSD (chorus annota-

tion level) with emphasis on timbral features (γ = 0.9).

Results in bold denote statistically significant improve-

ment over temporal sampling (denoted as Temp.) on same

split.

6. CONCLUSION

This work introduced a repetition-based triplet mining

mechanism to learn efficient audio representations prior to

music segmentation, which can significantly improve both

boundary detection and structural grouping, while needing

less data than previous similar methods. Complementary

experiments demonstrate that this sampling process can be

further adapted to the final type of segmentation desired by

either emphasizing harmonic or timbral information from

the input track.
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ABSTRACT

This paper describes a data-driven framework to parse mu-

sical sequences into dependency trees, which are hierarchi-

cal structures used in music cognition research and music

analysis. The parsing involves two steps. First, the input

sequence is passed through a transformer encoder to enrich

it with contextual information. Then, a classifier filters the

graph of all possible dependency arcs to produce the depen-

dency tree. One major benefit of this system is that it can

be easily integrated into modern deep-learning pipelines.

Moreover, since it does not rely on any particular symbolic

grammar, it can consider multiple musical features simulta-

neously, make use of sequential context information, and

produce partial results for noisy inputs. We test our ap-

proach on two datasets of musical trees – time-span trees

of monophonic note sequences and harmonic trees of jazz

chord sequences – and show that our approach outperforms

previous methods. 1

1. INTRODUCTION

Tree-like representations are a powerful tool in many ap-

proaches to music analysis, such as Schenkerian Theory

and the Generative Theory of Tonal Music (GTTM). In

the Music Information Retrieval (MIR) literature, we find

tree models of melodies [1–4], chord progressions [5–8],

and rhythm [9–13]. Parallels between aspects of music and

language are often drawn, as these have similar hierarchical

properties and their underlying cognitive mechanisms could

be closely related [14]. However, with a few exceptions,

such as instrument grouping and metrical information in

scores, music is generally encoded sequentially without

explicit information about its hierarchical organisation. The

task of creating such hierarchies from a sequential represen-

tation is called parsing and it is an active object of study in

the MIR community [3, 7, 11, 15].

1 All our code and data are publicly available at https://github.
com/fosfrancesco/musicparser

© F. Foscarin, D. Harasim, and G. Widmer. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Foscarin, D. Harasim, and G. Widmer, “Predicting Music

Hierarchies With a Graph-Based Neural Decoder”, in Proc. of the 24th

Int. Society for Music Information Retrieval Conf., Milan, Italy, 2023.

Current parsing approaches are based on generative

grammars, typically context-free-grammars (CFG) or simi-

lar related mechanisms, which can be fundamentally seen as

a set of expansion rules generating a tree from the top (the

root) to the elements that compose the sequence (the leaves).

Grammar rules can be enriched with a probability model

that permits the ranking of different parses by plausibility.

When a grammar is available, parsing can be achieved with

grammar-based parsing algorithms, typically variants of

the Cocke–Younger–Kasami (CYK) algorithm [16]. While

the grammar rules are most often built by hand, by rely-

ing on musicologists’ knowledge, the probabilities can be

learnt from data if sufficient amounts of musical sequences

with ground-truth tree annotations are available. The gram-

mar approach has the strong advantage of leveraging an

interpretable and cognitively plausible mechanism. Still, it

has the following limitations: it is hard to achieve robust-

ness against noisy data, which can cause a complete failure

with no output in case the sequence cannot be produced

by the grammar rules; it requires a high degree of domain

knowledge; it is challenging to account for multiple musical

dimensions in a single grammar rule; and parsing is usually

so slow for long sequences that heavy pruning is necessary

(CYK-parsing complexity is cubic in the length of the se-

quence, parallelisation does not help much, and there is no

active research in developing dedicated hardware).

Inspired by recent research in the field of natural lan-

guage processing (NLP), we propose a novel, grammar-less

approach that requires little domain knowledge (only for the

feature extraction phase), can easily consider multiple mu-

sical features and sequential information, produces partial

results for noisy input, and is potentially scalable to longer

sequences and larger datasets (since its components are

proven to succeed in such scenarios). Our system works by

predicting dependency trees which consist of dependency

arcs between the input sequence elements. Such a struc-

ture can be used as-is or later be converted into constituent

trees which are typically used to model music hierarchies

(see Figure 1). The probability of each dependency arc is

predicted in parallel (i.e., without considering other depen-

dencies during prediction) by leveraging the rich contextual

information produced by a transformer encoding of the in-

put sequence. This set of probabilities is then run through

a post-processing algorithm to ensure a valid tree structure

(i.e., no cycles of dependency arcs).

We pair our Music Dependency Parser MuDeP with a
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Figure 1. The tree harmonic analysis of the A Section of

“Take the A Train” in three different representations. Top:

dependency tree, Left: GTTM-style constituent tree. Right:

CFG-style constituent tree.

procedure that enables its usage from constituent trees, and

test it on two tree datasets: the time-span treebank from

the GTTM database [17], which expresses subordinate rela-

tions between notes in monophonic melodies; and the Jazz

Harmony Treebank (JHT), a set of harmonic analyses for

chord sequences [18]. We compare the results of our system

with the best-performing available approaches and obtain

new state-of-the-art results.

2. RELATED WORK

Music Trees and Music Parsing. Trees of musical

sequences have traditionally been notated as constituent

trees [1–3, 5–13, 19], with few exceptions, such as the us-

age of a dependency-based evaluation metric [20], and the

computation of pairwise voice dependencies [4, 21].

A system for parsing jazz chord sequences into harmonic

analyses has been proposed by Harasim et al. [7] and later

evaluated on a larger dataset [20]. We compare our results

to this approach below. Automatic grammar-based parsing

of time-span GTTM trees has been attempted by Hamanaka

et al. [22, 23] and Nakamura et al. [2]. The latter obtained

comparable results with an approach that doesn’t require

manual parameter tuning, and we compare our system with

it. More recently, deep-learning-based approaches were

also proposed [3, 24, 25] but the first two focus only on

GTTM metrical and grouping information, and the latter

focus mainly on evaluating the usage of time-span trees for

melodic morphing and we could not reproduce their results.

Natural Language Parsing. Our model architecture is

inspired by the graph-based dependency parser of Dozat

and Manning [26, 27]. This model, extended with second-

order dependency predictions [28] and pretrained language

models [29], is still the state of the art for NLP sentence

parsing [30]. Still, we make some substantial changes: the

embedding layer is adapted to work from musical input, the

encoder is a transformer instead of an LSTM, and, instead

of the bilinear layer for arc prediction, we use a linear layer.

All these choices are motivated by ablation studies.

3. TREE FORMATS FOR MUSIC ANALYSES

In this section, we detail the types of tree used in this pa-

per, highlight their differences, and propose algorithms to

translate between them.

Figure 2. A dependency tree with double-sided dependen-

cies (left). It corresponds to two possible constituent trees

(middle and right).

3.1 Constituent vs Dependency Trees

A tree can be defined recursively as a node with an arbitrary

number (including 0) of children that are also trees. The

node that is not a child of another node in the tree is called

root, the nodes that do not have children are called leaves,

and the remaining nodes are called internal nodes. When

a tree is used to model some relations of the elements of a

sequence there are two possible configurations: dependency

trees, where each node (leaf, internal, and root) represents

one and only one element of the sequence; and constituent

trees where all elements of the sequence are represented

in the leaves, and root and internal nodes represent nested

groupings of such elements.

Among the constituent trees there exist different repre-

sentations. The bottom part of Figure 1 shows the two kinds

we consider in this paper: the one introduced by Lerdahl

and Jackendoff [31] in their Generative Theory of Tonal

Music (GTTM), and the one built from the Context-Free-

Grammar (CFG) of jazz harmony by Harasim et al. [7]. The

two representations convey almost the same information:

they are both binary trees (i.e., every node has either 0 or

2 children), the internal nodes are denoted by line intersec-

tions on the first, and by explicit labels on the second; they

both specify an order of importance among the children

(i.e., the choice of a primary and secondary child) by the

straight line continuation, or by labelling the node with the

label of the primary child. However, this latter mechanism

cannot differentiate between primary and secondary when

both children have the same label; therefore, the GTTM

representation is slightly more informative.

Our approach does not directly treat constituent trees

but considers dependency trees. Each child in such a tree

is called dependent, and the node of which it is a child

is called the head. Dependency trees can represent the

same information as the binary constituent trees described

above. Indeed, a dependent-head arc is equivalent to a head-

labelled constituent node with two children: the primary is

again the head, and the secondary is the dependent. There

is only one ambiguity: the dependency tree does not encode

a splitting order in the case of double-sided dependencies,

a configuration in which one head has dependents on both

sides. This makes the dependency-to-constituent transfor-

mation not unique (see Figure 2). This configuration is

never present in our datasets (i.e., the root is always the

left-most or right-most element in the sequence) thus we

don’t handle it. For more general datasets, one could add a

binary classifier that predicts the splitting order.

The dependency trees built from the constituent trees
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are projective, i.e., for all their arcs xdep → xhead, there is a

path from the head to every element x that lies between the

head and the dependent in the sentence [32]. This means

that there are no “crossing arcs”, e.g., x1 −→ x3, x2 −→ x4.

Before proceeding with the paper, we introduce some

notation we will use in the next sections. We denote

the sequence that constitutes the input of our system as

x = [x1, . . . , xλ], where λ is the sequence’s length. We

represent the dependency tree over x as the set of dependent-

head 2 indices that corresponds to each arc xdep → xhead:

y = {(dep, head) | dep, head ∈ [1, . . . , λ]} (1)

3.2 Tree Conversion Algorithms

Since the ground-truth annotations in our datasets are con-

stituent trees, we translate them into dependency trees for

training. We also translate tree predictions back to con-

stituent trees to run constituent-based evaluation metrics,

and when we are interested in using such a representation

as input for further applications. We assume our constituent

trees to be binary trees and not contain double-sided depen-

dencies. For simplicity, we consider CFG-style constituent

trees with labels in their internal nodes.

3.2.1 Dependency to Constituent Tree

Existing NLP implementations of this transformation are

unnecessarily complicated for our scenario because they

consider compound node labels and double-sided depen-

dencies [33]. Instead, we present a recursive top-down

algorithm which yields a unique constituent solution for

every single-sided dependency tree.

The algorithm takes a fully formed dependency tree and

starts with the root of the (to-be-built) constituent tree. At

each step, it removes one dependency and adds two new

constituent nodes. The recursive function takes as input

a dependency tree node and a constituent tree node, both

labelled with the same sequence element. The constituent

node gets assigned two children: the primary is labelled

with the element of the input nodes, and the secondary

is labelled with the dependent that is further away in the

sequence. The choice of which is the left and the right child

respects their label position in the sequence. The considered

dependency is removed from the tree and the recursive

function is called two times, once for each constituent child

(with the corresponding dependency node). The process

stops when the dependency tree node has no dependents.

3.2.2 Constituent to Dependency Tree

This algorithm was used in the literature (e.g., [18]). It starts

from a fully formed constituent tree and a dependency tree

without any dependency arcs, consisting only of the nodes

labelled with sequence elements. The algorithm groups all

internal tree nodes with their primary child (which all have

the same label) and uses all secondary child relations origi-

nating from each group to create dependency arcs between

the group label and the secondary child label.

2 We indicate dependency arcs as arrows pointing in the direction of the
head. Note that in other (NLP) papers, the opposite convention is used.

4. PARSING TECHNIQUE

Our goal is to predict a dependency tree y for a given mu-

sical sequence x. Our pipeline consists of three steps: fea-

ture extraction from x; prediction of dependency relations;

and postprocessing to ensure that the output is a valid tree

structure. In the training phase, the output (before postpro-

cessing) is compared with the ground truth dependency tree

and a loss is computed to update the model parameters via

backpropagation.

4.1 Feature Extraction

For each input element, xi ∈ x, we produce three groups

of features. The first is a “static” description of the element

(i.e., without any temporal information), the second encodes

the element’s duration, and the third encodes the element’s

metrical position, i.e., its position in the measure relative

to the hierarchy induced by the time signature. The static

description is built differently for chords and notes, while

the other two are independent of the input type. Note that,

due to our model architecture (see next section), we need

categorical features and it is not primarily important to keep

their number small or to have them ordered.

For note sequences, the static description of each ele-

ment is a single integer corresponding to either the MIDI

pitch of the element in [0, . . . , 127] if it is a note or with the

value 128 if the element is a rest. For chord sequences, we

use three integers. The first in [0, . . . , 11] encodes the pitch-

class of the chord root. The second in [0, . . . , 5] specifies

the basic form of the chord among major, minor, augmented,

half-diminished, diminished, and suspended (sus). The last

in [0, 1, 2] denotes a chord extension among 6, minor 7, or

major 7. The chord labels were simplified by the author of

the dataset to only include these extensions, but in a more

general scenario, a larger set of integers could be used. The

chord sequences do not contain rests.

We represent the durations of the elements with discrete

values normalised by the duration of the measure. We pre-

collect the list of all durations occurring in the dataset and

encode each element’s duration as an index on that list. For

the GTTM dataset, this would be an integer in [0, . . . , 44],
while for the JHB dataset, it is an integer in [0, . . . , 5]. The

number of possibilities is very different, since the tempo-

ral position of chords follows much simpler rules, mostly

occurring only at the beginning or in the middle of a bar

for simple time signatures and at three bar positions for

compound time signatures. For tied notes, we consider a

single note with the total duration, and notes can last more

than one measure. This is different from the annotations in

the JHT in which each measure opens a new chord symbol,

even if the same chord is repeated in consecutive measures.

To represent the metrical position, we use an inverse

measure of metrical strength, encoded with a single integer

in [0, . . . , 5]. This integer is computed as a function of the

normalised temporal position in the measure t ∈ [0, 1[, and

the time signature numerator. Each time-signature numer-

ator is associated with a template of metrical divisions m,

as proposed by Foscarin [10] and here extended to more

time signatures. For example, a time signature with a nu-
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Figure 3. Left: metrical divisions m for different time

signature numerators. Right: visualisation of metrical divi-

sions for a measure with time signature 12/8.

merator 12 (e.g., 12/8 or 12/4) will have metrical divisions

m = [1, 2, 2, 3, 2], i.e., the whole measure at level 0 is di-

vided into two parts at level 1, each resulting part is divided

in 2 at level 2, then 3 at level 3, and 2 at level 4. Table 3

reports metrical divisions for all numerators we consider.

Each level l in the metrical division defines a temporal

grid with step δl = 1/
∏l

l=0 ml, and the inverse metrical

strength is defined as the lowest level for which the note

position falls on the temporal grid, minl(l | t/δl ∈ N).
For example, a time signature 6/8 defines grids with steps

[1, 1
2 ,

1
6 ,

1
12 ,

1
24 ], and the notes of the measure | ˇ “ ˇ “( ˇ “‰ | will

have normalised temporal position [0, 2
6 ,

1
2 ] and inverse

metrical strength [0, 2, 1]. If the note doesn’t align with

any temporal grid, then its inverse metrical strength is the

maximum, 5 in our settings. Using metrical strength as in-

put to our system may seem overly complicated. However,

given the small size of our datasets and the high variety of

time signatures, we need a mechanism to encode metrical

information generalisable across different time signatures.

It is to be expected that with a larger dataset size, this fea-

ture could be discarded, as the model could learn similar

information from the list of notes with duration.

The feature extraction process lets us build the input

matrix X ∈ Nλ×φ where λ is the sequence length, and φ is

the number of features for each element: 3 for the GTTM

dataset, and 5 for the JHT dataset. Before moving on, it

has to be noted that there exist other more general ways

of transforming symbolic music into convenient inputs for

deep learning models, notably the tokenisation techniques,

e.g., [34, 35] inspired by NLP research. However, given

the small dimension of our dataset and the fact that our

melodies are strictly monophonic, we prefer to use a more

compact, ad-hoc input representation. Our parsing frame-

work remains general and usable with other techniques.

4.2 Model

Our model consists of two parts: an encoder and an arc

predictor (see Figure 4). The goal of the encoder is to

enrich the input features X with contextual information.

The arc predictor uses the enriched sequence features to

predict whether each possible pair of elements in the input

sequence should be connected by a dependency arc.

The first part of the encoder is an embedding layer, a

learnable look-up table which maps our collection of cat-

egorical features (each integer) to points in a continuous

multidimensional space. Specifically, we use φ embedding

Figure 4. Architecture of our model. The input displayed is

an example of a chord sequence, but the same architecture

is used for note sequences.

layers (one for each input feature), which work indepen-

dently, and map all values that the feature can have to a

vector of a fixed embedding dimension. All vectors are

then summed together to obtain a unique representation

while keeping the input size small (see [36] for an explana-

tion of why summing is better than concatenating). After

the embedding layer, we have the encoder part of a trans-

former [37] with relative position representations [38]. It

outputs a matrix with the same number of rows as the in-

put matrix X (one for each sequence element) but with a

(possibly) different number of hidden-feature columns h.

Onto this, we concatenate a new learnable single row that

acts as the head of the root node. The result is a new matrix

H ∈ Q(λ+1)×h.

The arc predictor part of our model is a multilayer per-

ceptron (MLP) that performs the binary classification task

of deciding whether each pair (xhead, xdep) in the Carte-

sian product of the input elements, i.e., {(head, dep) |
∀ head, dep ∈ [1, . . . , λ]}, should be connected by a de-

pendency arc. Depending on the input representation and

the specific task we are targeting, there may be some pairs

that are not connectable by a dependency arc, for example,

pairs where head = dep. For the GTTM input, pairs for

which at least one element is a rest are also not connectable.

Therefore, the binary classification is performed only on a

subset of all pairs Λ that we call potential arcs. For every po-

tential arc (xdep, xhead), we predict the probability ŷdep,head

of a dependency arc by concatenating the two rows of H
that correspond to the head’s and the dependent’s index into

a single vector of length 2h and giving it as input to the

MLP. We concatenate the two inputs instead of summing or

multiplying them because our arcs are directed, so we need

to preserve the order when aggregating the two embeddings.

Moreover, despite the bilinear layer being a major selling
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point of Dozat’s paper [26], we find that the concatenation

approach yields better results. We can collect the output for

all potential arcs into a weighted graph-adjacency matrix

Ŷ , which is a λ× λ matrix with entries ŷhead,dep at the cor-

responding indices. We assign a probability 0 to the matrix

entries that correspond to arcs /∈ Λ.

4.3 Training Loss

In the training phase, we use the sum of the binary-cross-

entropy (BCE) loss and the (multiclass) cross-entropy (CE)

loss. The BCE loss is computed independently for each po-

tential arc and measures the difference between the ground-

truth label (0 or 1) and the predicted probability. We also

use the CE loss because our problem can be framed as a

multiclass classification problem where for each element we

predict his head among λ+ 1 possibilities (each sequence

element plus a dummy element for the root and rests ele-

ments). The CE loss is therefore applied column-wise to

the adjacency matrix Ŷ predicted by our model.

In NLP, the BCE loss was used by [27] while the CE

loss is used more generally, for example, by [26, 39]. We

experimentally found that the sum of the two losses yields

the best results.

4.4 Postprocessing

Since the prediction of our model is made independently

for each potential arc, simply taking the row-wise maxi-

mum of the weighted adjacency matrix to select which head

to assign to each element of the sequence could produce

dependency cycles and, therefore, not yield a tree struc-

ture. We use a maximum-spanning-tree algorithm to find

the tree over Ŷ with the highest weight. Since our depen-

dency trees are projective, we use the Eisner algorithm [40]

which solves this problem using bottom–up dynamic pro-

gramming with a time complexity of O(λ3). For applica-

tions involving non-projective trees other post-processing

approaches such as Chu-Liu/Edmonds [41, 42] (O(λ2)) are

implemented in our framework.

5. EXPERIMENTS

Below, we describe the datasets, evaluation metrics, and

experimental settings for the two kinds of trees we consider.

5.1 Datasets and preprocessing

We obtain the melodic time-span trees from the GTTM

database [17], which contains MusicXML encodings of

monophonic scores and a dedicated XML-based encoding

of the constituent time-span trees (among other trees that we

don’t consider in this paper). We extract the note features

with the Python library Partitura [43]. Some pieces have two

different trees, and we keep only the first. We also discard

4 pieces that we could not import due to inconsistencies in

the XML file encoding. In total, we have 296 melodies of

lengths between 10 and 127 (notes + rests). For training,

we augment the dataset by considering all transpositions

between one octave higher and one octave lower.

We obtain the chord analyses from the Jazz Harmony

Treebank (JHT) [9], which encodes both chord labels and

harmonic analyses as constituent trees, in JSON format. As

discussed in Section 3 this format does not distinguish be-

tween the primary and the secondary child when both have

the same chord label. In this case, we assume by default

that the right is the primary. The dataset contains two kinds

of trees: open and complete constituents. We use the former

for comparison reasons since the results are reported only

for those [20]. In total, we have 150 sequences of lengths

between 11 and 38 chords. For training, we augment the

dataset by considering all 12 possible transpositions of the

chord roots.

5.2 Evaluation metrics

The papers we compare use different metrics, and we im-

plement all of them. The work of Harasim [20] uses two

metrics, one more relevant for dependency trees and the

other for constituent trees. The first is the arc accuracy,

i.e., the normalised cardinality of the intersection between

the set of predicted arcs and the ground truth arcs. The

second is the span accuracy, computed as the normalised

cardinality of the intersection between all the spans of the

predicted constituent tree (i.e., the pair of the leftmost and

rightmost leaf that is part of the subtree rooted at any non-

leaf node) and the spans of the ground truth tree (see [20]

for a more detailed explanation). Nakamura et al. [2] use

the node accuracy metric, i.e., the normalised cardinality of

the intersection between nodes in the predicted and ground

truth trees, where two nodes are considered equal if the

labels of the parent and children (or a dummy label if the

node have no parent or children) are equal.

We also report another metric, the head accuracy, com-

puted as the multiclass classification accuracy on the in-

dices of the predicted heads, ordered by their dependent.

For example for the dependency tree of Figure 1, this would

correspond to the accuracy computed on the sequence

[4, 2, 3, 4,−1], where −1 indicates the root (which has no

head). This is similar to the arc accuracy but enforces the

presence of a dependency head for each sequence element

(which may not be the case for a generic system), and gives

more weight to the correct root prediction. It is also faster

to compute and commonly used in NLP, so we include it

to set a metric for future research. Note that all metrics

presented above don’t consider the nodes corresponding to

rests, since they are only part of the input sequence, but not

part of the tree.

5.3 Results

For our experiments, we set the hyperparameters of our en-

coder to an embedding size of 96, and 2 transformer layers

of hidden size 64. The arc predictor (MLP) has 2 linear

layers with the same hidden size. We use the GeLU activa-

tion [44] and the AdamW optimiser [45], with a learning

rate of 0.0004 and weight decay of 0.05. We train with

learning rate warm-up [46] of 50 steps and cosine annealing

to limit the problem of high variance in the initial and final

stages of training. The latter was particularly important
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Figure 5. Boxplots of three accuracy metrics (higher is

better) computed with leave-one-out cross-validation and

their average. For Nakamura et al. [2], we report the average

from their paper, so there is no deviation information.

since we did not use a validation set to perform early stop-

ping due to the small size of our datasets. We train for 60

and 20 epochs for the JHT and GTTM datasets, respectively,

since the latter is bigger and the data augmentation yields

twice as many pieces in total). The training time is roughly

the same, around 1 hour on a GPU RTX 1080.

We compare the results of our MuDeP on the JHT with

Harasim [20] and on the GTTM with Nakamura et al. [2].

We use leave-one-out cross-validation, i.e., for a dataset

with N pieces, we run our system N times, by training on

N − 1 pieces and evaluating with the remaining one. As

shown in Figure 5, MuDeP outperforms previous methods.

By comparing the head accuracy between JHT and

GTTM (79.2% vs 57.9%), it is clear that time-span pre-

diction is a much harder problem than the chord analysis

problem, despite the dataset being bigger. Another inter-

esting result is that the span accuracy is lower than head

accuracy for the JHT dataset (63.1%), but higher for the

GTTM(64.8%). Apparently, the main problem for JHT is

to select which two chords to connect, but the arc direction

(i.e., which is the head and which is the dependent) is al-

most always correctly inferred; conversely, for the GTTM

dataset, the system often connects the correct notes, but

in the wrong direction. And this type of misprediction is

punished in the head accuracy, but not in the span accuracy.

The full piece-wise statistics on all metrics, a graphical

rendering of all our predicted trees, and the qualitative

evaluation of some examples are available in our repository.

5.4 Ablation study

We report the difference in head accuracy averaged over 10

runs with 90/10 random train/test split for the JHT dataset.

Regarding the loss, sole usage of the (multiclass) CE loss

reduced the accuracy by 0.3%, and only using the binary

CE loss reduced the accuracy by 4.1%. The use of a bilinear

layer in the decoder reduced the accuracy by 1.2%. The ab-

sence of post-processing did not reduce the accuracy (when

the network is fully trained, otherwise the reduction is very

evident). This is promising but it does not automatically

implies that the network is producing correctly formed trees

since dependency loops could still be present in the output.

There are also cases when the postprocessing is reducing

the accuracy, by incorrectly deciding which arc to remove

in a dependency loop.

6. CONCLUSION AND FUTURE WORK

We presented MuDeP, a system for the dependency parsing

of music sequences, and a procedure to make it applicable to

constituent trees. MuDeP improves upon previous methods,

by incorporating the ability to consider multiple musical

features simultaneously, taking advantage of sequential con-

text, and handling noisy inputs robustly. Moreover, since it

is based on widely researched deep learning components,

it has the potential to scale to large datasets and longer

sequences. The bottleneck for such scalability is the post-

processing algorithm with cubic complexity. Two solutions

exist to this problem: if one is interested in non-projective

trees, algorithms with a square complexity are available.

Apart from that, our system is already having good accu-

racy without the postprocessing phase, as highlighted in

the ablation study. Therefore, a faster heuristic may suf-

fice to correct the few problematic dependencies without

decreasing the performance.

Since our deep learning model is a black box, it is no-

tably complicated to find a human-understandable expla-

nation of its functioning. Although work in this direction

exists [47, 48], it is still very limited [49]. Therefore, our

model is mainly intended for scenarios in which one is

only interested in obtaining the parsing trees, for example,

to use them as input for another MIR task. Conversely,

this paper might have limited utility if one’s goal is to

model music understanding and interpretation by humans.

Grammar-based models are much more suitable for this

goal, although there is a (somewhat speculative) possibility

that the dependency-arc probabilities in our approach relate

to first-guess heuristics.

As research on the deep learning components we use

is rapidly evolving, any new discovery is likely to benefit

our system. Self-supervised pretraining on larger datasets

of monophonic music or chord sequences, for example by

predicting next or masked tokens, could also improve the

performance, as already proved for language parsing. While

the goal of this paper was to present a general framework,

we can also think about several domain-specific improve-

ments, for example, training the GTTM time-span parser

with a multi-target approach to predict at the same time

the metrical, time-span, and prolongation structure. We

hope that this work will motivate the development of more

datasets of hierarchical music analyses, including datasets

of dependency trees, which may be a valid alternative to

constituent structures, and even open up more possibili-

ties due to the missing projectivity constraints. Finally, we

intend to explore in future research how the knowledge

encoded in our model could be reused to guide other tasks,

for example, automatic chord recognition from audio files.
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ABSTRACT

Soft dynamic time warping (SDTW) is a differentiable

loss function that allows for training neural networks from

weakly aligned data. Typically, SDTW is used to itera-

tively compute and refine soft alignments that compensate

for temporal deviations between the training data and its

weakly annotated targets. One major problem is that a

mismatch between the estimated soft alignments and the

reference alignments in the early training stage leads to

incorrect parameter updates, making the overall training

procedure unstable. In this paper, we investigate such sta-

bility issues by considering the task of pitch class estima-

tion from music recordings as an illustrative case study. In

particular, we introduce and discuss three conceptually dif-

ferent strategies (a hyperparameter scheduling, a diagonal

prior, and a sequence unfolding strategy) with the objective

of stabilizing intermediate soft alignment results. Finally,

we report on experiments that demonstrate the effective-

ness of the strategies and discuss efficiency and implemen-

tation issues.

1. INTRODUCTION AND RELATED WORK

Deep neural networks (DNNs) have been commonly used

in many music information retrieval (MIR) tasks, such as

music transcription [1], or pitch class estimation (PCE) [2,

3]. The latter provides a widely-used feature represen-

tation for various subsequent processing pipelines, e.g.,

audio thumbnailing [4], or chord recognition [3]. Deep

learning-based feature extractors yield the highest predic-

tion accuracy when trained on data from the same dis-

tribution, which is, however, often not readily available.

Thus, one major challenge is the acquisition of a sufficient

amount of correctly labeled training data. In classical mu-

sic, it is often difficult to automatically annotate strongly

aligned targets (short: strong targets), i.e., with frame-wise

target labels, due to changes of tempo. On the other hand,

weakly aligned targets (short: weak targets) only globally

© J. Zeitler, S. Deniffel, M. Krause, and M. Müller. Li-
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(CC BY 4.0). Attribution: J. Zeitler, S. Deniffel, M. Krause, and M.

Müller, “Stabilizing Training with Soft Dynamic Time Warping: A Case
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Figure 1: Deviation of strong reference alignments

(dashed green) and soft alignments (red) and stabilizing

strategies. (a) Alignment mismatch of standard SDTW.

Stabilizing alignments with (b) hyperparameter schedul-

ing and (c) diagonal prior.

correspond to the input without containing frame-wise lo-

cal alignments [5,6]. These weak targets are relatively easy

to obtain, e.g., by only annotating start and end of an audio

segment and deriving targets from the musical score. In

our definition of weak targets, the order of the target vec-

tors is correct, but their duration is unknown. Using weak

targets in DNN training requires a loss function that aligns

network predictions with the corresponding weak targets.

In classification tasks, one widely used technique for

training DNNs with weakly aligned targets is the connec-

tionist temporal classification (CTC) loss [7], which aligns

network predictions with a sequence of discrete labels.

Despite being extendable to multi-label problems such as

multi-pitch estimation (MPE) [8], CTC remains limited to

discrete targets and is algorithmically complex.

In contrast to CTC, dynamic time warping (DTW) can

be used to measure similarity between two real-valued se-

quences and has been successfully applied in, e.g., music
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synchronization and structure analysis [9]. Recently, dif-

ferentiable approximations of the minimum function [10–

12] have been included in DTW, enabling the usage of

the DTW principle in gradient-based optimization algo-

rithms. The algorithm proposed in [10], soft dynamic time

warping (SDTW), uses so-called soft alignments to com-

pute a differentiable cost measure between sequences of

different length. In [13], SDTW is used in the context

of performance-score synchronization and [6] employed

SDTW as a loss function to train DNNs for MPE with

weakly aligned pitch annotations. Experiments in [6] indi-

cated training instabilities with SDTW when the sequence

lengths of inputs and targets are significantly different.

This poses a severe problem in many MIR tasks, where

sequences of input audio are typically very long, while

weakly labeled targets, i.e., without note durations, are sig-

nificantly shorter.

In this paper, we investigate the cause of training in-

stabilities under the SDTW loss and show that it is due

to a mismatch between the estimated soft alignment and

the reference alignment (see Figure 1a) in the early stages

of training. This mismatch causes incorrect parameter up-

dates and the training may diverge. Therefore, we intro-

duce and investigate strategies to decrease this alignment

error to stabilize training. In particular, we analyze a hy-

perparameter scheduling strategy to yield smooth align-

ments in the early training phase (see Figure 1b) as well

as the strategy of adding a diagonal prior to the SDTW

cost matrix to initially favour diagonal alignments (see Fig-

ure 1c). Furthermore, we investigate a sequence unfold-

ing approach, where we uniformly stretch the weak target

sequence to the length of the input sequence as proposed

in [6]. We choose DNN-based PCE as an exemplary task to

study the training process of standard SDTW and the im-

pact of our stabilizing strategies. We demonstrate that the

hyperparameter scheduling and the diagonal prior strate-

gies reliably reduce label mismatch in the early training

stage and therefore lead to successful trainings. In addi-

tion, these two strategies are computationally efficient and

require only small modifications to the standard SDTW al-

gorithm.

The remainder of this article is structured as follows.

First, in Section 2, we discuss the SDTW loss function and

define the concept of soft alignments. Next, in Section 3,

we introduce three conceptually different strategies for sta-

bilizing DNN training under SDTW loss. After describing

the experimental setup in Section 4, we evaluate cause and

effect of training problems with SDTW in Section 5, along

with the impact of our stabilizing strategies. Finally, we

conclude with Section 6 and give an outlook to potential

areas of future research regarding SDTW-based training in

MIR.

2. INTRODUCTION TO SDTW

In this section, we introduce SDTW as a loss function in

a DNN training framework and define the concept of soft

alignments, closely following [10, 14].

2.1 Definition

Let X = {x0,x1, . . . ,xN−1} denote a sequence of DNN

predictions, Y = {y0,y1, . . . ,yM−1} denote a sequence

of weak targets and Y S =
{

yS
0 ,y

S
1 , . . . ,y

S
N−1

}

denote a

sequence of strong targets, where xn,ym,yS
n ∈ R

D for

n ∈ {0, 1, . . . , N − 1} and m ∈ {0, 1, . . . ,M − 1}.
Without loss of generality, we assume N ≥M .

Using the mean squared error (MSE) as a

local cost function, the elements of the cost

matrix C := CX,Y ∈ R
N×M are computed as

CX,Y (n,m) = ∥xn − ym∥
2
2 . (1)

We next define binary alignment matrices A ∈ {0, 1}
N×M

which align two sequences of length N and M . Each ma-

trix A encodes an alignment via a path of ones from cell

(0, 0) to (N − 1,M − 1) using only vertical, horizontal,

and diagonal unit steps [10]. All cells not corresponding to

the alignment are set to zero. The set of all binary align-

ment matrices for sequences of length N and M is denoted

AN,M . Using a differentiable approximation of the mini-

mum function

softminγ (S) = −γ log
∑

s∈S

exp (−s/γ) (2)

for a given finite set S ⊂ R and a hyperparameter γ ∈ R,

the SDTW cost is given by

SDTWγ
C
= softminγ ({⟨A,C⟩, A ∈ AN,M}) (3)

and can be computed efficiently via dynamic program-

ming [10]. The inner product ⟨A,C⟩ is the sum of all

elements of C along the alignment given by A.

2.2 Soft Alignments

The expectation over all alignments A for a cost matrix C

is captured by the soft alignment matrix [14]

E
γ
C
=

∑

A∈AN,M

pγ
A,CA ∈ R

N×M , (4)

where the probability of an alignment is defined as

pγ
A,C =

exp (−⟨A,C⟩/γ)
∑

A′∈AN,M
exp (−⟨A′,C⟩/γ)

. (5)

The soft alignment matrix is of particular interest as it is the

the gradient of the SDTW cost w.r.t. the local cost matrix

∇CSDTWγ
C
= E

γ
C

(6)

and is computed during the backward pass of an SDTW

training step with a dynamic programming algorithm [10,

14]. In contrast to the binary alignments A, the entries

of the soft alignment matrix E
γ
C
(n,m) can be interpreted

as the probability of an alignment path going through

cell (n,m). Only if this soft alignment assigns probabil-

ity mass to the correct alignments (n,m), the local cost

terms (1) between the correct pairs of predictions xn and
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targets ym constitute the overall SDTW cost and the DNN

parameters can be successfully trained.

The hyperparameter γ, also termed temperature, con-

trols the smoothness of the softmin function (2). Larger

values of γ lead to smooth minima in (3), i.e., with contri-

butions of multiple alignments A, and therefore a “blurry”

soft alignment matrix E
γ
C

(see Figure 1b). On the other

hand, small values of γ promote “sharp” soft alignments

E
γ
C

with fewer non-zero entries (see Figure 1a), as (2) con-

verges to the hard minimum function in the limit γ → 0
and a single binary alignment A becomes dominant in (3)

and (4).

3. STABILIZING TRAINING WITH SDTW

In this section, we introduce three strategies for stabilizing

SDTW-based training: hyperparameter scheduling, diago-

nal prior, and sequence unfolding.

3.1 Hyperparameter Scheduling

As described in Section 2, the softmin temperature param-

eter γ controls the smoothness of the SDTW soft align-

ments. While a low value of γ is desirable to ensure ex-

act correspondences between predictions and targets due

to sharp alignments, the latter are problematic in the initial

training phase as inaccurate predictions from randomly ini-

tialized network parameters lead to erroneous alignments,

thus hampering convergence. Therefore, as a first strat-

egy to stabilize SDTW training, we discuss an epoch-

dependent scheduling of γ. Starting a training with a large

softmin temperature γstart = 10 makes the soft alignment

fuzzier, which leads to coarse, yet mostly meaningful tar-

get assignments (see Figure 1b). After ten epochs with

γ = 10, when the trained network predicts meaningful fea-

tures, we linearly reduce γ during the following ten epochs

to a final value of γfinal = 0.1, which stays constant for the

remaining training.

3.2 Diagonal Prior

On average, the correct alignment of two sequences with

arbitrary symbol durations has a higher probability to be

close to the diagonal than to deviate from it. Therefore, as

a second approach to stabilize the initial training phase, we

investigate an additive prior P ∈ R
N×M which penalizes

elements of the cost matrix C that are far from the diagonal

(see Figure 2 for an illustration of a prior matrix). A sim-

ilar strategy was employed in [15] for restricting speech-

text alignments to the diagonal. Assuming equal symbol

durations, the diagonal alignment of a target ym starts at

input frame qm = ⌊Nm
M
⌋ and ends at qm+1 − 1. To yield

no penalty along the diagonal and a smoothly increasing

penalty for distant alignments, we define the elements of

the prior matrix as

P (n,m) = 1−















1, qm ≤ n < qm+1

exp
(

(n−qm)2

−2ν

)

, n < qm

exp
(

(n−qm+1)
2

−2ν

)

, n ≥ qm+1 ,

(7)
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Figure 2: Diagonal prior matrix P for N = 500, M = 50
and ν = 1000.

where the parameter ν controls the sharpness of the prior.

In our experiments, we use ν = 1000. Finally, the prior

matrix is added to the cost matrix with a weight ω to obtain

the penalized cost matrix

CP := C+ ωP , (8)

which replaces C in (3) to (6). Similarly to the hyper-

parameter scheduling strategy, we choose a constant prior

weight ω = 3 during the first five epochs and then linearly

reduce it to ω = 0 during the following five epochs.

Note that the numerical parameters for the strategies

presented in Sections 3.1 and 3.2 were determined em-

pirically by the authors and small changes did not affect

the training performance. However, when training on se-

quences of different length, with a different learning rate,

or other DNN types, parameters should be adjusted on a

validation set. As presented in Section 5, analysis of the

soft alignment matrix E
γ
C

provides a good indication of

the current alignment stability.

3.3 Sequence Unfolding

Based on the observation that equal sequence lengths stabi-

lize SDTW training, a third strategy is to uniformly unfold

the target sequence (see also [6]). The unfolded target se-

quence Y U =
{

yU
0 ,y

U
1 , . . . ,y

U
N−1

}

is constructed by uni-

formly repeating elements from the weakly aligned target

sequence, i.e., setting

yU
n ← y⌊Mn

N
⌋ (9)

to yield equal sequence lengths of the predictions X and

the targets Y U. Note that the repetition of target vectors

introduces ambiguities, leading to multiple optimum align-

ments.

4. EXPERIMENTAL SETUP

In this section, we describe the task for our case study, the

employed dataset, as well as the used DNN architecture

and the training procedure.

4.1 PCE Task

We choose PCE from music recordings as an illustrative

case study to investigate the problems of the SDTW loss

function and the effect of the stabilizing strategies. In our

experimental setting, a DNN takes N frames of input au-

dio (including context) and, for all frames, predicts twelve-

dimensional pitch class activation vectors X (see Figure 3
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Figure 3: Alignment between training targets and pre-

dicted pitch class features X for the running example from

Frühlingstraum. (a) Strong reference alignment for MSE

loss with strong targets Y S. (b) Soft alignment for SDTW

loss with weak targets Y .

for an illustration of predicted pitch class features). We

want to train the DNN such that the predictions X match

the training targets as close as possible. In the case of

strong targets Y S, each predicted frame xn is assigned to

exactly one target frame yS
n using a strong alignment (see

Figure 3a). When using weak targets Y , SDTW internally

computes a soft alignment based on the cost matrix CX,Y

to assign predictions and targets (see Figure 3b).

4.2 Dataset

Throughout all experiments, we use the Schubert Win-

terreise dataset (SWD) [16] which contains audio record-

ings and strongly aligned pitch class annotations. Winter-

reise is a song cycle for piano and singer, consisting of

24 songs. For each song, SWD comprises nine different

performances, resulting in 9 · 24 recorded songs with a to-

tal duration of 10 h 50min. We split the dataset for train-

ing, validation, and testing using a performance split [16].

The publicly available performances by Huesch (HU33,

recorded in 1933) and Scarlata (SC06, recorded in 2006)

Layer Kernel Size Stride Output Shape

Prefiltering

LayerNorm (N + 74, 216, 5)
Conv2D 15× 15 (1,1) (N + 74, 216, 20)
MaxPool 3× 1 (1,1) (N + 74, 216, 20)
Dropout

Binning to MIDI pitches

Conv2D 3× 3 (1,3) (N + 74, 72, 20)
MaxPool 13× 1 (1,1) (N + 74, 72, 20)
Dropout

Time reduction

Conv2D 75× 1 (1,1) (N, 72, 10)
Dropout

Chroma reduction

Conv2D 1× 1 (1,1) (N, 72, 1)
Dropout
Conv2D 1× 61 (1,12) (N, 12, 1)

Table 1: Musically motivated CNN architecture [3, 5].

were annotated manually [16] and constitute the test set.

For training and evaluation we choose sequences of length

N = 500, corresponding to approximately 8.7 s of audio at

a sampling rate of 22 050Hz and a hop length of 384 sam-

ples. In order to generate weak training targets Y from

SWD (which provides strongly aligned pitch class annota-

tions Y S, see Figure 3a), we remove all adjacent repetitions

of a pitch class vector (see Figure 3b) [5]. We choose an

excerpt from the song Frühlingstraum, performed by Ran-

dall Scarlata (SC06), as a running example (see Figure 3)

to visualize the soft alignment matrices (see Figure 4).

4.3 DNN Architecture and Training

We adapt a conceptually simple and musically mo-

tivated five-layer convolutional neural network (CNN)

from [3, 5] with 43383 trainable parameters to predict

twelve-dimensional pitch class activation vectors from an

input sequence. Table 1 provides an overview of the ar-

chitecture. We choose the harmonic constant-Q transform

(HCQT) [17] with five harmonics as an audio feature rep-

resentation, spanning six octaves at a resolution of three

bins per semitone (resulting in 216 frequency bins starting

from C1), a hop length of 384 samples and a frame rate of

57.4Hz. From an input sequence of length N + 74, the

CNN sequentially predicts N vectors of pitch class activa-

tions. For the prediction of one frame, the CNN’s recep-

tive field covers 37 adjacent context frames on each side.

Leaky ReLU with a negative slope of 0.3 is used as a non-

linearity after all hidden convolutional layers and sigmoid

activation is used after the final layer. The dropout rate

is set to 0.2. All models are trained using the Adam op-

timizer [18] with a batch size of 32 and an initial learning

rate of 0.001. We reduce the learning rate by a factor of two

if the validation loss did not decrease during the last four

epochs, and terminate the training if the validation loss did

not decrease during the last twelve epochs. At the end of

training, the model from the epoch with the lowest valida-

tion loss is restored. The source code for reproducing our

experiments, as well as the trained models are available on

github.com/groupmm/stabilizing_sdtw.
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F-measure
Loss Targets γ Strategy mean std

MSE strong - - 0.82 0.07

SDTW weak 0.1 - 0.56 0.37

SDTW weak 0.3 - 0.63 0.32

SDTW weak 1.0 - 0.24 0.36

SDTW weak 3.0 - 0.31 0.38

SDTW weak 10.0 - 0.57 0.37

SDTW weak 10 → 0.1 hyp. sched. 0.80 0.04

SDTW weak 0.1 diag. prior 0.81 0.02

SDTW weak 0.1 seq. unfold. 0.53 0.04

Table 2: Averaged test results for DNNs trained on

strongly aligned reference targets as well as DNNs trained

with SDTW on weakly aligned targets using either the

standard configuration or the discussed stabilization strate-

gies. We report the mean (higher is better) and standard

deviation (lower is better) of the F-measure.

5. EVALUATION

In this section, we investigate the training process as well

as the prediction accuracy under the standard SDTW loss,

and compare it to the discussed stabilizing strategies. For

quantitative evaluation, we repeat all DNN trainings ten

times from random initializations. For the test set predic-

tions of each trained model, we compute the F-measure

w.r.t. time-pitch class bins using a threshold of 0.5. The

mean and standard deviation of the F-measures from all

trained models are displayed in Table 2.

5.1 Baseline: Strongly Aligned Targets

As a first baseline and an upper bound for all fol-

lowing experiments, we consider DNN training with

strongly aligned targets Y S. For the sequence lengths

M = N = 500 and an MSE loss function, the networks

achieve the overall highest mean F-measure of 0.82 with a

standard deviation of 0.07 on the test set.

5.2 Standard SDTW

We next analyze DNN training with weak targets Y and

the unmodified SDTW formulation from [10, 19] as a

loss function. We investigate five different values of

γ ∈ {0.1, . . . , 10}which we keep constant during training.

Analyzing the mean F-measure on the test set in Table 2,

the five variants with standard SDTW yield comparably

low results between 0.24 and 0.57, and high standard de-

viations between 0.32 and 0.38. Between 20% (γ = 0.3)

and 70% (γ = 1.0) of all training runs converged to the

all-zero output, indicating a highly unstable training pro-

cess of standard SDTW. In order to determine the cause

of these instabilities, we analyze the quality of automati-

cally generated soft alignments in the SDTW algorithm by

visualizing the soft alignment matrix for the running ex-

ample after training epochs one and 25, respectively. To

highlight the effects of small and large values of γ, we

focus on the edge cases γ ∈ {0.1, 10.0}. For γ = 0.1,

the estimated soft alignment exhibits a sharp structure (see

Figure 4a), which, after a collapse to a single target frame
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Figure 4: Reference alignment (green) and soft align-

ment matrix E
γ
C

(gray/black) for the running example af-

ter training epoch 1 (left) and epoch 25 (right) for different

training strategies. (a) γ = 0.1, (b) γ = 10, (c) hyperpa-

rameter scheduling, (d) diagonal prior, (e) sequence un-

folding.

at epoch one, still only marginally overlaps with the refer-

ence alignment after 25 epochs. This sharp and erroneous

soft alignment causes unstable gradient updates and leads

to the collapse of many training runs. When choosing a

large softmin temperature γ = 10, SDTW yields “blurry”

soft alignments (see Figure 4b) which at least partially cap-

ture the actual target frames in early epochs and coincide

well with the reference alignments as training progresses.

However, a blurry soft alignment also leads to blurry net-

work predictions as multiple target frames are aligned to

each predicted frame, thus resulting in a low F-measure

when compared to strongly aligned targets..

5.3 Stabilizing Strategies

After evaluating the unsatisfactory training behavior of

standard SDTW, we investigate the effect of the previously
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introduced training strategies in the following section. We

empirically choose γ = 0.1 as the final softmin tempera-

ture in all following experiments, as sharp alignments are

necessary for training an estimator with frame-wise preci-

sion.

5.3.1 Hyperparameter Scheduling

First, we combine the advantages of high and low values

of γ in a hyperparameter scheduling strategy. Starting a

training with γ = 10, the soft alignment matrix for our run-

ning example after one epoch is blurry and at least partially

overlapping with the reference alignment (see Figure 4c).

The successive reduction to γ = 0.1 until epoch 20 permits

sharp alignments at a later training stage. Indeed, Figure 4c

shows a soft alignment after epoch 25 which is sharp and

coincides well with the reference. The mean F-measure

(0.80) in Table 2, as well as the standard deviation (0.04),

are the second best of all SDTW-based trainings. However,

as the softmin function in (2) is a lower bound for the min-

imum function [12] which becomes tight for γ → 0, the

SDTW loss is increasing when decreasing γ, despite un-

changed network parameters. Therefore, this strategy does

not allow for loss-based learning rate scheduling and early

stopping before γ is set to its final value.

5.3.2 Diagonal Prior

The second strategy stabilizes SDTW trainings with low

values of γ by adding a penalty cost to off-diagonal

elements of the cost matrix. For our running example in

Figure 4d, the soft alignment is indeed close to the di-

agonal after the first training epoch. As, on average, the

alignments are diagonal, this often leads to correct assign-

ments of predictions and targets even for randomly initial-

ized DNNs. When the prior weight ω is reduced to zero

after the initial training phase, the network is still able to

adapt to off-diagonal alignments, as seen in our running

example in Figure 4d. Analyzing the performance met-

rics in Table 2, using a diagonal prior yields the highest

mean F-measure (0.81) and the lowest standard deviation

(0.02) of all SDTW variants, almost reaching the mean

F-measure of the baseline experiments with strong targets

and element-wise MSE loss. Moreover, when the prior

weight ω is reduced during training, the loss also decreases

and therefore learning rate scheduling and early stopping

are possible from the beginning.

5.3.3 Sequence Unfolding

Last, we investigate the strategy of unfolding the weak tar-

get sequence to the length of the input, which was em-

ployed in [6]. For this strategy, we observe fully diagonal

soft alignments in the initial training phase, as visualized

for our running example in Figure 4e. This is caused by

the equal length of the predicted and the target sequence,

which can be aligned using only diagonal steps. In the

SDTW formulation from [10], the cost of a diagonal step

is equal to the cost of a vertical or horizontal step. Thus,

for a uniform cost matrix (which is probable at the initial

training phase due to random network initialization), tak-

ing a diagonal step only accumulates half the cost com-

pared to going “around the corner”, i.e., one step in the

vertical and one in the horizontal direction, or vice versa.

This diagonalizing behavior leads, on average, to decent

soft alignments in the early training phase (as discussed in

Section 5.3.2). However, in contrast to the additive diag-

onal prior strategy, the implicit diagonalization of align-

ments is not reduced during the training, as can be seen

in Figure 4e, which still exhibits strong diagonal compo-

nents after 25 training epochs. Thus, the softly aligned

SDTW targets seldom match the reference targets and per-

formance remains low, resulting in a mean F-measure of

0.53 in Table 2.

Note that the sequence unfolding strategy adds a sig-

nificant computational overhead compared to the previous

two strategies, as unfolding always corresponds to using

a target sequence length of M = N . The forward and

backward pass of the SDTW loss function both have lin-

ear complexity w.r.t. the sequence lengths O (MN) [10].

Thus, in our setting with N = 500 and a mean length of the

weak target sequences in the test set of M = 24, the un-

folding strategy leads to an increase in the computational

cost of the SDTW loss by a factor of more than 20.

6. CONCLUSION AND OUTLOOK

In this paper, we analyzed DNN training instabilities with

SDTW as a loss function by the example of PCE. By anal-

ysis of the soft alignment matrix, we argued that align-

ment mismatch in the early training phase often causes

a collapse of the training procedure. Motivated by these

findings, we investigated three strategies for stabilizing the

early training phase. We found that the previously applied

strategy of unfolding the weakly aligned target sequence

leads to almost exclusively diagonal alignments due to a

naïve weighting of horizontal, vertical, and diagonal align-

ment steps. Furthermore, this strategy is computation-

ally inefficient, as it increases the target sequence length.

In contrast, the two introduced strategies of hyperparam-

eter scheduling and diagonal prior can be implemented

with negligible additional computational cost and stabi-

lize SDTW-based training by two different mechanisms.

The hyperparameter scheduling strategy promotes smooth

alignments in the early training phase, which increases the

probability of the predicted frame being at least partially

aligned to the correct target. Penalizing off-diagonal align-

ments in the SDTW cost matrix by an additive diagonal

prior is a strategy that initially restricts the soft alignment

to a region of high probability. Experimental evaluation

showed that these strategies reliably stabilize the SDTW

training process. Implementing them as a default in the

SDTW loss highly increases convergence rates.

Future research on SDTW-based loss functions in MIR

applications might incorporate musically informed prior

information, e.g., based on note durations or tempo anno-

tations extracted from the musical score. Furthermore, the

preference of diagonal alignment steps could be addressed

by choosing different step weights.
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ABSTRACT

In this paper, we introduce a computational analysis of

the field recording dataset of approximately 700 hours of

Korean folk songs, which were recorded around 1980-

90s. Because most of the songs were sung by non-expert

musicians without accompaniment, the dataset provides

several challenges. To address this challenge, we utilized

self-supervised learning with convolutional neural network

based on pitch contour, then analyzed how the musical

concept of tori, a classification system defined by a specific

scale, ornamental notes, and an idiomatic melodic contour,

is captured by the model. The experimental result shows

that our approach can better capture the characteristics of

tori compared to traditional pitch histograms. Using our

approaches, we have examined how musical discussions

proposed in existing academia manifest in the actual field

recordings of Korean folk songs.

1. INTRODUCTION

Folk songs are considered as a musical language. Not only

that, but they are also regarded as the root of all traditional

music. Folk songs are potent embodiments of a region’s

cultural and linguistic characteristics, serving as a founda-

tion for all artistic and musical developments since their in-

ception. It is believed that research for folk music can pro-

vide new inspiration for existing art music research, and

facilitate an interdisciplinary approach that encompasses

both music and other fields.

In Korean musicology, there have been ongoing discus-

sions aimed at identifying regional characteristics in folk

music. Through numerous debates, tori is used as the most

representative theory in many studies. Even though the use

of tori as a term to describe the musical characteristics of

Korean folk music is widespread and its utility is well ac-

knowledged, the existing tori classification methods were

unable to fully explain the features of the actual music.

Various scholars have defined the different tori according

to musical characteristics such as scales (intervals between

notes), primary notes, ornamentation, ending note and id-

© D. Han, R. Caro Repetto, and D. Jeong. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: D. Han, R. Caro Repetto, and D. Jeong, “Finding Tori:

Self-supervised Learning for Analyzing Korean Folk Song”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

iomatic melodic patterns in folk songs, leading to a refine-

ment process for the classification of tori. So far, there are

still ongoing opinions, controversies, and discussions con-

cerning the existing tori [1, 2].

In order to conduct valuable discussions on analyz-

ing folk songs, the relationships within the audio must

be examined and systematically shared. However, check-

ing numerous audio files individually is extremely time-

consuming and difficult, so previous research has focused

on analyzing small amounts of audio. The most com-

mon method used by musicologists has been transcription,

which involves listening to the music and notating it in a

specific music notation system. However, the task of tran-

scribing orally transmitted music into a music notation sys-

tem has inherent limitations [3], such as quantizing the

pitch and rhythmic features of folk songs.

For these reasons, there have been several research on

analyzing folk music empowered with methods derived

from music information retrieval (MIR) on audio record-

ing. For example, Indian raga music has been analyzed

based on first-order pitch distrubutions [4], and for tradi-

tional three-part Georgian singing, F0-based tonal analy-

sis [5] or development of tuning systems [6] has been intro-

duced. [7] also presented analysis using audio-signal pro-

cessing on Flamenco and Arab-Andalusian vocal music.

In this paper, we take a computational approach to an-

alyze a vast corpus of Korean folk songs, utilizing deep-

learning-based methodologies. Our primary aim is to in-

vestigate the connection between conventional musicolog-

ical classifications of Korean folk songs, tori, and the ac-

tual field recordings. Through a comparison of our ana-

lytical results with established musicological frameworks,

our objective is to offer insights on identifying meaningful

clustering or distinguishable features among Korean folk

songs. We also share our code and metadata that contains

links to original audio with our manual tori labels for 218

songs 1 .

2. KOREAN FOLK SONGS AND TORI

2.1 Dataset

The “Anthology of Korean Traditional Folksongs” is an

audio collection consisting solely of traditional Korean

folk songs [8]. As part of a cultural project conducted

by Munhwa Broadcasting Corporation (MBC) from 1989

1 https://github.com/danbinaerinHan/finding-tori
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to 1995, the folk song collection was compiled under

the direction of Sang-il Choi. The available audio con-

tains 15,861 songs, with approximately 700 hours in total

length.

The audio was field-recorded across 153 city/county

and 1,010 villages in South Korea. The metadata accom-

panying the recordings includes title, machine-readable

lyrics, regions, recording dates, and the singer’s name and

age. The region represents the administrative districts of

South Korea at the time of recording, which consists of

nine categories in total. Due to its extensive audio corpus

and detailed accompanying metadata, this dataset has be-

come a crucial resource for research on Korean folk mu-

sic within the domestic academic community [9–11]. We

obtained the audio material through crawling the origi-

nal website, 2 which has been hosted by MBC since April

2022, where every audio and metadata is openly published.

We received official approval for using these data for re-

search purposes from MBC.

2.2 Tori

Tori was proposed by a Korean musicologist named Bo-

hyeong Lee in the early 1980s to explain the musical char-

acteristics of regional folk songs [12, 13]. Prior to the de-

velopment of tori theory, Korean music academia used

the terms jo and cheong to explain the musical features

of folk songs, based on the tonal center and intervals be-

tween notes [14]. However, Bo-hyeong Lee argued that jo

and cheong are insufficient in capturing the unique mu-

sical characteristics of Korean folk music. Therefore, he

proposed the tori classification system as an alternative ap-

proach, which covers primary notes, ornamentation, end-

ing note and idiomatic melodic patterns.

The most widely-used tori classification method divides

songs into four categories. We encourage readers to refer

Figure 3, which presents scale of three tori with staff nota-

tion. The pitch name in this section is used as an conven-

tional representation, not absolute pitches. Gyung-tori uti-

lizes five notes and is mainly sung in the capital region. It

often uses a gentle vibrato overall and finessed ornamental

melody. Menari-tori is widely distributed throughout the

eastern regions and the entire Korean Peninsula. When the

melody ascends, it leaps through notes, while during the

descending melody, it comes down through passing notes.

Yukjabaegi-tori is commonly found in the southern re-

gions of the Korean Peninsula. It is characterized by a thick

and vibrant vibrato in G note and passing briefly through

EZ in a descending melody from EZ to D. Sushimga-tori

commonly appears in the northwestern region of the Ko-

rean Peninsula, characterized by its unique vibrato inflect-

ing upward.

2.3 Tori annotation

As the dataset did not include any tori labels, one of the au-

thors, who has over 10 years of experience in Korean tradi-

tional music, selected a subset of 218 high-quality record-

2 http://urisori.co.kr/urisori-en/doku.php/

Figure 1. Example of pitch contour from the dataset ex-

tracted by CREPE. F0 value under confidence of 0.8 was

masked out

ings and manually annotated them in terms of tori classifi-

cation.

To create this tori-subset, we focused on identifying

clear musical characteristics present in the tori classifi-

cation method, such as pitch scale, ornamentation, and

idiomatic melodies, rather than considering the audio’s

recorded region. We found that there are not many in-

stances of sushimga-tori in the audio dataset, as the dataset

predominantly consists of folk songs from the central and

southern regions of the Korean Peninsula. Also, we ob-

served that songs belonging to menari-tori appeared not

only in the eastern region but also nationwide. In conclu-

sion, we mainly focused on the remaining three types of

tori, gyung-tori, yukjabaegi-tori, and menari-tori. Finally,

audio recordings that were closer to speech or chanting

(non-musical) and did not exclusively belong to any other

subdivided tori types were labeled as ‘others’. We have la-

beled totally 218 songs: 65 gyung, 73 menari, 49 yukja,

and 31 others.

3. METHODOLOGY

In this study, we take an approach of representing the mu-

sical characteristics of a given folk song using a high-

dimensional single vector, which can also be called an em-

bedding of the song. If this embedding accurately repre-

sents the musical characteristics of tori, it can be utilized

for various purposes including tori classification, song sim-

ilarity searches and clustering songs in the corpus based on

tori similarity.

Even though the dataset is provided with audio record-

ings, we focus on the contour of fundamental frequency

(F0) rather than using audio directly. By doing so, our em-

bedding could better capture the melodic features of the

songs rather than timbral characterstics such as the dialect

of the singer. To extract the F0 contour from each audio

recording, we utilized CREPE [15], a widely-used CNN-

based model. It extracts F0 value for every 10 ms as well

as confidence score ranging from 0 to 1. Figure 1 illustrates

an example of an extracted pitch contour.

3.1 Pitch Histogram

Since the characteristics of a musical system can be largely

studied from the pitch distribution of its melodies, there
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has been numerous research using pitch histograms to an-

alyze traditional musics from different culture, such as for

Indian Carnatic music [16], Turkish Makam [17], Arab-

Andalusian music [18], or Iranian dastgāhi music [19].

Therefore, we applied a similar approach to Korean folk

music.

One of the important features one has to know to exploit

pitch histogram is the tonic of the song so that one can

normalize the pitch histograms of each song into relative

pitch, rather than directly using absolute pitch value. Dur-

ing our preliminary experiment, we found that the tonic of

each recording in the dataset is usually the most frequently

appearing pitch in the song. Therefore, we determined the

tonic by counting the number of appearances of each pitch

in terms of time frames, utilizing a 100 cents range to count

pitch (i.e. MIDI pitch 60.49 and 59.51 are counted as the

same pitch). As the center pitch may differ from the typ-

ical 440 Hz tuning, we identified the best matching pitch

by adjusting the pitch center by increments of 10 cents and

selecting the pitch that showed the maximum pitch count.

3.2 CNN contour encoder

While the pitch histogram can offer a comprehensible rep-

resentation of each song, it cannot fully capture the con-

cept of tori as it does not consider the relationship between

each note in the scale. Additionally, because most of the

recordings were sung by non-professional singers without

instrumental accompaniment, the intervals of singing and

tonic frequency has signifcant amount of noise. Therefore,

we employ a convolutional neural network (CNN) to learn

the representation of a given pitch contour. This approach

allows us to better capture the underlying musical charac-

teristics of each song in relation to tori classification.

The problem is setting the training objective of the CNN

model. One option is to train the model in a supervised

manner, as typically done in other MIR tasks, such as clas-

sification tasks with an annotated dataset. In our dataset,

region labels, which represents the administrative region

where the recording took place, can be used for training

labels. It can be regarded as a reasonable approach con-

sidering that tori has strong correlation with the regional

characteristics of each folk song. However, we discovered

several different types of tori in a single recorded region,

which would make it difficult to learn distinguishable mu-

sical characteristics only using the region label.

To address this issue, we propose to adopt a self-

supervised representation learning, so that we can obtain

a representation of given pitch contour that is consistent

within a song without extra annotated labels as shown in

Fig. 2. This approach of exploiting intra-song similarity

has been widely used for music audio representation learn-

ing [20,21]. We use triplet loss with hinge margin as Equa-

tion 1,

L = max(0,m− Sim(va, vp) + Sim(va, vn)) (1)

where m denotes hinge margin, Sim(va, vp,n) represents

cosine similarity between anchor vector va and positive

vector vp or negative vector vn.

Figure 2. Self-supervised learning with triplet loss using

cosine similarity, with four layers of convolutional neural

network

As presented in Fig. 2, the model consists of 4 layers

of 1D convolution layer, each with a kernel size of three

and channel size of 64, 128, 256, and 256, respectively,

each followed by batch normalization layer. We used a max

pooling layer between each convolutional layer with size 5

for the first layer and 4 for the second and third layers.

On top of the convolutional stack, we used context atten-

tion to summarize the arbitrary length of vectors, which

was initially proposed in hierarchical document classifica-

tion [22], with a slight modification of multi-head atten-

tion weight [23] instead of single-head. Context attention

is a type of attention mechanism that uses an independent

learnable parameter named context vector as a query while

using the input vectors as key and value. The final embed-

ding size of the model was 256.

The input is a pitch contour in the shape of T × 2,

where T denotes the number of time step of pitch contour.

Throughout the experiment, we used the frame rate of 20

Hz, which means that 30 seconds of pitch contour is con-

verted to 600 time steps. During the training, we randomly

slice the contour to have 30 seconds length, while using the

entire contour in the test or visualization. Two channels are

tonic-normalized MIDI pitch and confidence of the F0 es-

timation at that time frame. Since the automatic F0 estima-

tion includes noise, especially in the unsung silent part, we

masked the estimated pitch value to zero if the confidence

is lower than 0.8.

4. EXPERIMENTS

4.1 Evaluation Design

In the experiments, we explored the quantitative rela-

tion between tori and different embedding schemes to see

which type of embedding can explain the concept of tori
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better. To evaluate the correlation between tori and the

given embedding scheme, we exploit our tori-labeled sub-

set with two metrics.

The first metric is the ranking of cosine similarity. If the

embedding shares important characteristics with the con-

cept of tori, we can expect that songs with high cosine

similarity in the given embedding space share the same

tori with the query song. Therefore, we calculated the co-

sine similarity between each song in the tori-subset, and

obtained normalized discounted cumulative gain (nDCG),

which is a frequently used metric to evaluate the quality of

search results. If all the other n songs with the same tori are

ranked within n-th order in the similarity, nDCG becomes

one.

The second metric is the tori classification accuracy us-

ing a random forest classifier. If the embedding includes

essential characteristics that define tori, one can expect that

it can be exploited to classify the tori for a given song.

Among many options, we used a simple random forest

classifier. The random forest classifier with 100 trees was

trained with 75% of the tori-set and tested with the re-

maining 25%. For each embedding scheme, we repeated

the procedure 30 times with different train/test split and

reported mean and deviation of accuracy to ensure that the

results were not dependent on the specific dataset split.

4.2 Training

While a pitch histogram can be obtained from a given

song without additional training data, CNN models require

training procedures. We employ F0 contour extracted from

the “Anthology of Korean Traditional Folksongs” to train

our model.

Some of the songs in the dataset were recorded with

multiple singers or percussion accompaniment. Because

these can degrade the performance of F0 estimation, we

excluded them while training the CNN model. Instead of

manually filtering the dataset, we used a CNN-based sound

event detection model [24] to calculate the activation of

‘choir’ and ‘percussion,’ which are included among the

model’s event vocabulary. We filtered the song by the max-

imum activation value exceeding a certain threshold, which

was manually decided by observing the activation distribu-

tion across the dataset.

The CNN model was trained for 25,000 updates. For the

self-supervised learning using triplet loss, we used eight

negative samples with one positive sample, and hinge loss

using a margin of 0.4. For the region-supervised training,

we use cross-entropy loss with class weight to address the

class imbalance issue. The architecture of the CNN re-

mained the same, but we added a fully connected layer to

project the embedding to logits for nine different region

categories. We used the Adam optimizer with an initial

learning rate of 0.001 and batch size of 128. The entire

training process was conducted on a single RTX A5000,

which took approximately 10 minutes to complete 25,000

updates. We validated the model’s training procedure and

hyperparameters using a specific split of the tori-subset and

chose the simplest setting to avoid overfitting the hyperpa-

Similarity Ranking Random Forest Classifier

Embedding nDCG Accuracy

Hist. (25 bin) 0.783 0.744 ±0.058

Hist. (124 bin) 0.777 0.722 ±0.054

CNN (region ) 0.792 0.634 ±0.055

CNN (SSL) 0.853 0.848 ±0.039

Table 1. Experiment results on the tori subset. Hist. de-

notes normalized pitch histogram, specified with the num-

ber of bins to cover two-octave range. region and SSL de-

notes the region-supervised and self-supervised learning.

rameters to the small subset.

4.3 Results

The evaluation result of each embedding scheme is pre-

sented in Table 1. As tori is closely related to the use of

pitch, the pitch histogram showed about 74 % accuracy

when combined with a random forest classifier, and 0.783

or 0.777 nDCG in the similar song search. The result shows

that increasing the resolution of the histogram does not

achieve better performance. The performance of CNN em-

beddings trained with region classification was worse than

the pitch histogram in classification accuracy. However,

the CNN embedding trained with self-supervised learning

showed the best nDCG and classification accuracy, even

though both CNN shares the same architecture except the

final projection layer.

The performance gain compared to the pitch histogram

can be caused by the fact the concept of tori includes not

only the pitch scale the song uses but also ornamentation

and idiomatic phrases it, which can be easily captured by

contour CNN.

The result also shows that the region label did not help

to learn tori-related characteristics. Even though the con-

cept of tori is strongly related to each region, folk songs

were widely spread nationwide at the time of the record-

ing, which made it difficult to learn coherent musical char-

acteristics from the region label.

It is also worth noting that self-supervised learning did

not use any other musical knowledge that is related to tori,

except that it was trained to extract constant embedding

throughout a given song regardless of the segment position.

From a machine learning point of view, the model has to

extract an embedding that can explain the entire song or

distinguish it from other songs from a given fragment. The

high correlation between the trained embedding and tori

labels shown in the evaluation implies that the concept of

tori is clearly related to the distinguishable characteristics

of each Korean folk song.

5. ANALYSIS AND DISCUSSION

In this section, we introduce interesting musicological

findings that we have found from the pitch histogram and

embedding learned from self-supervised training.
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Figure 3. Average pitch histogram of each tori obtained from the tori-subset and corresponding scale description.

5.1 Pitch Histogram Analysis

To explain the scale and characteristics alongside with

pitch histogram of each tori, we present the staff notation

of each tori in Figure 3 based on various studies describing

tori [2, 25, 26]. In the score, the cheong (a main note that

generally appears most frequently) was fixed as the C5.

The unfilled notes are primary tones, and the filled notes

are passing tones. In cases where there is a vibrato mark

below the note, it is called yoseong, meaning the pitch gen-

erally oscillates up and down. In addition, the arrow on the

left side of the note indicates that the pitch is slightly raised

or lowered compared to the equal-tempered pitch. The slur

mark flowing down to the right of the note represents twoe-

seong, which means the pitch slides down.

While menari-tori and yukjabaegi-tori remain within a

perfect fifth range from the center, in gyung-tori, there is a

larger proportion of high notes (G5-A5) or more from the

center. This indicates that the distribution of notes from

low to high in gyung-tori is evenly spread. This could be

due to the fact that folk songs of gyung-tori are more com-

monly found in popular folk songs than in those that ap-

pear nationwide. Perfect 4th below the center tone is com-

mon in all Korean music. However for example in gyung-

tori, there is vibrato in the G4 note, and the A4 note has

a low pitch, resulting in a distinct distribution in that part.

In menari-tori, it can be observed that the BZ4 note is used

as a passing tone between C5 and G4. Yukjabaegi-tori is

characterized by a vibrant vibrato in the G4, resulting in a

gentle distribution in the nearby pitch than other tori.

Whether a major third or a minor third is used in the

scale is an important factor in distinguishing the regional

musical characteristics of the eastern and western parts

of the Korean Peninsula in the traditional method. Subtle

pitch differences can be observed in all three tori. In gyung-

tori, the D5 note is clearly distributed lower and the E5

note is definitely higher than the line appearing the equal-

tempered tune. In yukjabaegi-tori, it is also confirmed that

the EZ note is slightly higher than the minor third note’s

Through the above analysis, we found that pitch his-

tograms can be utilized to roughly identify musical char-

acteristics, such as the range, interval from tones and sub-

tle pitches, etc. However, we also acknowledged that this

approach solely exhibits the constituent pitches and their

frequencies, without accounting for other aspects like uses

of melody and ornamentation and more.

5.2 UMAP visualization

We visualized the embeddings learned through self-

supervised learning in 2D using UMAP, a dimension re-

duction technique that is frequently used for visualization

of high-dimensional vectors in Figure 4. In the first figure,

we demonstrated the distribution of four different tori la-

bels. In addition, by examining the metadata information

of the embeddings, we figured out several interesting top-

ics from this visualization. We also implemented a web

demo using this visualization where one can directly ac-

cess the corresponding audio recording 3 .

Menari-tori has a much wider distribution area and en-

3 https://danbinaerinhan.github.io/korean-folksong-visualization/
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Figure 4. UMAP visualization of folk song embeddings obtained from our self-supervised-trained CNN model. Note that

no tori label was used to train the model.

compasses a broader musical range. In Figure 4 (A), the

menari-tori distribution can be seen to be wider com-

pared to the other tori. We mentioned that several subdi-

vided tori of it have been identified by scholars. Among

them, eosayong-tori is a representative example of refin-

ing the musical characteristics of eastern folk songs [11].

Eosayong-tori, a lamenting song sung by lumberjacks, was

suggested to have distinct musical characteristics com-

pared to menari-tori. For instance, in eosayong-tori, the

lowest pitch is a semitone higher, and it concludes on the

lowest pitch of the scale instead of the final pitch and the

middle pitch found in menari-tori. We examined embed-

dings corresponding to eosayong-tori in the metadata’s title

information, and they were clearly gathered in a different

space than the area annotated as menari-tori, as presented

in Figure 4 (B).

Similar results can be observed in the following cases

with arari. Arirang, having repetitive refrain lyrics such as

“arirang” or “arari”, is the most representative Korean folk

song, with countless versions appearing in various regions.

Among them, arari, another name for Jeongseon arirang,

was sung primarily in Gangwon province before spreading

nationwide in the 1930s [27,28]. Arari is also regarded as a

separated tori from menari-tori for some researchers [29],

with its own slower tempo, monotonous skeleton tones,

and the use of decorative tones. In Figure 4 (C), we can

see the clustering of entities with the title arari extracted

from the metadata.

Another interesting example is songs from Jeju. Folk

songs sung from Jeju island, which is the largest island in

Korea, have fewer research results compared to other re-

gions. In Jeju folk songs, the interval between the pitches

is narrower compared to other provinces’. Due to these rea-

sons, the traditional method of transcribing into staff nota-

tion was unsuitable for capturing the characteristics of Jeju

music [30–32]. However, using our embeddings, we can

identify three clusters as in Figure 4 (D). It implies the po-

tential usefulness of our approach to uncover the unique

characteristics of folk songs in Jeju Island.

We also checked the UMAP of the pitch histograms but

could not find clear clustering as in the presented examples.

6. CONCLUSIONS

In this paper, we have presented our computational ap-

proach to obtaining a high-dimensional embedding vector

for a given pitch contour, which allows us to analyze a vast

amount of Korean folk songs. Using these embeddings and

a manually labeled subset, we have examined how musical

discussions proposed in existing academia are manifested

in our dataset. As our results cover various music charac-

teristics, the learned embeddings can be utilized as a mon-

itoring aid when dealing with numerous undefined data to

review and find the tori. Also, we have discussed the meth-

ods and possibilities for utilizing and interpreting exper-

imental results in the future research. Through this mate-

rial, we can review and refine our understanding of the con-

cept of the tori, and provide easily accessible resources and

utilize them as appropriate evidence. Furthermore, there is

potential to clarify the musical characteristics of regions

that are distinct from other regions, like Jeju, about which

existing research has not been as active. Ultimately, we ex-

pect this research to be valuable in illuminating the rela-

tionships and transformations of folk songs over time.
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ABSTRACT

Significant strides have been made in creating voice
identity representations using speech data. However, the
same level of progress has not been achieved for singing
voices. To bridge this gap, we suggest a framework for
training singer identity encoders to extract representations
suitable for various singing-related tasks, such as singing
voice similarity and synthesis. We explore different self-
supervised learning techniques on a large collection of iso-
lated vocal tracks and apply data augmentations during
training to ensure that the representations are invariant to
pitch and content variations. We evaluate the quality of
the resulting representations on singer similarity and iden-
tification tasks across multiple datasets, with a particular
emphasis on out-of-domain generalization. Our proposed
framework produces high-quality embeddings that outper-
form both speaker verification and wav2vec 2.0 pre-trained
baselines on singing voice while operating at 44.1 kHz. We
release our code and trained models to facilitate further re-
search on singing voice and related areas.

1. INTRODUCTION

Singer representation learning is a complex task in Music
Information Retrieval (MIR) that involves extracting a rep-
resentation of a singer’s voice, capturing their unique iden-
tity or vocal timbre. This task is closely related to singer
recognition, which comprises two major tasks: singer
identification and singer verification. The first aims to
determine the singer of a given song from a fixed set of
singers in the dataset, while the latter aims to determine
if two audio excerpts come from the same singer or not.
Singer representation learning has many potential appli-
cations, including retrieval tasks (such as retrieving songs
with a similar singing voice), and providing singer embed-
dings for conditioning Singing Voice Synthesis (SVS) [1]
and Singing Voice Conversion (SVC) systems [2].

*Work mostly conducted during an internship at Sony CSL Paris

© B, Torres, S. Lattner, and G. Richard. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: B, Torres, S. Lattner, and G. Richard, “Singer Identity
Representation Learning using Self-Supervised Techniques”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,
2023.

Singer recognition is related to speaker recognition, a
well-established domain with vast literature. Historically,
it has received a much greater interest in particular due to
the need for authentication by voice in many telecommu-
nications applications. Singing voice, however, is different
from speech in several ways, typically containing a wider
variance of phoneme duration, utterances, and a wider
pitch range, which makes singer recognition more chal-
lenging. Moreover, the lack of large labeled datasets fur-
ther restricts the development of data-driven approaches.

In this study, we investigate if speaker recognition mod-
els trained on labeled speech data can be applied to singing
voice, and whether self-supervised learning (SSL) mod-
els trained on singing voice data can achieve comparable
performance. We compare different self-supervised tech-
niques, including SimCLR [3], Uniformity-Alignment [4],
VICReg [5] and BYOL [6], trained on a large collection
of isolated vocal tracks. We also explore high-frequency
regions that are traditionally ignored in speech [7, 8] but
might be present in singing voice by working in 44.1 kHz
sampling rate. Finally, we evaluate the generalization ca-
pabilities of our models on out-of-domain data.

Our main contributions are as follows: 1. We perform
singer representation learning experiments using self-su-
pervised techniques, an area that few works have explored.
2. We train encoders that operate at 44.1 kHz on a large
dataset of singing voice recordings. 3. We conduct an ex-
tensive evaluation of the obtained embeddings for singer
identification and singer similarity tasks, comparing them
with publicly available pre-trained speech baselines. 4. We
measure the out-of-domain generalization capabilities of
our models on four public datasets.

2. RELATED WORK

Singer recognition has traditionally relied on acoustic fea-
tures such as Mel-frequency cepstral coefficients (MFCCs)
or Line Spectral Frequencies (LSFs) to capture timbre
[9–11]. Some approaches focus on singer identification
on polyphonic music [12,13], while others separate vocals
from background [14, 15]. In speaker verification litera-
ture, time-invariant embeddings such as i-vector [16] or x-
vector [17] have been extensively used, and the domain has
shifted towards data-driven approaches using deep neu-
ral networks to encode acoustic features into a lower-
dimensional representation that captures speaker charac-
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teristics. Temporal aggregation is used to remove the time
dimension, and these systems are usually optimized us-
ing speaker label infomation for classification or metric
learning losses. Recent works have also explored SSL for
speaker verification [18–21].

SSL has been successful in many domains, particularly
with approaches such as SimCLR [3], MoCo [22], CPC
[23], and BYOL [6]. In the audio domain, following the
success in Computer Vision and Natural Language Pro-
cessing (NLP), successful SSL models for speech include
Wav2Vec 2.0 [24], HuBERT [25], and WavLM [26]. SSL
has also been successful in learning general-purpose au-
dio representations, with examples like COLA [27], CLAR
[28], and CLMR [29].

While the idea of finding singer embeddings using con-
trastive approaches is not new [30], to the best of our
knowledge, only one work has employed SSL for singer
representations [31]. In their work, contrastive learning is
used to acquire feature embeddings of singing voices using
data augmentations that disturb a singer’s identity to make
the embeddings more attentive to timbre or technique. In
contrast, our work explores different SSL techniques, fo-
cuses on out-of-domain testing, and evaluates on singer
similarity as well as singer identification.

3. METHOD

3.1 Goal

Our objective is to obtain, from isolated vocal tracks,
unique singer representations that capture the timbre of the
singer’s voice. These representations must satisfy three cri-
teria: (I) clips from the same singer should have a higher
average similarity than clips from different singers; (II)
the representation should not be dependent on fundamental
frequency or linguistic content variations; and (III) the rep-
resentations should generalize well to out-of-domain data.

3.2 Overview

The ideal embedding space for singer representations
should cluster elements of the same singer while also en-
suring semantic consistency by placing similar voice tim-
bres close to each other within the space [4]. In line with
the criteria outlined in Section 3.1, we conducted experi-
ments with various self-supervised techniques which force
embeddings of similar input data to be close in the em-
bedding space. We experimented with four frameworks:
SimCLR [3], Uniformity-alignment [4], VICReg [5], and
BYOL [6]. Although these frameworks share a common
goal, they differ in their approach (see Section 3.3). We
took great care in selecting appropriate data augmentations
and used a diverse set of singing voice training data. In
the current section, we describe the general training frame-
work common to all our self-supervised experiments.

Data sampling: In our methodology, we use a COLA
[27] approach to train our models by sampling audio seg-
ments on the fly, from a randomly drawn audio clip com-
ing from a large database. We first extract two segments
(x, x′) ∈ R

N cropped randomly from the audio clip,

called the anchor and positive segment. We obtain aug-
mented views of both audio segments of the positive pair
via a data augmentation module Aug(·) that operates in the
waveform domain, resulting in an augmented positive pair
(x(1), x′(2)). We repeat this process B times for a batch
size of B, obtaining a positive pair batch (x(1),x(2)), with
no repetition of audio clips during a training epoch. The
superscript ′ is further omitted for simplicity.

Model: Our proposed model takes raw audio wave-
forms sampled at 44.1 kHz as input. Firstly, we compute
log-compressed mel-spectrogram features m ∈ R

F×L on
the fly using the nnAudio library 1 . Next, the encoder mod-
ule g(·) maps the extracted mel-spectrograms to a latent
representation h′ = g(m) ∈ R

H×L. At this stage, adaptive
average pooling is used to aggregate embedding vectors h′

into time-invariant feature embeddings h ∈ R
H . A pro-

jection layer p(·) maps h into a lower dimensional latent
space z = p(h) ∈ R

D using a shallow neural network.
We denote the full model f(·) by stacking the acoustic

feature extraction, encoder, and projection modules. Dur-
ing training, we encode the training batch and obtain pro-
jections z = f(x). After training is completed, we discard
the projection layer and use only the feature embeddings h.
The similarity between a pair of embeddings is computed
using the cosine similarity.

Although there are many specialized speaker verifica-
tion architectures in the speech domain [32, 33], we use
the EfficientNet-B0 [34] architecture as the backbone for
the encoder module and a single SiLU non-linearity fol-
lowed by a fully-connected layer for the projection layer.
The projections are ℓ2 normalized.

3.3 Self-supervised frameworks

The core concept of all used approaches is to leverage
big amounts of unlabeled data to build a good represen-
tation space by aligning similar elements (and possibly
separating dissimilar ones). At training time, model f(·)
acts in a Siamese setup by encoding both elements of
the augmented pair z(1) = f(x(1)) and z

(2) = f(x(2)).
For BYOL, we have a separate encoder f ′ with the same
architecture as f and we compute z

(1) = f(x(1)) and
z
(2) = f ′(x(2)). For all setups, we compute a loss function

on the batch projections L(z(1), z(2)).
Contrastive Learning: We employ the contrastive loss

called NT-Xent from SimCLR [3]. The loss maximizes the
agreement between positive samples and pushes all other
embeddings of the batch (the negative parts) away in the
representation space. It does so by maximizing the co-
sine similarity (sim) between positive samples and mini-
mizing the sum of similarities for all other pairs formed in
the batch:

Lcont(z) = −
∑

i

log
exp(sim(z

(1)
i , z

(2)
i )/τ)

∑

j ̸=i exp(sim(z
(1)
i , z

(2)
j )/τ)

. (1)

We decouple the term exp(sim(z
(1)
i , z

(2)
i )/τ) from the

1 https://github.com/KinWaiCheuk/nnAudio

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

449



denominator of the original NT-Xent [3], which has been
shown to make the SSL task easier for smaller batch sizes
and less sensitive to the hyperparameter τ [35].

Uniformity-Alignment: Proposed in [4], Uniformity-
Alignment aims to align similar examples and distribute
elements uniformly in an ℓ2 normalized embedding space.
Instead of using a contrastive loss, the authors propose op-
timizing directly for these two properties, resulting in two
loss functions: alignment (Lalign) and uniformity (Lunif).

Lalign(z
(1), z(2)) =

1

N

∑

i

∥

∥

∥
z
(1)
i − z

(2)
i

∥

∥

∥

2

, (2)

Lk
unif (z

(k)) = log
1

N

∑

i,j

(

exp(−t∥z
(k)
i − z

(k)
j ∥2)

)

,

(3)
where t = 2 and Lunif =

∑

k=1,2 L
k
unif /2.

VICReg: VICReg [5] is an approach that attempts to
maximize the information content of the learned embed-
dings. Three losses are proposed: the variance, invariance,
and covariance losses. The invariance loss is the same as
the alignment loss (see Equation 2). The variance regu-
larization forces the standard deviation of a batch (in the
dimension axis) to be close to the value µ, preventing col-

lapse (when embedding dimensions become useless). Let
dj(z) ∈ R

B be the vector composed of the values of a
batch z at dimension j. The variance regularization is:

Lvar(z) =
1

D

D
∑

j=1

max (0, µ− S (dj(z), ϵ)) , (4)

where D is the number of dimensions of zi, and S is the
regularized standard deviation S(x, ϵ) =

√

Var(x) + ϵ.
The covariance regularization decorrelates the dimen-

sions of the embedding, making them orthogonal:

Lcov(z) =
1

Dz

∑

i ̸=j

(C(z))2i,j, (5)

where C(z) = 1
N−1

∑N

i=1 (zi − z̄) (zi − z̄)
T is the co-

variance matrix of z, and z̄ = 1
N

∑N

i=1 zi.
BYOL: Bootstrap Your Own Latent (BYOL) [6] em-

ploys two neural networks: the online and target networks.
Both networks share the same architecture. In addition,
BYOL employs an additional predictor network q which
computes predictions q(z). BYOL iteratively refines the
representation of the online network by minimizing the
mean squared error (MSE) between its predictions and the
target’s projections. If f and f ′ denote the online and tar-
get networks, respectively, the loss function LBYOL on the
projections z(1) = f(x(1)), z(2) = f ′(x(2)) is:

LBYOL(z
(1), z(2)) =

1

N

∑

i

∥

∥

∥
z
(1)
i − q(z

(2)
i )

∥

∥

∥

2

. (6)

The target network f ′ is not trained using directly the
gradients of LBYOL, but it is updated with an exponential
moving average of the weights of the online network.

Corpus Language #Hours #Singers Type

VCTK [36] English 44 110 Speech
NUS-48E [37] English 1.91 12 Speech/Singing
VocalSet [38] English 10.1 20 Singing
M4Singer [39] Chinese 29.77 20 Singing

Table 1: Out-of-domain datasets used for testing.

4. EXPERIMENTS

4.1 Data

We used a large private corpus of professionally recorded
singing voice data containing approximately 25,000 tracks,
totaling 940 hours of audio data. The dataset consists of
isolated vocals of re-recordings of popular songs by 5,700
artists and includes a variety of singing styles, voice types,
lyrics, and audio effects. We note that the actual number of
singers is unknown, as the same artist might have been re-
recorded by multiple singers. Therefore, we do not believe
that this corpus is appropriate for supervised training. Ad-
ditionally, we added 6 hours of source-separated vocals to
the corpus. All samples were converted to mono 44.1kHz
tracks with 16-bit encoding, and any silence lasting more
than 1.3 seconds was trimmed to 1.3 seconds. Segments
with less than 0.5% amplitude were considered silent, and
segments with more than 0.5% amplitude lasting less than
0.2 seconds were silenced. The dataset was partitioned into
three distinct sets with ratios of 80% for training, 10% for
validation, and 10% for testing, with no artist allocated to
more than one set. The length of a track is typically a few
minutes.

Out-of-domain evaluation: Four datasets are used to
test the out-of-domain generalization of the models. The
summary of all datasets is shown in Table 1.

4.2 Experiment setup

We perform a series of experiments to determine the best
SSL framework for singer representation learning:

• CONT: We train a model on the decoupled version of
the contrastive loss L = Lcont [35].

• CONT-VC: We train a model using Lcont (contrastive
loss) with added variance and covariance regulariza-
tion L = Lcont + µLvar + νLcov [40].

• UNIF: We train a model using the uniformity- align-
ment loss L = Lalign + γLunif [4].

• VICReg: We train a model using the VICReg loss
L = λLalign + µLvar + νLcov [5] .

• BYOL: We train a model on BYOL configuration,
optimizing the MSE L = LBYOL [6].

The contrastive loss has been shown to yield good re-
sults in the literature [27, 31], but there is concern that
it may break the semantic structure of the embeddings by
pushing similar singers away in the representation space
[4]. In the CONT-VC approach, the addition of variance
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and covariance losses from VICReg is tested as a regular-
ization method to mitigate this problem [21,40]. The UNIF
approach attempts to optimize directly for uniformity of
the space, which has shown links with linear separabil-
ity [4] and potential for strong singer identification results.
While VICReg claims to be an information-theoretic ap-
proach to general-purpose representation learning, it has
not yet been thoroughly tested in the audio domain. Fi-
nally, BYOL is included in the study for comparison as it
has shown promising results in several audio downstream
tasks, claiming state-of-the-art [41].

4.3 Evaluation procedure

The models are first trained until the validation loss stops
decreasing. Validation similarity metrics (Section 4.3.1)
are tracked during training, and the best-performing model
is selected. This model is evaluated on the test and on
out-of-domain sets using cropped 4-second clips of singer
recordings (with no overlapping segments). The embed-
dings h are evaluated in two tasks: singer/speech similarity
and singer/speech identification. For simplicity, we refer
to singer similarity/identification even when dealing with
speech data such as with VCTK/NUS-48E datasets (see
Section 5 for details).

4.3.1 Singer similarity

We evaluate singer similarity by measuring two metrics di-
rectly on the singer feature embeddings h: the Equal Error
Rate (EER) and Mean Normalized Rank (MNR). The EER
relates to singer verification. On the other hand, we relate
the MNR to singer retrieval by computing the similarities
between a query excerpt and a set of candidates. No train-
ing is performed for the similarity evaluation.

EER: The EER is a popular metric for verification sys-
tems. To compute the EER, the system is exposed to a
set of trials consisting of true pairs (two segments coming
from the same singer) and fake pairs (two segments coming
from different singers), and a similarity metric is computed
for both cases (in our case the cosine similarity). False pos-
itives (FP) and False Negatives (FN) can be computed by
applying a threshold τ on the similarity metric, and the De-
tection Error Tradeoff (DET) is obtained by varying τ as a
function of FP and FN. The EER is the error rate at which
FP = FN. We compute the EER following the implemen-
tation available as part of the SupERB benchmark [42] 2 .
We sample 50,000 speaker pairs for computing the EER on
the test set and 20,000 speaker pairs for out-of-domain.

MNR: Denote q(1), q(2) two query audio samples, com-
ing from the same audio recording (and therefore the same
singer) drawn at random at each trial. Let S be a set of
N audio samples, drawn at random from a dataset, and
q(2) ∈ S. The MNR is [40]:

MNR =
1

K

K
∑

k=1

R(q
(1)
k , Sk)

N
, (7)

2 https://github.com/s3prl/s3p

Model #Params SR Dim. Backbone

GE2E [43] 3 1.4M 16 256 LSTM
F-ResNet [33] 4 1.4M 16 512 ResNet-34
H/ASP [44] 4 8.0M 16 512 ResNet-34
Wav2Vec-base [24] 5 95M 16 12X768 Wav2Vec 2.0
XLSR-53 [45] 6 300M 16 24X1024 Wav2Vec 2.0

Ours 5.0M 44.1 1000 EfficientNet-B0

Table 2: Number of network parameters, sampling rate in
kHz (SR), the size of the feature embeddings (Dim), and
the architecture backbone for the baselines and our models.

where R(q
(1)
k , Sk) is the integer position (rank) of q(2) in

the sorted list of cosine similarities between q(1) and the
samples in S. We perform K = 1000 trials for N = 512.

Input sample rate: To ensure a fair comparison with
the baselines, which operate on 16 kHz, the evaluation is
done in two scenarios: at 16 kHz and 44.1 kHz. In the
former, the 44.1 kHz inputs are downsampled to 16 kHz
and upsampled back to 44.1 kHz before being fed to the
models, removing energy above 8 kHz. In the latter, the
trained models have access to the full frequency range of
the input data.

4.3.2 Singer identification

To evaluate the linear separability of singer classes, we per-
form singer classification as a downstream task for singer
identification on out-of-domain evaluations. We use 5-fold
cross-validation to split the audio files of each singer into
train, validation, and test subsets (4-fold for NUS-48E).
A single feed-forward linear layer is trained with cross-
entropy loss on the train subset to predict singer classes
from embeddings extracted from frozen models. The best
model is selected on the validation subset. Average metrics
on the test set over all folds are reported. We limit this task
to out-of-domain evaluations since these datasets contain
multiple files per singer and the classes are balanced.

4.4 Baselines

In our experiments, we use as baselines three speaker
verification networks: GE2E [43], Fast-ResNet34 [33]
(hereafter referred to as F-ResNet), H/ASP [44];
and two large general purpose self-supervised models
Wav2Vec-base [24], and XLSR-53 [45]. These models
have been pre-trained on speech and either achieved state-
of-the-art results or have been used for obtaining speaker
representations for speech/singing voice synthesis tasks
while being publicly available. We provide an overview
of the baseline models in Table 2.

Since all baselines operate on 16kHz, we down-
sample the test signals to 16kHz accordingly. For
Wav2Vec-base and XLSR-53, we use adaptive aver-
age pooling as the temporal aggregation method for the
frame-wise feature embeddings, and we employ a learned,
weighted sum of the first three layers for the downstream

3 https://github.com/resemble-ai/Resemblyzer
4 https://github.com/clovaai/voxceleb_trainer
5 https://huggingface.co/facebook/wav2vec2-base
6 https://huggingface.co/facebook/wav2vec2-large-xlsr-53
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In-domain Out-of-domain

Test dataset* VCTK NUS-48E M4Singer* Vocalset*

Model EER MNR EER MNR EER MNR EER MNR EER MNR

16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1 16 44.1

GE2E† 27.24 - 18.9 - 13.42 - 5.41 - 28.04 - 18.99 - 25.01 - 15.99 - 40.45 - 35.34 -
F-ResNet† 15.21 - 7.76 - 1.01 - 0.08⋆ - 15.36 - 6.63 - 14.21 - 5.98 - 40.64 - 33.82 -
H/ASP† 12.36 - 5.82 - 0.28⋆ - 0.08⋆ - 13.99 - 5.42 - 12.31 - 3.93 - 36.27 - 30.79 -

Wav2Vec-base 25.36 - 14.78 - 23.15 - 15.78 - 32.65 - 24.39 - 26.28 - 13.37 - 39.34 - 34.23 -
XLSR-53 25.22 - 15.82 - 25.93 - 19.95 - 36.62 - 28.52 - 26.02 - 16.96 - 40.09 - 35.32 -

VICReg 8.19 3.88 2.29 1.14 25.17 23.88 14.99 14.62 26.11 26.06 15.43 15.34 24.6 22.05 9.78 8.69 34.58 33.12 28.21 26.5
UNIF 9.48 2.86 2.13 0.78 22.51 24.28 12.99 14.67 27.65 26.12 17.08 15.48 20.46 17.03 8.83 6.67 32.4 31.19 25.07 23.19
CONT 6.39 2.16 1.33 0.48 20.04 22.87 9.34 11.56 23.67 24.51 12.86 12.45 14.28 12.67 5.52 4.51 32.16 30.61 23.64 22.6
CONT-VC 7.39 2.74 1.61 0.52 19.92 21.79 10.35 11.12 24.99 25.4 15.06 13.91 15.97 12.68 6.94 4.81 31.03 29.74 22.65 21.87
BYOL 5.88 3.82 1.5 0.68 17.44 19.97 7.8 9.73 26.01 23.9 15.62 12.21 15.65 12.28 5.86 3.77 31.59 29.76 23.93 21.25

Table 3: EER and MNR (%, lower is better) measured on frozen model embeddings. Datasets that contain only singing
voice are marked with *, and models which are not self-supervised are indicated with †. Results in bold are the best among
all models, for both 44.1 kHz and 16 kHz input sample rates. Underlined results highlight the best on 16kHz input only.
For Wav2Vec-base and XLSR-53, we use the embeddings of the first layer and aggregate them using average pooling.

classifier [42]. We empirically found that this approach
boosts classification performance compared to using a sin-
gle layer. Specifically, the first layers of these models are
more effective for speaker verification [26] and are more
correlated with speaker characteristics [46]. For singer
similarity evaluations, we use only the first layer, as there
is no training involved to yield weights for a weighted sum.

4.5 Training

To train our models, we used 4-second audio clips
that were normalized, augmented, and converted to log-
compressed mel-filterbanks with 80 mel bins, a window
length of 2048, and a hop size of 512. This results in
an FFT frame of 46.4ms and sliding windows of 11.6ms
for 44.1 kHz audio. We initialized the EfficientNet-B0
backbone with pre-trained weights on ImageNet [40] and
used the ADAM optimizer with a learning rate of 1e-4 and
weight decay of 1e-5, with a batch size of 120. For con-
trastive loss, we used a temperature parameter of τ = 0.2
[4], and whenever we used covariance regularization, we
set ν = 100. For variance regularization, we set µ = 25.
Additionally, for VICReg experiments, we used an invari-
ance loss factor of λ = 25, and UNIF, we set γ = 1. For
BYOL, we used a learning rate of 3e-5, a weight decay of
1.5e-6 and an initial moving average value τ of 0.99. We
found through empirical analysis that these hyperparame-
ters were effective for convergence and avoiding collapse.

In terms of data augmentation techniques, we applied
Gaussian noise, gain with a minimum attenuation of -6
dB, and time masking with at most 1/8 of the clip be-
ing masked. We also used formant-preserving pitch shift-
ing with Praat [47, 48] as a method of data augmenta-
tion, with the pitch shift ratio and pitch range ratio being
sampled uniformly from U(1,3) and U(1,1.5), respectively,
with a random choice on whether to take the reciprocal
of the sampled ratios or not [46]. All augmentations had
a probability of 0.5 of being applied. We avoided using
naive pitch-shifting techniques that transpose the formants,
which can significantly alter the singers’ timbre.

Model VCTK NUS-48E M4Singer* Vocalset*

GE2E† 97.01 91.13 88.72 45.66
F-ResNet† 99.91 97.36 94.51 49.52
H/ASP† 99.93 98.32 97.87 74.65

Wav2Vec-base 98.70 96.16 96.52 79.19
XLSR-53 99.66 97.02 98.62 86.05

VICReg 52.52 78.98 87.34 49.69
UNIF 74.43 93.05 93.55 67.52
CONT 90.24 96.23 95.72 77.42
CONT-VC 86.03 95.14 94.69 75.20
BYOL 96.95 96.56 97.00 81.01

Table 4: Average linear classification accuracy on out-of-
domain data (%) over K-fold cross-validation. Datasets
that contain only singing voice are marked with *. The
best scores are highlighted in bold and the best among the
trained models (bottom 5 rows) are underlined. Models
which are not self-supervised are indicated with †.

5. RESULTS AND DISCUSSION

Table 3 presents the results of singer similarity evaluation
on both in-domain and out-of-domain test sets, reporting
the best Equal Error Rate (EER) and Mean Normalized
Rank (MNR) for trained models and baselines in all test
datasets. Table 4 shows the accuracies for downstream
singer identification task on out-of-domain datasets. We
also share in supplementary material additional qualitative
visual evaluations of the embeddings 7 , and release code
and models to encourage reproducibility and facilitate its
use in future projects 8 .

5.1 Results on pre-trained models on speech

The results indicate that models pre-trained on speech in
a supervised manner (using speaker labels) exhibit good
generalization to out-of-domain speech datasets. H/ASP

achieves an impressive 0.28% EER on the VCTK, and all
models score higher than 88% accuracy on VCTK, NUS-

7 https://sites.google.com/view/singer-representation-learning
8 https://github.com/SonyCSLParis/ssl-singer-identity
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48E, and M4Singer datasets. Their similarity performance
on singing voice datasets, however, is much worse than on
speech, but the best models still score below 10% EER on
NUS-48E and 12.31% and 14.21% EER on M4Singer for
H/ASP and F-ResNet, respectively.

This suggests that important features of the singing
voice can also be learned directly from speech. However,
the results show the pre-trained models perform worse on
heavily processed data that includes uncommon effects and
vocal techniques. This is evident, in particular, in the last
columns of Tables 3 and 4 (VocalSet), with all baselines
scoring around 40% EER and from 20% to 40% worse ac-
curacy when compared to the other datasets.

5.2 Results on Self-Supervised Models

Models trained with contrastive loss (CONT and
CONT-VC) achieved the best EER and MNR on the
test set. These models were able to learn highly discrimi-
native features for the task of in-domain singer similarity.
For instance, the CONT model had the lowest overall EER
and MNR (2.16% and 0.48% respectively) on the test set.

It can also be seen in Table 3 that in-domain test per-
formance did not necessarily translate to good generaliza-
tion to out-of-domain data. By adding variance and covari-
ance regularizations (CONT-VC), the model achieved bet-
ter generalization to out-of-domain data on some datasets
(such as the VocalSet, with approximately 1% EER dif-
ference). However, in the VICReg scenario, which has
both regularizations but lacks the contrastive part, the re-
sults were worse. In fact, VICReg had the worst overall
results of all the tested self-supervised frameworks. UNIF,
while better than VICReg, also performed worse on aver-
age when compared to the other approaches.
CONT and BYOL achieved the best accuracy over all our

trained models on singer identification (Table 4), achieving
the highest scores of 77.42% and 81.01%, respectively (the
VocalSet paper [38] reports 60-70% accuracy on a super-
vised singer identification task).
BYOL achieved the best generalization on similarity,

performing best on out-of-domain data, even though its
scores were worse on the in-domain test set. Interest-
ingly, of all explored self-supervised techniques, BYOL
is the only one that does not explicitly force any kind of
feature distribution on the embedding space. In addition,
BYOL was able to learn best how to leverage the informa-
tion present at 16 kHz sample rate, with an EER of 5.88
on the test set. It also performed best on out-of-domain
speech data (VCTK). In general, our models struggled with
speech, performing generally better when they only had
access to a reduced frequency band. This suggests that
in speech, high-frequency information the models rely on
hinders their ability to generalize.

44.1 vs 16 kHz: Using 44.1 kHz inputs consistently im-
proved the similarity results on singing voice datasets (e.g.,
M4Singer) for all models, highlighting the models’ ability
to efficiently use high-frequency information. Moreover,
most models showed a marked decline in the in-domain
dataset results when tested with 16 kHz inputs (the CONT

model, for example, shows a drop from 2.16% EER to
6.39% EER). While the 16 kHz inputs could be consid-
ered out-of-domain, this effect shows that high-frequency
information is important for the trained models to achieve
better performance.

Comparison to baselines: The trained models show
better results than baselines on in-domain test sets and
the VocalSet dataset for singer similarity tests, although
they fall behind F-ResNet and H/ASP on the mixed
speech/singing dataset NUS-48E and VCTK. Nonetheless,
on M4Singer, some self-supervised models outperformed
the supervised baselines, with BYOL showing the best per-
formance (12.28% EER and 3.77% MNR), and CONT and
CONT-VC also being superior to F-ResNet.

The trained models have substantially better singer
similarity results compared to Wav2Vec-base and
XLSR-53. These results indicate the potential of training
models on the proposed SSL tasks specifically on singing
voice data. Further improvements could be made by fine-
tuning the embeddings on verification tasks, as has been
demonstrated in previous work on Wav2Vec 2.0 [49].

Moreover, BYOL outperformed Wav2Vec-base for
both VocalSet and M4Singer on classification. Among all
models, XLSR-53 achieved the best overall performance
for singer identification of singing voice. However, is note-
worthy that our models have significantly fewer parameters
than the self-supervised Wav2Vec-base (19 times less)
and XLSR-53 (63 times less).

6. CONCLUSION

In conclusion, we have shown that self-supervised learn-
ing is an effective approach for learning representations
of singers. The self-supervised models trained on a large
corpus of singing voice data demonstrated a performance
that either matched or surpassed publicly available super-
vised speech models, without resorting to specialized ar-
chitecture designs. Additionally, our models outperformed
general-purpose self-supervised counterparts even with a
significantly reduced parameter count. When applied to
singer identification, our models exhibited superior per-
formance over Wav2vec-base on singing voice datasets
but fell somewhat short in comparison to the considerably
more expansive XLSR-53.

Furthermore, our results suggest that these models hold
promise for singer identification and similarity down-
stream tasks. BYOL showed the most promise for gen-
eralizing to out-of-domain data, while the contrastive ap-
proaches were more effective for in-domain data.

However, we note that our models’ representations do
not yet fully capture a singer’s identity when confronted
with unique singing techniques, such as those found in the
VocalSet [38]. This underscores the need for further re-
search on robust SSL frameworks capable of accommodat-
ing such variations. Our findings also suggest that employ-
ing a higher sampling frequency can be advantageous for
singing voice tasks, but optimal frequency for generalizing
to both singing and speech tasks remains to be determined.
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ABSTRACT

Self-supervised learning (SSL) has shown promising results
in various speech and natural language processing applica-
tions. However, its efficacy in music information retrieval
(MIR) still remains largely unexplored. While previous
SSL models pre-trained on music recordings may have
been mostly closed-sourced, recent speech models such as
wav2vec2.0 have shown promise in music modelling. Nev-
ertheless, research exploring the effectiveness of applying
speech SSL models to music recordings has been limited.
We explore the music adaption of SSL with two distinctive
speech-related models, data2vec1.0 and Hubert, and refer
to them as music2vec and musicHuBERT, respectively. We
train 12 SSL models with 95M parameters under various
pre-training configurations and systematically evaluate the
MIR task performances with 13 different MIR tasks. Our
findings suggest that training with music data can generally
improve performance on MIR tasks, even when models
are trained using paradigms designed for speech. However,
we identify the limitations of such existing speech-oriented
designs, especially in modelling polyphonic information.
Based on the experimental results, empirical suggestions
are also given for designing future musical SSL strategies
and paradigms.

1. INTRODUCTION

Deep learning (DL) techniques have shown promising re-
sults in a wide range of auditory tasks, including speech and
music information retrieval (MIR). However, the quantity
and quality of labelled data is a bottleneck for developing
algorithms with better generalisation in complex real-world
settings for machine listening. To address this issue, self-
supervised learning (SSL) such as BERT [1] has emerged
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as a solution to leverage diverse and representative unla-
belled data to train a deep feature extractor with better
generalisation. By combining this pre-trained SSL encoder
with a naive classifier, typically a multi-layer perceptron
(MLP) or long short-term memory (LSTM) with limited
hidden layers, the model can achieve strong or state-of-
the-art (SOTA) performance in various downstream tasks
including NLP [1–3], computer vision [4], and audio [5, 6],
where well-labelled datasets are limited. For music, larger
datasets can be more expensive due to copyright and anno-
tation costs, making SSL essential for developing effective
MIR systems. Investigating versatile SSL approaches in
MIR can further improve the performance on many MIR
tasks, benefitting the music industry, music education, and
heritage preservation. Although SSL has significantly im-
proved the performance of models in tasks such as speech
recognition, sentiment analysis, and language modelling,
its effectiveness in MIR remains largely unexplored.

There has been much work on SSL for audio represen-
tation learning, including speech, sound events or music.
But most results are difficult to evaluate or fine-tune due
to limited access to training data, pre-trained parameters or
training codes. PANN [7] is trained on noisy/weak-label
classification and does not provide promising results in
music tasks such as pitch classification and instrument clas-
sification [8]. Besides, it can hardly be re-trained on music
datasets given that the MIR community does not have a
weekly labelled large music dataset. MusiCoder [9], Music
PASE [10], and MAP-Music2Vec [11] use strategies mainly
based on masked prediction, where training models predict
the audio waveform manually-designed feature or learnable
deep feature of input removed randomly from the ground
truth. Such models trained on music are not open-sourced
except MAP-Music2Vec, which provides pre-trained param-
eters on hugging-face 1 . Jukebox [12] uses similar strate-
gies for pop-song recording generation and demonstrates
good potential for multiple MIR tasks [6]. But the training
code for it is unavailable and is hard to fine-tune given its
6 billion parameters. MAP-MERT v0 [13] mimicks Hu-
BERT [14], which regards the clustering results of audio as
a pseudo label or pseudo spectrum to be reconstructed rather

1 https://huggingface.co/m-a-p/music2vec-v1
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than a cluster assignment. But it does not provide training
codes for further model evaluation. Furthermore, there are
some music SSL models based on instance discrimination.
In this family of approaches, each instance is considered its
class, and models are trained to distinguish among different
instances. CLMR [15] is trained with a limited number
of parameters and shows limited capacity [6]. PEMR [16]
does not show promising results besides tagging and is not
open-source for further evaluation.

Although not designed for MIR tasks, some speech
SSL models provide promising results on music tasks,
and their training codes are available for fine-tuning or re-
training on musical audio. Mockingjay [17], and PASE [18]
use masked waveform / audio-feature prediction for pre-
training. COLR [19] uses EfficientNet with a limited num-
ber of parameters and is designed for general audio, though
it has a promising result on instrument classification. SF-
NFNet-F0 [20] also uses an architecture based on convolu-
tion neural networks, a SlowFast Normalizer-Free ResNet,
for audio pre-training. Furthermore, apart from provid-
ing good results on automatic speech recognition (ASR),
Wav2Vec2.0 [5], HUBERT and data2vec [21] also provide
much better results on pitch estimation and instrumental
classification than PANN, though they are still far from
perfect [8]. All of the speech SSL models are helpful for
music SSL model development.

Previous work on re-training speech SSL systems with
music recordings is limited to the size of training datasets or
model structure. Ragano et al. [22] re-trained wav2vec2.0
on music audio and improved performance on pitch esti-
mation and instrument classification significantly. But the
training set is less than 100 hours which may be less rep-
resentative, and the downstream tasks are limited and not
universal. MusiCoder and Music PASE can be regarded as
re-training speech SSL models on music recordings, but the
model performance is not promising. Besides, these models
are evaluated with a limited number of downstream tasks,
making the learned embedding less persuasive. SF-NFNet-
F0 is trained on music recordings and provides better results
on multiple music tagging tasks [23]. But its model archi-
tecture is based on CNN, without much room for further
scale-up and longer sequence modelling.

The missing science in the previous studies is as follows.
All of the existing models trained on music are either with
a limited number of parameters and capacity for MIR tasks
other than tagging or not open-source for further evalua-
tion. Some of the systems developed on speech or general
audio recordings demonstrate promising but not satisfying
results on MIR tasks. Besides, previous investigations on
the efficacy of applying speech-related SSL models to mu-
sic recordings are limited by the size of the training set, not
enough universality on the downstream tasks, or paying less
attention to powerful transformer structures.

Our key contributions are four-fold: (1) exploring two
speech-related SSL models based on transformer structures,
data2vec and HuBERT, and comparing the results with
those models pre-trained in speech recordings; (2) carrying
out ablation studies for pre-training, thus providing more

intuition for further music SSL system design; and (3) sys-
tematically comparing the performance on 13 downstream
tasks, which facilitates comprehensive model evaluation on
a wide range of MIR tasks.

2. METHOD

In order to keep the pre-training and representation evalua-
tion protocols comparable, we focus on adapting from the
speech self-supervised learning frameworks that support
direct audio input and end-to-end pre-training. Given our
intent of exploring the influence of the pre-training design
itself, we choose two SSL frameworks mainly distinguished
by their self-supervised learning targets while sharing very
similar training settings, including model architecture, train-
ing datasets, and evaluation protocols. In this section, we
briefly describe the two selected SSL models – data2vec-
1.0 [21] and HuBERT [14] – in the unified auto-encoding
framework (cf. Fig. 1) and discuss the similarities and
differences under music audio pre-training.

2.1 Music2Vec: Continuous Target Prediction

We adapt the pre-training paradigm from the speech version
of the multi-modal framework data2vec-1.0 [21], where
the prediction targets during pre-training are continuous
representations. We refer to this continuous prediction
model adapted with music recordings as Music2Vec.

Modified from the design of bootstrap your own latent
(BYOL) [24], Music2Vec aims to predict continuous latent
representations from the teacher model for the masked input
audios, which is illustrated in Fig. 1a. The teacher model
and student model share the same architecture, and the
parameters of the teacher model are updated according to
the exponential moving average of the student [21]. The
student model takes the partially masked input and is asked
to predict the average pooling of top-K layer outputs from
the Transformer [25] in the teacher model. In contrast,
the teacher model takes the unmasked input and provides
contextual prediction targets in the pre-training.

Following the data2vec [5] setting, we train the Mu-
sic2Vec of 95M parameters with a comparable 1k hours
of music recordings. Since pre-trained speech models can
barely benefit music representation learning [22], we in-
stead train the base model from scratch to verify its effec-
tiveness in modelling music audio recordings.

2.2 MusicHuBERT: Discrete Target Prediction

Another efficient speech SSL model, HuBERT [14], is cho-
sen as the representative of discrete target prediction design.
We referred to the music adaption version as MusicHu-
BERT. It takes masked music audios as input (Similar to
Music2Vec) and predicts pre-processed discrete labels cor-
responding to the masked area, as shown in Fig. 1b. The
discrete targets are pseudo labels provided by K-means
that are trained on the MFCC features of the training au-
dios. The number of clusters K of the K-means model is
a hyperparameter, and all the centroids are assigned with
randomly initialised embeddings and learned during the
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Figure 1: Pre-training Paradigms of Selected Models. Both of the models are fed with masked audio inputs and predict
given targets without supervised information.

MusicHuBERT pre-training. MusicHuBERT can also be
trained for an extra n iterations, where K-means clustering
is learned from model outputs’ previous iteration. We fol-
low the original HuBERT [14] setting to train a model with
95M parameters of the same size as Music2Vec.

2.3 similarities & Differences of SSL frameworks

This subsection will examine the similarities and differences
between the SSL frameworks mentioned above.

Both Music2Vec and MusicHuBERT are annotation-free
and utilise SSL techniques; their most common character-
istic is the training task of “reconstructing” information
from masked inputs, making them auto-encoding models.
During the denoising process, these models learn the se-
mantics contained in the audio. Furthermore, they share
similar model architecture designs, which are inherited from
wav2vec-2.0 [5], wherein the audio is initially encoded by a
multi-layer 1-D CNN feature extractor that maps a 16 kHz
waveform to 50 Hz representations. The encoded tokens
are then fed into a 12-layer transformer block with a hidden
dimension of H = 768.

Regarding the differences in the designs, the most no-
table one is that Music2Vec is required to predict continuous
latent variables, whereas MusicHuBERT predicts discrete
pseudo-labels. The time cost of SSL target preparation bot-
tleneck varies according to their mechanism. In Music2Vec,
the pre-training consumes twice the model forward time
since the target representations from the teacher model are
inferred on-the-fly. In contrast, MusicHuBERT trains the
K-means model and infers all the pseudo-labels before train-
ing, which requires high parallel processing ability when
the dataset is scaled-up.

3. DATASET & EVALUATION

3.1 Training

We use a private dataset with 1000 hours of music audio
recordings for pre-training; each sample is a 30s-long ex-

cerpt from pop-song or instrumental music. The size of the
pre-training dataset is roughly the same as the pre-training
for HuBERT-base and data2vec-audio-base models.

3.2 Evaluation

We evaluate the models on 13 downstream tasks, including
timbre classification tasks such as genre and instrumen-
tal classification, singing, playing technique classification,
singer classification, and music tagging; emotion-related
tasks like music mood classification and regression; and
note-related tasks such as pitch estimation, key detection;
and sequential tasks like beat tracking.

Music Tagging is a multi-label classification task. We
used MagnaTagATune (MTT) [26] and MTG-Jamendo [27]
for this task, tag categories of which include genre, in-
strumentation, mood, and tempo (e.g. fast) etc. For both
datasets, we limit the tag vocabulary to the 50 most com-
mon tags. We use all clips in MTT and MTG-Jamendo
for evaluation. Since many of the audio recordings among
5.5k MTG-Jamendo excerpts are longer than the 30s, we
averaged the multiple embeddings computed with a 30s
sliding window as the overall embedding. The metrics are
the macro-average of ROC-AUCs and the average precision
(AP) / PR-AUC among all top-50 tags.

Key detection. We use a commonly-used subset of
Giantsteps-MTG-keys [28] as the training and validation
set following the data splitting [6], and Giantsteps (GS) [29]
as the test set. The metric is a refined accuracy that gives
partial credit to reasonable errors [30].

Genre classification. We report the multi-class classi-
fication accuracy of the GTZAN [31] dataset, along with
ROC and AP on MTG-Genre for multi-label. We used the
standard "fail-filtered" split [32] for GTZAN.

Emotion score regression. The Emomusic dataset [33]
contains 744 music clips of 45 seconds, each reported on a
2-D valence-arousal plane after listening. We use the same
dataset split as [6]. The evaluation metric is the determina-
tion coefficient (r2) between the model regression results
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and human annotations of arousal (EmoA) and valence
(EmoV) [33]. We split the 45-second clip into a 5-second
sliding window for inference and averaged the prediction.

Instrument classification. We use the Nsynth [34] and
MTG-instrument datasets. The former is a multi-class task
on 306k audio samples in 11 instruments with accuracy
as an indicator. The latter is a subset of MTG-Jamendo,
containing 25k audio tracks and 41 instrument tags; each
track can contain multiple instruments and is evaluated on
ROC and AP.

Pitch classification. Given these audios are short mono-
phonic audio, this task is multi-class to determine which
of the 128 pitch categories, and the accuracy is used as an
evaluation metric.

Vocal technique detection. We use the VocalSet dataset
[35], which is the only publicly available dataset for the
study of singing techniques. The dataset contains the vocals
of 17 different singing techniques in various contexts for
a total of 10.1 hours. As the audio clips are divided into 3
seconds, the task only requires a judgment on the type of
technique and not on the start and end of the technique. We
used the same 10 different singing techniques as in [36] as
a subset and used the same 15 singers as the training and
validation sets and 5 singers as the test set. Since there is
no accepted division between training and validation sets,
we selected 9 singers as the training set and 6 singers as the
validation set. All the 3-second segments originate from the
same recording are allocated to the same part of the split
(e.g. all in the testing set).

Singer identification is to identify the vocal performer
from a given recording. We randomly divided the VocalSet
dataset, which contains 20 different professional singers
(9 female and 11 male), into a training set, validation set
and testing set based on a ratio of 12:8:5, all containing the
same 20 singers.

Beat tracking. We use an offline approach to the binary
classification, i.e. the model can use the following infor-
mation from each frame to help with inference. The model
needs to output frame-by-frame predictions at a certain fre-
quency and post-process them using a dynamic Bayesian
network (DBN) [37], the same methods with supervised
SOTA. The DBN is implemented using madmom [38]. The
dataset we use is GTZAN Rhythm [39]. We also label the
two adjacent frames of each label as beat, a common way
of smoothing in beat tracking. The model is evaluated using
the f_measure implemented in mir_eval [30], and the
prediction is considered correct if the difference between
the predicted event and the ground truth does not exceed
20ms. In this task, some models were trained on other
datasets, and the full GTZAN set was used as the test set.
For all cases, however, we use GTZAN-train as the training
set and GTZAN-test as the test set.

Emotion Tagging. We use MTG-MoodTheme, another
subset of MTG-Jamendo [27] that contains 18.5k audio
tracks and 59 tags. Unlike Emomusic, this is a multi-label
task, with ROC and AP as metrics.

4. EXPERIMENTAL RESULTS

We use the fairseq framework 2 from Meta to train Mu-
sicHuBERT and Music2Vec models. All the MusicHu-
BERT and Music2Vec models are trained for 400k steps
with 8 × NVIDIA A100-40GB GPUs. Training with 8
GPUs takes around 2 − 3 days. The experimental results
are chiefly as follows.

Our findings suggest these SSL models pre-trained on
speech can be helpful for MIR tasks, but pre-trained on
music is generally more helpful, besides some exceptions.
In section 4.2, we identify the strengths along with weak-
nesses of training strategies, revealing areas for further
improvement. In section 4.3, we discuss the effect of hyper-
parameters in pretext tasks.

4.1 Pre-trained on Speech and Music

Table 1 demonstrates the performance of HuBERT 3 and
data2vec 4 SSL models that were pre-trained on speech
recordings and music recordings separately. Here, we only
consider the SOTA performance trained with the same
dataset train/valid/test split. All of the models are used
as parameter-frozen feature extractors. The weighted sum
of one output of the CNN tokeniser as well as the 12 outputs
of all the transformer layers, are combined with an MLP as
the back end. The MLP has only one single 512-dimension
hidden layer. The learning rate of the probing is set to 1e-3.

For the HuBERT model, the results pre-trained on speech
recordings are comparable with SOTA on tasks like music
tagging, beat tracking, pitch estimation and singing tech-
nique classification etc., and are surpassed by the results
pre-trained on music audio on most of the downstream tasks
besides pitch estimation on Nsynth and key detection on
GS. For pitch detection, the data samples in Nsynth are a
single note played by one single monophonic instrument,
which is similar to speech data. So it is reasonable that Hu-
BERT pre-trained on speech data is capable of modelling
a single pitch. Although HuBERT surpasses the vanilla
MusicHuBERT on GS and Nsynth-pitch, it is surpassed
by the results of MusicHuBERT with an ablation study on
pre-training hyperparameters (shown in Table 2).

For data2vec, the data2vec-audio results are also com-
parable with SOTA on many tasks and have a large gap on
others, and overall surpassed by Music2Vec or its ablation
study shown in Table 3 on most of the tasks as well. But the
data2vec results of beat tracking on GTZAN-Rhythm and
singer identification on Vocalset surpassed all Music2Vec.
Vocalset includes singing of different phonemes with dif-
ferent singing techniques by different singers. The speech
SSL system is capable of modelling diverse phonemes in
ASR and various timbres of speakers but has less focus
on timbre in speaking techniques you may find in opera.
On the contrary, the music SSL models may focus more
on phonemes (lyrics) and singing timbre (techniques) but
include less focus on the singer itself. For beat tracking, we
observe that the performance is reduced significantly when

2 https://github.com/facebookresearch/fairseq
3 https://huggingface.co/facebook/HuBERT-base-ls960
4 https://huggingface.co/facebook/data2vec-audio-base
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Table 1: Experimental performance of the SSL baseline systems on all downstream tasks

Downstream MTT
GS key

GTZAN EMO Nsynth Nsynth VocalSet VocalSet GTzAN MTG MTG MTG MTG
dataset Genre Instr pitch tech singer Rhythm Instrument MoodTheme Genre Top50
Metrics ROC AP Refined Acc Acc EmoV EmoA Acc Acc Acc Acc F1 (beat) ROC AP ROC AP ROC AP ROC AP

HuBERT
89.8 36.4 15.0 64.8 31.0 57.5 68.2 79.4 61.0 58.8 83.5 73.2 17.0 74.0 11.6 85.0 16.3 81.8 26.5

base
MusicHuBERT

90.2 37.7 14.7 70.0 42.1 66.5 69.3 77.4 65.9 75.3 88.6 75.5 17.8 76.0 13.9 86.5 18.0 82.4 28.1
base

data2vec
88.4 33.6 15.5 60.7 23.0 49.6 69.3 77.7 64.9 74.6 36.4 73.1 16.9 73.3 11.0 83.5 14.5 80.6 24.8

audio base
Music2vec

89.1 35.1 19.0 59.7 38.5 61.9 69.4 88.9 68.3 69.5 33.5 73.1 16.3 74.3 12.2 85.2 16.5 81.4 26.2
vanilla

SOTA 92.0 [40] 41.4 [6] 74.3 [28] 82.1 [41] 61.7 72.1 [6] 78.2 [20] 89.2 [23] 65.6 [36] 80.3 [42] 80.6 [43] 78.8 20.2 [44] 78.6 16.1 [23] 87.7 20.3 [44] 84.3 32.1 [23]

the number of transformer layers increases from 0 to 12.
This shows that the data2vec structure may not be useful
for learning temporal information.

4.2 Pre-trained with Different Paradigms

From Table 1, we can tell that MusicHuBERT is more
promising than Music2vec given that it provides better re-
sults in most of the downstream tasks, especially genre
classification on GTZAN, emotion regression on EMO and
beat tracking on GTZAN. But it is worse on single-pitch
estimation on Nsynth, along with key detection on GS.

These phenomena suggest pre-training with the HuBERT
paradigm is strongly correlated with the MFCC feature in-
formation used for k-means. Therefore, the quantisation
results lack multi-pitch information, including harmony or
chord modelling, that is essential to key detection. The
following research can use the chroma feature to replace
MFCCs 5 . On the contrary, the mask prediction for the deep
feature in the data2vec pre-training paradigm is clearly bet-
ter but still has much room for improvement compared to
the SOTA. Although the deep feature still lacks sufficient
harmonic information for key detection, it already contains
enough information for single-pitch estimation, and the
MFCCs may focus more on the timbre of instruments in-
stead of the fundamental frequency. Apparently, Music2Vec
can learn pitch information more freely. Besides, data2vec
is generally a bit worse for tagging than Music2vec, and
both are significantly worse on beat tracking compared to
HuBERT and MusicHuBERT.

4.3 Ablation Studies on Pretraining Hyperparameters

Here, we carry out an ablation study of hyperparameter
search under both pre-training paradigms. Given the time
limitation, we did not extract features on MTG datasets and
only calculated the results in another 9 downstream tasks.

4.3.1 Ablation Study on MusicHuBERT

We use the number of clusters k =500 and k=2000. For the
case k=500, we increase the dimension of MFCC features
from 13, which is commonly used in the speech community,
to 20, which is widely used in sound event detection. Thus,
the dimension of MFCCs combined with their delta features

5 For more information on this, please refer to our following paper
MERT: Acoustic Music Understanding Model with Large-Scale Self-
supervised Training at https://arxiv.org/abs/2306.00107

and delta-delta features have 39 and 60 dimensions respec-
tively. For the case of k=2000, we use the 768-dimension
deep feature learned from the first iteration experiment to
carry out the second iteration k-means.

From Table 2, we can see that MusicHuBERT with
k=2000 is better than the k=500 case for most of the tasks.
Given HuBERT is good for speech when k=100 or k=500,
which is roughly the number of human phonemes, this im-
plies music tokens or notes are much richer than speech and
therefore need a larger number for quantisation.

The results on k-means for deep features are better than
the vanilla MusicHuBERT besides genre classification on
GTZAN, singer identification on vocalset, and singing tech-
niques classification on vocalset. This implies the MFCCs
features are good for modelling the human voice, regardless
of speech or singing. The results of GTZAN may be due to
the randomness as the dataset is very small.

Besides, increasing the dimension of MFCCs provides
no significant difference among most of the tasks other
than tasks on Nsynth and GS. Increased dimensionality for
MFCC features can provide more detailed information on
impulse response for a sound event. Thus, monophonic in-
strumental notes can be better modelled with 60-dimension
MFCC features. Furthermore, the emotion regression also
provides different results, but the average of the two metrics
is nearly the same, providing no significant improvement.

4.3.2 Ablation Study on Music2Vec

We use audio files with 30s length, mask span length 10,
mask probability 65%, target top-8 transformer layer the
teacher model as a deep feature, and training step 400K as
the vanilla setting. We conduct parameter searching and
correlation analysis for Music2Vec pretraining, including
masking strategy, training steps, the learning target layers,
and recording length; the results are shown in Table 3.

We revise the masking strategy by changing the mask

span length and mask token probability in the data2vec-
audio-base setting. Mask token probability is the probability
for each token to be chosen as the start of the span to be
masked, the length of which can also be adapted for differ-
ent data modalities. The results in Table 3 show that the
other span value and other mask token probability provide
a bit worse results on nearly all the tasks. This suggests that
the data2vec hyperparameters for speech pre-training are
generally helpful for music pre-training.

Given the fact that early transformer layer representa-
tions generally perform well on key detection and beat
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Table 2: Ablation study on MusicHuBERT hyperparameters (k is the number of MFCC clusters)

Downstream MTT
GS key

GTZAN EMO Nsynth Nsynth VocalSet VocalSet GTZAN Average
dataset Genre Instr pitch tech singer Rhythm Score
Metrics ROC AP Refined Acc Acc EmoV EmoA Acc Acc Acc Acc F1 (beat) score

HuBERT 89.8 36.4 15.0 64.8 31.0 57.5 68.2 79.4 61.0 58.8 83.5 59.8
k=2000 MFCC dim=39 90.2 37.7 14.7 70.0 42.1 66.5 69.3 77.4 65.9 75.3 88.6 64.4
k=2000 iter2 90.4 37.5 13.8 68.3 43.3 67.4 70.0 80.3 63.6 70.4 88.8 63.8
k=500 MFCC dim=39 89.6 36.1 15.7 64.5 41.0 67.7 66.7 76.8 60.5 72.3 87.5 62.4
k=500 MFCC dim=60 90.3 38.0 17.6 69.7 40.8 67.5 70.3 79.0 66.2 75.5 88.6 65.0

Table 3: Ablation study on Music2Vec hyperparameters (span is mask span, prob is mask probability, step is training steps,
target=12 uses all 12 transformer layers, and crop5s uses 5s music excerpts)

Downstream MTT
GS key

GTZAN EMO Nsynth Nsynth VocalSet VocalSet GTZAN Average
dataset Genre Instr pitch tech singer Rhythm Score
Metrics ROC AP Refined Acc Acc EmoV EmoA Acc Acc Acc Acc F1 (beat) score

data2vec 88.4 33.6 15.5 60.7 23.0 49.6 69.3 77.7 64.9 74.6 36.4 55.2
vanilla 89.1 35.1 19.0 59.7 38.5 61.9 69.4 88.9 68.3 69.5 33.5 57.8
span=5 87.3 32.0 15.7 47.6 22.7 41.2 64.2 84.8 56.7 53.8 33.2 49.7
span=15 88.7 34.3 16.4 56.6 39.0 58.8 67.1 88.1 63.1 61.9 33.1 55.2
prob=50 88.5 34.0 23.7 59.3 40.6 55.0 66.8 87.7 64.9 61.7 33.9 56.3
prob=80 88.2 33.9 18.4 50.3 36.7 55.7 67.9 88.9 64.2 65.2 33.7 55.1
step=800k 87.7 32.7 20.3 54.5 34.9 47.3 66.9 87.5 65.6 65.1 33.4 55.0
target=12 89.7 35.2 26.5 64.5 41.7 64.2 71.1 89.2 71.0 73.2 34.1 60.6
crop5s 90.0 36.6 18.5 76.6 53.4 71.6 68.3 88.9 71.3 72.4 33.9 61.8

tracking, we modify the prediction target provided by the
teacher model. We change the prediction target in Mu-
sic2Vec from the original one, that is, the average of the
top-8 layer representations, to all the 12 layers. The results
in Table 3 show that Music2Vec actually benefits, not only
from the potentially preserved key information shown by a
significant increase on GS but all the other tasks as well.

Furthermore, we use audio length cropping to shorten
music excerpts since longer sequences are more difficult to
model. Note that the combined audio length in a batch on
a single GPU is not altered, and the hardware environment
remains the same, making a single training batch contain
a larger number of music samples when clips are cropped.
Due to the position embedding in the SSL systems, the
model can get information more than 5 seconds after pre-
training on only 5-second music recordings. But the key
detection provides worse results which may lead to the fact
that a local key within a 5-second song may not be identical
to the global key in the whole music sentence.

5. CONCLUSION & DISCUSSION

In this paper, we explore the music variants of two dis-
tinctive speech-related transformer-based SSL models,
data2vec and HuBERT. Our findings suggest that pre-
training with music recordings rather than speech can gen-
erally improve performance on a wide range of MIR tasks,
even when the models and training are designed for speech.
There are exceptions for data2vec, however, such as singer
identification, the dataset of which is similar to the speech
dataset used to pre-train. Thus, when resources are lim-
ited, our suggestion is to use speech pre-training models,
given that they can provide helpful information about music
already. Speech data can be beneficial if lacking a suffi-

cient vocal dataset with different singers, but one should
use mainly music data if possible.

Furthermore, we can use the same speech training hy-
perparameters for masked span and masked probability in
music pre-training. But some other hyperparameters, such
as the number for pseudo label clustering, might be the
shortage of pretext strategies. We identified some limita-
tions of existing speech SSL systems, especially in the case
of harmonic information and diversity of music notes. One
suggestion is to emphasise key or harmonic in the pretext
task for music SSL models by using more than just MFCC
features. Also, the number of categories for quantisation in
k-means should be much larger if necessary, given the num-
ber of pitch, chord, and timbre categories is much larger
than the number of human speech phones. This diversity in
music might be a bottleneck for both speech SSL systems to
learn good music features. For one thing, the larger number
of clusters for k-means in HuBERT is expensive to calculate,
making it harder to scale up, preventing transformer-based
models from reaching their potential for better performance
and longer sequence modelling. In addition, it may not
be easy for data2vec to jointly learn deeper features. We
may need curriculum learning skills or manually-designed
features to increase training stability.

Another general suggestion for pre-training recognises
that batch size should be as diverse as possible. Given that
the memory of one single machine is limited, it is a good
idea to shorten the length of audio to be modelled at first,
allowing for an increase in batch size, and then train another
language model for long sequence modelling.

We believe the findings in this paper to be of value in
understanding the potential for SSL speech models applied
to music, and we have offered some general insights about
music modelling that resulted from this study.
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ABSTRACT

In this paper, we address the beat tracking task which is to

predict beat times corresponding to the input audio. Due to

the long sequential inputs, it is still challenging to model

the global structure efficiently and to deal with the data im-

balance between beats and no beats. In order to meet the

above challenges, we propose a novel Transformer-based

model consisting of a low-resolution encoder and a high-

resolution decoder. The encoder with low temporal reso-

lution is suited to capture global features with more bal-

anced data. The decoder with high temporal resolution is

designed to predict beat times at a desired resolution. In

the decoder, the global structure is considered by the cross

attention between the global features and high-dimensional

features. There are two key modifications in the proposed

model: (1) adding 1D convolutional layers in the encoder

and (2) replacing positional embedding by the upsampled

encoder features in the decoder. In the experiment, we

achieved the state-of-the-art performance and showed that

the decoder produced more precise and stable results.

1. INTRODUCTION

Beat tracking is an important task in Music Information

Retrieval (MIR) area with a long history. The task is to

predict beat times, a periodic sequence of time instants

which people can tap along with, from musical pieces.

The first attempt of beat tracking for polyphonic musical

audio signals can date back to around 30 years ago [1].

In the past three decades, we see the techniques shift-

ing from signal processing to machine learning. In the

most recent deep-learning-based methods, sequence mod-

els have been used to produce beat probabilities for each

input frame, with the final beat times detected by the HMM

on the beat probabilities in the post-processing step. In

these models, various sequence models have been used, in-

cluding Recurrent Neural Network (RNN) [2–4], Tempo-

ral Convolutional Network (TCN) [5–7], and Transform-

ers [8–10]. Convolutional Neural Networks (CNNs) are

also commonly combined in the models for front-end fea-

ture embedding [9, 11, 12].

© T. Cheng and M. Goto. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

T. Cheng and M. Goto, “Transformer-based beat tracking with low-

resolution encoder and high-resolution decoder”, in Proc. of the 24th

Int. Society for Music Information Retrieval Conf., Milan, Italy, 2023.

To produce good beat tracking results, the model needs

to consider both local timing and global consistency. This

brings a contradiction on choosing the temporal resolu-

tion. The problem of using low temporal resolution (i.e.,

low frame rate) is that we cannot predict beats with pre-

cise times. On the other hand, using high temporal resolu-

tion (i.e., high frame rate) results in long sequential inputs

and imbalanced output labels. The current commonly-used

10ms temporal resolution enables an easy comparison on

the results. With such high temporal resolution, the se-

quential inputs are already relatively long for the RNN,

causing the gradient vanishing problem. Using TCN and

Transformer helps to solve the gradient vanishing problem,

while modeling long sequences can still be challenging.

To model long sequences more efficiently, more compact

models have been proposed, such as dilated self-attention

[9] and linear Transformer [10]. Another problem caused

by the high temporal resolution is the data imbalance is-

sue between beats and no beats. Given the same tempo,

the higher the temporal resolution is, the more the no-

beat labels exist between the beat labels. In order to solve

this problem, smoothed labels [7, 9, 13] and weighted loss

functions designed for the data imbalance problem [14–16]

are applied to achieve more efficient training. The above

long sequence modelling issue and data imbalance issue

can be more challenging if a higher temporal resolution

than 10ms is needed. In fact, there are some commer-

cial music applications that potentially require more tem-

porally precise beat tracking for sample-wise audio edit-

ing/mixing/mashups based on beat timings and highly rigid

music synchronization.

In order to tackle the contradiction between high and

low temporal resolutions, we propose a novel beat track-

ing model based on the Transformer with low-resolution

encoder and high-resolution decoder. With the low tem-

poral resolution, the sequential inputs become shorter and

the training data become more balanced, which makes the

global structure easier to model by the encoder. At the

same time, the beat time precision in the output can still

be preserved by the decoder with the high temporal reso-

lution. The Transformer is a good architecture for joining

the two parts because the encoder and decoder are not re-

quired to be the same length, and features of different di-

mensions can be jointly learned by the cross attention in

the decoder. We modify the original Transformer in sev-

eral ways to make it work for beat tracking with the pro-

posed combination of the encoder and decoder. First, we
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stack 2D convolutional layers for feature learning from the

spectral inputs and 1D convolutional layers inside the en-

coder layers for feature smoothing and dimension adjust-

ment. Second, we use the upsampled encoder feature to

replace the position encoding in the decoder. In the ex-

periments, we produced results comparable to the state-of-

the-art performance. The analysis of experimental results

showed that the decoder not only produced more precise

results, but also helped to recover the missing beats and to

filter out unwanted peaks between beats, making the beat

tracking more stable.

The rest of paper is organised as follows. Section 2

summarises the related work on Transformer-based beat

tracking models and multi-scale models. In Section 3, we

give a detailed description of the proposed model, espe-

cially focusing on the proposed modifications. Section 4

presents the experiments with ablation study, results, and

attention visualisation. In the last section, we conclude the

paper and show aspects for future improvements.

2. RELATED WORKS

2.1 Transformer in beat tracking

Recently, Transformers have been used for many MIR

tasks with promising performance, such as music tran-

scription [17–19], music tagging [20], and beat tracking

[8–10]. In the SpectTNT model, Transformer encoders

are used for modeling both the spectral and temporal fea-

tures [8]. The model also combines the Temporal Con-

volutional Network (TCN) model for better beat tracking

results. Since the Transformer is computationally expen-

sive for long sequences, the inputs are divided in 6-second

chunks to process. For modelling the long sequences ef-

ficiently, more compact Transformers have been applied,

including the dilated Transformer in the Beat Transformer

model [9] and the linear Transformers for singing beat

tracking [10].

These existing methods are based on Transformer en-

coders, while in our model, we use both the encoder and

decoder, which is an important contribution of this paper.

By adding the decoder layers, we can set a more reasonable

temporal resolution for the encoder input, more specifi-

cally, low-temporal-resolution inputs. In other words, in

the proposed model, the temporal resolution of the encoder

can be independent of the high temporal resolution of the

beat tracking output. With the low-resolution encoder, we

are able to model the sequences more efficiently and obtain

more balanced training data.

2.2 Multi-scale structure

In the proposed model, we leverage features at different

scales: low-dimensional features for modeling the global

structure and high-dimensional features for predicting pre-

cise beat times. Such multi-scale structure has also been

used in related domains. In our previous work, we pro-

posed a multi-scale beat tracking model based on the

Wave-U-Net, which learned features at different scales

from waveform and spectral inputs with downsampling

1D Conv

2D Conv Block

Positional 

Encoding

2D Conv Block

Input_low

Input_high

Multi-Head
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Add & Norm

Feed Forward

Add & Norm

Feed Forward

Add & Norm
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Attention

Add & Norm

Multi-Head

Attention

Add & Norm

Dense

Beat Output 

Mx

Nx

Upsampling 

Block

1D Conv

Figure 1: The model architecture of the beat tracking

model. The coloured parts indicate the modifications from

the original Transformer.

and upsampling blocks [21]. Schreiber et al. achieved

tempo estimation by concatenating multi-scale features

learned from a series of convolutional layers with differ-

ent filter size from 32 to 256 [22]. Sun et al. [23] propose

a multi-scale structure for tempo estimation by downsam-

pling/upsampling the feature to different scales and com-

bining multi-scale features repeatedly.

3. MODEL ARCHITECTURE

The proposed model architecture is shown in Figure 1. Our

model is based on the Transformer, consisting of both en-

coder and decoder layers. As we have already written, the

key idea is to use a low-resolution encoder for modelling

the global structure, depicted on the left side of the fig-

ure (starting from “Input_low” denoting the low-resolution

input), and a high-resolution decoder for predicting beats

more precisely, depicted on the right side of the figure

(starting from “Input_high” denoting the high-resolution

input).

To make it work for beat tracking, we make some mod-

ifications on the original Transformer. The modified parts

are coloured in Figure 1, including adding 1D convolu-

tional layers (“1D Conv”) in the encoder, replacing the po-

sitional embedding by upsampled encoder features (from

“Upsampling Block”) in the decoder, and stacking 2D con-

volutional layers for feature learning from the spectral in-

puts (“2D Conv Block”) in both the encoder and decoder.

In the following subsections, we illustrate the proposed

model in detail.
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Network parameter Setting

filter size 3× 3, 3× 3, 3× 3, 1× 3

maxpooling size 1× 3, 1× 3, 1× 3

activation function ReLU

Table 1: Parameters used in the convolution block.

Encoder

Conv Block filter number 48, 64, 72

encoder layer number 3, 4, 5, 6

head number 4, 8, 12, 16

key dim. 8, 16, 24, 32

inner-layer dim. in feed-forward 32, 48, 64, 72, 128

Conv 1D filter number 32, 64, 96

Conv 1D filter size 5, 15

Decoder

Conv Block filter number 32

decoder layer number 1, 2

head number 4

Table 2: Hyperparameters in the proposed beat tracking

model.

3.1 Input features and 2D convolutional layers

We use the Mel-spectrogram as the input features. For

the low-resolution encoder, we computed 80-dimensional

Mel-spectrogram with a 22050 sample rate and a hop size

of 1024, roughly corresponding to a 46 ms temporal res-

olution (more precisely, 46.44 ms). The high-resolution

Mel-spectrogram is computed the same way but in a hop

size of 256, roughly corresponding to 12 ms temporal res-

olution (more precisely, 11.61ms). The dimensions of the

inputs are (T, 80) and (4T, 80), respectively, where T is

the frame length of the low-resolution input. We choose

such resolutions so that the low-resolution can still distin-

guish beat and no beat frames for fast-tempo pieces, and

the high-resolution outputs can be easily compared to those

of other methods. In the 2D convolutional block, we stack

four 2D convolutional layers and three maxpooling layers

for feature embedding, with details show in Table 1.

3.2 Encoder with 1D convolutional layers

The encoder consists of identical encoder layers which

process the low-dimensional features. As shown on the left

side in Figure 1, each encoder layer includes a multi-head

attention sub-layer and a fully connected feed-forward

network with residual connections. Before the encoder,

we concatenate the features with the positional encod-

ing. Since in the Transformer, the input dimension is not

changeable within the encoder layers, we stack a 1D con-

volutional layer after the feed-forward network for feature

smoothing and channel number adjustment.

3.3 Upsampling Block

Another important change of the proposed model is that

we replace the original positional encoding by upsampled

encoder features for the decoder. In the upsampling block,

there are two upsampling layers with linear interpolation.

The upsampled features are then concatenated with the

high-dimensional features. We also stack a 1D convolu-

tional layer to re-dimension the concatenated features. In

the preliminary experiment, we confirmed that the origi-

nal positional encoding does not work well and the upsam-

pled features worked for indicating rough beat positions.

The ablation study for this replacement is presented in Sec-

tion 4.3.

3.4 Decoder

The decoder processes the high-dimensional features for

predicting more precise beats. The decoder layer con-

sists of three components. As shown on the right side in

Figure 1, between the multi-head attention sub-layer and

a fully connected feed-forward network, there is another

multi-head attention sub-layer which computes the cross-

attention between the low- and high-dimensional features.

We use the decoder as a discriminative model for predict-

ing the output based on the input, rather than a generative

model as the original Transformer decoder. Hence we do

not need to use the causal mask in the first multi-head at-

tention sub-layer.

3.5 Output Layer and Post-Processing

As shown in Figure 1, we stack a dense layer with the sig-

moid activation at the end of the decoder for producing

beat outputs. Then, we apply the DBN from Madmom [2]

for post-processing. We first take the nearest integer of

frame per second (fps) for the post-processing, and then

map the results to the original fps.

3.6 Complete Architecture

We apply random search to find the best hyperparameters

for the model. We set up a grid of hyperparameter values

according to Table 2, and randomly select a subset to com-

pare. The decoder uses the same parameters as the encoder

if not present. The finally chosen parameters are shown in

bold.

4. EXPERIMENTS

4.1 Data

We train, validate, and test the proposed model by using the

standard music datasets with beat annotations as shown in

Table 3. For training and validation sets, all musical pieces

are segmented into 30-second clips with 50% overlap. Seg-

ments from the same musical piece appear only in either

the training or validation set to ensure that there is no over-

lap between the training and validation sets. Test results

are obtained on the whole pieces without segmentation.

We do data augmentation for better tempo balance. We

follow the strategy in [7] to generate input features for less
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Usage Datasets

training only Beatles [24], Harmonix [25],

5 RWC datasets [26, 27],

tapcorrect [28]

8-fold cross- Ballroom [29, 30], Hainsworth [31],

validation SMC [32]

testing only GTZAN [33, 34]

Table 3: The usage of the standard datasets for beat track-

ing evaluation.

Figure 2: The tempo distribution before and after the data

augmentation for the model training.

representative tempos by changing the hop size when com-

puting the mel-spectrogram. The tempo distribution before

and after the data augmentation is shown in Figure 2.

Inspired by [9], we also process the input mel-

spectral features by Harmonic Percussive Source Separa-

tion (HPSS) and obtain the original mel-spectrogram S,

the harmonic part H , and the percussive part P . In the pre-

liminary experiment, we compare two way of using HPSS:

one way is as data augmentation which triples the training

data (i.e., we can use all of S, H , and P with the same beat

annotations); the other way is to concatenate three parts,

S, H , and P , as the more informative input features. Since

the results showed that using HPSS as the data augmenta-

tion works better, we decided to take that way.

4.2 Training

In order to train the model effectively, we compare three

training methods as shown in Table 4. The first method

is training the model (i.e., both the encoder and decoder)

from scratch.

For the other two methods, we first temporarily stack a

dense layer at the end of the encoder and pre-train the en-

coder only with the low-resolution labels. Then we initial-

ize the encoder with this pre-trained model and start train-

Method Initialization Encoder parameters

1 None Trained with decoder

2 Pre-trained encoder Not trainable

in training decoder

3 Pre-trained encoder Trainable

in training decoder

Table 4: Three training methods (the third method was the

best).

ing the decoder. The second method trains the parameters

of the decoder only, by freezing the parameters of this pre-

traind encoder. The third method trains the parameters of

both the encoder and decoder after the above initialization

of the encoder.

We choose the third method for training the model be-

cause it worked best in our preliminary experiments. The

model is trained with binary cross-entropy by using the

RMSprop optimiser [35] with a learning rate of 0.0002.

The batch size is set to 16 for pre-training the encoder, and

4 for training the whole model.

4.3 Ablation Study

To illustrate the influence of replacing the positional en-

coding by the upsampled encoder features in the decoder,

we show the differences on the training with and without

the proposed modification (replacement) in Figure 3. We

see that using the upsampled encoder features decreased

the validation loss slightly and decreased the training loss

in a large degree in comparison to using the positional en-

coding. This shows that the modified model can learn bet-

ter from the training data and generalise well in the valida-

tion set, resulting in better beat tracking results.

4.4 Evaluation

We evaluate the proposed method with three standard

metrics: F-measure with a tolerance window of 70ms,

continuity-based metrics CMLt (tracking accuracy on the

correct metrical level), and AMLt (tracking accuracy with

alternate metrical levels allowed) [24].

4.4.1 The proposed method

In order to validate our model design, besides results on the

decoder outputs, we also show results on the pre-trained

encoder outputs. In Table 5, “Encoder (Th)” indicates the

results obtained by applying a threshold of 0.1 without us-

ing the DBN. “Encoder” and “Decoder (Proposed)” results

are processed by the DBN in the post-processing step, with

the encoder outputs linear interpolated. If we compare the

results of “Encoder (Th)” and “Encoder”, we observe that

the DBN post-processing step increased the performance

in all the four datasets, especially for the continuity-based

results (CMLt and AMLt). Furthermore, if we compare

them with the “Decoder (Proposed)” results, which corre-

sponds to the proposed model, we see performance further

increased on the Ballroom, SMC, and GTZAN datasets.
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Figure 3: The training and validation losses for training the decoder with the original positional embedding or with upsam-

pled encoder features.

Method F-measure CMLt AMLt

Dataset: Ballroom

Encoder (Th) 90.7 80.1 85.7

Encoder 93 87.4 96.1

Decoder (Proposed) 95 91.1 96.4

Beat trans [9] 96.8 95.4 96.6

TF trans [8] 96.2 93.9 96.7

TCN [7] 96.2 94.7 96.1

Dataset: Hainsworth

Encoder (Th) 84.4 66.7 81.8

Encoder 88.2 81 93.4

Decoder (Proposed) 87 76.2 93.6

Beat trans [9] 90.2 84.2 91.8

TF trans [8] 87.7 86.2 91.5

TCN [7] 90.4 85.1 93.7

Dataset: SMC

Encoder (Th) 53.9 32.9 45.6

Encoder 55 45.8 64.1

Decoder (Proposed) 55.4 45.1 65.6

Beat trans [9] 59.6 45.6 63.5

TF trans [8] 60.5 51.4 66.3

TCN [7] 55.2 46.5 64.3

Dataset: GTZAN

Encoder (Th) 87.1 72.8 85.5

Encoder 87.8 78.5 93.7

Decoder (Proposed) 88.4 80.8 94

Beat trans [9] 88.5 80 92.2

TF trans [8] 88.7 81.2 92

TCN [7] 88.5 81.3 93.1

Table 5: Testing results for comparing the proposed

method with three state-of-the-art beat tracking models

[7–9]. The GTZAN dataset is held out for testing only;

other datasets are used in the 8-fold cross-validation. (Th)

means results obtained with a threshold of 0.1 without us-

ing the DBN post-processing step.

In order to understand the effect of the proposed de-

coder better, we show the outputs examples from the pre-

trained encoder and the decoder in Figure 4. We can see

that the encoder outputs are large at beat times, which is

benefit from the more balanced training data in shorter se-

quences. On the other hand, the decoder outputs are small

and even (i.e., more stable), as we expected. As we design,

the decoder basically predicts the beat times at a higher

resolution in comparison to the encoder. The decoder also

helped to recover missing beats as shown in the 5th exam-

ple, where some beats are missing in the encoder output

but they are recovered in the decoder output. Moreover, the

decoder helped to filter out peaks between beats as shown

in the 3rd example, where peaks are more regularly placed

in the decoder output. With the above effects, using the

proposed decoder generally improved results except for

the Hainsworth dataset. For the Hainsworth dataset, we

see the CMLt decreased, but the AMLt remained the same

level, which means that the decrease on the performance is

caused by phase and octave errors. Since the peaks from

the decoder are evener, in some cases it would be more

difficult for the DBN to exclude the peaks between beats.

4.4.2 Comparison to state-of-the-art beat tracking

models

As shown in Table 5, results of the proposed model (“De-

coder (Proposed)”) were comparable to the state-of-the-art

results obtained by three beat tracking models [7–9], de-

spite not the best. Since our goal is not to achieve better

performances than all the state-of-the-art models, these re-

sults are satisfactory since we can show the high perfor-

mances of the proposed model with different temporal res-

olutions. We see noticeable gap on the CMLt in compar-

ison to other methods, which means the proposed model

encountered more phase and octave errors. We hope this

could be improved by including related topics in the multi-

task learning as in [7, 9]. In addition, for the testing-only

dataset GTZAN, the F-measures achieved by thresholding

the encoder outputs (“Encoder (Th)”) are better than what

we expected, given the fact that it did not use the DBN

post-processing step.
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(a) Encoder outputs

(b) Decoder outputs

Figure 4: Output examples from the pre-trained encoder

and the decoder for five different pieces. The ground-truth

beat annotations are indicated by lines pointing down.

4.5 Attention Visualisation

In order to understand how low- and high-dimensional fea-

tures are jointly learned, we show the cross attention ma-

trix between low- and high-dimensional features in the sec-

ond decoder layer in Figure 5. We found that for high-

dimension features at beat times (frames), it got attention

at each beat on the low-dimensional features. For no-beat

times (frames), all attentions were drawn to the frames af-

ter the corresponding beat times, which formed horizontal

lines in this figure. With such attentions, the final high-

dimensional beat outputs were predicted with the captured

global beat structure considered.

5. CONCLUSIONS AND FUTURE WORK

We present a novel Transformer-based model for beat

tracking. The proposed model consists of both en-

Figure 5: Cross attention matrix between low dimensional

features and high dimensional features in the decoder layer.

coder layers and decoder layers which work on low-

and high-dimensional features, respectively. We obtained

beat tracking performances which are comparable to the

state-of-the-art beat tracking results. The experimen-

tal results showed that the proposed model worked well

as designed: with the low-dimensional (low-temporal-

resolution) encoder for capturing the global beat structure

and high-dimensional (high-temporal-resolution) decoder

for predicting more precise beats. Thus, the proposed

Transformer-based encoder and decoder structure succeeds

in providing a new framework for handling multi-scale fea-

tures for beat tracking. Beyond beat tracking, the advan-

tage of this framework can be summarized as follows.

• The encoder and decoder do not require inputs to

be the same length (same temporal resolution), they

can be used to handling features at different scales,

which enables us to sample the features with more

reasonable time resolutions.

• We can make use of features at different scales

jointly learned by the cross attention in the decoder.

We therefore believe that this framework is also adaptable

for other MIR tasks, such as musical structure boundary

detection.

As the analysis of our experimental results showed,

phase and octave errors are relatively high in our results.

As future work, we would like to tackle the problems by

combining downbeat tracking and tempo estimation in the

proposed model by using multi-task learning. In addition,

we also plan to use our model to produce beat outputs in

a higher temporal resolution, which is demanded by some

practical music applications as we discussed in Section 1.

Yet another advantage of our model is that such precise

beats can be achieved by using transfer learning with a

higher-temporal-resolution input for the decoder.
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ABSTRACT

The objective of pattern-matching topics is to gain insights
into repetitive patterns within or across various music gen-
res and cultures. This approach aims to shed light on the
recurring instances present in diverse musical traditions.
The paper presents a study analyzing folk songs using sym-
bolic music representation, including melodic sequences
and musical information. By examining a corpus of 400
monophonic Slovenian tunes, we are releasing annota-
tions of structure, contour, and implied harmony. We pro-
pose an efficient algorithm based on suffix arrays and bit-
vectors to match both music content (melodic sequence)
and context (descriptors). Our study reveals that certain
descriptors, such as contour types and harmonic “stabil-
ity” exhibit variations based on phrase position within a
tune. Additionally, combining melody and descriptors in
pattern-matching queries enhances precision for classifi-
cation tasks. We emphasize the importance of the inter-
play between melodic sequences and music descriptors,
highlighting that different pattern queries may have vary-
ing levels of detail requirements. As a result, our ap-
proach promotes flexibility in computational music anal-
ysis. Lastly, our objective is to foster the knowledge of
Slovenian folk songs.

1. INTRODUCTION

Music pattern analysis in the field of Music Information
Retrieval (MIR) is extensively studied. The challenges of
this topic extend beyond algorithms, encompassing diverse
music forms, representation (signal, symbolic, or textual),
music content, and cultural metadata.

© VN. Borsan, M. Giraud, R. Groult and T. Lecroq. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: VN. Borsan, M. Giraud, R. Groult and T.
Lecroq, “Adding Descriptors to Melodies Improves Pattern Matching: a
Study on Slovenian Folk Songs”, in Proc. of the 24th Int. Society for

Music Information Retrieval Conf., Milan, Italy, 2023.

1.1 Content and Context in Ethnomusicology

Ethnomusicologists analyze recordings, live perfor-
mances, and transcriptions (in various notations) to un-
derstand the composition of music. While transcriptions
reveal the what of the music, cultural context is essential
for comprehending the how and why behind these musical
structures.

Initiated by Merriam [1], and many others [2–7], the
music is to be observed in culture (in his later work, as

culture), or as a multi-dimensional object, a direct conse-
quence of the organization of social structures, and vice
versa. Some studies [4, 6, 8–10] have primarily compared
folk tunes based on their music content. In others, includ-
ing the Slovenian Folk Song Collection [11], the catego-
rization of the collection is organized according to the ele-
ments, such as lyrics and other textual content.

Considering music material, it can be explored as a gen-
eral outline for music analysis [12], or through specific
music descriptors, such as melodic contour (the melodic
arch shape) [13]. Recent studies have expanded the use of
descriptors to analyze folk songs, incorporating a broader
range of attributes. De la Ossa [14] suggests basic music
descriptors be included, such as scale types, range, sev-
eral levels of rhythmic information, and so on. Canto-

metrics, introduced by Lomax [15, 16], proposed 37 de-
scriptors, (almost) independent from usual Western mu-
sic theory. His idea of representing datasets as a digital
“Global Jukebox” was recently completed. [17–19]. Com-
putational methodologies encourage us to process more
data, including multiple layers of music content, and con-

text as descriptors (music and/or metadata). Serra [20] ex-
posed the presence of musical entities (performer, music,
instrument, etc.) that “are linked by various types of rela-
tionships,” which contribute to the understanding of music
as a whole. Conklin and Neubarth also stressed the im-
portance of non-musical information, such as region and
genre [21], extended Densmore’s and observed (super)area
and (super)type information [22]. These non-musical phe-
nomenons, although limited, were always correlated with
different types of music content (rhythm, melody, pattern,
and antipattern [23]) of folk songs. Although focusing
on musical content, especially on cadences, van Kranen-
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burg also considers lyric, perceptual information, as well
as other information [24–26].

1.2 Pattern Inference and Matching

Music pattern searching or matching is most commonly
approached from a music analysis perspective [12,27–30],
by addressing music structures, such as melody, harmony,
and rhythm. Previous contributions focused on a single
or a couple of features or the computational representa-
tions and matching of multi-feature music patterns. The
Mongeau-Sankoff algorithm [31] simultaneously explores
multidimensional music features, as it defines the distance
between any two melodies depending on the pitch, tonal
contour and rhythmic structure. The pattern similarity is
ranked by the number of transformations, including con-
solidation and fragmentation.

Other dynamic programming methods for melodic se-
quence alignment were proposed [6, 32, 33], as well as
other methods on the general melodic or pitch-related
queries [33–36]. Some research added the rhythmic [37],
or, especially with multipart music, the harmonic informa-
tion [38]. In another solution, Marsden adapts the hier-

archical or tree structures for representing and comparing
melodies [39]. Lartillot, conversely, matched melodic se-
quence (or motives) by using heterogeneous patterns [30],
whose occurrences can be located through multiple para-
metric dimensions – including contextual ones, such as im-
plied harmony.

1.3 Motivation and Contents

These studies indicate that a melodic pattern is not isolated
from other musical elements, such as a phrase, rhythmic or
harmonic structure, ornamentation, and so on. While most
distinguish between music material and cultural metadata,
we instead split the first into melodic sequence and descrip-

tors (see Table 1). Our objective is that melodic phrase

should never be detached from its context. Hence, we focus
on segmented melodic phrases that never lose their iden-
tifier (connecting them to all supplementary (meta)data),
nor their position within a tune (first, middle, last). This
enables the tune description by phrase position, contours,

labels, and rough harmonic tendencies, and to easily ac-
cess and apply any combination of other (meta)data infor-
mation to the pattern-matching process.

In Section 2 we introduce the corpus as well as our an-
notation methodology on metadata and descriptors, includ-
ing structure, contour, and implied harmony. Section 3 in-
troduces a pattern-matching algorithm that utilizes suffix
arrays (for all melodies) and bit arrays (a selection of de-
scriptors) to return matched results based on melodic con-

tent and controlled descriptor context. Sections 4 and 5
discuss the implementation and the results of examples of
combined melody/descriptor queries, and Section 6 pro-
vides concluding remarks and addresses open perspectives.

2. THE ANNOTATED CORPUS

OF SLOVENIAN FOLK SONGS

2.1 The Corpus

We are expanding the digital world of folk songs ( [17,40–
42] and others) with a limited selection of tunes from the
largest collection of Slovenian folk songs – SLP, Slovenske

ljudske pesmi), which consists of 5 critically edited phys-
ical books, issued between 1970 and 2007 [11, 43–46].
Tunes belong to narrative song genre (Figure 1) or hy-
brids between narrative and lyric genres (resemble narra-
tive form, but much shorter). These are divided into types
(by lyric resemblance) and their variants.

The fifth and last book [11] was edited and issued by the
Slovenian Ethnomusicological Institute (Research Centre
of the Slovenian Academy of Sciences and Arts, consecu-
tively mentioned as GNI), which later digitized (OCR-ed
pdf, musicXML, sib) by Matija Marolt and Matevž Pesek
(FRI, University of Ljubljana). Most tunes are transcrip-
tions of field recordings collected members of the insti-
tute, and external colleagues, such as Franc Kramar (1890–
1959), Josip Dravec (1912–1996), and Stanko Vraz (1810–
1851). Most tunes were collected and/or transcribed be-
tween the 1950s and 1970s. The earliest two (notated) tran-
scriptions date back to 1819 and 1839, while the most re-
cent transcription was completed in 2001. Together, there
are 650 tune variants of 54 types and belong to family
fates and conflicts topic, which represents about 34% of all
Slovenian ballads [11]. Some tunes have one or two, while
the most popular have 100+ variants (Infanticide Bride,
A Widower at His Wife’s Grave, Step-mother and an Or-

phan, and Convicted Infanticide). which mostly belong to
Styria (166), followed by Upper Carniola (133) and Lower
Carniola (99) regions.

Out of those, 418 are transcribed as monophonic,
218 1 as homophonic, and 8 as mixed. About 70%
were performed by a solo female singer. Instrumentally-
accompanied examples are very rare. All tunes were trans-
posed to G (major/minor) by the editors. Recent anno-
tations include special notation symbols indicating devi-
ations, such as slight disparity in pitch (higher/lower), du-
ration (shorter/longer), and more [11].

2.2 Descriptors and Corpus Annotation

Out of the 418 monophonic tunes, 18 were excluded due
to incomplete score information or incompatible encoding.
Our final corpus contains 400 monophonic tune variants
with detailed manual annotations, made by the first au-
thor and reviewed by all contributors. An average tune has
about 9 bars and 30 notes. Phrase boundaries were anno-
tated by curating the output of a simple heuristic relying

1 Some melodies may have been harmonized by the annotator, making
it unclear which singing line represents the original tune. This is common
in transcriptions by Franc Kramar (1890-1959). The opposite can be true
for monophonic transcriptions.
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ID POS LBL CT HS HE

239.A.9.1 F A ↗↘ T T
239.A.9.2 L B →↘ T T

ID POS LBL CT HS HE

244.4.1 F A ↘ D ?(D/T)
244.4.2 M B ↗↘ T T
244.4.3 M A’ ↗↘ ?(T) ?(D)
244.4.4 L B’ ↘ ?(T) T

Figure 1. Tunes from the SLP corpus with structural, contour, and implied harmony annotations. (Top) The Death of

the Bride Before Her Wedding, 9th variant of tune type 239(A), transcribed by GNI in 1960. The first phrase (F), labeled
A has a convex (↗↘) contour, whereas the second phrase has a horizontal-descending (→↘) contour as the first pitch
of B phrase is about at the average compared to consecutive pitches of the phrase. Starting (upbeat) and ending implied
harmonies (HS , HE) can be clearly labeled as a tonic, even though the strong beat on the first full measure is a D pitch.
(Bottom) The Widower at His Wife’s Grave, 44th variant of tune type 252, transcribed by Franc Kramar in 1913. Phrases
A and B are approximately repeated as phrases A’ and B’, with changes in melody, contours, and harmonic functions.
Harmonically, the first phrase starts on a clear dominant but is somewhat ambivalent at the end. The second phrase is the
most stable on a tonic. The rest is slightly more ambivalent between the two degrees again, while, at the very end, the tune
concludes on a tonic. (Right) A few descriptors that are associated with these tunes (see Table 1).

on pauses and punctuation marks, yielding 1502 phrases
(median of 4 per tune, min. 2, max. 8).

Musical descriptors, listed in Table 1, describe either
the full tune or phrases. The descriptors can carry both,
non-musical and musical information.

Tune metadata 4 relies on transcribers’ information, and
the format aligns with the original sources, with some con-
versions made for data analysis convenience [11]. Tune
phrases were annotated with descriptors across the follow-
ing categories:

• Phrase position. This central annotation category es-
tablishes the relationship between other descriptors.
Each phrase is annotated with a sequence number and
position, such as first, middle, or last.

• Structure. Each phrase is assigned a label that de-
scribes the repetition of its melodic material within the
verse. The first label is always A, followed by A, A’,
A+ (similar to B), A(X) (refrain-like A), or B. The
same alphabetical progression is applied to subsequent
phrases. The tunes have an average of 2.82 different la-
bels (1 to 6 with symbols or 4 with letters only) and in-
frequent repetitions (Table 2). Each label appears only
1.34 times on average per tune.

• Implied Harmony. Using Western harmony to describe
folk songs may be biased and controversial, but it is
likely that Slovenian folk tunes and their transcribers
have been exposed to the Western music system to
some extent [47]. Approximate functions of tonic
(T) or dominant (D) were annotated for about 60% of

4 Metadata was collected for all 650 songs, including polyphonic com-
positions.

phrase beginnings and 50% of endings, with ambigu-
ous cases marked as “?”. To evaluate the validity of
individual annotations, the inclusion of scale informa-
tion (the count of distinct pitch classes) is provided.

• Contour. Diverging from only comparing the un-
reliable note-to-note melodic representation of oral
music tradition, we use Huron’s 9 types of melodic
arches [13] (the most frequent being the convex con-
tour ↗↘), where the starting and ending MIDI pitch
value is compared against an average value of all inter-
mediate MIDI pitch values.

3. MATCHING MELODY WITH DESCRIPTORS

3.1 Pitch and Descriptor Representation

Each tune is subdivided into phrases as pitch sequences

with descriptors, which are considered as a set of n

phrases P = {p1, p2, ..., pn}, and m phrase descriptors
∆1, . . . ,∆m. Each descriptor ∆t has a finite set of values
V (∆t). A phrase pi is associated with a descriptor se-

quence di = (d1i , d
2

i , . . . , d
m
i ), where each dti is in V (∆t).

For example, the following options:



















{∆1, . . . ,∆5} = {POS,LBL,CT,HS ,HE}

V (POS) = {F,L,M} V (HE) = {T,D, ?}
V (LBL) = {A,B} V (HE) = {T,D, ?}
V (CT) = {↗↘,→↘,↗, . . .}

can describe phrase 239.9.A.1 (Figure 1) as:

p239.9.A.1 = gbddgdcbag d239.9.A.1 = (F,A,↗↘,T,T).
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Non-musical Metadata

tune ID ▷ Type, variant, other
type title ▷ Title or label
region ▷, ⋆ Region
annotator ▷ Name of the initial collector/transcriber
year ▷, ⋆ Year 2 of initial annotation.
singer ▷, ⋆ Singer sex and ensemble size
lyric ▷, ⋆ First line 3 , first verse, structure

Musical Descriptors

POS ⋆ Phrase position (First, Middle, Last)
NUM ⋆ Phrase number (1, 2, 3, 4, ...)
LBL ⋆ Phrase label (A, B, C, ...)
SYM ⋆ Phrase symbol (A’, A”, A +, ...)
CT_SPEC ⋄ Huron’s contours (↗, ↘, ↗↘, ↘↗,

→, ↗→, ↘→, →↗, →↘)
HS ⋆ Starting harmony (T, D, ?, ...)
HE ⋆ Ending harmony (T, D, ?, ...)
TS ⋄ Time signature (simple duple/triple ...)
SCALE ⋄ Scale (8, 7, 6, ...)

Musical Content

MEL Melodic sequence (example: gbddg)

Table 1. Metadata, musical descriptors, and musical con-
tent. Manual annotations were done for phrase boundaries
and descriptors marked with ⋆, while computed descrip-
tors are marked with ⋄. Descriptors marked with ▷ were
collected by the initial transcribers and/or the GNI. Other
descriptors, such as general contour, tone set, and leading
tone, are also present in the dataset but not discussed here.

3.2 Melody and Descriptor Pattern Matching

The goal of melody-and-descriptor matching is to find
all phrases (associated with their descriptors) matching in
both the given pitch pattern and selected variation of de-

scriptor pattern.

A pitch pattern pp is also a sequences of pitches. It
matches a phrase pi when pp is a factor of pi, matching
note-to-note. This definition currently permits no kind of
deviation. For example, pp = dcb matches p239.9.A.1 =
gbddgdcbag .

A descriptor pattern is dp = (dp1, . . . , dpm) ∈
(V (∆1) ∪ {⋆} × · · · × V (∆m) ∪ {⋆}), where ⋆ is a
“don’t-care” symbol. It determines which descriptors are

NP instances
2 20% (78) AB (60) AA (18)
3 6% (23) ABC (11) ABB (6)
4 65% (261) ABCD (112) ABAB (45)
5 2% (8) – –
6 6% (24) ABCDCD (7) AABABA (5)
8 1% (6) ABCBCBCB (2) –

Table 2. Out of 400 tunes, sorted according to the number
of phrases (NP), the most common structure “ABCD” is
present in 28% of all tunes. Label variants are ignored (A’
is considered as A). There are no tunes with 7 or more than
8 phrases. Unique structures (–) are not reported.

to be checked, and matches a descriptor sequence di =
(d1i , . . . , d

m
i ) if, for every t = 1 . . .m, either dpt = ⋆

or dpt = dti. For instance, the descriptor pattern dp =
(⋆,A,↗↘, ⋆, ⋆) checks if the phrase label matches A,
and contour matches ↗↘, but ignores the phrase position
and harmonic functions. Thus dp matches d239.9.A.1 =
(F,A,↗↘,T,T) but does not match (F,B,↗↘,T,D).

3.3 Algorithm

For this matching problem, we first retrieve phrases and
positions from a suffix array, in linear time, then filter these
matches with bit-wise operators.

Pitch sequence matching with suffix array. Pitch se-
quences of P are concatenated to one sequence, separated
by a symbol, such as SP = p1$p2$ . . . pn$. An index data
structure such as a compressed suffix array is computed
and stored to retrieve all occurrences of a pitch sequence.
When a query is matched at position k in SP , the corre-
sponding phrase pi and its position in pi is retrieved using
a (pre-computed) bit-vector Sp, and functions rank1(x, k)
and select1(x, k) (respect. the number of occurrences of 1
in the prefix of length k of a bit-vector x, and the index
of the k-th 1 in x). The bit-vector Sp = b1 . . . b|Sp| is
defined as bi = 1 if Sp = $, otherwise bi = 0. Hence,
the query occurs in phrase pi at position j (within pi) with
i = rank1(Sp, k), and j = k − select1(Sp, i). Retrieving
the list of phrases and positions of a query, pitch sequence
q of length m is done in time O(m+occ), where occ is the
number of occurrences of q in Sp provided that rank and
select operations are performed in constant time.

Descriptor pattern matching with bitwise operators.

Each descriptor ∆t can be represented by bt bits, with
bt = ⌈log2 |V (∆t)|⌉, and each value v ∈ V (∆t) is
associated to a bit-vector v. Each descriptor sequence
di = (d1i , d

2

i , . . . , d
m
i ) is then stored as a bit-vector di =

d1i . . . d
m
i . A descriptor pattern dp = (dp1, dp2, . . . , dpm)

is associated to two bit-vector masks µ(dp) = µ1 . . . µm

and π(dp) = π1 . . . πm, where
{

µt = πt = 0 . . .0 (bt bits) if dpt = ⋆

µt = 1 . . .1 and πt = dpt otherwise.

Then, a descriptor pattern dp matches one descriptor d if
and only if (d xor π(dp)) and µ(dp) = 0. For example,
if dp = (⋆,A,↗↘, ⋆, ⋆), then

d239.9.1.A = 00 · 0 · 0010 · 01 · 01

µ(dp) = 00 · 1 · 1111 · 00 · 00
π(dp) = 00 · 0 · 0010 · 00 · 00

d239.9.1.A xor π(dp) = 00 · 0 · 0000 · 01 · 01

d239.9.1.A xor π(dp) and µ(dp) = 00 · 0 · 0000 · 00 · 00

Checking whether a descriptor dp matches a descrip-
tor d is done in O(1) time, provided that the bit-vectors fit
in one machine word.
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↗↘ ↘ ↗ ↘↗ ↗→ ↘→

First 24% 16% 30% 15% 6% 1.2%
Middle 36% 21% 15% 8% 10% 1.3%
Last 44% 32% 2% 5% 4% 11%
Total 35% 23% 16% 9% 7% 1.5%

Table 3. We show the most frequent Huron’s contour types
according to phrase position. Regarding general contour
(data not shown), first phrases are mostly ascending (53%),
while middle and last phrases are predominantly descend-
ing (63% and 89% respectively).

4. IMPLEMENTATION AND AVAILIBILITY

The descriptors and the algorithm were implemented in
Python using music21 [48] for music data manipula-
tion, bitarray library for descriptors matching and
a C++ library sdsl-lite [49] (used in Python with
pysdsl library) for melodic matching. From the latter,
we used rank and select methods, and BitVector

and SuffixArrayBitcompressed classes. On a
standard laptop from 2022, building suffix arrays and bit
vectors on 1502 phrases takes less than 0.5 s. A single
suffix array takes 49.4 KB, and bit vectors 1.7 KB. The
longest melody/descriptor queries take about 100 ms. The
annotations and the code are available on a git repository
through open licences (Open Database License, Database
Contents License, GPLv3+) at algomus.fr/data and
algomus.fr/code. We are collaborating with partners
in Slovenia to prepare the release of 400 melodies and ad-
ditional ethnomusicological research.

5. RESULTS AND DISCUSSION

Almost all tunes (84%) in our collection revolve around a
minimum of six distinct pitch classes, indicating the likely
utilization of Western major/minor scales and modes. Ap-
proximately 67% of the tunes fall within the range of a
major sixth (M6) to an octave (P8). Additional statistics
in the annotated corpus examine phrase positions (Sec-
tion 5.1). Specifically, the analysis focuses on the preva-
lent tune subtype 286.T1, annotated for melodic similarity.
Findings from combined melody and descriptor queries are
presented in Section 5.2.

5.1 Descriptors and Phrase Positions

The 400 tunes consist of 1502 phrases, split into first (400),
middle (702), and last (400) positions. The labels, con-
tours, and implied harmonies are strongly influenced by
the phrase positions, as evident from Tables 2, 3, and 4. In
general, phrases are convex or descending (see Table 3),
while the first phrases are mostly ascending or convex,
and less harmonically stable at their ends than beginnings.
Conversely, the last phrase is almost never ascending, and
more harmonically stable at its ends than beginnings. The
middle phrase group is more divided and is more unstable.

T D ?T ?D ?

First HS 25% 54% 9% <1% 12%
HE 22% 27% 15% 7% 29%

Middle HS 16% 36% 14% 6% 28%
HE 21% 16% 18% 6% 40%

End HS 19% 32% 10% 5% 34%

HE 60% <1% 20% None 19%
Total HS 19% 40% 11% 5% 25%

HE 32% 15% 18% 5% 32%

Table 4. Starting (HS) and ending (HE) harmonic func-
tions in relation to phrase positions demonstrate a consis-
tent pattern. Phrases typically initiate on a dominant (D)
and conclude on a tonic (T). However, there is ambiguity
with the functions ?, ?T, and ?D, as they can be interpreted
as either T or D, which arises from the influence of previ-
ous and following pitch values or bars, making the exact
annotation spot unclear.

Figure 2. Two variants (out of 34) of the subtype
286.T1 with similar melodies with short melodic patterns
in coloured squares.

We assume that the contrasting beginnings and endings
of each verse offer pitch orientation for the singers, given
the repetitive structure of narrative songs. The contour re-
lationship between the first, middle, and last phrases sup-
ports the notion that “what goes up is likely to come down,”
as proposed by Huron [13].

5.2 Case Study: Subtype 286.T1, Infanticide Bride

Our dataset includes 103 monophonic variants of the
widely known “Infanticide Bride” theme in European folk
song tradition. Subtype 286.T1 consists of 34 tunes se-
lected for their melodic similarity (Figure 2), which often
exhibit similar patterns, such as the fad as a start middle
phrase pattern or the bag as a last phrase ending pattern.

We have developed combined melody/descriptor
queries to represent certain phrases of subtype 286.T1.
These queries are evaluated as a binary classification
problem: Can we accurately identify the 34 initial phrases
of 286.T1 and distinguish them exclusively from others?

Pattern design and matching. Table 5 demonstrates that
simple melody queries with 1 to 3 notes achieve reasonable
recall rates (50%-80%) but limited precision. Refining the
queries with descriptors improves precision and relevance,
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leading to enhanced F1 measures. The ddb melody query
alone produces 93 matches, but 75 of them are “false pos-
itives” unrelated to the first phrase of 286.T1 tunes. Incor-
porating a phrase position descriptor (F, first) improves the
query, while adding relevant contour (↗) and starting har-
monic information further enhances specificity. This com-
prehensive query results in only 2 false positives, achiev-
ing a precision of up to 0.88, with minimal sensitivity loss.
The ag pattern in the last phrase, characterized by a convex
contour and a harmonic ending, is a noteworthy example.
Given the enhanced harmonic stability typically found in
verse endings, the inclusion of the HST as a stable har-
mony descriptor proves to be effective in this context. In-
cluding too many or irrelevant descriptors leads to poor re-
sults. For instance, the cbb pattern is primarily found at the
end of the middle phrase. However, requiring a stable har-
monic framework (HET) for middle endings reduces preci-
sion, as it is less common in those positions (Table 4). An-
other interesting instance is the fad , occurrences of which
are almost evenly split into two contours. If we matched
(fad , M, ↗↘ or ↗→), we would get 23 true positives and
a precision of 0.82 with a recall of also 0.82. The algorithm
should be extended to accommodate the matching of a sub-
set of multiple descriptors within the same category, rather
than solely relying on one descriptor.

Patterns as building blocks. Melody/descriptor patterns
have versatile applications beyond classification. In our
case, the most effective queries incorporate position de-
scriptors, indicating that we should view phrase building

blocks as patterns. It is noteworthy, that studying the “false
positives” (matches outside of 286.T1) is expected to yield
intriguing results, shedding light on the transmission of
music material among tunes and vice versa. For instance,
the ag pattern in the last phrase, exhibiting a ↗↘ con-
tour and ending with HET, is not only specific to 286.T1
but also appears in 14 tunes of type 252 (A Widower at His

Wife’s Grave). The shared section of the melodic line in the
two tunes has identical descriptors, although its positions
may vary (scores not shown). Comparing outcomes across
multiple corpora would provide insight into the unique mu-
sical characteristics of (Slovenian) folk songs.

5.3 Discussion

Our study explored tune structures and melodic patterns,
finding that combining melodic content with descriptors
provides valuable insights into the characteristics of Slove-
nian folk songs. However, not all descriptors fit univer-
sally to describe all content, and vice versa. In contrast
to the usual transferability of folk song melodies, our case
study indicates that the melody of 286.T1 was not easily
transferable, possibly due to its popularity in multiple re-
gions. Further inter- and intra-corpus research is needed
to investigate this distinctive characteristic. We also show,
that individual melodic extracts alone lack the specificity
required for a comprehensive description of a full phrase
or tune. Strong correlations were found for descriptors

Query (melody + descriptors) TP FP FN Prec. Rec. F1

d None 1 (34) 28 1191 6 0.02 0.82 0.04
d F 28 327 6 0.08 0.82 0.14
d F, HSD 27 189 7 0.12 0.79 0.22
d F, ↗, HSD 21 48 13 0.30 0.62 0.41

ddb None 1 (34) 18 75 16 0.19 0.53 0.28
ddb F 18 32 16 0.36 0.53 0.43
ddb F, HSD 17 21 17 0.45 0.50 0.47
ddb F, ↗, HSD 14 2 20 0.88 0.41 0.56

fad None 3 (33) 24 24 9 0.50 0.73 0.59
fad M 24 14 9 0.63 0.73 0.68

fad M, ↗↘ 11 2 22 0.85 0.33 0.48
fad M, ↗→ 12 3 21 0.80 0.36 0.50
cbb None 3 (33) 25 71 8 0.26 0.76 0.39
cbb M 25 39 8 0.39 0.76 0.52

cbb M, ↗→ 11 3 22 0.79 0.33 0.47
cbb M, HET 1 3 32 0.25 0.03 0.05
ag None 4 (34) 27 481 7 0.05 0.79 0.10
ag L 27 165 7 0.14 0.79 0.24
ag L, ↗↘ 23 54 11 0.30 0.68 0.41
ag L, ↗↘, HET 23 51 11 0.31 0.68 0.43

Table 5. Evaluation of melody/descriptor queries seen as
classification queries intended to match phrases 1, 3, and 4
of the melodic tune subtype 286.1 (34 first and last phrases,
33 third phrases) against all 1502 phrases of the dataset.
We computed True Positives (TP), False Positives (FP),
False Negatives (FN), and from those, precision, recall,
and F1-score. Bold values are discussed in the text.

like contour. Expanding the dataset is needed to com-
prehensively explore the relationship between lyrics and
melodies, including the observed descending shape in the
last phrase, potentially reflecting or corresponding with
speech characteristics [50, 51].

6. CONCLUSION AND PERSPECTIVES

By integrating descriptor information into melodies, we
gain a deeper understanding of the observed music. Our
findings indicate a strong dependency of many descrip-
tors on phrase positions, and that combining melody and
descriptors enhances precision compared to using melody
alone. Our algorithm efficiently matches melodies and de-
scriptors, which can be extended beyond our proposed se-
lection. Lastly, we released annotations of Slovenian folk
songs, a yet underrepresented corpus in the MIR commu-
nity.

Our current plans primarily involve releasing the corpus
of these tunes, accompanied by comprehensive ethnomu-
sicological commentary. In addition, future work should
prioritize improving the algorithm’s usability for non-
computational users, expanding the existing annotations
of descriptors, and implementing the capability to perform
combined query searches with approximate matching for
melodies and descriptors. Our study (and corpus) may be
used as supporting data for new algorithms of phrase seg-
mentation, tune structure analysis, and harmony tasks in-
cluding semi-automatic annotation.
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ABSTRACT

As streaming services have become a main channel

for music consumption, they significantly impact various

stakeholders: users, artists who provide music, and other

professionals working in the music industry. Therefore, it

is essential to consider all stakeholders’ goals and values

when developing and evaluating the music recommender

systems integrated into these services. One vital goal is

treating artists fairly, thereby giving them a fair chance to

have their music recommended and listened to, and sub-

sequently building a fan base. Such artist fairness is often

assumed to have a trade-off with user goals such as satis-

faction. Using insights from two studies, this work shows

the opposite: some goals from different stakeholders are

complementary. Our first study, in which we interview

music artists, demonstrates that they often see increased

transparency and control for users as a means to also im-

prove artist fairness. We expand with a second study ask-

ing other music industry professionals about these topics

using a questionnaire. Its results indicate that transparency

towards users is highly valued and should be increased.

1. INTRODUCTION

Music is most consumed on streaming services nowa-

days [1]. These services often have music recommender

systems (MRS) integrated to provide personalized recom-

mendations to users. Unfortunately, those systems might

disadvantage some artists due to biases in the data, the sys-

tem, and society. This could lead to unfairness for artists,

e.g., through reduced visibility and opportunities [2–5].

To mitigate such issues, it is essential to understand

and involve the stakeholders affected by MRS, and assess

whether we are solving the right problems [6]. However,

researchers have rarely directly reached out to these stake-

holders inquiring how exactly they are affected, and what

they value and desire in these systems. Limited work has

been done on the user side, e.g., interviewing users about

fairness in recommender systems (RS) in general [7], di-

versity in MRS [8], and the impact of MRS on listeners [9].

© K. Dinnissen and C. Bauer. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: K. Dinnissen and C. Bauer, “How Control and Transparency for

Users Could Improve Artist Fairness in Music Recommender Systems”,

in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

Work considering the artists’ view is equally scarce. Ex-

ceptions are two interview-based studies on artists’ per-

spective on fairness in MRS [10], and on playlists in music

streaming services [11]. Moreover, to date, no research

consults other music industry professionals. Such indirect

stakeholders are often ignored when designing and eval-

uating systems such as MRS, even though these systems

affect them as well [12]. In the case of MRS, some pro-

fessionals come into direct contact with streaming services

and embedded MRS, e.g., when working in a publishing

or concert booking role. More indirectly, the success of a

professional in an artist’s team depends on that of the artist,

which in part depends on streaming services.

This work focuses on two topics that are not described

in existing artist-focused work: (i) transparency for users

and (ii) giving more control to users. These topics emerged

unprompted in interviews with artists (Study 1), which

aimed to understand what artists consider to be fair in

music streaming services and embedded MRS, and which

role artists envision for music streaming platforms with

regard to fairness, diversity, and transparency. While the

general results of this study are described in Dinnissen &

Bauer [13], in the work at hand, we zoom in on trans-

parency and control for users because artists frequently

mentioned these concepts as a means to increase artist fair-

ness. This suggests that—contrary to what is often sug-

gested [14–16]—there is not necessarily a trade-off be-

tween user and artist goals; they could even be comple-

mentary. Inspired by these insights, we subsequently query

industry professionals through a questionnaire (Study 2).

We address the following research questions (RQs):

• RQ1: How do (i) artists and (ii) other music industry

professionals view the current level of transparency

and control for users on music streaming services?

• RQ2: Which role do artists see for user transparency

and control in improving artist fairness?

• RQ3: What are artists’ user interface (UI) sugges-

tions to improve transparency and control?

This work offers insight into several perspectives on

transparency and control of MRS for users. Artists think

both should be increased and give concrete UI suggestions

to achieve this. Industry professionals agree that trans-

parency for users should be increased but offer a more

nuanced view on control. We emphasize two key points:

(i) user and artist goals should not always be viewed as
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trade-offs, as some can be complementary, and (ii) directly

involving a diverse set of stakeholders is essential in music

information retrieval (MIR) research and development, to

integrate their values and needs adequately.

2. RELATED WORK

2.1 Fairness in Music Recommender Systems

Fairness in MRS is increasingly receiving attention in the

RS and MIR research communities [17, 18], as music

streaming services and their integrated MRS significantly

influence the music landscape [19]. One challenge here is

that fairness is a human judgment value with many def-

initions and factors at play that do not directly translate

into RS evaluation metrics [3]. Hence, research generally

focuses on specific, often demographics-based fairness di-

mension(s) [5], such as nationality (e.g., [20]) and gender

(e.g., [4, 21]). Here, a system is generally considered fair

on a dimension if it upholds group fairness, a concept in

which several groups of people are defined (e.g., based on

their nationality), and the system should not give anyone a

lesser experience based on their belonging to one group.

Fairness research in the music domain covers users (i.e.,

consumers), artists (i.e., item providers), or both simulta-

neously (for an overview, see [2]). Frequently mentioned

issues for artists are popularity bias, a phenomenon where

already popular items are recommended more often than

others (e.g., [22, 23]), and the item cold-start problem, de-

noting difficulty in accurately recommending new items

due to lack of previous interactions (e.g., [24]). These is-

sues particularly affect new or less well-known music acts.

For users, goals such as satisfaction are often considered

rather than their fairness desires. Still, users indicate that

in RS in general, provider fairness is important to them [7].

Other stakeholders to consider are platforms offering

MRS [25, 26], music labels [27], and other music industry

professionals who come into contact with or are impacted

by music streaming services (e.g., concert bookers, artist

managers, event producers). To the best of our knowledge,

no work directly addresses the latter stakeholder group’s

view on how their values should be integrated into MRS.

2.2 Transparency for Users

Like fairness, RS transparency is increasingly valued by

users and item providers alike [10,28], with its societal rel-

evance resulting in EU-wide legislation [29]. Transparency

is often offered through interpretable or explainable RS,

which can educate users on inner RS workings [7, 30]. To

properly gauge RS fairness, transparency is considered a

prerequisite. In Sonboli et al. [7], users indicate desiring

insight into the fairness goals of organizations that offer

RS. Ferwerda et al. [31] show that MRS users were more

satisfied if they perceived a playlist as fair (here, focusing

on artist popularity), even if they could not identify which

playlist was more fair according to objective measures.

Insight into the inner workings of MRS, and therein

considered fairness dimensions, could be offered on multi-

ple levels and with different amounts of detail [30,32]. On

the broadest level, music streaming services could share

relevant business rules. On an abstract RS model level,

global explanations can show overall tendencies on dif-

ferent dimensions (including fairness) [33]. Local model

explanations are also possible, e.g., on the level of spe-

cific songs, artists, or playlists [33–35]. Different user

personalities and cognition needs should be considered

here [36], ideally allowing users to choose the type of ex-

planations [7]. When promoting lesser-known artists, per-

suasive explanations might increase how users rate their

recommendations [16]. However, users indicate they do

not want to be (unintentionally) manipulated through ex-

planations, even in a fairness context [7]. Finally, visual-

izations might also bring model logic to light [32], though

textual explanations might be more effective in the MRS

domain [34]. Yet, such transparency-enhancing function-

ality has rarely been implemented into user-facing parts of

music streaming services, especially on the model level.

2.3 Giving Users Control

User control is considered an essential quality of an ef-

fective RS, as it positively affects user trust and satisfac-

tion [28]. While transparency can provide insight into

fairness, control gives users the agency to change their

recommendations based on their values and goals, which

could include fairness. Users indicate they want to choose

whether they want more personalized recommendations

that might be less fair for item providers, or less person-

alized in favor of fairness [7]. In the music domain specif-

ically, research on user control often aims at exploration,

discovery, or diversification tasks (e.g., [8, 32, 37–41]),

with no works to date focusing on fairness. Still, if users’

listening behavior becomes more diverse (i.e., they start

engaging with a broader range of music items), this could

also contribute to artist fairness if that range includes less

popular or historically underrepresented artists [15, 42].

Like transparency, user control can be implemented on

different system levels in a MRS. Literature differenti-

ates between low-level control on recommendation data

level (playlist, play and like buttons, rating), middle-level

control on user profile level (e.g., with tags or sliders),

and high-level control on algorithm parameter level [32].

When enabling such functionality, the extent to which a

user can take control should be personalized to keep cog-

nitive load and complexity at an acceptable level [32, 37].

Even though research demonstrates how users can be

given control and how this contributes to recommendation

acceptance and user satisfaction, in practice, users typi-

cally have little control in widely used MRS. Essentially,

RS providers are in the main position to control the system,

and with it, the items recommended [43, 44]. In the music

industry, some item suppliers (e.g., major labels) may be

in a strong position to shift the control to their side [43].

3. METHODS

We employed two studies: Study 1 with artists and Study 2

with other music industry professionals. Here, we describe

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

483



Code Age Gender Audience

reach

Genre

P1 26–35 Male Local Hip-Hop
P2 26–35 Male National Rock/Pop
P3 26–35 Male Local Rock/Punk/Metal
P4a,b 26–35 Male Local (a)

National,
Local (b)

Hardcore/Rock/Blues
(a), Indie/Metal (b)

P5 26–35 Male Internat. Dance
P6 18–25 Non-binary Local Pop
P7a,b 46–55 Female (a),

Male (b)
National Alt. Pop

P8a,b 56–65 Female N/A Folk/World
P9 18–25 Non-binary Local Rock/Pop/Folk
P10 26–35 Male Local Neoclassical
P11 36–45 Female Local 80’s Alt. Synthpop
P12 18–25 Female Local Metal
P13 26–35 Female (Inter)nat. Indie-pop Alt.
P14 36–45 Male National Many

Table 1. Study 1 self-reported participant information.

both studies’ methods and outline our analysis approach.

3.1 Study 1: Interviews with Artists

We conducted 14 interviews with currently active music

artists in the Netherlands from January to March 2022. We

reached out to new participants until we reached a high

level of thematic saturation [45]. For music groups, we of-

fered the opportunity to join the interview with two mem-

bers. This resulted in 3 interviews with two members and

11 interviews with individual artists (Table 1).

The research setup was based on the one used by [10],

starting with a metadata questionnaire and a short presen-

tation about MRS. Then, we conducted a semi-structured

interview (52 minutes on average). Questions, outlined in

detail in Dinnissen & Bauer [13], covered a broad range

of topics: transparency for artists, artist control over rec-

ommendations, reaching an audience, popularity bias, di-

versity, gender balance, influencing users’ behavior, local-

ization, repertoire size, royalty distribution, and impact of

the COVID-19 pandemic. By using open questions, we

encouraged an open conversation rather than a predefined

one, leaving space for artists to add insights.

We recorded, transcribed, and pseudonymized the audio

of the interviews. We used a Qualitative Content Anal-

ysis [46] for which we based the annotation scheme on

the codes used in [10] (deductive) and then adapted the

codes based on the interview content (inductive). Three

annotators coded the transcripts, with two inter-annotator

sessions indicating a high level of inter-annotator agree-

ment. In the work at hand, we focus on the interview parts

related to transparency and control for users. Therefore,

we analyze results under respective codes ‘Transparency’

(top-level)—‘Towards user’, and ‘Control’ (top-level)—

‘For users’. As mentioned in Section 1, neither topic was

explicitly addressed in the questions. Both organically

came up when discussing experiences and fairness.

3.2 Study 2: Questionnaires

To reach a considerable sample of music industry profes-

sionals, we used questionnaires as our data collection ap-

proach in Study 2. 1 We collected 35 responses, all filled

in on tablets, from attendees at Eurosonic Noorderslag, a

major European conference for music industry profession-

als held in January 2023. 2 12 participants identified as

women, 22 as men, and 1 participant refrained from stat-

ing their gender. Participants were from 7 European coun-

tries. When asked about their current professional role(s),

participants indicated education (10), technology (7), event

production (6), bookings (5), research/science (4), market-

ing/PR (4), artist (3), legal/policy (3), artist representation

(2), and other (7). 11 participants indicated more than one

role, and ‘artist’ was not the sole role for any participant.

In the questionnaire, we address the wide variety of top-

ics from Study 1, this time from several points of view (i.e.,

artist, MRS user, and participants’ own as an industry pro-

fessional). For this work, again, we focus on the questions

that relate to transparency and control for users (see Ta-

ble 2). We used a 5-point Likert-scale answering format

and also offered the options to indicate ‘Don’t know / pre-

fer not to answer’, skip a question if desired, and add com-

ments. For the topics at hand, no comments were added.

As one participant skipped all four questions on these top-

ics, we present results for 34 participants.

4. RESULTS AND DISCUSSION

We outline the results of our studies going from our re-

search questions. Insights from both Study 1 and Study 2

are used to answer RQ1, whereas RQ2 and RQ3 zoom in

further on the results of Study 1.

4.1 RQ1: Transparency & Control for Users

For RQ1, we present insights from artists and other mu-

sic industry professionals about current transparency and

control for users within music streaming services.

Transparency—Artist view. All participants indicated

using music streaming services both as a consumer and

artist, distinguishing clearly between those two roles in

their answers. In some cases, their views as an artist were

similar to those from a user perspective. On transparency,

they remarked that MRS deployed in streaming services

are opaque to both artists and users. Here, we focus on

the latter, which came up in several interviews despite no

question being dedicated to this point of view. Opaqueness

of MRS towards users was often stated as a fact: “As a

user [...] you really have no idea what is recommended to

you. You are kind of cool with all of it because they do a

pretty good job, those algorithms.” (P6)

Artists called for more transparency on especially fair-

ness objectives and diversity in recommendations. Some

also noted that if users lack insight into MRS, they have no

way of knowing whether and how their taste is being influ-

enced: “It would be proper for a platform to show how it

works, and that you as a listener would also... know? [...]

As I think it influences [...] our listening behavior—which

is not necessarily our taste—a lot.” (P13)

1 Study 2 materials can be accessed at [47].
2 https://esns.nl/en/
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Transparency—Music industry professional view.

From Study 2, we show results for 34 industry profession-

als for the two questions dedicated to user transparency

(Table 2, Q1+2). Responses on whether personalized MRS

are transparent to users were spread (SD = 1.37), with

32% of participants somewhat agreeing, but also 26% of

participants strongly disagreeing. Participants tend toward

a negative view (Mean = 2.79) on current transparency

towards users, displaying similar tendencies as artists.

A stronger consensus can be found on whether person-

alized MRS should be made more transparent. Here, no

participants opted for (slightly) disagree; only one partic-

ipant chose the neutral option, and the other participants

either somewhat agreed (56%) or strongly agreed (41%).

This shows a clear, almost unanimous call for more trans-

parency of MRS, mirroring this call from artists in Study 1.

Discussion. From these results, we deduce that both

stakeholder groups highly value transparency for users in

MRS, think it is currently lacking, and desire improve-

ment. All in all, artists mainly focus on system-level in-

formation (versus, e.g., song-level), which could be shared

through global explanations [34]. As in Sonboli et al. [7],

artists mention an educational component, noting users do

not know how MRS work, which objectives are incorpo-

rated, and how MRS influence their listening behavior.

Control—Artist view. In Study 1, the topic of control

for users frequently surfaced when artists discussed their

own experiences as streaming service users: being un-

happy with their recommendations, and having no options

to modify them: “Truly every week [certain act] is added

to my Release Radar, every week I dislike it, I disliked

[their profile], and it still appears every week. How?” (P2)

“You start [on YouTube] with a very small band, and

eventually you always end up, let’s say, at... Metallica, at

Rock Im Park, you know. So I never find that useful.” (P3)

Increased user control was not only mentioned as a so-

lution to such problems, but also as a means to generally

improve MRS by allowing users to provide more informa-

tion on their preferences: “I know plenty of people who re-

ally enjoy listening to the same music all the time and espe-

cially don’t want to hear anything new. [...] If they’d solely

be presented with a lot of different styles, they’d probably

think: ‘that’s it, I’ll go somewhere else, this is too much for

me’. So it would be very cool if you could indicate [your-

self], from zero to ten, ‘I am very experimental’.” (P4a)

Nevertheless, some artists viewed actively searching for

specific music on streaming services as effectively also

‘taking control’: “If I want to listen to super obscure Hip-

Hop or something, then there are [play]lists for that. You

do need to know those exist [...], but they contain all kinds

of new things I didn’t know about before.” (P1)

P2 did note that not all users know how to find such lists

or want to put in such effort: “I feel like people very often

simply listen to what they are told. [...] 30 years ago, radio

dictated what people could listen to in the car, so people

just listened to that, and now Spotify is doing it.” (P2)

Control—Music industry professional view. Result-

ing from Study 2, we show responses from 34 participants

in Table 2 (Q3+4). Contrary to artists, industry profession-

als were less unanimously negative about the current ex-

tent to which users can control their recommendations in

MRS. Regarding users’ influence on general recommenda-

tions, participants were divided on the topic, with 38% in-

dicating being somewhat or strongly dissatisfied, and 41%

indicating they were somewhat or strongly satisfied.

On the extent to which users can influence their per-

sonal playlists, participants responded slightly more pos-

itively (Mean = 3.38), with 29% indicating they were

somewhat or strongly dissatisfied, and 56% indicating they

were somewhat or strongly satisfied. Overall, dissatisfac-

tion with current user control seems less pronounced in this

stakeholder group than for artists.

Discussion. Artists expressed dissatisfaction with cur-

rent control over recommendations, as well as the lack of

agency for users to change them. Some works (e.g., [44])

suggest that streaming services’ business interests are a

possible reason for limited control. Still, the added value

artists see for increased control aligns with frequently dis-

cussed user goals, such as exploration [37, 39, 41] and dis-

covery [32]. The industry professionals’ view was more

nuanced, with about half of the participants being satisfied

with the extent to which users can currently control MRS.

4.2 RQ2: Role of Transparency & Control in

Improving Artist Fairness

For RQ2, we focus on why artist fairness could be im-

proved by increasing transparency and control for users,

according to our participants. As this emphasis was ini-

tiated by participants from Study 1 but out of scope for

Study 2, we focus on insights from Study 1.

Artists mainly mentioned transparency towards users in

the context of algorithmically generated and ‘curated’ (i.e.,

created by an editor) playlists. These could be created with

specific fairness goals in mind, which should be clearly

communicated to the user. Such playlists could counter bi-

ases in MRS by presenting the user with more diverse mu-

sic, e.g., highlighting music from (historically) underrep-

resented artists. P7b mentioned this could also be a way to

highlight older repertoire, and P9 noted: “An older album

can, of course, still be new to someone.” (P9)

However, P8a+b and P13 remarked that solely offering

playlists with a designated fairness goal would not bring

any lasting shift in user behavior: “If you put all [women]

in one list, then it is a list again. Then it effectively becomes

some kind of subgenre, while gender actually transcends

genre, and... it should not be an issue at all anyway.” (P13)

A second suggestion was giving insight into all current

playlists regarding certain ratios such as artist gender or

ethnicity. With such insights, users could be made more

aware of current inequalities, and make more informed and

fairer decisions based on their own values: “I think it is im-

portant for creators that users know what they are choos-

ing. [...] Such transparency is missing completely. So I

think it would be better if [streaming services] were trans-

parent, like: all [play]lists contain this many women, this

many men, this many black people, this many white peo-
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No. Question Min Max Median Mean SD

Q1 For users of streaming services, I feel like it is clear for which reason(s) specific music is rec-
ommended to them.

1 5 3 2.79 1.37

Q2 For users of streaming services, I feel like it is important to make it more clear for which
reason(s) specific music is recommended to them.

3 5 4 4.38 0.54

Q3 For users of streaming services, I am happy with the extent to which they can influence which
music is in their general recommendations.

1 5 3 3 1.26

Q4 For users of streaming services, I am happy with the extent to which they can influence which
music is in their personalized playlists.

1 5 4 3.38 1.19

Table 2. Questionnaire responses (1 = ‘Strongly disagree’, 5 = ‘Strongly agree’).

ple, this many... and they would do this for all lists. End of

story. And all of them would do it.” (P8a)

Other than more transparency, giving users more con-

trol over their recommendations was also suggested as a

way to address unfairness issues. When discussing pop-

ularity bias and cold start problems, several participants

suggested letting users manually adapt their playlists or

general recommendations. Users could then, e.g., indicate

they want to receive more songs that they have not listened

to before: “Ideally, I would like to see not one band name

I already know. As a small artist, I would appreciate that a

lot as well, as it would make chances a little higher you’d

maybe be recommended for once.” (P3)

Alternatively, users could indicate their preferred level

of adventurousness: “Maybe it would be nice to make a

specific setting for [more music outside of usual taste], ‘I

feel adventurous’ or something like that.” (P6)

As a final insight, we note that most artists desired

stronger measures, such as actively making playlists more

diverse or balanced. P8a remarked that if users are given

the choice, only those who already wish to contribute

to a balanced and diverse music landscape would use

such functionality: “[Recommending more diverse music]

should just be a standard, [...] because else, it just won’t

happen. Because that’s not the way people are. We are

herd animals! We do what we know! And we also do what

we know if we say: ‘I want to discover something new’.

[...] It is a choice you think suits you. [...] So if you offer it

as a choice, you will keep fishing in the same pond.” (P8a)

P13 also suggests offering more balanced playlists to

start with: “[I would prefer] a playlist which contains a

certain number—that it is more balanced.” (P13)

P5 remarked this could be achieved while taking user

type (e.g., inclination towards diverse music) into account,

and adapting recommendations based on that: “So it might

start with... 30, 33%, and if it is a hit, the percentage be-

comes higher, and if [the more diverse songs are] skipped,

it becomes lower... something like that.” (P5)

Discussion. Artists identified a connection between

transparency for users and artist fairness. They indicated

that users need insight into how MRS work to make in-

formed decisions matching their fairness needs, which lit-

erature suggests could benefit artist fairness [7, 31]. Even

though persuasive explanations might increase users’ satis-

faction with lesser-known artist recommendations [16], we

note that such persuasion is not necessarily appreciated [7].

Artists especially emphasized insight into platform fair-

ness goals (confirming results for RS in general [7]), and

fairness metrics within playlists. To some extent, playlist

channels intended to address fairness are currently offered:

e.g., Spotify’s EQUAL [48] and Deezer’s Women’s Im-

pact [49] initiatives both aim to combat gender dispar-

ity, while other curated playlists are dedicated to a cer-

tain niche, e.g., Tidal’s Diversity & Tradition: New Black

Americana [50]. However, while dedicating playlists to an

underrepresented group addresses the overall fairness is-

sue, each standalone playlist is not necessarily a fair one, as

it features only one group. Lastly, we note that collecting

data on, or giving users insights into, sensitive attributes

such as gender and ethnicity, is a debated topic [51].

Concerning giving users more control, artists noted it

would help increase fairness on certain aspects if desired.

This corresponds to previous findings [7], where users ex-

pressed their wish to adapt personalized RS on diversity as-

pects. Control over diversity in MRS could also contribute

to artist fairness if less popular or (historically) underrep-

resented artists are recommended as a result [15,42]. Still,

some artists believed that increased control alone would

not make a significant impact, as they expected that only

users whose listening behavior is already diverse would in-

crease their playlists’ diversity.

4.3 RQ3: UI Suggestions

For RQ3, we cover concrete ideas for implementing

transparency- and control-enhancing UI functionalities,

as brought up in Study 1. These came up when dis-

cussing (desired) artist fairness improvements, and inte-

grating those in a manner that users would perceive posi-

tively. Ideas focused on influencing either MRS in general,

or specific streaming service pages (e.g., playlists).

Artists mentioned some approaches to increase trans-

parency and agency for users simultaneously. Those could

be implemented on: (1) a user profile page, where users

can modify their general recommendations, and (2) spe-

cific playlists so that users could modify recommendations

within each playlist. For example, P6 and P11 mentioned

sliders to adapt, e.g., how many new artists versus estab-

lished artists should be recommended, or whether songs

should be new to the user: “Perhaps just a percentage, a

slider, saying how many recommended songs you’d know

already, and how many you wouldn’t know, which you

could adjust according to which mood you’re in.” (P6)

P7a+b and P11 suggested adding tags or filters so that
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users could indicate what they want to be recommended,

e.g., only songs from a specific genre or region: “As if you

are logging in from France, for example.” (P7b)

Lastly, P10 mentioned addressing users through a

prompt suggesting to increase the listener-artist connec-

tion. This could be achieved by proposing that the user

visits the profile of artists they often listen to but have not

yet looked up. Prompts could also suggest trying some-

thing more adventurous: “Let’s say someone is listening to

the same things constantly, after one week you could also

say: ‘hey, [user], is it time for something else?’ [...] And

then you could indicate: ‘nah, I don’t really feel like it, go

back to what I was listening to, let’s just play The Beatles

and The Rolling Stones again’... Or you like it.” (P10)

Discussion. Our results offer a first insight into

transparency- and control-increasing design for MRS,

from the artist’s perspective. As a whole, artists focused

on control in their answers rather than on transparency-

increasing design or explanations. They mainly focused

on mid-level controls on user profiles, playlists, or through

prompts, rather than low- and high-level controls [32].

These responses correspond to previous research (e.g.,

sliders [32,37–39] and tags [32]) but had not yet been noted

in an artist fairness context. From the user perspective,

such controls could help influence MRS to better fit the

current user goals and mindset (i.e., focused, open, or ex-

ploratory) [52]. In Sonboli et al. [7], users emphasize the

importance of design practices to promote fair treatment.

From the streaming services’ side, new functionality by

YouTube Music might address the need for more control

by allowing users to customize radio channels, e.g., by in-

dicating what percentage of songs should be new to the

user [53]. Deezer has also introduced a ‘Country Selector’

allowing users to switch the ‘home country’ on which their

music and shows recommendations are based [54]. Re-

garding transparency, Spotify recently introduced an AI-

generated ‘DJ’ feature offering personalized playlists with

item-based explanations [55]. Further new functionalities

and redesign should be extensively researched and tested to

minimize user change aversion [56], and to verify whether

they correspond with other stakeholder values.

5. CONCLUSION

5.1 Insights for the MIR Community and Beyond

Our work contributes insights into artists’ and music indus-

try professionals’ perspectives on MRS transparency to-

wards users. Our results suggest neither stakeholder is pos-

itive about the current transparency, despite its importance

in MIR systems [18]. “Transparency can serve to em-

power artists and listeners to challenge AI systems” [18].

In the literature, there is a strong agreement that trans-

parency is fundamental for MIR [5, 17, 18] and MRS

specifically [10, 36], which is supported by our findings.

Our results also show that the transparency towards users

is considered insufficient and requires improvement.

Regarding control, artists indicate clearly that they de-

sire increased user control over MRS, deeming the current

level insufficient. They argue that the combination of trans-

parency toward users and giving them control will, in turn,

help increase fairness for artists, which is a novel and com-

plementary view going beyond existing work. By contrast,

music industry professionals are interestingly divided on

this matter, for which the cause is yet to be explored.

On a broader level, we learn that there is not necessarily

a trade-off between user, item provider, and industry goals

(as extensively discussed in multi-stakeholder systems re-

search): indeed, there is some overlap. In our work’s con-

text, users, artists, and other music industry professionals

essentially want the same (i.e., more transparency and con-

trol for users) for similar reasons (i.e., better artist fairness

and more recommendation diversity), though our study

does not deliver insights concerning industry profession-

als’ reasoning. Hence, it is imperative that MIR involves

different stakeholders to understand better what the various

actors need and value, and integrates those needs and val-

ues in MRS. While trade-offs will keep existing, we need

to delve into, and focus on, overlaps and joint goals.

Our work also contributes UI suggestions addressing

control and transparency. We note that making only user-

facing design changes is insufficient; they should be sup-

ported by MIR measures (e.g., data enhancement for re-

trieval and filtering, fair ranking). We emphasize the sig-

nificance of combining algorithms and UI research alike.

Concluding, in MIR research, we need to support artists

better. Taking a multi-stakeholder approach will acceler-

ate this because some goals and needs are complementary.

Essentially, supporting users (in transparency and control)

can help artists (in terms of fairness).

5.2 Limitations and Future Work

One constraint of this work is that we aim for exploration

with our sample and therefore do not offer an exhaustive,

generalizable overview. In future work, both studies could

be extended with participants from different cultural, mu-

sical, and professional backgrounds to paint a more gener-

alizable overall picture. The perspectives of streaming ser-

vice providers and other additional stakeholders could also

be further addressed. Additionally, as we did not explic-

itly address transparency and control for users in Study 1,

we might have missed views from participants where those

topics did not come up. Still, this ensures that responses

were spontaneous and unprompted. Lastly, Study 2 mostly

contained closed questions that did not allow in-depth anal-

ysis, though participants had the possibility to add remarks

in the optional free text fields.

A promising future direction is to implement the sug-

gested UI functionalities in a music streaming service, and

compare user behavior to that in a system without such

functionalities. It would be especially worthwhile to con-

duct user studies evaluating those functionalities with var-

ious stakeholder groups and measure differences in per-

ceived transparency, control, and fairness of such a system.

Such a study should cover what RS should deliver if a user

indicates not wanting fair recommendations, and how to

personalize any fairness-aimed explanations to user needs.
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ABSTRACT

In light of the enduring success of music streaming ser-
vices, it is noteworthy that an increasing number of users
are positively gravitating toward YouTube as their pre-
ferred platform for listening to music. YouTube differs
from typical music streaming services in that they provide
a diverse range of music-related videos as well as sound-
tracks. However, despite the increasing popularity of us-
ing YouTube as a platform for music consumption, there is
still a lack of comprehensive research on this phenomenon.
As independent researchers unaffiliated with YouTube, we
conducted semi-structured interviews with 27 users who
listen to music through YouTube more than three times a
week to investigate its usability and interface satisfaction.
Our qualitative analysis found that YouTube has five main
meanings for users as a music streaming service: 1) ex-
ploring musical diversity, 2) sharing unique playlists, 3)
providing visual satisfaction, 4) facilitating user interac-
tion, and 5) allowing free and easy access. We also propose
wireframes of a video streaming service for better audio-
visual music listening in two stages: search and listening.
By these wireframes, we offer practical solutions to en-
hance user satisfaction with YouTube for music listening.
These findings have wider implications beyond YouTube
and could inform enhancements in other music streaming
services as well.

1. INTRODUCTION

In recent years, the music streaming industry has witnessed
a significant surge in popularity, with market leaders such
as Spotify, Apple Music, and Amazon Music dominating
the market [1]. Alongside this trend, YouTube has solidi-
fied its position as a prominent platform for diverse video
content, including documentaries, daily vlogs, entertain-
ment shows, and more. As users flocked to YouTube for
various types of content, the platform naturally became
a hub for music-related videos as well. Users now have
easy access to a wide range of music video content on

© Ahyeon Choi, Eunsik Shin, Haesun Joung, Joongseek
Lee, and Kyogu Lee. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Ahyeon Choi, Eun-
sik Shin, Haesun Joung, Joongseek Lee, and Kyogu Lee, “Towards a New
Interface for Music Listening: A User Experience Study on YouTube”,
in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

YouTube, contributing to the growing trend of consuming
music through video formats [2].

Indeed, YouTube delivers a distinctive multi-sensory
experience by showcasing a vast variety of music-related
videos such as music videos, live performances, curated
playlists with visual artworks, and cover performances,
enabling users to enjoy music through a fusion of visual
and auditory elements. Despite Spotify’s global promi-
nence based on subscribers, YouTube has seen an increas-
ing number of users turning to its platform for music con-
sumption [1, 3]. This trend is evident in regions like South
Korea [4, 5] and Latin America [6], where YouTube domi-
nates as a preferred music platform.

Given YouTube’s current dominance in music con-
sumption, there’s a need for a more comprehensive investi-
gation into this behavior and patterns. Earlier studies have
explored YouTube’s role as a streaming service [7], com-
pared its usability with Spotify [3], and analyzed music
consumption behavior on YouTube [8]. However, the el-
ements contributing to YouTube’s rise as a primary music
platform and the actual levels of user satisfaction are still
not fully understood, indicating a need for further user-
focused research.

Thus, this study aims to conduct in-depth interviews
with music consumers on YouTube, examining their be-
havior, comparing the advantages and disadvantages of us-
ing YouTube as a music consumption tool with other music
streaming services, and reevaluating YouTube’s standing
as a tool for music consumption. Additionally, we pro-
pose a new interface design that enhances the usability of
music-related searches and listening. This research was
conducted independently by our team, with no financial
backing or data provided by YouTube or any associated or-
ganization. With our study, we aim to contribute to the on-
going conversation on YouTube’s role as a music platform
and offer insights into developing an innovative interface
that elevates the user’s music listening experience.

2. RELATED WORK

In the field of music information retrieval (MIR), research
on music streaming services includes studies on improving
recommendation algorithms [9–11], understanding user
behavior and patterns of use [12–16], and studying user
experiences and interfaces [17–21]. These studies aimed
to enhance overall user satisfaction and engagement with
music streaming services by providing personalized rec-
ommendations, improving the user interface, and identify-
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ing the factors that influenced user behaviors and prefer-
ences.

Compared to other music streaming services, research
on music consumption through YouTube has only recently
gained attention due to the platform’s relatively late recog-
nition as a music consumption platform. Early studies
on YouTube’s music videos have revealed that music is
the most consumed content category on YouTube, and re-
searchers have classified the types of YouTube’s music
content while analyzing their differences [7]. Furthermore,
[3] reported that YouTube is used as frequently as Spotify
and is perceived as superior to Spotify in terms of its share-
ability and accessibility.

As YouTube’s influence in music consumption grows,
recent research has examined three types of online mu-
sic practices according to the role YouTube plays: default,
soundtracking, and complementary platforms [8]. Authors
report that one of the main results is that YouTube’s music
videos are listened to, rather than watched. However, the
significance of visual elements in music listening can dif-
fer based on the genre or content. Additionally, it is worth
mentioning that the participants in the study reported only
occasional use of YouTube for music, which may limit the
generalizability of the findings to other contexts, such as
frequent YouTube users.

Therefore, this study aims to examine the usage behav-
ior of users who use YouTube more than three times a
week in everyday situations, report on the characteristics
of the subject group, and classify the content used. In ad-
dition, we draw out advantages and disadvantages through
usability tests to newly consider the role of YouTube as
a music-listening tool. Moreover, the study proposes in-
terface improvement measures to fill the research gap on
"how to improve the music listening environment through
YouTube." Considering the diverse range of devices used
to access YouTube, including mobile devices, PCs, tablets,
and TVs, we primarily focus on the mobile device, taking
into account its widespread usage among participants.

3. METHODS

3.1 Participant

We recruited 27 Seoul National University students (12
males, 15 females) aged 18 or older (mean=23.40,
sd=3.13). Our recruitment focused on participants who
listen to music on YouTube at least three times a week
while excluding those who rely solely on YouTube Music
without using YouTube. This approach allowed us to con-
centrate on the distinct characteristics of consuming music
through videos on YouTube, which encompass both visual
elements and audio. Participants were compensated with
a cash payment of KRW 10,000. Ethics approval was ob-
tained from the Institutional Review Board of SNU.

3.2 Study Design

Informed by previous studies’ methodologies and the spe-
cific needs of our research, we designed our interview in
two stages: a preliminary questionnaire [22, 23], followed

Phase Requirements

A Verbal
Interview

Asking about participants’ music
listening habits and preferences along
with the motivation to use YouTube.

Usability
Test

Comparison of YouTube and other
music streaming services and

feedback on the interface of YouTube
for searching and listening to music.

UI proposal
Propose YouTube interface design for

music listening freely, and explain
yourself.

Table 1. Three steps of semi-structured interview

by a semi-structured interview [22–24] that includes a brief
ice-breaking session [25]. The preliminary questionnaire
collects demographic data and music consumption habits
of the participants, such as their academic majors, rela-
tionship with music, frequency and duration of YouTube
use for music, and specific contexts of YouTube music
consumption (excluding YouTube Music). Additionally,
we also sought information regarding their subscription to
YouTube Premium or usage of YouTube Music.

Following an ice-breaking session, the semi-structured
interview proceeded with three main segments (Table 1).
First, we explored participants’ regular music consump-
tion habits, such as frequency, platform preference, and
content preferences. Second, participants were asked to
demonstrate the process of searching and listening to mu-
sic on YouTube, which allowed for a natural exploration
of the platform’s advantages and disadvantages in com-
parison to other music streaming services. Third, partic-
ipants utilized empty interface templates on iPad to design
a new interface for music searching and listening, enabling
them to customize the screen ratio, functions, buttons, and
more. Each interview, lasting roughly 30-40 minutes, was
recorded and transcribed using NAVER Clova Note, with
participant consent.

3.3 Analysis

We identified the overarching themes and trends of the par-
ticipants’ responses and organized the data accordingly.
The data were categorized into the following topics: pri-
mary streaming service, weekly listening time, music lis-
tening type, preferred music genres or content on YouTube,
situations YouTube is used for music listening, reasons for
using YouTube as a music consumption tool, music search
methods on YouTube, criteria for video selection, advan-
tages and disadvantages of YouTube compared to other ser-
vices, and a summary of interface proposal sessions.

We generated a list of keywords for the qualitative anal-
ysis, which includes the advantages and disadvantages of
using YouTube for music listening and user interface pro-
posals from interviewees. To validate our classifications
and identify commonalities, we repeated the process of
analysis and consensus-building three times among the re-
searchers similar to the analysis process in [22, 26, 27].
Grounded theory [28] and content analysis [29] were also
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used as a guide throughout the process of keyword genera-
tion. We also referred to previous qualitative studies in the
field of MIR [8,15,24,26,27] to guide our data analysis, as
well as to ensure consistency in our reporting and citation
practices. Finally, we thoroughly reviewed the keyword
lists to extract the main findings of how YouTube is used
as a music consumption tool by the participants based on
the method of theme analysis [30].

To better understand the participants’ interface design
proposals, we compared the proposals from the partici-
pants and reviewed the summary of the interface designing
sessions. From this process, we synthesized useful design
implications and arrived at wireframe designs for the mu-
sic search and listening screens.

4. RESULT

4.1 Behavior and Characteristics of Music

Consumption on YouTube

As the current study investigates interview data from a
sample of 27 users, it is important to take into account the
unique characteristics of this group. Therefore, informa-
tion concerning the participants’ music consumption be-
haviors and preferences was gathered through preliminary
surveys and interviews. The results showed that partici-
pants typically used YouTube about five times per week
(mean = 4.89, sd = 1.93), for a total of approximately
five hours (mean = 5.35, sd = 3.76), to listen to music
while engaging in various activities, such as studying, re-
laxing, commuting, and exercising. No one specialized
in music. The majority of participants used the free ver-
sion of YouTube and did not subscribe to YouTube Pre-
mium. Additionally, some participants supplemented their
music listening with other platforms such as YouTube Mu-
sic, Melon, Spotify, and Genie.

Participants enjoyed a diverse range of music genres on
YouTube. The top five genres mentioned most frequently
were OST (original soundtrack of movies or dramas, 13
times), pop (12 times), K-pop (11 times), classical music
(7 times), and indie music (7 times). Other genres men-
tioned in order of frequency include J-pop, ballads, old-
fashioned music (mid-20th-century Korean pop and bal-
lads), jazz, rock, band music (with live instrumentation and
elements of rock, pop, and indie), new age, hip-hop, EDM,
and R&B. Music content can be broadly divided into three
categories: 1) Official music content such as music videos,
2) Live music content such as performances, concerts, fes-
tivals, and 3) User-generated content such as playlists and
cover videos. In terms of frequency of mention, the order
was 3-2-1 (27 times, 25 times, 8 times) respectively.

4.2 Advantages of using YouTube for music listening

Alongside our anticipation that YouTube serves as an
audiovisual music listening tool, we found that YouTube
possesses various strengths compared to other streaming
services (Table 2). Musical diversity was the most fre-
quently mentioned category, with two main points: the
availability of non-official music in addition to official

Category Keyword Freq Total

Musical Diversity
official soundtrack + α 14

23
playlist 9

Convenience

familiarity 4

15
accessibility 4

subscription fee 4
Customizing 3

User Interaction
recommendation 10

13
comments 3

Visual Contents
thumbnail 6

10
video 4

etc. etc. 1 1

Table 2. Pros. keywords of usability test

releases, and the diversity of playlist content compared to
other streaming services.

With streaming services, I can only listen to official re-

leases, but with YouTube, I can listen to not only official

releases but covers and other user-generated content.

(P11)

Unlike other services, YouTube’s diverse playlists prevent

repetitive listening by offering a wide range of songs

within similar genres. (P26)

Also, convenience was mentioned as an advantage,
with familiarity, accessibility, no subscription fee, and
user customization.

I use it because I’m used to it. I’ve used Melon and

YouTube Music before, but I settled with YouTube be-

cause it was more convenient. (P12)

Since YouTube is free, there’s no need to pay for other

services. (P8)

As for user interaction, most users mentioned the
recommendation algorithm itself and the ability to view
other users’ opinions through comments.

The recommendation algorithm is good. I often find great

new songs through it. (P17)

It’s good to be able to see other people’s opinions and

sympathize by reading comments. (P4)

Lastly, the visual content of thumbnails and videos was
mentioned as an advantage.

I can use both sight and sound when listening to music

with videos. (P4)

When I play playlists with thumbnails, like at a house-

warming party, it adds to the atmosphere, and it’s good

for interior purposes too. (P6)

While we initially expected the inclusion of visual ele-
ments to be a significant advantage of YouTube, the par-
ticipants’ usage patterns proved more diverse. Some ap-
preciated the visual components, while others turned to
YouTube strictly for audio during activities like work or
sleep (P2, P5, P22, P23, P24). These observations align
with prior research [8], showing the varied ways users uti-
lize YouTube for music. Although some mentioned listen-
ing to audio with the screen off (P7, P23, P24), we ex-

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

494



Category Keyword Freq Total

User Interaction
comments 12

21
recommendation 9

Manipulation
button / tap 10

17
display ratio 7

Playlist
playlist contents 4

10making playlist 4
mix playlist 2

Section Search
timestamp 6

9
playback bar 3

Lack of Info.
song information 5

8
log information 3

Underutilization
replay 5

8
volume control 3

Contents Quality
sound quality 5

6
video quality 1

etc.
(video) data size 4

6
etc. 2

Table 3. Cons. keywords of usability test

cluded this aspect from our analysis as it’s a feature exclu-
sive to YouTube Premium subscribers.

4.3 Disadvantages of using YouTube for music

listening

The inconveniences and disadvantages of listening to
music on YouTube were categorized into seven major
themes (Table 3). The most frequently mentioned in-
convenience was related to user interaction, with many
complaints about the inconvenience of filtering the desired
information while exploring recommended videos and
comments.

In other music streaming services, genre separation is

clearly done, but YouTube recommends based on the

videos you watch, so there is a tendency to lean towards

a specific genre. (P26)

When watching music videos and reading comments, it’s

hard to find South Korean users’ reactions when most

comments are in foreign languages. (P11)

The second most frequently mentioned disadvantage
was related to screen manipulation, such as fixed thumb-
nails, the ratio of videos, and accidental button presses.

It would be nice if I could reduce the screen ratio. I want

to watch the small screen when exercising or doing other

things. (P8)

There are cases where I accidentally press the Shorts

button and the music stops. (P22)

Regarding playlists, users complained about not having
timestamps for individual songs, the content of playlists
made by others, the process of creating playlists them-
selves, and the mixes provided by YouTube.

It’s inconvenient to switch to another song if there is no

timestamp in the playlist. (P18)

Since playlists are made by others, there are few cases

where all songs suit my taste, and there are mediocre

songs in between. (P18)

It’s inconvenient to save songs one by one in my li-

brary. It feels slow every time I press the save button, and

it is a hassle to press the button several times to save. (P27)

Lastly, some users mentioned the lack of information
about album or song information and lyrics, as well as the
lack of log information about previously watched videos
as a disadvantage.

It’s hard to find album or song information, and it’s

frustrating not knowing the information of the concert I

am watching. (P7)

When I use the autoplay function, it is hard to find which

song I thought I liked. (P17)

Despite the existence of autoplay and volume control
features on YouTube, user complaints arose from a lack
of information about these functions. Some users viewed
them as drawbacks, unaware of their existence or location.
Specifically, enabling autoplay requires navigating to the
settings, while fine-tuning volume necessitates physical
device button use. This complexity may have heightened
user frustration and dissatisfaction.

I wish there is a autoplay button. (P12)

I want to make minute adjustments, but even if I increase

the volume level by just one, the volume suddenly

becomes too loud. (P16)

The quality of the content is related to the audio or
video quality. Some responses showed low reliability in
audio quality when used for music listening.

There are cases where the sound quality is poor in content

uploaded by individual users. (P12)

Aside from that, there were four mentions of concerns
about mobile data usage due to large video data size (P2,
P9, P11, P25), one mention of discomfort with provocative
titles (P23) and experiencing an error when randomly play-
ing saved videos (P14). There were nine mentions related
to ads or background playback (P2, P5, P6, P8, P9, P12,
P17, P19, P25), but these were excluded from the analy-
sis since they can be resolved with a YouTube premium
subscription.

4.4 User Feedback for Interface Improvements

We analyzed users’ explanations and drawings of the
searching and listening screens, categorizing their de-
mands for interface improvement into three categories: ad-
dition, modification, and deletion. These categories, along
with relevant quotes, provide specific descriptions of users’
interface improvement suggestions.

The first is to request the addition of new information
or functions that are currently absent on YouTube, such as
a new button or tab, new sorting and filtering criteria, or
more information about contents and songs.

It would be great if there was a detailed search button

under the search bar, where you could search by year,

album, composer, etc. (P7)
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It would be nice if I can choose options between "all

videos recommended" and "music-related recommenda-

tions" in the recommendation section. (P9)

The second is to modify the existing functions or
configuration of YouTube to increase operability and
efficiency when searching and listening to music, such as
changing the ratio of various spaces on the interface or
changing the positions of existing buttons and information.

It would be great if the thumbnail (album cover) could be

smaller, and the title, artist, etc. could be displayed next

to it. (P12)

It would be nice to adjust the ratio of the comment box

and recommended videos so that you can view them

together. (P4)

Lastly, there were cases where demands were made to
remove things from the existing YouTube interface that
are not directly related to music searching or listening.

We don’t need the buttons for uploading videos on the

bottom menu bar. It would be great if we could freely

configure this menu bar. (P15)

If we could hide the buttons we don’t use often and press

the detailed button to show them, it would be neat. (P19)

5. FINDINGS AND DICSUSSION

5.1 Role of YouTube as a music streaming service

Users desire an improved interface for YouTube to maxi-
mize its potential as a music consumption tool. We have
identified five key roles that YouTube plays in music lis-
tening, and based on this, we propose design implications
to enhance the user experience.

5.1.1 Exploring musical diversity

YouTube offers users a wide variety of musical genres,
artists, and songs to discover and explore, including rare or
unreleased music not found on other streaming services.
Users can also enjoy various versions of the same song
through covers or live performances by different artists.
Design Implication: To improve search efficiency, music
content should be categorized by genre, artist, and mood,
and album information such as lyrics should be provided
to reduce the need to search for information on other plat-
forms.

5.1.2 Sharing unique playlists

YouTube creators can create and share playlists, simplify-
ing the search process and enabling them to select playlists
based on keywords like mood or activity (e.g. warm spring
day, driving playlist). Design Implication: Playlists
should provide song and timeline information, and allow
users to switch to the next song with a button. Allow-
ing users to customize songs within the playlist, such as
adding or removing them, and saving these changes, would
enhance the playlist’s functionality.

5.1.3 Providing visual satisfaction

By offering sensory satisfaction beyond just videos,
YouTube’s visual content enhances the music listening ex-
perience. Users appreciate being able to observe the mu-
sicians’ expressions, gestures, and style, and sometimes
even watch music videos solely for visual gratification like
repetitive animations or thumbnail images paired with the
music. Design Implication: The screen size and ratio of
the video should be customizable based on the content’s
characteristics and users’ listening environment. For ex-
ample, users would like the option to decrease the video
screen size in public settings or enlarge it to focus on a
particular idol member or musician’s finger movements.

5.1.4 Facilitating user interaction

YouTube’s likes, dislikes, subscriptions, and comments
features enable users to interact with the platform and fos-
ter a sense of community, resulting in a more engaging
music listening experience. Additionally, the recommen-
dation algorithm lets users explore new content and see
how others react to music, which is a key motivation for
users to use YouTube. Design Implication: Users should
be able to sort and filter recommendations and comments
based on various criteria, such as timeline, keyword, lyrics
or the most frequently mentioned, to expand YouTube’s so-
cial function. Pinning specific comments that users like or
refer to frequently could also reduce search time.

5.1.5 Allowing free and easy access

YouTube’s accessibility, cost-effectiveness, and cross-
device compatibility make it a convenient option for users
to listen to music in various situations. This versatility
has led some users to cease subscribing to other stream-
ing services. Primarily, the appeal lies in the free access
to a diverse library of music videos, live performances,
covers, and user-generated content, resonating with users
disinclined to pay for music subscriptions. Design Im-

plication: While device-specific interfaces are important,
consistent usability is crucial to prevent user confusion or
inconvenience.

It is crucial to acknowledge that while some of the
proposed features (e.g., album and artist filters, lyrics,
smaller screen mode) have already been implemented in
the YouTube Music App, users still rely on YouTube to ac-
cess a diverse range of music videos that are not available
on the YouTube Music App. Therefore, our design impli-
cations hold the potential to differentiate YouTube from
YouTube Music by catering to the experience of video
streaming alongside music consumption.

5.2 UI for Audio-Visual Music Streaming Platform

Taking into account the role of YouTube as a music stream-
ing service, the needs of its users, and the interface designs
of typical music streaming services, we have developed an
ideal wireframe for an audio-visual music listening plat-
form. It consists of two stages: (a) searching and (b) lis-
tening screens (Figure 1).

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

496



(a) Searching (b) Listening

Figure 1. A Wireframe of youtube UI for music listening

(a) Searching To display diverse music content tailored
to users’ interests, we added 1) advanced search function-
ality to the top keyword search bar, allowing users to fil-
ter by era, genre, artist, and other details. Additionally,
we added 2) a button to easily add multiple videos to a
user’s playlist, and 3) reduced the thumbnail size to show
more videos on one screen. Next to the thumbnail, we in-
cluded 4) information about the songs in the video, and if
the video is a playlist, we added 5) a timeline and infor-
mation about the included songs. Finally, we made 6) the
bottom menu buttons customizable, allowing users to re-
move buttons when they feel unnecessary and create their
own menu.

(b) Listening While maintaining the current structure
of the interface, we adjusted the layout and added new
features to enhance the music listening experience. 1)
Adding a toggle button that allows users to exchange be-
tween video watching and music listening. Users can use
their fingers to 2) zoom in or out of the video to adjust
its size. Previously, users had to click the video to access
playback and skip buttons, but we located 3) the playback
bar and related functions at the bottom of the video. We
also made the 4) repeat button more visible. We added
5) a toggle button to expand or shorten album information
or lyrics, and made 6) comments expandable in a similar
manner, with a function for users to pin comments they
want to keep visible. We added 7)a filtered recommenda-
tion feature to suggest reduced-size videos based on spe-
cific user-selected filters. This allows for easier exploration
of related content through horizontal scrolling.

The findings of this research hold potential for applica-
tion across a variety of streaming services. Features such
as advanced search functions, customizable menus, and en-
hanced playlist capabilities can improve user engagement
and satisfaction. Effective presentation of music-related
information enriches the listening experience, while ad-
ditional functionalities such as video zoom or comment

pinning foster a personalized user experience. These find-
ings can significantly benefit YouTube, as well as aid other
music streaming platforms like Spotify, Apple Music, and
Amazon Music, and video streaming services including
music videos, like Bilibili and Vimeo, in optimizing their
interfaces according to their unique characteristics and
users’ needs.

6. CONCLUSION

This study explored the music listening behaviors of
YouTube users and analyzed the advantages and disadvan-
tages of YouTube as a music streaming service. We pro-
posed new interface wireframes to improve usability and
re-examined YouTube’s role as a tool for music listening.
Undoubtedly, there are constraints in actualizing the pro-
posed interface fully on YouTube. Nevertheless, some sug-
gestions on improving visual satisfaction, comment explo-
ration, and toggle button to exchange the interface between
video watching and music listening mode could be consid-
ered in designing the overall interface of video streaming
platforms.

Our study has limitations depending on the small sam-
ple size of Korean users, and it is essential to consider
several important factors. Firstly, our interface design pri-
marily focused on mobile environments, which may limit
its direct applicability to other devices like PCs and TVs.
Secondly, the relatively narrow age range and educational
levels of our participants may affect the generalizability of
our findings. Thirdly, the absence of comparative studies
on similar video platforms and services hinders our under-
standing of YouTube’s performance as a video streaming
service. However, these limitations present opportunities
for future research to explore and address the diverse needs
of users across different devices, demographics, and video
services. Overall, our study provides valuable insights and
paves the way for further advancements in user-centered
design for music streaming services.
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ABSTRACT

We present FiloBass: a novel corpus of music scores and

annotations which focuses on the important but often over-

looked role of the double bass in jazz accompaniment. In-

spired by recent work that sheds light on the role of the

soloist, we offer a collection of 48 manually verified tran-

scriptions of professional jazz bassists, comprising over

50,000 note events, which are based on the backing tracks

used in the FiloSax dataset. For each recording we provide

audio stems, scores, performance-aligned MIDI and asso-

ciated metadata for beats, downbeats, chord symbols and

markers for musical form.

We then use FiloBass to enrich our understanding of

jazz bass lines, by conducting a corpus-based musical anal-

ysis with a contrastive study of existing instructional meth-

ods. Together with the original FiloSax dataset, our work

represents a significant step toward a fully annotated per-

formance dataset for a jazz quartet setting. By illuminating

the critical role of the bass in jazz, this work contributes to

a more nuanced and comprehensive understanding of the

genre.

1. INTRODUCTION

The role of the double bass (also known as the string bass

or upright bass) in jazz is nearly ubiquitous as a time

keeper, outliner of harmony and as an occasional soloist.

A key function is to play “walking bass”, where the har-

mony of the song is outlined by playing chord tones on

strong beats and linking them with arpeggio, scale or chro-

matic movements on the remaining beats in the bar. This

style has emerged as a way to provide a rhythmic and har-

monic foundation to support a soloist. We believe that the

harmonic techniques that performers use to outline chord

changes could provide important information for enhanced

understanding of jazz from an MIR perspective, e.g. for

generative models. Due to the relatively simple rhythmic

vocabulary, this style lends itself to algorithmic approaches

which reduce the problem to beatwise pitch predictions, as

discussed in Section 2. However, we recognize that this is

a simplified view of bass performance, as bass lines also

© X. Riley and S. Dixon. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

X. Riley and S. Dixon, “FiloBass: A Dataset and Corpus Based Study of

Jazz Basslines”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

contain rhythmic subtleties and other nuances which serve

to increase the interest and texture of the music over time.

The FiloSax dataset [1] addressed a need for high qual-

ity annotations [2] to enable downstream tasks like auto-

matic music transcription, score layout and performance

analysis. Building on this, we address the need for simi-

larly high quality data relating to the double bass as used

in jazz, by turning our attention to the backing tracks used

to create that dataset. The backing tracks are taken from

the Aebersold series 1 and include performances by pro-

fessional musicians.

Given the high quality of the bass playing on these

tracks, we provide fine-grained annotations to allow for

detailed stylistic and harmonic analysis. We believe that

this represents the first large scale dataset to include de-

tailed performance timing for jazz bass, which in turn

should allow for more realistic generative modelling appli-

cations and better results for automatic transcription mod-

els. The transcriptions have been carried out using a semi-

automatic pipeline which we describe in Section 3. Each

note was checked manually and additionally proof-read

by a professional jazz bassist. We also publish the ex-

tracted audio stems together with the transcriptions us-

ing the SoundSlice platform 2 to allow for easy browsing

and evaluation 3 . Audio, MIDI and MusicXML artefacts

along with the code to produce our analysis are available

to download via the same site.

2. RELATED WORK

Despite the important role of bass in the jazz genre, study

of this subject has often relied on fully manual transcrip-

tions which are extremely labour intensive to produce (see

[3] for an example). To address the need for data on a

larger scale, important work was led by Abeßer et al. into

automatic transcription of bass lines in a jazz context [4–6].

One of the motivations for their work was the idea that ac-

curate bass transcriptions may be used to derive informa-

tion about the harmony of a song, which in turn could aid

with the task of automatic chord estimation. This resulted

in 41 automatic bass transcriptions (with manual verifica-

tion) as part of the Weimar Jazz Dataset [7] (WJD). These

are beat-wise pitch transcriptions, meaning that they are

only a partial annotation of the performance, omitting in-

1 http://jazzbooks.com/jazz/JBIO
2 https://www.soundslice.com/
3 https://aim-qmul.github.io/FiloBass/
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Figure 1. Flow diagram describing the main stages of the proposed method.

formation about rhythmic details, which may limit the use

of this dataset in some downstream tasks such as perfor-

mance analysis or generative modelling. Recent releases

of the WJD dataset have included a further 415 fully auto-

matic transcriptions of the bass notes for each beat.

The RWC-Jazz database [8] (a subset of the widely

cited RWC dataset) provides audio and aligned MIDI an-

notations for 5 pieces, which have multiple recordings

across a number of different instrument groupings which

include bass. Bass is included on 37 recorded tracks which

total around 3 hours of audio, however the audio is synthe-

sised from samples of isolated notes and is mixed rather

than provided as individual audio stems. This allows for

accurate alignment at the expense of some realism in terms

of articulation and dynamic range.

Formal research into walking bass has also focused on

rule-based generation for modelling bass performances [9].

By incorporating rules described in instructional materials

for learning jazz bass, the authors were able to construct a

hidden Markov model (HMM) which produced musically

relevant results according to subjective listening tests. The

authors mention a lack of training data for this task and

also note that they were unable to model anything beyond

beat-wise pitch estimation.

Outside of the jazz genre, Araz [10] describes a pipeline

for transcribing bass lines from electronic music. This ap-

proach relies on source separation to extract a bass stem

before transcribing it to quantised MIDI. This approach as-

sumes that the music is recorded at a fixed tempo, which

is usually the case for electronic genres however this is

not usually the case for jazz performances. The Med-

leyDB [11] dataset provides a large corpus of multitrack

audio recordings. Of these, 71 have been and annotated

and resynthesised using the process described in [12] to

produce the MDB-bass-synth dataset. This dataset is pri-

marily aimed at training and evaluating framewise pitch

estimation (f0) methods. We also note the IDMT-SMT-

Bass dataset [13] which provides individual recordings of

each note on an electric bass with a variety of playing tech-

niques. This may be a good basis for a synthetic dataset

to approach similar tasks. A summary of the available

datasets is shown in Table 1.

3. METHODOLOGY

We now describe the process used to create the dataset

which is summarised in Figure 1. We would like to em-

phasise that the work was carried out by the main author,

a semi-professional bassist, and later checked and verified

by another professional jazz bassist. Despite the use of

automatic methods, every note was checked manually at

least twice as a result. While this process was expensive in

terms of time spent, the resulting increase in accuracy will

provide a solid foundation for future methods.

3.1 Audio Recordings

All of the 48 backing tracks in this dataset are recorded in a

standard format using professional jazz musicians. Details

of the performers are shown in Table 2. They feature a jazz

trio (piano, bass and drums) with bass panned to the left,

drums panned centrally and piano panned to the right. This

allows for convenient separation of bass and drums by us-

ing a single channel of audio. We are able to further isolate

this single channel to obtain a bass stem using the Demucs

source separation tool [14]. The producers of these tracks

(Aebersold) have a catalogue of over 1300 tracks recorded

in a similar fashion, which means that this approach could

be applied to additional tracks in the future.

3.2 Transcription

For the initial transcription of performance MIDI, we opted

to use the commercial program Melodyne 4 , specifically

their “Melodic” detection algorithm. This is more typ-

ically used for editing vocal performances, however the

pitch tracking and note segmentation proved to be broadly

accurate for the separated bass stems. The program also of-

fers a convenient interface to edit onsets and pitches man-

ually in cases where the automatic analysis was judged to

be incorrect. Each of the 48 scores were loaded into Melo-

dyne and manually corrected where necessary.

To produce a score from the performance MIDI we em-

ployed a multi-step process. The first step was to import

the existing downbeat annotations from the FiloSax dataset

into Melodyne. We then used the “Make tempo constant”

feature of Melodyne to produce a new file in which vari-

ations in the tempo were removed and the note positions

rescaled accordingly. For those without access to Melo-

dyne, we note that a similar result could be achieved us-

ing the adjust_times function from the PrettyMIDI li-

brary [15].

4 https://www.celemony.com/en/melodyne/

what-is-melodyne
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Name Annotation Method Audio sources Sync. level Track count Duration (s) Note count Additional Metadata Scores

WJD Bass Automated + Manual Audio mix Beat 41 1851 5000 Downbeat, Chord No

WJD v2.2 Automated Audio mix Beat 456 49010 122540 Downbeat, Chord No

MDB-bass-synth Automated Audio mix, Audio stems Frame 71 14393 N/A None No

RWC-Jazz Manual Audio mix Note 37 10878 19183 Downbeat, Chord No

IDMT-SMT-Bass N/A Individual notes N/A 12960 4300 None No

FiloBass (ours) Automated + Manual Audio mix, Bass stem Note 48 17880 53646 Downbeat, Chord Yes

Table 1. Comparison of existing bass datasets

Name Track count Note count Born

Christian Doky 1 1401 1969

Dennis Irwin 1 1321 1951

John Goldsby 3 2564 1958

Lynn Seaton 1 1278 1957

Michael Moore 1 753 1945

Ray Drummond 2 2181 1946

Ron Carter 5 5885 1937

Rufus Reid 14 15280 1944

Steve Gilmore 10 12323 1943

Todd Coolman 3 3952 1954

Tyrone Wheeler 6 5474 1965

Wayne Dockery 1 1050 1941

Table 2. Details for each bassist in the dataset

From this constant tempo version, we export a MIDI

file from Melodyne and then import this into MuseScore

3 5 using their MIDI import procedure. This was found

to work better when the tempo was made constant first.

This yields a score representation, however the variations

in timing can produce non-idiomatic representations in the

score which need to be corrected. This was done by export-

ing MusicXML and performing the final corrections using

the SoundSlice platform, which allowed the transcription

to be edited with reference to the synchronized audio from

the original bass stem. Chord annotations are then copied

from the FiloSax metadata and all 48 scores were checked

by a professional jazz bassist to ensure accuracy and read-

ability.

Finally, we used the alignment method proposed by

Nakamura et al. [16] to realign the final score represen-

tation to the original MIDI performance data. This step is

necessary to obtain a 1-to-1 correspondence in note anno-

tations between score and performance MIDI. However,

after working with these annotations we found that the

timing information in the performance MIDI produced by

Melodyne was not of sufficiently high quality. This re-

sulted in issues when evaluating automatic transcription

methods (see 5). To improve the alignment quality further,

we align the MIDI to the model activations of a pre-trained

guitar transcription model following the work of Maman

and Bermano [17]. The realigned MIDI outputs are in-

cluded in the final dataset.

5 https://musescore.org/en

3.3 Repeated Passages

During the construction of the original FiloSax dataset, one

of the objectives was to capture a consistent amount of

saxophone data for each track. Since the original backing

tracks varied in length, the authors edited the original back-

ing tracks to repeat certain sections (usually complete cho-

ruses) in order to meet their criteria. This impacts the pro-

duction of this dataset in that some passages are repeated

exactly, however they were transcribed by treating them as

a complete performance. This may lead to slight variations

in how the rhythmic figures are notated which may be an

issue for certain downstream tasks, for example introduc-

ing a bias in generative models. We recognise this and will

provide instructions on how to remove the repeated sec-

tions if desired. Otherwise we provide transcriptions for

each track in its entirety to allow for easy alignment with

the existing FiloSax data.

3.4 Double Stops, Grace Notes and Ghost Notes

The source material used for this dataset is predominantly

monophonic in nature, however the performers do make

use of double stops (polyphony) in some places. We have

transcribed these in the score and alignments but we also

provide a monophonic version of the dataset with a view

to ease of use in downstream tasks. The use of effects

such as grace notes (extremely short notes) or ghost notes

(where the string is partially or fully dampened to produce

a percussive sound) is prevalent throughout the dataset and

these can be viewed as an important aspect of the style. A

guiding principle for producing the score representation is

that they are readable by a sufficiently experienced bassist.

With this in mind, we have notated ghost notes where these

can be clearly heard on the recording however in cases

where these effects were judged to be subtle or fleeting

we have omitted them. We understand that this approach

could be seen as subjective but we did so to prioritise the

goal of making a readable and idiomatic score output over

a completely consistent yet less readable score.

3.5 “Common Practice” versus Real Performance

The backing tracks used to create this dataset were origi-

nally conceived as practice aids for instrumental soloists.

As such, the performances on these tracks could be viewed

as a sort of “common practice” of jazz accompaniment.

The performers focus on outlining chord changes and

rhythms clearly to allow the soloist to focus on their

role. This aspect of the data makes it a valuable example

for studying how these accompaniments are constructed.
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However, they may not be entirely representative of perfor-

mances from live or studio recordings, as musicians may

be more inclined to take musical risks in those settings. For

this reason, the figures that we derive in our later analysis

might not be fully representative of live or studio perfor-

mance. A comparison is a potential area for exploration in

future work.

3.6 Dataset Contents and Distribution

The final dataset comprises 48 tracks with contents as fol-

lows: Melodyne project files, audio mixes, isolated bass

stems (from source separation software), performance-

aligned MIDI with velocity information, and music scores

in MusicXML format. We also include metadata which

was compiled as part of the FiloSax dataset which includes

timings for chords, sections, beats and downbeats.

As discussed in [1], the backing tracks themselves are

subject to copyright restrictions so we are unable to release

these. However, we provide instructions on how to obtain

the files from the original provider. All other assets (in-

cluding the source-separated stems) will be made freely

available to researchers.

4. ANALYSIS

We now present a corpus analysis of the data in which

we demonstrate the potential for insights on a musical

level. As a starting point, we seek to answer some queries

about the harmonic and rhythmic functions of a typical

walking bass line as represented in the data. A number

of commercial jazz bass methods from different authors

are summarised in [3] which we will refer to where ap-

propriate. All analyses which follow were derived from

the dataset by converting note-level information to a Pan-

das [18] dataframe using the Music21 Python library [19].

The queries used to perform the analysis will be released

alongside the dataset.

4.1 Chord Degrees Used in Bass Line Construction

As jazz performance is a cultural practice, a strict set of

rules for bass line construction has not been established.

However, given the size of the proposed dataset we can

start to provide a quantitative analysis of the choices made

by performers during their improvisations.

Concerning the question of which chord degrees are

favoured by the player, we analyse the function of each

note in the dataset as it relates to the chord being played

underneath it. In Figure 2 we see that bassists will favour

the root note of the chord when constructing walking bass

lines, as these are used in 32.7% of all notes played. This

is rather basic from a musical perspective, but we can

now point to data that bolsters existing empirical obser-

vations. When we examine the note played at each new

chord change event, we see from Figure 2 that the use of

chord roots is even more prevalent, with the proportion ris-

ing to 67.9% of the total. This reflects the role of the bass

in outlining the harmony of the song.

Figure 2. Global distribution of chord degrees

4.2 Use of Rhythmic Fills versus Quarter Note Pulse

In his educational method book, bassist Ron Carter [20]

describes the process of adding rhythmic interest, or “fills”,

to a line. However, he cautions the student “not to overdo”

their use before advising that: “personal tastes and judge-

ment will govern this area of your playing”. We can make

an attempt to quantify this more precisely by examining

what percentage of measures in the dataset contain a sim-

ple set of 4 quarter notes, and which deviate from this. We

find that 62.81% of measures are indeed 4 quarter notes.

While this is not a substitute for developing good taste,

knowing this percentage might help in guiding a more an-

alytical player.

4.3 Deriving Common Patterns

The annotations in this dataset also allow us to examine se-

quences of chord degrees that are commonly used in bass

line construction. Over the 6400 chord symbols annotated,

3900 distinct patterns of chord degrees over chords are

played. The 5 most common patterns for a chord lasting

4 beats are shown in Table 3. From these we can see a

preference towards using tones from major and minor tri-

ads (i.e. 1, ♭3, 3 and 5). Given that the root movements in

jazz are often perfect 4ths apart, we see that a number of

the patterns approach the 4th via tones or semitones (i.e.

from ♭3, 3, ♭5 or 5). This analysis of patterns only consid-

ers the chord degree, however a more detailed examination

of patterns including sequential ideas and motifs is a sub-

ject of future work.

4.4 Semitone and V-to-I Approaches

In “Creating Jazz Basslines”, author Jim Stinnet empha-

sises the use of semitone approaches. This is where target

notes which fall on strong beats or chord changes are pre-

ceded by a note which is a semitone above or below the tar-

get (described in [3]). In this dataset we observe that this

is indeed common, with ascending and descending semi-

tones being the most often used intervals overall as shown

in Figure 3. For notes which land on chord changes, semi-
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Table 3. The five most common chord degree n-grams for

7898 chord instances lasting 4 or more beats. Examples

are notated in C major for illustration.

tone approaches are even more prevalent. We summarise

the most common intervals to approach chord changes (tar-

get tones) in Table 4.

In the “Walking Bassics” by Fuqua, Zisman, and Sher

(described in [3]), the authors advocate the use of V to

I movements for students however our data suggests that

this is relatively uncommon in practice (9.66% ascending

a perfect fourth and 4.30% descending). This is an inter-

esting example of an idea that seems intuitive in theory (V

to I is a strong bass movement for walking bass) but is not

reflected in practice.

4.5 Step, Leap or Staying Put?

As we have seen in Section 4.1, in the majority of cases the

performer will aim to play root notes when a new chord ar-

rives but this leaves the question of how these root notes

are typically connected together into a musically pleasing

line. From the data, we can examine whether performers

tend to use step-wise motion (tones and semitones), larger

intervalic leaps (minor thirds or greater) or whether they

choose to repeat a note. Looking at Figure 3 we see that

there is a slight preference toward using step-wise motion

(the largest group at 47.5%). Viewing the interval distribu-

tion plot we can also see that intervalic leaps are slightly

more likely when the line is ascending especially for the in-

terval of 5 semitones which corresponds to a perfect fourth.

Approach Interval to target Count % of total

DZ↘ C −1 4318 26.75

B^↗ C +1 3384 20.97

BZ↗ C +2 1921 11.90

G ↗ C +5 1560 9.66

C → C 0 1172 7.26

G ↘ C −7 694 4.30

D ↘ C −2 656 4.06

Table 4. The most common intervals used to approach a

chord change (totalling 16141 events). For illustration all

approaches are shown relative to a target tone of C.

Figure 3. Distribution of intervals, grouped as step-wise

movements (2 semitones or less), leaps (3 or more semi-

tones) or repeats (no change from the preceding note).

4.6 Melodic Contour

The performer has a number of parameters available when

improvising a bass line, one of which is the direction of the

line. Sigi Busch (summarised in [3]) refers to the idea of

“voice leading” within a bass line to link important chord

tones while maintaining a direction, but none of the other

methods summarised in [3] advise on how to choose di-

rections or when to change them. Referring to the data

now, we can see in Figure 4 that a high number of changes

in direction is preferred, with the mean length of a se-

quence before a change falling at 2.46 notes. Intriguingly,

the distribution of sequence lengths exhibits a power law.

This phenomenon has been observed in several cases when

analysing symbolic music corpora [21] but to our knowl-

edge this is the first evidence in relation to walking bass

lines.
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Figure 4. Sequence length (number of intervals) of lines

maintaining a constant direction.

CREPE Notes Basic Pitch Melodyne

Rno 74.11± 12.09 81.28± 6.26 79.52± 14.77

Pno 71.81± 13.33 51.40± 6.28 78.48± 15.41

Fno 72.89± 12.68 62.73± 5.55 78.95± 15.02

O 78.77± 2.68 65.24± 4.51 87.94± 3.91

Table 5. Automatic note transcription results for FiloBass,

showing mean scores and standard deviation for Recall,

Precision, F-measure and Overlap. Only onsets were eval-

uated and a timing tolerance of 50ms was used.

5. AUTOMATIC TRANSCRIPTION BASELINE

Using the accurate alignment data we have collected, we

provide initial results for automatic note transcription —

a bass line baseline. An exhaustive appraisal of transcrip-

tion accuracy is beyond the scope of this work but we hope

these results will encourage the use of this dataset in re-

lated future work.

We use the mir_eval [22] library to calculate pre-

cision, recall, F-measure and overlap scores. A default

threshold of 50ms was used and only onset timings were

considered. This is due to the difficulty of assessing off-

sets, as described in [23]. Three methods are examined for

this task; the “Basic Pitch” package described in [23], the

“CREPE Notes” method proposed in [24] and the commer-

cial software Melodyne using the “Melodic” algorithm.

The results from Melodyne were not manually corrected

for this evaluation. Results for all methods are shown in

Table 5. We see from these results that the proprietary

commercial software outperforms the best research solu-

tions for this dataset, however a significant amount of work

is required to correct the remaining errors. During this

work we also appreciated the Melodyne UI for note editing

during our manual correction process. We note that similar

projects in future may benefit from open source tools that

allow a more streamlined note correction workflow.

6. DISCUSSION AND FUTURE WORK

In collating a dataset and performing a corpus analysis with

reference to jazz bass methods, we hope to have provided

useful insights into the role of the bass in jazz. The analysis

provided here is not exhaustive however, and we hope that

future research can reveal more about the mental model

that performers use when constructing their bass accompa-

niment. In particular we hope to examine the role of tim-

ing, dynamics and use of sequential ideas in further work.

We are also interested in pairing the FiloBass data with

the FiloSax data for further analysis. The relationships

between bass line and melody in a jazz setting could be

explored further, with a view to developing more realistic

generative models for both bass lines and solos.

We believe that the dataset has a wide number of po-

tential uses beyond musicological analysis. Recent work

on automatic music transcription (AMT) has highlighted

that performance can be improved as more data is made

available [2] and this dataset can help to address this need.

An additional task which we hope to address in future

is that of automatic chord estimation (ACE). Following the

hypothesis of Abeßer et al. [4], we believe that this data

could be used to train a system to estimate chords from

the bass line directly. Chord estimation is a particularly

challenging task in the jazz setting due to the rich harmonic

vocabulary so novel approaches here may be welcome.

The scores which were produced as part of this data

should also be valuable to researchers, as they provide a

potential source of training data and evaluation for mono-

phonic score processing tasks. In particular, they will be

useful for rhythmic parsing (quantisation), automatic score

layout and related sub-tasks such as spelling of accidentals.

7. CONCLUSIONS

We present FiloBass: a new dataset for jazz bass lines.

Making use of the detailed annotation data, we are able

to demonstrate a quantitative approach to reinforce tradi-

tional musicological analysis of the role of the bass in jazz

performance.

Through examination of this dataset we demonstrate

that a number of rules put forward in jazz bass method

books are supported by larger scale data. These can be

summarised as follows: the root note of the chord is usu-

ally played on the first beat of a new chord; this root is ap-

proached via a semitone step where possible; the rhythm

comprises a quarter note pulse most of the time; a balance

is maintained between ascending and descending contours.

We are aware though, that any analytical project of this sort

cannot be truly comprehensive and can only offer a guide

to the performer. The musical context and the taste and ex-

perience of the musician will determine when to follow the

“default” most likely path and when to choose a different

route.
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ABSTRACT

In this paper, we propose four different approaches to

quantify similarities of compositional texture in symbol-

ically encoded piano music. A melodic contour or har-

monic progression can be shaped into a wide variety of

different rhythms, densities, or combinations of layers. In-

stead of describing these textural organizations only lo-

cally, using existing formalisms, we question how these

parameters may evolve throughout a musical piece, and

more specifically how much they change. Hence, we de-

fine several distance functions to compare texture between

two musical bars, based either on textural labels annotated

with a dedicated syntax, or directly on symbolic scores.

We propose an evaluation methodology based on textural

heterogeneity and contrasts in classical Thema and Vari-

ations using the TAVERN dataset. Finally, we illustrate

use cases of these tools to analyze long-term structure, and

discuss the impact of these results on the understanding of

musical texture.

1. INTRODUCTION

The term texture is used at various levels of description in

the music domain. Initially related to the description of

sound features, it is also used in symbolic representations

of music to describe musical streams through a variety of

concepts characterizing the volume and the organization

of basic score elements such as notes and voices, which

encompass high-level concepts such as monophony and

polyphony 1 [1–4]. Between these two extremes, elements

of musical texture include layers, voices, melodic or rhyth-

mic patterns, articulation and instrumentation [2,5]. Huron

interestingly summarizes it in three main ideas [3]: (1) the

density of musical elements, (2) the diversity or inhomo-

geneity of elements, and (3) the overall sonic activity. The

first two can be included in the notion of compositional

1 Polyphony, as a type of texture, has a stronger meaning than “the
simultaneous presence of possibly more than one note”. Here, it implies
“two or more lines moving independently” [1]. Similarly, monophonic
texture is not restricted to single melodies, but designates the presence of
a unique musical line – possibly with note doubling or parallel motions.

© L. Couturier, L. Bigo, and F. Levé. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: L. Couturier, L. Bigo, and F. Levé, “Comparing Texture

in Piano Scores”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

texture, as opposed to orchestral (or timbral) texture [6].

Compositional texture, which is the object of study of the

present work, is mostly embedded in the symbolic score.

It is worth noting that some models of texture only focus

on a particular musical dimension. Nordgren’s categoriza-

tion for instance deals with the vertical dimension only,

with note doubling and spacing [7]. Conversely, other ap-

proaches focus on the time dimension, as a complement

to harmony, as in [8], or [9] for style-transfer. Figure 1

shows multiple versions of the same musical theme, which

is shaped into different compositional textures.

We aim at quantifying the differences of compositional

texture in piano music. Previous studies provided local de-

scriptions of texture [10–12]. Here, we question how textu-

ral dimensions may evolve through a whole piece of music.

This objective requires the elaboration of dedicated tools to

compare textures, more precisely to assess the distance, or

dissimilarity, between two given textural configurations.

A number of Music Information Retrieval (MIR) tasks

involve the search of similarities at various scales, from

pattern detection [13, 14] to genre classification [15, 16].

In the audio domain, music similarity lies at the center

of content-based recommender systems [17, 18]. At the

level of the musical score, music similarity has also been

extensively studied on specific musical notions such as

melody [13–15,19–22], rhythmic pattern [23,24], or chord

and harmonic progressions [25–27]. Classical approaches

for computing similarities include edit-distance on string-

based representation, or geometric distance on pianoroll-

like representations [28]. New latent embeddings of music

also emerged from development of deep neural networks,

as well as metric learning methods, like [29]. Although

measures of music similarity may ultimately reflect some

similarities in the perception of music [30,31], we compare

textural information based on symbolic music scores only.

In particular, we focus here on studying different represen-

tations of texture in order to build interpretable dissimilar-

ity measures.

In this work, we propose distance functions to quan-

tify textural dissimilarity between musical bars from piano

scores. We first detail four types of textural distance (Sec-

tion 2). Then, we introduce estimators of textural hetero-

geneity and contrast, for longer musical extracts, and pro-

pose a dedicated methodology to evaluate our distances,

using a dataset of Thema and Variations (Section 3). Fi-

nally, we provide use cases of such distances, especially in

the context of form or structure analysis (Section 4).
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Figure 1: Examples of different textures from Ten Variations in G on ‘Unsere dummer Pöbel meint’ by W. A. Mozart

(K. 455, 1784). A textural annotation, following the syntax defined in [10], is provided for each example. The melodic

contour (circled in red) is shared among the variations, but the overall compositional texture changes. a. The theme is

introduced in monophonic texture: three voices merge into a single musical idea, in parallel octave motions; b. There

are now only two notes sounding at the same time: the vertical density decreases. But horizontal density is increased by

sixteenth notes; c. A more homophonic texture: three or four threads, mostly synchronous; d. Here, we identify two layers

of melody and accompaniment. In these last three bars, the harmony changes, but compositional texture is exactly the same.

2. DEFINING DISTANCES FOR

COMPOSITIONAL TEXTURE

The distances that are designed in this paper aim at com-

paring compositional texture at the scale of individual mu-

sical bars. We focus on (polyphonic) piano scores of the

Western Classical repertoire, with no voice separation.

2.1 Distances based on textural labels

Textural annotations have been produced in [6] for piano

music, on Mozart’s sonatas. For each annotated bar, a la-

bel enclose two levels of textural information: on the one

hand, a set of keywords that indicate the presence of certain

properties of the overall textural configuration, or in one of

its layer (like parallelism, melodic or harmonic roles...);

on the other hand, a vertical structuration of the musical

content into main textural layers and sublayers [10]. We

propose two distance functions based on this information.

2.1.1 Distance between textural elements

The first distance is based on a set of binary textural ele-

ments which have been defined in [6, section 3.2]. These

indicators express the presence of atomic textural charac-

teristics in a musical bar. They include specific functions

of the musical layers: melodic (M), harmonic (H), or static

(S), relationships between voices: homorhythmy (h), par-

allel (p) or octave (o) motions, as well as characteristic

musical figures such as sustained (t) or repeated (r) notes,

scale motives (s), oscillations (b), sparse horizontal den-

sity (_) and neat changes of texture in the bar (,).

A musical bar a is therefore abstractly represented by

a vector texel(a) which comprised of the 12 textural ele-

ments from its label. The distance function dtexelreturns

the Hamming distance between the vectors. It is an inte-

ger between zero and 12 that corresponds to the number of

textural elements that differ between two bar annotations:

dtexel(a, b) =
12
∑

i=1

|texeli(a)− texeli(b)|

where a and b are two musical bars, and texeli(·) the binary

value of the ith textural element of a given bar.

2.1.2 Textural diversity and density

At a higher level of description, textural annotation of pi-

ano scores mainly focus on grouping threads 2 of notes

into distinct musical layers. Examples 1.a and 1.d both

have three threads, but they are organized differently. In

1.a, they merge into a single layer. On the contrary, in 1.d,

the threads are divided in 2 main textural layers: its texture

is more diverse than 1.a without being thicker.

This grouping of threads is formalized in [10] under

the terms of density (number of threads, of simultaneous

sounding notes; the thickness or density-number in [2])

and diversity (number of distinct layers). These two di-

mensions allow to embed any textural label in the planar

textural space represented in Figure 2 (left).

The density-Diversity distance ddD separating two bars

is defined as the Euclidean distance between their labels in

this space. In previous examples, the first bar of 1.a and

1.d respectively have density-diversity coordinates of (3,1)

and (3,2), resulting in a distance of 1.

Note that this distance only takes into account the verti-

cal dimension of compositional texture (as in [7]). A draw-

back of restricting textural analysis to only two dimensions

is that it is less sensitive to small textural fluctuation: as an

example, the 1164 labels released by [6] only use 17 dis-

tinct combinations of density and diversity values. Never-

theless, this condensed description allows an interpretable

2 The term ‘thread’ designates the most atomic elements that can be
combined into musical ‘layers’ [5, p.65].
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Figure 2: Schematic representations of textural spaces

proposed respectively by Couturier et al. [6] (left) and

Huron [3] (right). In both case, areas of the space are

matched to main types of texture [1, 4]. The boundaries

are not strict, though. The four examples of Figure 1 are

also represented in these spaces.

approach for high-level analysis, as it reflects main textural

strategies (see Figure 2).

2.2 Score-based distances

The distances defined in Section 2.1 are based on

manually-annotated textural labels. Such textural annota-

tions are however rarely available as their production re-

quires substantial time and expert knowledge. In contrast,

this section presents two distance functions that can sys-

tematically be computed on encoded musical scores.

2.2.1 Adapting Huron’s textural space

Another two-dimensional textural space has been proposed

by Huron in [3]. It is used in this article to catego-

rize full musical pieces among main types of texture (see

also [1]): polyphony, monophony, homophony and het-

erophony, represented on Figure 2. Instead of analyzing

the quantity and grouping of musical threads (see Section

2.1.2), it relies on the relationships between them: the pro-

portions of onset synchronization and semblant motions.

The original study used a pre-existing separation of

voices in the pieces (such as Bach’s Inventions and Sin-

fonias) to compute these features. For both of them, we

provide an estimation of the value in the interleaved poly-

phonic case – i.e. without separation of voices. Note that

it is not always possible to find a valid and unique voice

separation in piano scores [32]. The details of the imple-

mentation, out of the scope of the article, can be found in

the dedicated repository 1 . They are:

• The ratio of onset synchrony quantifies the degree

of homorhythmy of the note onsets. A value of 1

indicates a perfect synchronization of note onsets,

which is the case in monophonic (see Figure 1.a)

or homophonic (chordal or hymnal) textures. This

value decreases if note onsets happens while other

notes are sustained. For example, 1.b has a value of

0.25: in this case, only one onset over four is fully

synchronous.

1 Available at http://algomus.fr/code.

• The ratio of semblant motions estimates to what

extent the directions of pitch motions are similar.

These feature has its maximal value in the case of

monophony, once again, whereas the presence of

multiple concurrent layers with opposite motions

will reduce its value.

We use these dimensions to build a new distance

dhuron(the Huron distance) between two bars, which is ob-

tained by summing their differences of onset synchrony

values and semblant motions values, using our implemen-

tation in the polyphonic interleaved case. This corresponds

to the Manhattan distance between their respective coordi-

nates in this textural space.

2.2.2 Features of density

We present a last set of three distances based on low-level

textural features, focusing on vertical and horizontal den-

sity. On the one hand, vertical density refers to the thick-

ness of the texture, the number of simultaneous notes –

similarly to the density evoked in Section 2.1.2. On the

other hand, horizontal density describes the volume of suc-

cessive notes, and their position in time. For both dimen-

sions, we use a value of volume and a value of dispersion:

• vert_avg: average thickness, in number of notes.

After slicing the bar into successive pitch sets, we

count the number of pitches in each slice, weighted

by their duration.

• vert_std: standard deviation of the number of

pitches in each onset of one or more notes.

• horiz_avg: average number of onsets per beat.

The duration of one beat is inferred from the bar time

signature.

• horiz_std: standard deviation of the regularity

of onsets, i.e. around the average duration between

successive onsets.

We use Manhattan distance to compare two vectors of

features, computed on two target bars. We define and test

three variants of this distance: based on the two horizontal

features only (dh), on the two vertical ones (dv), or on all

the four (dhv).

2.3 Implemention details and release

The features are extracted from the musical scores using

intermediate Tab-Separated Values (TSV) files, which con-

tain a list of notes (see [33]). The code 1 , in Python,

includes a converter to this format from both Hum-

drum **kern [34] and musicXML formats, using music21

Python library [35].

3. EVALUATING TEXTURAL DISTANCES

3.1 Dataset

To evaluate the relevance of the distances proposed in

the previous section, we use bars from classical Thema
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and variations. [36] emphasizes the links between musical

variations in general, and musical similarity. In the genre

of Thema and variations, a theme is reproduced in short

sections with various changes of (textural) parameters, but

in a way that allow to recognize the original melodic con-

tour and/or harmony; as in Figure 1. This structure has the

advantage of providing both dissimilar examples (in dis-

tinct variations), and similar examples (in the same varia-

tion).

Although no explicit mention of textural homogene-

ity within variations has been found in musicological lit-

erature, authors more often insist on the higher contrast

between distinct variations [37, p.570]. The genre of

Thema and variations provides “the largest esthetic spec-

trum” [38], and this variety of content is valuable in our

case. We rely on this fundamental assumption for the rest

of the paper: on average, a musical bar is more similar –

in texture – to a bar from the same musical phrase, than to

any other bar in another variation or piece.

We use the TAVERN dataset [39], which consists in 27

sets of thema and variations by Mozart (10) and Beethoven

(17). The variations are already segmented into structural

phrases, totalling 1060 of them in the whole dataset. We

take those phrases as structural units in which we use the

score-based distances defined in section 2.2. Further anno-

tations of texture would be required to apply label-based

distances on this dataset.

Remark. The texture of phrases can vary within the

same variation, to a lesser extent – this is generally the

case in bipartite or tripartite variations, which is a common

structure in this context [37, 38]. Changes of mode (ma-

jor/minor) often occur, in general at least once per set of

variations. This change is not considered as textural, but it

is often accompanied by changes of other musical param-

eters that are in the scope of texture, so it would still add

valuable information.

3.2 Heterogeneity and contrast

To evaluate textural dissimilarities on full musical extracts,

we introduce two indicators:

• heterogeneity: the heterogenity (hd) within a single

set of bars corresponds to the average distance be-

tween pairs of distinct bars from the set, for a given

distance function d.

• contrast: the contrast (cd) between two sets of bars is

defined as the average distance value between pairs

of bars from the two extracts, for a given distance

function d.

More formally, we have:

hd(S) = avg
∀(mi,mj)∈S2,i ̸=j

d(mi,mj)

cd(S1, S2) = avg
∀mi∈S1,∀mj∈S2

d(mi,mj)

where avg is the arithmetic mean operator, S, S1 and S2

are sets of bars, and mi, mj denote bars/measures in those

sets.

Figure 3: Schematic representation of the computation of

heterogeneity of a specific phrase (arcs above) and contrast

(links between the bars of phrase P and all the other bars

outside P, in the corpus T). Our evaluation metric is the

average value of this ratio for all the phrases of the corpus.

The heterogeneity is a measure of dispersion: a lower

value means that samples in the extract are more similar

between each other (given a distance d). We specifically

ignore the comparisons of a bar with itself to reduce the

influence of the size of S.

Let us illustrate those two indicators for the descriptor-

based distance dhv (Section 2.2.2) using examples Fig-

ure 1.a and Figure 1.d. We note Sa = {bars of Fig-

ure 1.a} = {a1, a2} and Sd = {bars of Figure 1.d} =
{d1, d2, d3}. In Sa, the heterogeneity is simply equal to

the distance between its two bars: small differences occur

in horizontal density, but not in vertical density. We ob-

tain a value of 0.6. To compute the heterogeneity in Sd,

we have three possible unordered pairs of bars to com-

pare ({d1, d2}, {d1, d3} and {d2, d3}); however, the tex-

ture in these bars is precisely the same regarding dhv , re-

sulting a in value of zero of heterogeneity. The inequality

hd(Sa) > hd(Sd) can be interpreted as “Sa is more tex-

turally heterogeneous than Sd, with regards to distance d”.

The contrast cd between Sa and Sd is 1.825. In general,

the inequality hd(Sa) < cd(Sa, Sd) means that a bar in Sa

is, on average, more similar to other bars in Sa than bars in

Sd.

3.3 Evaluation methodology

We evaluate how heterogeneous the texture is within each

phrases of the TAVERN dataset, compared to the rest of

the corpus. Under the assumption exposed in Section 3.1,

we assess the quality of a textural distance d by looking

for the lowest average Relative Heterogeneity on TAVERN

phrases (T):

aRHT (d) = avg
∀Pi∈T

(

hd(Pi)
cd(Pi, T \Pi)

)

where T is the set of all the phrases in TAVERN dataset, Pi

is the ith phrase of the dataset, and d is a textural distance

function between individual musical bars.

This process is schematized in Figure 3. For a given

phrase, if the ratio between intra-phrase heterogeneity and

inter-phrases contrast is very low, it means that the extract

is rather homogeneous, and that this texture – or whatever

the distance d represents – is rather specific to this extract

compared to the rest of the corpus. If this ratio is above 1, it

means that the bars in this phrase are more similar to other
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Distance d aRHT (d)

Horiz. and Vert. density features dhv 0.51

Horizontal density features dh 0.39

Vertical density features dv 0.64

Huron’s textural space dhuron 0.72

Comparison: Pitch class content dpc 0.80

Table 1: Evaluation of textural distances using the Average

Relative Heterogenity on phrases of the TAVERN dataset

(aRHT (d)), to minimize.

bars outside the phrases than between themselves. Put dif-

ferently: a value below 1 show that intra-phrase distances

(heterogeneity) are smaller than inter-phrases comparison

(contrast with the corpus). The value of aRHT (d) is the

average of this ratio on all the phrases of the corpus.

Remarks. We could directly compute values of contrast

or heterogeneity on reference data, using different textural

distance di and opt for the most convincing values. How-

ever, these values are not directly comparable if they are

based on different distances: they are average values of

specific distances, and thus follow their respective – and

possibly very different – order of magnitude. Also note

that the contrast is not a distance function (or metric) be-

cause the contrast between the same set of bars could be

different from zero – if its bars that are not all the same.

The functions presented in Section 2 are metrics, applied

to different representations of texture in a musical bar.

3.4 Results

The results, for all score-based distances, are shown in

Table 1. Using the distance based on all density features

(dhv), the aRHT of 0.51 indicates that a musical bar is, on

average, a twice more similar to bars in the same phrase

than to the rest of the corpus. The use of horizontal density

features alone (dh) improves this value (0.39), highlight-

ing the importance of the time dimension to discriminate

between textures.

For comparison, we integrate an additional distance

(dpc) that describe not textural but harmonic content – com-

puting Euclidean distance between pitch-classes profile.

Its aRHT of 0.80 is still below 1, which means that intra-

phrase dpcvalues (heterogeneity) are smaller than inter-

phrase comparison (contrast with the corpus); this is not

surprising in tonal music. But most importantly, this eval-

uation metric value is higher than for all other textural dis-

tances. This gap contributes to validate the use of Thema

and Variations as a source of empiric ground truth exam-

ples of textural similarities.

3.5 Links between distances

In Table 2, we display correlations between all the dis-

tances defined in Section 2. They are computed on all dis-

dhv dh dv dhuron ddD dtexel

dhv 1.00 " " " " "

dh 0.95 1.00 " " " "

dv 0.33 0.05 1.00 " " "

dhuron 0.10 0.10 0.05 1.00 " "

ddD 0.19 0.03 0.53 0.03 1.00

dtexel 0.10 0.06 0.14 0.01 0.20 1.00

Table 2: Spearman correlation between textural distances

as defined in Section 2, evaluated on all pair of bars in three

Mozart piano sonatas (K. 279, K. 280, K. 283).

dhv dh dv dhuron ddD dtexel

Horizontal density
(time dimension)

× × ×

Vertical density
(thickness)

× × × ×

Semblant motions,
parallelism

× ×

Roles of layers
(melody, acc. ...)

×

Main types of
texture (see Fig.2)

× ×

Computed on
symbolic scores

× × × ×

Computed on
annotated labels

× ×

Table 3: Summary of the distances defined in Section 2,

and the different dimensions of compositional texture that

they take into account.

tinct pairs of bars among 1160 from Mozart piano sonatas

(K. 279, K. 280, K. 283), for which we have both textural

annotations [6] and encoded scores [33]. We use Spearman

correlation, that depicts similarities of rankings of these

values.

Huron-space distance (dhuron) and texel distance (dtexel)

seem independant from other distances. We explain it by

the fact that our distances focus on different dimensions of

texture, summarized in Table 3. In particular, dtexelcovers a

wide range of abstract concept and is the only function that

deals with the roles of layers, which is difficult to approxi-

mate using low-level features. Otherwise, we find that us-

ing horizontal density features only (dh) gives a very simi-

lar behavior than using all four density features (dhv) – with

a correlation of 0.95. Although Density-Diversity distance

(ddD) and vertical-feature distance (dv) deal with very dif-

ferent level of abstraction, they correlates positively (0.53),

as they both focus on the vertical dimension of texture.
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Figure 4: Textural dissimilarities between the phrases of

Ten Variations in G on ‘Unsere dummer Pöbel meint’

by W. A. Mozart (K. 455, 1784). Intersections are col-

ored according to contrast values using dhvdistance (Sec-

tion 2.2.2), and heterogeneity of phrases on the diagonal

(Section 3.2). The phrases are scaled according to their

size in number of bars (totalling 338 in the whole piece).

The most similar extracts are shown in dark blue, whereas

light green indicates higher dissimilarity. – We identify

blocks of consecutive similar variations, such as (1,2,3) or

(5,6,7); inner structure of varations may reveal contrasting

segments in the case of Variation 4; Variation 9 is very con-

trasted due to the alternation between chordal texture and

fast melodic lines; the penultimate phrase comes back to

the original texture of the Thema.

4. USE CASES FOR STRUCTURE ANALYSES

4.1 Long-term textural dissimilarities

The contrast defined in Section 3.2 can be used as a dissim-

ilarity measure between any sets of bars, from individual

pieces to entire corpora. It may also emphasize the rela-

tionships between sections, or phrases, of a given piece of

music. Figure 4 shows an example of self-similarity ma-

trix based on textural contrast between phrases of a piece

in Thema and Variations form. Beyond the case of Thema

and Variations, the contrast measure gives an overview of

the piece macrostructure, and may even link thematic ma-

terial up to transposition, such as recapitulation parts in

sonata form. More generally, the proposed distances can

lead to promising and original approaches for automatic

structure segmentation.

4.2 Short-term textural changes

In this paper, we assume lower textural heterogeneity

within phrases of thema and variations. But in the gen-

eral case, changes of textures may occur in the middle

of a phrase. Following the intuition that in-phrase texture

changes mostly occur in openings and endings of phrases

in the TAVERN dataset, we evaluate dhvusing the same

methodology as in Section 3.3, but systematically ignore

the last bar of each phrase of the corpus. We find that

aRHT (dhv) decreases from 0.51 to 0.42. When removing

each first bar instead, it drops to 0.34. In comparison, re-

moving the second or third bar of the phrases increases the

original value of aRHT (dhv) to respectively 0.55 and 0.54.

This shows that the ‘core’ of phrases have slightly more

textural homogeneity, and most importantly that openings

and endings are less similar to the middle of phrases. Typ-

ical examples are transitional melodies and final chords

in cadences – which often constrast with the rest of the

phrase. We believe that our distance can be used to study

more precisely these local changes of texture within short

sections.

5. CONCLUSION AND FURTHER WORKS

The textural distances proposed in this paper give promis-

ing perspectives for the computation of multi-level simi-

larities in symbolic music. On the one hand, comparing

textural labels allows to rely on expert data, which is al-

ready known as texturally meaningful. This information

already carries a lot of abstraction, but it is costly to pro-

duce in practice and can lead to a certain amount of sub-

jectivity [40]. Moreover, the low amount of available an-

notations hinders our ability to evaluate the quality of these

distances. On the other hand, using symbolic features that

can be computed automatically is more practical, and also

more objective. In further work, we plan to investigate the

best features to use at a more global scale, as well as their

relative contibution.

Although the proposed distances are drawn at the level

of musical bars, we elaborated a more global dissimilar-

ity measure to compare sets of several bars, and highlight

textural contrast between and within structural sections of

musical pieces. This measure made possible a quantitative

evaluation of textural distances on a corpus of Thema and

Variations, based on the assumption that texture is more

dissimilar between two distinct variations, and more ho-

mogeneous within single variations.

Our distances capture different facets of compositional

texture, at different levels of abstraction (see Table 3). Fo-

cusing on more atomic and independant textural aspects

can enhance the precision and the interpretability of our

analyses. However, ensuring a proper disentanglement of

such dimensions remains a major challenge. Integrating

Thema and variations in the evaluation methodology is a

step further to link theoratical models of texture to con-

crete, and somewhat intuitive, examples. It contributes to

a better understanding of some models of texture, but also

of musical texture itself.

A potential continuation of this work is to broaden the

scope of our experiments to other repertoires. We believe

that the tools introduced in this paper are easily extendable

to other styles of written polyphonic music, or to other in-

struments. In the meantime, the present experiments on

Western classical piano music already offer promising op-

portunities of quantitative analyses of texture with regards

to genre, style, form or harmony.
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ABSTRACT

As corpora of digital musical scores continue to grow, the
need for research tools capable of manipulating such data
efficiently, with an intuitive interface, and support for a
diversity of file formats, becomes increasingly pressing.
In response, this paper introduces the Digital Musicol-
ogy Corpus Analysis Toolkit (DiMCAT), a Python library
for processing large corpora of digitally encoded musical
scores. Equally aimed at music-analytical corpus stud-
ies, MIR, and machine-learning research, DiMCAT per-
forms common data transformations and analyses using
dataframes. Dataframes reduce the inherent complexity
of atomic score contents (e.g., notes), larger score enti-
ties (e.g., measures), and abstractions (e.g., chord symbols)
into easily manipulable computational structures, whose
vectorized operations scale to large quantities of musical
material. The design of DiMCAT’s API prioritizes com-
putational speed and ease of use, thus aiming to cater to
machine-learning practitioners and musicologists alike.

1. INTRODUCTION

Given the proliferation of large corpora of digital scores
(e.g., [1–4]), the computational challenges of analyzing
symbolically encoded staff notation loom large in Digi-
tal Musicology and MIR. In principle, any symbolic music
encoding is equally amenable to algorithmic processing,
to the extent that it is consistent and comprehensive. In
practice, however, the visual efficiency of staff notation—
which conglomerates tonal, rhythmic, metric, articula-
tory, and other musical parameters in context-dependent
and position-dependent symbols—is inversely related to
its computational efficiency. Analyzing large collections
of digital scores is thus hindered not only by the sheer vol-
ume of data involved, but also by the intrinsic complexity
of the representations comprising musical structures. [5,6]

To address such challenges, we present the Digital Mu-
sicology Corpus Analysis Toolkit (DiMCAT), which uses

© J. Hentschel, A. McLeod, Y. Rammos, and M.
Rohrmeier. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: J. Hentschel, A. McLeod,
Y. Rammos, and M. Rohrmeier, “Introducing DiMCAT for processing and
analyzing notated music on a very large scale”, in Proc. of the 24th Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

dataframes [7–9] to disentangle pertinent score features
within tabular representations, providing an interface for
processing and analyzing large collections of dataframe-
structured score data. DiMCAT supports MusicXML, MEI,
Humdrum, and MuseScore (see Section 3.1), among other
formats, and provides an expandable range of music anal-
ysis functionalities, including feature extraction, similarity
analysis, and visualization. Addressed to Digital Musicol-
ogy and MIR communities alike, its purpose is to provide
a user-friendly interface for “distant-reading” staff-notated
score corpora, and for utilizing score data in machine-
learning pipelines. Efficiency at scale was among our pri-
mary design goals, an aspect which is only growing in im-
portance as corpus sizes have continued to grow (e.g., [3]),
with scores, rather than MIDI encodings, increasingly used
to train large computational models (e.g., [10]).

In this paper, we describe the design and implementa-
tion of DiMCAT and argue for its usefulness through trials
with various corpora. First, in Section 2, we outline a ratio-
nale for the representation of staff notation as dataframes,
and for the underlying data-relational mindset. Section 3
presents the library design from a user’s perspective, cover-
ing such topics as data loading (Section 3.1) and the slice/-
group/analysis pipeline (Section 3.2). Evidence of ease-of-
use in musicological research is provided in Section 4, and
a comparison to extant libraries is made in Section 5.

2. UTILIZING DATAFRAMES TO REPRESENT

SCORES

Dataframes were first introduced in 1990 as part of the
statistical programming language S [7] and later ported
to its descendant R [11]. Since then, they have become
ubiquitous in the data science and machine learning com-
munities, with a multitude of supplementary frameworks
released across the spectrum of programming languages,
often aiming to overcome performance problems associ-
ated with large dataframes (e.g., modin [12]). The wide
adoption of dataframes can be attributed to their versatil-
ity, convenience, and operational principles, which resem-
ble those of relational databases, spreadsheets, and nested
arrays [9, 11–13]. DiMCAT encodes all score information
within dataframe objects provided by either pandas or
modin, with support for additional libraries (which we re-
fer to as “backends”) planned in future versions.
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qstamp mc mn mc_onset mn_onset duration duration_q timesig staff voice name midi tpc octave

interval fraction int int fraction fraction fraction float str int int str int int int

[87.0, 87.25) 87 44 44 1/4 1/4 1/16 0.25 2/4 4 1 F2 41 -1 2
[87.0, 87.25) 87 44 44 1/4 1/4 1/16 0.25 2/4 3 1 A3 57 3 3
[87.0, 87.25) 87 44 44 1/4 1/4 1/16 0.25 2/4 2 1 C4 60 0 4
[87.0, 87.25) 87 44 44 1/4 1/4 1/16 0.25 2/4 1 1 F4 65 -1 4
[87.25, 87.5) 349/4 45 44 0 3/16 1/16 0.25 3/8 1 1 F4 65 -1 4
[87.25, 87.5) 349/4 45 44 0 3/16 1/16 0.25 3/8 2 1
[87.25, 87.5) 349/4 45 44 0 3/16 1/16 0.25 3/8 3 1
[87.25, 87.5) 349/4 45 44 0 3/16 1/16 0.25 3/8 4 1
[87.5, 87.75) 175/2 45 44 1/16 1/4 1/16 0.25 3/8 1 1 D5 74 2 5
[87.5, 88.0) 175/2 45 44 1/16 1/4 1/8 0.5 3/8 2 1
[87.5, 88.0) 175/2 45 44 1/16 1/4 1/8 0.5 3/8 3 1
[87.5, 88.0) 175/2 45 44 1/16 1/4 1/8 0.5 3/8 4 1
[87.75, 88.0) 351/4 45 44 1/8 5/16 1/16 0.25 3/8 1 1 C5 72 0 5

Table 1: Ludwig van Beethoven, String quartet op. 18/6, 4th movement (“La Malinconia”), measure number (mn) 44.
The measure contains the section break after the slow introduction and is composed of two incomplete measure units with
counts (mc) 44 and 45. The new 3/8 time signature (timesig) of the latter is introduced by a 3/16 upbeat, mathematically
completing the 2/4 meter of the former. The dataframe represents notes and rests from beat 2 onwards. Its index (bold
values on the left) comprises left-closed, right-open intervals which express the start and end points of each event on the
score’s timeline, measured in quarter notes. Each column has a name (bold) and a data type (italic). The first eight columns
contain temporal information (see Section 2.1). The columns staff and voice determine a notational layer. The last four
columns express pitch-related information (tpc is tonal pitch class, expressed as the distance from C measured in perfect
fifths) and are empty for rows representing rests. Special columns are omitted (e.g., ties, tremolos, or grace notes).

2.1 Representing staff notation as dataframes

Most encoding standards symbolically represent staff no-
tation in hierarchical fashion. This includes most non-
XML plaintext formats—at least those capable of encod-
ing multiple staves, such as Lilypond, ABC, or Humdrum’s
**kern—as well as XML-based standards. Table 2 shows a
selection of tags in order of hierarchical nesting, from out-
ermost to innermost, for three common XML-based stan-
dards. The table reveals that these standards recognize al-
most the same types of score elements, albeit located at
different levels within the document tree. Among these
elements are staves, measures, textural layers (‘voices’),
chords (understood as groups of notes sharing a stem) and,
finally, notes. For certain features, such as tempo and
dynamic markings, the choice of hierarchical anchor is
to some extent arbitrary: a tempo marking, for instance,
might be attached to a specific measure or to a chord within
that measure. DiMCAT’s approach to the unified modeling
of diverse hierarchical representations consists in travers-
ing them and grouping score elements of the same type in
the same dataframe. This obviates mapping the particulari-
ties of each standard into a common score model, a process
which would either inherit a degree of arbitrariness, or re-
sort to error-prone estimations in order to eradicate it. 1

DiMCAT disentangles the underlying score hierarchy by
grouping elements in five distinct categories, which we re-
fer to as “facets”. These are:

• notes and rests (“events”, including ties, tremolos,
grace notes, etc.)

• performance details (“control events”; tempo, dy-
namics, slurs, lyrics, articulation, etc.);

• measures (“flow control”; measure durations, staves,
repeat indications, fine, etc.);

1 Such a mapping, employed for example by the music21 score pro-
cessing library [14], is rather suitable when a complete model of the score
needs to be maintained for further processing.

MuseScore MEI musicXML

<Score> <music> · · · <score-partwise> <score-timewise>
<Staff> (<part> · · · ) <part> <measure>
<Measure> <measure> · · · <measure> <part>
<Voice> <staff> · · · <note>
<Chord> <layer> · · · <staff>, <voice>
<Note> (<chord> · · · )

<note>

Table 2: Synopsis of XML tag hierarchies in three
widespread XML-based score models. Models differ
mainly in the placement and naming of score elements
(<layer> being equivalent to <voice>). In the MEI col-
umn, ellipses (· · · ) suggest that any number of hierarchical
levels may be nested, and parentheses mark optional lay-
ers. MusicXML has two distinct organizational strategies
(partwise or scorewise), which converge at the note level.

• analytical annotations (“labels”; chord changes,
form labels, algorithmic outputs, etc.);

• metadata. 2

A facet is the raw, original representation of a category
of score elements from which specific, homogeneous “fea-
tures” can be derived. In its simplest form, a feature is
a subset of a facet in terms of rows and/or columns. For
example, the NotesAndRests facet (shown in Table 1)
comprises the Rests feature from which all rows and
columns about notes have been removed. Other features
offer variants requiring simple transformations. For in-
stance, the Notes feature may be requested with tied note
heads fused into single note events, with metrical weights
added, or with pitches expressed as scale degrees (for
an example, see Listing 2). Other features require more
substantial computational analysis on a set of features or

2 Note that visual details such as beaming are not loaded by default
whenever they are deemed irrelevant for a distant-listening setting.
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facets, and necessitate the invocation of an Analyzer

(see Section 3.2.3).
Our approach thus projects different hierarchical score

representations into a paradigm similar to that of relational
databases. Structural relations previously expressed by the
underlying score hierarchy are now expressed via IDs (for
example, the columns ‘staff’, ‘voice’, and ‘mc’ in Table 1).
In addition, all objects (except metadata) are unambigu-
ously located on the score’s musical timeline by means of
timestamps. As Table 1 shows, each facet and feature in-
cludes five columns expressing timestamps in three par-
tially redundant ways. Timestamps expressed by means of
‘mc’ (the strict count of measure-like units from the begin-
ning of the piece, regardless of their actual length or dis-
played measure number), along with ‘mc_onset’ (the loca-
tion within a measure-like unit, represented as a fraction
of a whole note) serve a crucial function. Given the actual
durations of the measure-like units, ‘mc’ and ‘mc_onset’
determine ‘qstamp’, an object’s offset from the beginning
of the piece in quarter notes. In addition, DiMCAT pro-
vides ‘mn’, the measure numbers actually found in score
engravings, which are in principle non-unique and based
on longstanding editorial conventions [15]. Analogously
to ‘mc_onset’, these units warrant ‘mn_onset’ positions,
required for computing metrical weights consistent with
the respective meter (in the column ‘timesig’).

2.2 Operations on DimcatResource objects

To facilitate the processing and analysis of potentially large
collections of notated music, DiMCAT aggregates facets
(as well as features or analysis results) drawn from multi-
ple pieces in a single dataframe, a DimcatResource.
This approach enables vectorized operations on entire
datasets, thus achieving higher performance in compari-
son to an equivalent sequence of single-dataframe oper-
ations. For additional speed when using very large cor-
pora, DiMCAT can delegate dataframe operations to a
distributed-computing backend such as modin, which al-
lows for automatic partitioning and parallel processing
[12]. DimcatResources natively serialize into ZIP
archives accompanied by a Frictionless descriptor file [16]
allowing for type-safe data validation and loading with ex-
ternal tools. Furthermore, the “frictionless” design allows
DiMCAT to treat a descriptor file with its included meta-
data (column descriptions, file genesis, versioning infor-
mation) as if it was the described resource itself, and to
load the actual data into memory no earlier than required.
The loaders described in the following section have the
purpose of pre-processing the data to be analyzed, and
storing it in a self-contained format that can also be eas-
ily served on the web.

3. LIBRARY DESIGN

This section describes DiMCAT’s design and API, 3 which
parallel familiar routines of musicological research: con-

3 The complete API and documentation can be found at https://
github.com/DCMLab/dimcat. In addition to pydocs, we provide
Jupyter Notebook–based interactive tutorials.

structing a corpus (loading and filtering, Section 3.1), or-
ganizing relevant corpus data (slicing and grouping), and
running algorithms on this selection (analyzing, and plot-
ting (Section 3.2).

3.1 Loading Data

DiMCAT defines loaders which parse and store score data
for a variety of symbolic encoding standards with the aid of
external libraries. 4 This is typically achieved by discover-
ing the relevant files on disk or (from the web) and produc-
ing the homogeneous representation (the dataframes pre-
sented in Section 2.1) in parallelized fashion, while also
compressing and storing the loaded data on disk for later
use. Once data has been pre-processed and stored along
with its metadata, DiMCAT’s default loader is capable
of determining which score features are present, and of
“lazily” loading them into memory whenever needed for
processing. Apart from decreasing the memory footprint,
this principle makes it possible to verify, before proceed-
ing, whether the features required for a processing pipeline
are actually available (see below). The extracted Facet

objects remain by design as faithful as possible to the orig-
inal data in terms of presence and naming of detected el-
ements. Names and types of facet fields are standardized
only in relation to the above-mentioned timeline columns,
which are necessary for alignment. Feature objects, on
the other hand, are comprehensively standardized upon ex-
traction to guarantee type safety. Less specialized ana-
lyzers such as Counters also allow for the processing
of Facets, and users who frequently work with custom
Features drawn from nonstandard elements may con-
tribute appropriate extensions to the codebase in the spirit
of community-driven development.

Once loaded, the data is represented internally by the
Dataset class and its various subclasses (see the com-
plete documentation for details). Dataset objects are
DiMCAT’s main drivers and the object type users interact
with the most. They grant centralized access to all avail-
able dataframes (Facets, Features, and Results),
depending on the current stage of computation. These ob-
jects in turn enable type-specific transformations and visu-
alizations.

3.2 The Analysis Pipeline

Conceptually, every action performed by DiMCAT is a se-
quence of PipelineStep objects which, having been
chained together, accept a Dataset object, perform a
transformation or analysis on it, and return a new data
object. In practice, this chaining is not entirely arbi-
trary, since some computations require data in specific for-
mats (for example, the CrossEntropy analyzer requires
equal-shaped probability vectors). All pipeline steps can
be expressed as, and instantiated from, associative arrays
of type DimcatConfig which are stored together with
a Dataset’s descriptor to make the pipeline generation
reproducible.

4 These currently include ms3 [17] and music21 [14], with
Verovio [18] planned to be added in the future.
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Each step in a Pipeline is fundamentally an instance
of one of the following three classes 5 : Slicers accept
data and partition it into chunks of various sizes—for ex-
ample, sections between repeat signs, segments under the
same guitar chord, or 8th-note-long slices. Slices never
cross the boundaries of a piece of music. Groupers ac-
cept data and group it in formally specified categories—for
example, segments with the same chord label, or pieces
composed in the same decade. Unlike slices, groups often
contain information from across the corpus. Analyzers
are the heart of the library, performing the actual computa-
tion once the data has been sliced and grouped.

Many questions in music corpus studies involve com-
parisons between groups with a degree of commonality,
e.g., between groups of pieces by the same composer, or
of segments such as sonata development sections [19].
By combining slicers, groupers and analyzers, music re-
searchers will find in DiMCAT an intuitive language for
addressing pressing questions in the field.

3.2.1 Slicers

Slicer objects invoke one particular feature to compute
segmentation boundaries. For example, a NoteSlicer
invokes the Notes feature and stores its timestamps (e.g.,
note onset positions) as slice markers within the resulting
SlicedDataset, interpreting them as time intervals.
The newly returned dataset will slice any facet or feature
subsequently requested, inserting an additional index level
or column for slice boundaries (any element spanning over
a slice boundary will be split or duplicated). In principle,
any feature (e.g., double bar lines, dynamic indications, or
the results of a key finder) can serve as the slicing crite-
rion. The properties of the feature used as criterion can
then be used for grouping the resulting slices (e.g., slicing
a dataset using the results of a key-finding algorithm en-
ables the subsequent grouping of slices by mode; see the
following section).

3.2.2 Groupers

Applying a Grouper to a dataset is tantamount to
binning pieces or slices based on a membership crite-
rion. As a result, any facet or feature requested from a
GroupedDataset is provided with a prepended index
level of group identifiers. This enables both choosing a
larger unit of analysis (by analyzing entire groups rather
than each contained piece or slice, see the following sec-
tion) and comparing groups of analysis results (for an ex-
ample, see Section 4.2).

Frequently used groupers include the
CorpusGrouper, the StaffGrouper, and the
ModeGrouper (grouping pieces, events, and key
slices, respectively). Groupers may also use metadata
as criterion: for instance, the YearGrouper groups
pieces based on their composition dates. Grouping is a
computationally cheap operation because it is performed
using dataframe indices.

5 That is without considering auxiliary pipeline steps such as Writers
which never result in a different dataset type.

3.2.3 Analyzers

Analyzers are at the heart of the DiMCAT library. Based
on its configuration, an analyzer will take one particular
or all available features from the Dataset, perform the
analysis on the minimal unit provided by the Dataset

(slice or piece), and return an AnalyzedDataset.
Results can be Feature objects (with timestamps) or
Result objects (without timestamps), both of which are
DimcatResources (see Section 2.2) and provide suit-
able methods for retrieving, displaying, transforming, and
plotting analysis results. In addition, they allow the com-
bination of piece or piece-slice analysis results into those
corresponding to higher units of analysis, e.g., piece re-
sults into group results. This makes it possible, by apply-
ing several groupers to the same AnalyzedDataset,
to regroup and recombine individual results. DiMCAT

currently uses the plotly library for creating interac-
tive plots and provides reasonable (but non-binding) de-
faults for combining grouped results in one figure. The
main types of analyzers are Counters, Comparisons
and ClusterAnalyzers, Transformations, and
RangeAnalyzers.

The base Analyzer class is designed to be easily ex-
tensible; additional analyzers can be created by the com-
munity without knowledge of the deeper layers of the code.
Contributors only need to understand the structure of the
features that the new analyzer accepts as input, and select
or implement the appropriate result type. Thereafter they
implement the new object’s serialization Schema 6 and
one of the methods that performs the actual analysis on
a slice-, piece-, or group-specific dataframe. The method
combine(), used for aggregating two result objects into
one—for example, by adding result vectors—only needs
to be implemented if no superclass is available to inherit
it from. Optional methods include check() (for reject-
ing a dataset or feature if it doesn’t fulfill certain criteria),
pre_process() (for performing analyzer-specific fea-
ture transformations), and post_process() (for clean-
ing up the results object, for example by filling in missing
values). A new analyzer constructed in this fashion is guar-
anteed to work with DiMCAT’s pipeline architecture.

The basic Counter counts the number of rows of any
facet or feature (e.g., notes or chord labels). More ver-
satile counters aggregate counts or durations based on the
values contained in a given column (e.g., pitch classes),
value combinations between several columns (e.g., pitch
class–duration pairs), or n-grams (e.g., pairs of successive
dynamic indications). Results can be transformed (e.g., by
normalizing), various properties can be calculated and re-
turned (e.g., the distributions’ entropies), and plots can be
generated.
Comparison analyzers perform pairwise compar-

isons on the slices, pieces, or groups represented by a
given feature or result, such as the sliding-window auto-
correlation of a feature’s inter-onset-intervals, the Jaccard
similarity between chord vocabularies, or the cross entropy
between key profiles. They typically store their result as a

6 See details in the documentation.
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confusion matrix, plotted by default as a heatmap. The
results of comparisons lend themselves to subsequent ap-
plication of ClusterAnalyzers, which use common
algorithms such as k-means to compute groups that can
reveal relations between the features under comparison
[20, 21].
Transformations apply a function or fit a model

in order to translate a feature into a different representa-
tion. Examples include analyzers that fit a Gaussian mix-
ture model to a distribution, tokenize pitch events for use
in a neural network, or transform pitch-class profiles into
Fourier coefficients (as demonstrated in Section 4.1).
RangeAnalyzers are useful in cases where only

minima and maxima (or the range) of numerical features
are relevant. Examples include the line-of-fifths segment
covered by a pitch class distribution [22] or the historical
timespan covered by a dataset based on composition dates.

Finally, there are many specific analyzers, such as the
PitchClassVectors analyzer featured in Section 4.1;
they perform an analysis or transformation (here, aggre-
gating durations) on one particular feature (here, Notes)
under a range of specific configuration values (here, for
example, type and format of pitch classes). A full list of
analyzers is available in the documentation.

4. EXAMPLES

In this section, we present a few examples of musicolog-
ical questions that can be easily answered using DiMCAT
(provided the requisite data is available).

4.1 Fourier analysis of pitch class vectors

� �
1 D = Dataset.load("debussy_piano")

2 D_analyzed = Pipeline(

3 [WindowSlicer(quarters_per_slice=1.0),

4 PitchClassVectors(),

5 DiscreteFourierTransform()]

6 ).process(D)

7 df = D_analyzed.get_result()

8 df.sample(5)
� �

Listing 1: Pipeline for slicing a dataset by quarter-note
windows, computing pitch class vectors and applying the
Discrete Fourier Transform.

The Discrete Fourier Transform has seen frequent ap-
plications to musical structures, in particular pitch-class
sets [23–28]. It belongs in a broader class of techniques
which require, in our terms, a “slicing” of the score, such
as a chordal reduction or a fixed-window segmentation.
For example, as part of a corpus study using the Discrete
Fourier Transform [29], DiMCAT was used to create en-
harmonic pitch class vectors for all 2-hand piano com-
positions by Claude Debussy. Listing 1 demonstrates the
simplicity with which this analysis can be expressed as a
DiMCAT pipeline. In the first line, the data is loaded from a
local directory. Then the pipeline is created and processed.
In the pipeline, a slicer first slices all pieces at every quarter
note, then an analyser creates vectors of aggregated pitch
class durations for each slice. Finally, the DFT analyser is
run on each vector and the result obtained. A sample of

the results, with coefficients 0 through 6 given as complex
numbers, is shown in Table 3.

4.2 Evaluating key segments

� �
1 D = Dataset.load("dcml_corpora.datapackage.json")

2 D_sliced = Pipeline(

3 [KeySlicer(),

4 ModeGrouper()]

5 ).process(D)

6 F = DimcatConfig("Notes", format=SCALE_DEGREES)

7 D_sliced.get_feature(F).plot_grouped() # plot 1

8 D_grouped = CorpusGrouper().process(D_sliced)

9 D_grouped.plot_grouped() # plot 2
� �

Listing 2: Plotting common dataset transformations
(plotting parameters omitted). Plots shown in Figure 1.

Given a score dataset with local-key annotations cre-
ated by human analysts or an automatic key finder, a re-
searcher might wonder how key segments in the major and
minor mode are distributed over the corpora contained in
the dataset, and how the tonal pitch-class profiles com-
pare between the two modes. This second example relies
on a dataset that includes key annotations 7 and demon-
strates the power and ease-of-use of DiMCAT pipelines,
even without using any analyzers. The KeySlicer used
in Listing 2 is set up by default to slice the dataset by an-
notated modulations, and warns the user about pieces for
which no local key information is available. The pipeline
proceeds by applying the ModeGrouper to create one
group per mode which, in the present dataset, amounts to a
minor-key and a major-key group. Requesting the Notes
feature from a Dataset processed in this fashion, we may
retrieve and plot a representation that reflects the group-
ing, as shown in the upper bar chart in Figure 1. The lower
plot demonstrates that the slicing criterion itself may also
provide meaningful insights into a dataset. It can be pro-
duced by applying a CorpusGrouper to the processed
Dataset and plotting the groups. (Without the corpus
grouper, the plot would show the major-minor ratio for the
entire dataset—that is, the result of the mode grouper).

5. COMPARISON WITH OTHER LIBRARIES

Other analysis libraries also lend themselves to the analy-
sis of datasets of symbolic music encodings. In this section
we compare DiMCAT to other open-source libraries which
maintain note names (pitch spelling) and support multiple
staffs and analytical annotations. Several among them like-
wise utilize dataframes.

The Humdrum Toolkit was one of the first frameworks
for computer-aided music analysis, and is still used for the
analysis of Humdrum and kern files across the range of
programming languages to which it has been ported. The R
package humdrumR [30] ports the Humdrum Toolkit into
R. While it provides support for computationally efficient
dataframes, and includes R’s inherent plotting capabilities,
like Humdrum itself it cannot import more modern, and
arguably more common, symbolic-encoding formats such
as musicXML without the use of error-prone converters.

7 https://github.com/DCMLab/dcml_corpora
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corpus fname 1.0q_slice 0 1 2 3 4 5 6

debussy_other_piano_pieces l068_reverie [351.0, 352.0) 2.00+0.00j 0.32-0.18j -0.50-0.87j -1.50+0.50j -1.00+0.00j 1.18+0.68j 1.00+0.00j
debussy_childrens_corner l113-03_childrens_serenade [27.0, 28.0) 2.25+0.00j 0.92-0.47j 0.37-0.22j 0.75-0.50j -1.12-0.65j -1.67-0.03j -0.75+0.00j
debussy_preludes l123-12_preludes_feux [176.0, 177.0) 6.62+0.00j 0.53-1.57j -1.94-0.11j 0.00+4.12j 2.69-2.27j 2.47-3.30j -2.12+0.00j
debussy_etudes l136-04_etudes_sixtes [53.5, 54.5) 4.00+0.00j -0.12+0.37j -0.75+0.00j -0.75-0.25j -1.25+0.87j 1.62-1.37j 1.50+0.00j
debussy_deux_arabesques l066-02_arabesques_deuxieme [137.0, 138.0) 4.00+0.00j 0.25-0.30j -0.25-1.30j -2.00-1.00j 1.75+1.30j 0.25+2.30j 2.00+0.00j

Table 3: Sample rows from a dataframe containing the seven first DFT coefficients gained from quarter-note-window pitch
class vectors. The first three columns represent a multi-index indicating corpus, file name, and slice interval (expressed as
qstamp, see Table 1); they make it possible to trace the result back to the score.
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Figure 1: The two plots produced by the code shown in Listing 2.

Music21 [14] is a large Python library capable of im-
porting all relevant music formats, transforming them into
a comprehensive hierarchical model of the score. Rely-
ing on an elaborate object model, it provides methods for
creating and manipulating the elements of a music score.
However, its design renders it computationally demand-
ing [30, 31] for large corpora, and it provides only few
methods designed specifically for corpus analysis.

Several Python libraries follow a similar approach to
DiMCAT’s, analyzing and making available score infor-
mation in the form of dataframes. These include the
VIS-framework [32] and CRIM intervals [33]
(both focusing on intervallic successions and sonorities),
CAMAT [31] (basic pitch statistics), and musif [34] (with
a focus on global features of entire scores). Among them,
only [31] introduces its own score parser (for MusicXML),
with the remaining ones invoking music21. [34] also in-
cludes the MuseScore parser ms3 [17] and therefore ex-
poses an architecture that is as easily extensible as ours.

Although DiMCAT can, in principle, provide any algo-
rithm that operates on successions or sets of pitch events,
its focus on “distant listening” makes it less suited for
close-reading studies than some of the aforementioned al-
ternatives. Indeed, its distinguishing feature is the newly
introduced Slice-Group-Analyze paradigm, designed for
inquiries in which the corpus, rather than the individual
score, is the primary research object. To this end, DiMCAT

provides mechanisms for studying the statistical properties
of potentially very large amounts of musical material by
iteratively applying sequences of segmentation and group-
ing algorithms with a high degree of combinatorial free-
dom. From this point of view, the “slice” serves as an
additional operational level between “note” [31–33] and
“piece” [34].

6. CONCLUSION

In this paper we have introduced DiMCAT, a Python li-
brary capable of parsing, transforming, and analyzing an-
notated music score data in a range of symbolic-encoding
formats, and to do so efficiently at scale. The library stores
data as dataframes, a ubiquitous structure in the fields of
digital humanities and data science. DiMCAT emphasizes
traceability (results can reliably lead to the original score
elements) and reproducibility (version identifiers are sys-
tematically applied to code and data). Thanks to an in-
terface that masks its inner workings, the functionality of
the library is usable and extensible by musicologists with
limited programming experience.

DiMCAT is released under the GPL-3.0-or-later Li-
cense, and we intend to continue adding further music ana-
lyzers, inviting feedback, requests, and contributions from
the community.
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tics, K. Momirović and V. Mildner, Eds. Heidelberg:
Physica-Verlag HD, 1990, pp. 317–321.

[8] W. McKinney, “Data structures for statistical comput-
ing in python,” in Proceedings of the 9th Python in Sci-

ence Conference, Austin, Texas, 2010, pp. 56–61.

[9] D. Petersohn, “Dataframe systems: Theory, architec-
ture, and implementation,” Ph.D. dissertation, Univer-
sity of California, Berkeley, 2021.

[10] A. Mcleod and M. A. Rohrmeier, “A modular system
for the harmonic analysis of musical scores using a
large vocabulary,” in Proceedings of the 22nd Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR). Online: ISMIR, Nov. 2021, pp. 435–
442.

[11] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo,
J. E. Gonzalez, J. M. Hellerstein, A. D. Joseph, and
A. Parameswaran, “Towards scalable dataframe sys-
tems,” Proceedings of the VLDB Endowment, vol. 13,
no. 12, pp. 2033–2046, Aug. 2020.

[12] D. Petersohn, D. Tang, R. Durrani, A. Melik-
Adamyan, J. E. Gonzalez, A. D. Joseph, and A. G.
Parameswaran, “Flexible rule-based decomposition
and metadata independence in modin: A parallel
dataframe system,” Proceedings of the VLDB Endow-

ment, vol. 15, no. 3, pp. 739–751, Nov. 2021.

[13] Y. Wu, “Is a dataframe just a table?” in 10th Work-

shop on Evaluation and Usability of Programming

Languages and Tools (PLATEAU 2019), ser. OpenAc-
cess Series in Informatics (OASIcs), S. Chasins, E. L.
Glassman, and J. Sunshine, Eds., vol. 76. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2020, pp. 6:1–6:10.

[14] M. S. Cuthbert, “Music21: A toolkit for computer-
aided musicology and symbolic music data,” in Pro-

ceedings of the 11th International Society for Music

Information Retrieval Conference (ISMIR), 2010, pp.
637–642.

[15] E. Gould, Behind Bars: The Definitive Guide to Music

Notation. London: Faber Music, 2011.

[16] D. Fowler, J. Barratt, and P. Walsh, “Frictionless data:
Making research data quality visible,” International

Journal of Digital Curation, vol. 12, no. 2, pp. 274–
285, May 2018.

[17] J. Hentschel and M. Rohrmeier, “Ms3: A parser for
MuseScore files, serving as data factory for annotated
music corpora,” Journal of Open Source Software,
2023.

[18] L. Pugin, R. Zitellini, and P. Roland, “Verovio: A li-
brary for engraving MEI music notation into SVG,”
in PugiProceedings of the 15th International Society

for Music Information Retrieval Conference (ISMIR),
2014, pp. 107–112.

[19] C. White, The Music in the Data: Corpus Analysis,

Music Analysis, and Tonal Traditions, 1st ed. New
York: Routledge, Nov. 2022.

[20] R. Cilibrasi, P. Vitanyi, and R. de Wolf, “Algorithmic
clustering of music,” arXiv:cs/0303025, Mar. 2003.

[21] E. Anzuoni, S. Ayhan, F. Dutto, A. McLeod, F. C.
Moss, and M. Rohrmeier, “A historical analysis of
harmonic progressions using chord embeddings,” in
Sound and Music Computing Conference (SMC), 2021,
pp. 284–291.

[22] F. C. Moss, M. Neuwirth, and M. Rohrmeier, “The line
of fifths and the co-evolution of tonal pitch-classes,”
Journal of Mathematics and Music, pp. 1–25, Mar.
2022.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

522



[23] D. Lewin, “Re: Intervallic relations between two col-
lections of notes,” Journal of Music Theory, vol. 3,
no. 2, pp. 298–301, Nov. 1959.

[24] I. Quinn, “A unified theory of chord quality in equal
temperaments,” Ph.D. dissertation, Eastman School of
Music, Rochester, New York, 2004.

[25] D. Tymoczko, “Set-class similarity, voice eading, and
the Fourier transform,” Journal of Music Theory,
vol. 52, no. 2, pp. 251–272, Sep. 2008.

[26] J. Yust, “Applications of DFT to the theory of
twentieth-century harmony,” in Mathematics and Com-

putation in Music, T. Collins, D. Meredith, and
A. Volk, Eds. Cham: Springer International Publish-
ing, 2015, vol. 9110, pp. 207–218.

[27] E. Amiot, Music through Fourier Space, ser. Computa-
tional Music Science. Cham: Springer International
Publishing, 2016.

[28] J. D. Harding, “Applications of the Discrete Fourier
Transform to music analysis,” Ph.D. dissertation,
Florida State University, 2021.

[29] S. Laneve, L. Schaerf, G. Cecchetti, J. Hentschel, and
M. Rohrmeier, “The diachronic development of De-
bussy’s musical style: A corpus study with Discrete
Fourier Transform,” Humanities and Social Sciences

Communications, vol. 10, no. 1, p. 289, Jun. 2023.

[30] N. Condit-Schultz and C. Arthur, “humdrumR: A new
take on an old approach to computational musicol-
ogy,” in Proceedings of the 20th International Society

for Music Information Retrieval Conference (ISMIR),
Delft, 2019.

[31] E. Poliakov and C. R. Nadar, “CAMAT: Computer As-
sisted Music Analysis Toolkit,” in Proceedings of the

Digital Music Research Network One-day Workshop

(DMRN+16), 2021, p. 12.

[32] C. Antila and J. Cumming, “The VIS framework. An-
alyzing counterpoint in carge datasets,” in Proceedings

of the 15th International Society for Music Information

Retrieval Conference (ISMIR), 2014.

[33] R. Freedman, A. Morgan, Gould, O. Shostak,
T. Dang, A. Janco, D. Russo-Batterham, E. Leon, and
H. West, “CRIM intervals,” 2023. [Online]. Available:
https://github.com/HCDigitalScholarship/intervals

[34] A. Llorens, F. Simonetta, M. Serrano, and Á. Torrente,
“Musif: A Python package for symbolic music feature
extraction,” in Sound and Music Computing Confer-

ence (SMC). arXiv, Jul. 2023.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

523



SEQUENCE-TO-SEQUENCE NETWORK TRAINING METHODS FOR
AUTOMATIC GUITAR TRANSCRIPTION WITH TOKENIZED OUTPUTS

Sehun Kim

Nagoya University

kim.sehun@g.sp.m.is.nagoya-u.ac.jp

Kazuya Takeda

Nagoya University

kazuya.takeda@nagoya-u.jp

Tomoki Toda

Nagoya University

tomoki@icts.nagoya-u.ac.jp

ABSTRACT

We propose multiple methods for effectively training

a sequence-to-sequence automatic guitar transcription

model that uses tokenized music representation as an out-

put. Our proposed method mainly consists of 1) a hybrid

CTC-Attention model for sequence-to-sequence automatic

guitar transcription that uses tokenized music representa-

tion, and 2) two data augmentation methods for training the

model. Our proposed model is a generic encoder-decoder

Transformer model but adopts multi-task learning with

CTC from the encoder to speed up learning alignments be-

tween the output tokens and acoustic features. Our pro-

posed data augmentation methods scale up the amount of

training data by 1) creating bar overlap when splitting an

excerpt to be used for network input, and 2) by utilizing

MIDI-only data to synthetically create audio-MIDI pair

data. We confirmed that 1) the proposed data augmentation

methods were highly effective for training generic Trans-

former models that generate tokenized outputs, 2) our pro-

posed hybrid CTC-Attention model outperforms conven-

tional methods that transcribe guitar performance with to-

kens, and 3) the addition of multi-task learning with CTC

in our proposed model is especially effective when there is

an insufficient amount of training data.

1. INTRODUCTION

Automatic guitar transcription is a challenging task that

has gained significant attention in the field of music infor-

mation retrieval due to its potential applications in music

analysis, performance evaluation, and transcription of mu-

sic compositions. Despite recent advancements in the field,

there are still several challenges that need to be addressed.

One of the major challenges in automatic guitar transcrip-

tion is the difficulty in extracting relevant features from the

audio signal. The variations in timbre, pitch, and playing

style make it difficult to distinguish individual notes accu-

rately [1, 2].

Multiple methods exist for representing musical nota-

tion suitable for employment in a DNN framework. Two

© S. Kim, K. Takeda, and T. Toda. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: S. Kim, K. Takeda, and T. Toda, “Sequence-to-Sequence

Network Training Methods for Automatic Guitar Transcription with To-

kenized Outputs”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

Figure 1. Examples of a pianoroll (upper) and tokenized

music representation (lower).

of the popular methods are pianoroll and tokenized musical

representation. Figure 1 shows a visualization of the differ-

ences between pianoroll and tokenized music representa-

tions. Note that each can be converted from one to another.

Pianoroll is a visual representation of music that uses a

grid-like structure to display the timing, pitch, and dura-

tion of notes in a piece. Tokenized music representation is

a type of symbolic music representation that breaks down

a music signal into small, discrete tokens, which can be

analyzed and processed as a sequence of tokens to extract

relevant musical features such as pitch, duration, and tim-

ing. Recent studies have shown that using tokenized music

representation over pianoroll can better learn the tempo-

ral dependency between different musical events [3]. Us-

ing tokenized music representation along with sequence-

to-sequence models is particularly effective and have the

potential to improve the performance of automatic music

transcription model [1,4]. However, these models also face

several challenges such as the lack of training data [1].

The field of automatic speech recognition (ASR) has

provided inspiration for improving automatic music tran-

scription models, as both face similar challenges, includ-

ing the need to extract relevant features and handle com-

plex temporal and frequency relationships [5]. In the field

of ASR, various techniques and models, such as connec-

tionist temporal classification (CTC) [6], Transformer [7]

models, data augmentation, transfer learning, and multi-

task learning, have shown promising results [8, 9] and can

potentially aid the performance of an automatic guitar tran-

scription system.

CTC and attention are two popular techniques used in

sequence-to-sequence models for various tasks. CTC is
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an efficient method for training models with an unknown

alignment between input and output sequences. It can han-

dle variable-length input and output sequences. However,

it does not explicitly model dependencies between input

and output sequences [10]. Attention, on the other hand,

allows the model to selectively focus on different parts of

the input sequence, improving the accuracy of the model

on tasks that require complex dependencies. However, at-

tention mechanism is too flexible in the sense that it allows

extremely non-sequential alignments, making it relatively

difficult to train [8].

In an attempt to improve the performance of an ASR

system, researchers have also explored hybrid models that

combine CTC and attention mechanisms [8]. The authors

reported that the addition of CTC solves the misalignment

issues and improves robustness and achieves fast conver-

gence.

Although models such as Conformer-Transformer have

been successful in ASR tasks [11], these were not used

in guitar transcription mainly due to a lack of training data

available. To resolve this issue, we propose data augmenta-

tion techniques and a hybrid CTC-Attention model suited

for a guitar transcription system 1 that utilizes tokenized

music representation and show the effectiveness of the pro-

posed methods. Our contributions are summarized as fol-

lows.

• We propose two data augmentation methods for

training a sequence-to-sequence model that utilizes

tokenized music representation.

• We propose a hybrid CTC-Attention model for auto-

matic guitar transcription.

• We conduct experimental evaluations to confirm the

effectiveness of our proposed methods and prove

that both the data augmentation techniques and the

proposed model enhance guitar transcription perfor-

mance.

2. RELATED WORK

2.1 Automatic guitar transcription

There have been many successful automatic guitar tran-

scription systems [1, 12–15]. Some of them are based

on audio signal processing to estimate the tablature score

from a guitar sound signal [12]. Also, approaches that em-

ploy probabilistic models have been proposed in some au-

tomatic guitar transcription tasks. In [14, 15], a two-step

method was employed, where the first step involves de-

termining the pitch of each played note, and the second

step involves computing the optimal finger positioning by

combining the estimated pitch with physical limitations of

feasible fingerings. Since this approach processes informa-

tion in a sequential manner, information cannot flow from

downstream components to upstream ones, making it dif-

ficult to be jointly optimized [16].

1 Source code available:
https://github.com/KimSehun725/seq2seqGuitarTranscription

Most of the recent state-of-the-art systems were mainly

based on end-to-end deep neural network (DNN) models

since end-to-end DNN models have the advantage of the

ability to jointly optimize the whole model, showing better

results compared to multi-step approaches [13]. Wiggins

et al. proposed a convolutional neural network (CNN)-

based model architecture [13] that estimates the frame-

wise fingering position of a guitar performance. In our

previous work [17], a self-attention mechanism was in-

troduced along with CNN to better capture long-term re-

lations and estimate the fingering position in both frame-

level and note-level. We proved the effectiveness of the

self-attention mechanism used in the guitar transcription

model. However, since the proposed systems in [13] and

[17] do not detect onset, the output can not be interpreted

into reproducible forms such as music score or MIDI.

2.2 Automatic music transcription using tokens

Recently, the use of generic encoder-decoder Transformer

architecture has shown its potential in automatic music

transcription tasks. Howthorne et al. proposed a generic

Transformer architecture for an automatic piano transcrip-

tion [4]. The proposed method takes mel-spectrogram of

audio and autoregressively generates a token sequence.

The tokenization method used in this work is similar to

how MIDI file stores its note sequences. The vocabulary

consists of note, velocity, and time tokens, with the

addition of an end-of-sentence (EOS) token for ending the

sequence. In this tokenization method, the timing of each

note is represented with absolute time location within the

segment, quantized into 10 ms bins. This kind of tokeniza-

tion method which represents the time of a note in location

as opposed to the time shift from the previous note was

reported to work better [18].

Chen et al. proposed a multi-objective generic Trans-

former model that not only predicts token sequences but

also frame-level onsets, offsets, and pitch activation [1].

In the original paper of [1], the authors report that al-

though the proposed model is a generic Transformer model

that generates a sequence of tokens, introducing multi-task

learning with frame-level labels, i.e., the pianoroll repre-

sentation, lowers the performance of the token-wise pre-

diction from the decoder, but improves frame-level estima-

tion performance compared to frame-level guitar transcrip-

tion model proposed in [19]. The authors also mentioned

that the lower performance of the model without multi-task

learning (that only predicts token sequence) could be at-

tributed to the insufficient size of the training set to learn a

dependable language model for the decoder.

3. PROPOSED METHOD

3.1 Hybrid CTC-Attention model for tokenized guitar

transcription

3.1.1 Tokenization

As for the tokenization method, we use a slightly modified

version of revamped MIDI-derived events (REMI) [20].
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Figure 2. Overview of our proposed model architecture.

Since our main interest is to accurately transcribe a per-

formance with pitch and timing information, we excluded

velocity tokens and chord tokens from the original

REMI. Excluding these tokens makes the total sequence

shorter, making it easier to pass the restriction of CTC (to-

ken sequence length must be shorter than input sequence

length), and easier to train. The tokenization method we

used in our proposed approach includes the following vo-

cabulary:

Blank [1 category] Used to represent the blank token

when using CTC. This token gets dropped when de-

coding the final prediction when applying CTC.

Position [16 categories] Indicates the location in a bar

quantized into 16th note. This token is placed to

indicate the start position of a note.

Pitch [45 categories] Each class represents the pitch rang-

ing from E1 to C5. This token is placed after the

Position token to indicate the pitch of a note.

Duration [16 categories] Represents the duration ranging

from the 16th note to a bar in 16th note increments.

This token is placed after the Pitch token to indi-

cate the duration of a note.

Bar [1 category] Token used to denote the start of a bar.

SOS, EOS [2 categories] Used to represent the start and

end of a token sequence. These tokens are used

for training and inferencing with the Transformer

decoder.

3.1.2 Encoder

Figure 2 shows the overview of the proposed model ar-

chitecture. We will refer to the left side of the figure as

encoder and the right side as decoder from here on out.

The structure of the encoder of our proposed model is

largely inspired by our previous automatic guitar transcrip-

tion model proposed in [17], with some modifications for

generating a token sequence and conditioning with BPM

information. The encoder structure can be divided into

three main parts: a convolution stack, a Conformer en-

coder, and an output layer for generating a token sequence

to which CTC can be applied later.

The convolution stack has 2D convolution, max pool-

ing, dropout layers, and a linear layer. Input features

go through two convolution blocks with 2D convolution,

batch normalization, and an activation function. Latent

features are then subsampled by max pooling and re-

fined by another convolution block and max pooling layer.

Lastly, a linear layer is added to reduce dimension. Three

dropout layers prevent overfitting after max pooling and

the final linear layer.

The Conformer encoder closely follows the Conformer

block architecture proposed in [21]. The Conformer en-

coder mainly consists of self-attention modules, convolu-

tion modules, and feed-forward modules. For the input

to the Conformer encoder, first, we concatenate the output

from the convolution stack and the given BPM informa-

tion of the input segment. Then, the concatenated feature

goes through a linear transformation layer, which is omit-

ted from Figure 2 for simplicity. We concatenate BPM in-

formation to the output of the convolution stack because

the problem formulation of our method is estimating a se-

quence of tokens based on both acoustic features and BPM

information.

Finally, the output layer is a simple linear transforma-

tion layer with softmax function at the end for generat-

ing CTC token outputs. Unlike the model that predicts

frame-level activation probability (pianoroll) from the en-

coder [1], the encoder of our proposed model generates

the probability of token sequence, which we can directly

calculate the loss between the output and the ground truth

token sequence by calculating CTC loss [6].

During inference, we first apply argmax to the en-

coder outputs, then repeating tokens get merged. Then,

the blank token gets removed to obtain the final output.

3.1.3 Decoder

The structure of the decoder in our proposed model is

roughly the same as the ones used in ASR tasks or other

symbolic music transcription tasks such as in [1, 4]. The

decoder consists of multiple Transformer decoder blocks

stacked in serial. The Transformer decoder block consists

of a masked self-attention module, a cross-attention mod-

ule, and a feed-forward module.

The decoder is trained and validated with a teacher forc-

ing scheme where the token is predicted one step ahead

without self-attention looking ahead by masking the self-

attention with a diagonal mask in a non-autoregressive

manner. During inference, we only give a start-of-sentence

(SOS) token at first, and autoregressively generate the fol-

lowing tokens by selecting the most probable tokens at

each timestep. The generation stops when the decoder gen-
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erates an end-of-sentence (EOS) token.

3.1.4 Multi-task learning

Our proposed method is a multi-objective model with both

the CTC output from the encoder and the output from the

decoder. Therefore, we define a custom loss function for

backpropagation.

First, we define the CTC loss LCTC as

LCTC = −
∑

y∈B

log p(y|x), (1)

where B is the set of all possible output sequences includ-

ing blank symbols, x is the input sequence, and p(y|x) is

the probability of generating the output sequence y from

the encoder given the input sequence x. The CTC loss is

calculated by summing the negative log probabilities of all

possible output sequences y that can be generated from

the ground truth sequence. The loss encourages the model

to learn to generate the correct output sequence while ac-

counting for possible alignment errors between the input

and output sequences.

Next, we define the cross-entropy loss as

LCE = −
1

N

N∑

i=1

C∑

j=1

yij log (ŷij) , (2)

where N is the number of samples, C is the number of

classes, yij is a binary indicator of whether sample i be-

longs to class j, and ŷij is the predicted probability from

the decoder of sample i belonging to class j.

The total loss function of our system Ltotal can be ex-

pressed as

Ltotal = αLCTC + LCE, (3)

where α is the hyperparameter for controlling the weight

of LCTC.

3.2 Data augmentation

When using a tokenization method whose time resolution

is in units of musical lengths, training a model to gener-

ate a sequence of tokens requires a large amount of data to

properly model the language structure of the tokenization

method and the concept of musical length. However, un-

like musical instruments such as the piano, which have a

significant amount of publicly available training data, the

guitar lacks sufficient data for training. The goal of the pro-

posed data augmentation methods is to scale up the amount

of data used in the training process.

3.2.1 Bar overlap

In the field of automatic music transcription, splitting a

musical excerpt into multiple segments is common, espe-

cially with the models that use the attention mechanism

since the attention mechanism has a space complexity of

O(n2) with respect to sequence length n. There have been

many attempts to train a network by cutting musical pieces

into exact lengths in seconds. However, there have been

only a few attempts to handle music pieces by cutting them

into the same musical length, e.g., 4 bars [17]. When cut-

ting a musical piece into segments whose length is in units

of bars, the most naive way of cutting it would be to cut

without overlap so that the timing of the start of a segment

is the end of the previous one. This results in obtaining

lexcerpt/lsegment segments, assuming that lexcerpt is devidable

by lsegment, where lexcerpt denotes the bar length of a musi-

cal excerpt, and lsegment denotes the bar length of a segment.

This method was done in our previous work [17].

We propose a method that creates more segments when

cutting musical excerpts, by overlapping segments, i.e.

sliding a window with a hop length shorter than the win-

dow length. This results in obtaining lexcerpt/loverlap −
(lsegment − 1) where loverlap denotes the bar length of the

overlap.

3.2.2 Synthetic audio-MIDI pair

With the goal of training a model to properly learn how

to generate the token sequence by reliably training the

language model for the decoder with a large amount of

data, we propose a method that can synthetically create an

audio-MIDI pair dataset from MIDI-only data. We gener-

ate synthetic audio data by utilizing an oscillator such as a

sinusoidal oscillator or a square wave oscillator. This re-

sults in obtaining an audio-MIDI pair with its audio being

perfectly aligned with the matching MIDI, yet with unnat-

ural timbre. With the synthetically generated audio-MIDI

pair dataset, we pretrain the model before training with

real-world data. This results in the decoder being trained as

a reliable language model for tokenization method, and the

model having preliminary knowledge regarding extracting

pitch and timing information.

It is possible to use the method to produce an endless

amount of data theoretically, by applying it to either a

publicly available MIDI dataset or automatically generated

MIDI from an automatic symbolic music generation model

such as [20,22,23] since the method generates audio-MIDI

pair data solely from MIDI.

3.3 Implementation details

Regarding the network settings for the encoder and de-

coder of our proposed model, we set the number of atten-

tion heads and the number of sequential Conformer blocks

to 8 and 6 respectively. For the Transformer decoder, the

number of attention heads and the number of sequential

blocks are set to 4 and 4 respectively. The dimension of

both the Conformer encoder and the Transformer decoder

is set to 128. We implement the Conformer encoder us-

ing the ESPNet2 framework [11]. We use the leaky ReLU

activation function [24] throughout the encoder, except for

the activation functions in the Conformer encoder and the

final output layer.

For the implementation of tokenization, we use Midi-

Tok [25], but slightly modify the original implementation

as mentioned in Section 3.1.1. As for the learning rate, we

use a cyclic learning rate scheme [26]. The base learning

rate is set to 1e-5, the max learning rate is set to 0.001, the

number of training iterations in the increasing half of a cy-
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Encoder output Decoder output

Method F1 TER F1 TER

No data augmentation 0.363±0.159 0.469±0.185 0.526±0.154 0.713±0.219

Bar overlap (BO) 0.555±0.125 0.388±0.090 0.630±0.196 0.497±0.176

Pretrain (PT) 0.512±0.043 0.365±0.029 0.699±0.017 0.441±0.011

Proposed (BO+PT) 0.666±0.047 0.307±0.025 0.804±0.015 0.336±0.021

Table 1. Estimation metrics for evaluating the proposed data augmentation methods. For all metrics, we report the mean

and standard deviation over the entire dataset. All the experiments were done with the proposed model.

Encoder output Decoder output

Model F1 TER F1 TER

Baseline [1] 0.767±0.026 - 0.603±0.026 0.589±0.017

Attention only - - 0.784±0.014 0.345±0.021

Proposed 0.666±0.047 0.307±0.025 0.804±0.015 0.336±0.021

Table 2. Estimation metrics for our proposed model, compared with a baseline model and a model without multi-task

learning with CTC. For all metrics, we report the mean and standard deviation over the entire dataset. All the experiments

were done by applying both of the proposed data augmentation methods. Note that the baseline model does not have TER

from the encoder output because the encoder output is pianoroll-like frame-level annotation, not tokens.

Decoder output

Model F1 TER

Attention only + BO 0.114±0.046 1.520±0.378

Proposed + BO 0.630±0.196 0.497±0.176

Table 3. Estimation metrics for simulating the situation

where only a small amount of training data is available by

not pretraining with synthetic audio-MIDI pair data. We

only show the results of the output from the decoder for

simplicity.

cle is set to 4 epochs, and the same for the decreasing half.

We made the peak learning rate decreases by a rate of 0.9

after each cycle. For the optimizer, we employ Rectified

Adam (RAdam) [27]. Finally, we set the weight α which

is used in the loss function, to 0.2.

4. EXPERIMENTAL EVALUATION

4.1 Experimental conditions

As for the MIDI data used in the pretraining phase, we

used data from Classical Guitar MIDI Archives [28]. We

filtered out the data that did not have the properties that we

want such as having a time signature other than 4/4 beat

or changing tempo over time. As a result, we obtained a

total of 1232 minutes of data. We used square wave oscil-

lator to make the synthetic audio, and split the dataset for

training/validation/testing with a ratio of 0.9:0.05:0.05.

For the data used in the finetuning phase, we used the

GuitarSet [29]. GuitarSet is a dataset for guitar transcrip-

tion research containing 360 audio recordings, totaling ap-

proximately 3 hours. Since the dataset was recorded by

six players, we left the recordings of one player for testing

and used the rest of the data for training and validation. We

rotated the test player to evaluate the methods with a six-

fold cross-validation method. For both the pretraining data

and finetuning data, we cut the tracks into segments with 4

bars, with 1 bar hop length.

Regarding the input of the network, first, we resampled

the audio to 22050 Hz, then we converted the audio to a

constant-Q transform (CQT) [30] with a hop length of 256

points, 24 bins per octave spanning over 8 octaves, result-

ing in a total of 192 frequency bins.

We evaluated the proposed methods in three points: 1)

the effectiveness of data augmentation methods, 2) the

performance of the model, 3) the effectiveness of intro-

ducing CTC in the proposed model when there is only a

small amount of training data available. For the experi-

ment measuring the effectiveness of the data augmentation

techniques, we compared the metrics of 1) using GuitarSet

only and not using bar overlap, 2) only applying bar over-

lap, 3) pretraining the model with synthetic audio-MIDI

pair dataset without bar overlapping, and 4) using both bar

overlapping and pretraining.

For the model comparison, we compared our proposed

model with 1) the model proposed in [1] which refer to as

baseline hereafter, 2) our proposed model without the use

of CTC (Ltotal = LCE) which we refer to as attention only

model from here on out, and 3) our proposed model.

Regarding the network settings of the baseline model

[1], we followed the settings described in the original pa-

per, except we input a 4-bar-long acoustic feature to the

network and use the same tokenization method as our pro-

posed method.

4.2 Evaluation metrics

Since the output of our proposed model is a sequence of to-

kens that can be converted into pianoroll, we used different

evaluation metrics for pianoroll domain and token domain.

In the pianoroll domain, we used precision, recall, and

F1 score. If the output is a sequence of tokens, we decode

the token sequence to pianoroll to calculate precision, re-

call, and F1 score. In the token domain, we used token er-
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Figure 3. Comparison of the speed in learning align-

ments between acoustic features (horizontal axis) and to-

kens (vertical axis). The training was done using only the

GuitarSet.

ror rate (TER), which is calculated similarly to word error

rate (WER) which is a widely used metric in the research

field of ASR and natural language processing (NLP). The

only difference is that every element is a token index in-

stead of a word in WER. The TER can be calculated as

TER =
S +D + I

S +D + C
, (4)

where S is the number of substitutions, D is the number

of deletions, I is the number of insertions, and C is the

number of correct tokens.

The reason why we introduce TER as an evaluation

metric is that we want to compensate for the mismatch

between the metrics used in pianoroll domain and human

perception. For instance, if we only evaluate the system

in the pianoroll domain, the outputs with the notes that are

shifted for a consistent amount of time will have very low

scores. However in the same case, if we use TER as an

evaluation metric, only the position tokens will lower

the metric, not penalizing for the shifted notes as much.

4.3 Results

The result of the experiment comparing the effectiveness of

the data augmentation methods is shown in Table 1. The

result shows that both data augmentation methods are ef-

fective in raising the estimation performance of the pro-

posed model. By comparing the effectiveness of bar over-

lapping and pretraining, pretraining shows slightly better

results in the output from the decoder but worse in the out-

put of the encoder.

The result of the experiment comparing the perfor-

mance of the models mentioned in Section 4.1 is shown in

Table 2. The result shows that our proposed model outper-

formed the baseline model and the proposed model without

utilizing CTC (attention only) in both F1 score and TER.

Upon comparing the estimation results of the attention-

only model with the proposed model, it is evident that the

latter produced superior results, thereby indicating that the

Figure 4. A sample of transcription result from our pro-

posed model. TP, FP, and FN denote true positive, false

positive, and false negative respectively.

inclusion of CTC considerably improves transcription per-

formance.

The result of the experiment simulating a situation with

a small amount of training data available is shown in Ta-

ble 3. We simulated this situation by only using the Gui-

tarSet for training. The result shows that the model with

attention only performed very poorly when there is only

a small amount of data. However, our proposed model

which utilizes multitask learning with CTC outputs from

the encoder performs better compared to attention only

model. This indicates that employing multi-task learn-

ing with CTC is highly effective when there is an insuf-

ficient amount of data. Figure 3 shows the attention align-

ments between acoustic features and tokens. We observed

that despite being trained for 64 epochs, the attention only

model failed to acquire a reasonable alignment, whereas

the suggested model achieved to acquire the desired align-

ments early on in the training process. The performance

difference between the attention only model and the pro-

posed model is likely to be attributed to the difference in

the difficulty of learning the correct alignments.

While we did not include the outcomes of using solely

synthetic audio-MIDI pair data for both training and test-

ing in any of the tables, it is worth stating that during the

pretraining phase of the experiment utilizing the proposed

model and data augmentation methods, the output of the

decoder with the test data yielded an F1 score of 0.959 and

TER of 0.029. This indicates that the amount of data used

in the pretraining was sufficient enough to train a reliable

language model for the decoder.

5. CONCLUSION

In this paper, we proposed two data augmentation methods

for training sequence-to-sequence networks that used tok-

enized music representation as output, and a hybrid CTC-

Attention model for automatic guitar transcription. We

confirmed that 1) both of the data augmentation methods

are highly effective in training the sequence-to-sequence

models when there is an insufficient amount of data, 2) our

proposed hybrid CTC-Attention model outperforms con-

ventional methods that transcribe guitar performance with

tokens, and 3) the addition of multi-task learning with CTC

in our proposed model is especially effective when there is

an insufficient amount of training data.
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ABSTRACT

In this paper, we address the problem of pitch estimation

using Self Supervised Learning (SSL). The SSL paradigm

we use is equivariance to pitch transposition, which en-

ables our model to accurately perform pitch estimation on

monophonic audio after being trained only on a small un-

labeled dataset. We use a lightweight (< 30k parameters)

Siamese neural network that takes as inputs two differ-

ent pitch-shifted versions of the same audio represented

by its Constant-Q Transform. To prevent the model from

collapsing in an encoder-only setting, we propose a novel

class-based transposition-equivariant objective which cap-

tures pitch information. Furthermore, we design the archi-

tecture of our network to be transposition-preserving by

introducing learnable Toeplitz matrices.

We evaluate our model for the two tasks of singing voice

and musical instrument pitch estimation and show that our

model is able to generalize across tasks and datasets while

being lightweight, hence remaining compatible with low-

resource devices and suitable for real-time applications. In

particular, our results surpass self-supervised baselines and

narrow the performance gap between self-supervised and

supervised methods for pitch estimation.

1. INTRODUCTION

Pitch estimation is a fundamental task in audio analysis,

with numerous applications, e.g. in Music Information Re-

trieval (MIR) and speech processing. It involves estimat-

ing the fundamental frequency of a sound, which allows to

estimate its perceived pitch. Over the years, various tech-

niques have been developed for pitch estimation, ranging

from classical methods (based on signal processing) [1–4]

to machine learning approaches [5, 6].

In recent years, deep learning has emerged as a pow-

erful tool for a wide range of applications, outperforming

classical methods in many domains. This is notably true in

© A. Riou, S. Lattner, G. Hadjeres and G. Peeters. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: A. Riou, S. Lattner, G. Hadjeres and G.

Peeters, “PESTO: Pitch Estimation with Self-supervised Transposition-

equivariant Objective”, in Proc. of the 24th Int. Society for Music Infor-

mation Retrieval Conf., Milan, Italy, 2023.

MIR, where deep learning has led to significant advances

in tasks such as music transcription [7–9], genre classifi-

cation [10–12], and instrument recognition [13–15]. Pitch

estimation has also benefited greatly from deep learning

techniques [16, 17]. However, these deep learning mod-

els often require a large amount of labelled data to be

trained, and can be computationally expensive, hindering

their practical applications in devices with limited com-

puting power and memory capabilities. Additionally, these

models are often task-specific and may not generalize well

to different datasets or tasks [18]. Therefore, there is a need

for a lightweight and generic model that does not require

labelled data to be trained. We address this here.

We take inspiration from the equivariant pitch estima-

tion [19] and the equivariant tempo estimation [20] algo-

rithms which we describe in part 2. As those, we use a SSL

paradigm based on Siamese networks and equivariance to

pitch transpositions (comparing two versions of the same

sound that have been transposed by a random but known

pitch shift). We introduce a new equivariance loss that en-

forces the model to capture pitch information specifically.

This work has the following contributions:

• we formulate pitch estimation as a multi-class prob-

lem (part 3.1); while [19, 20] model pitch/tempo es-

timation as a regression problem,

• we propose a novel class-based equivariance loss

(part 3.1) which prevents collapse; while [19] neces-

sitates a decoder,

• the architecture of our model is lightweight and

transposition-equivariant by design. For this, we in-

troduce Toeplitz fully-connected layers (part 3.4).

We evaluate our method on several datasets and show that

it outperforms self-supervised baselines on single pitch es-

timation (part 4.4.1). We demonstrate the robustness of our

method to domain-shift and background music, highlight-

ing its potential for real-world applications (part 4.4.2).

Our proposed method requires minimal computation re-

sources and is thus accessible to a wide range of users for

both research and musical applications. In consideration

of accessibility and reproducibility, we make our code and

pretrained models publicly available 1 .

1 https://github.com/SonyCSLParis/pesto
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2. RELATED WORKS

2.1 SSL to learn invariant representations.

Siamese networks. Most common techniques for SSL

representation involve Siamese networks [21]. The under-

lying idea is to generate two views of an input, feed them to

a neural network, and train the network by applying a cri-

terion between the output embeddings. Various techniques

have been developed for generating views 2 .

Collapse. However, a major issue with these methods

is “collapse”, when all inputs are mapped to the same em-

bedding. To address this, various techniques have been

proposed. One of the most common is SimCLR [22] which

also uses negative samples to ensure that embeddings are

far apart through a contrastive loss. Additionally, several

regularization techniques have been developed that mini-

mize a loss over the whole batch. Barlow Twins [23] force

the cross-correlation between embeddings to be identity,

while VICReg [24] add loss terms on the statistics of a

batch to ensure that dimensions of the embeddings have

high enough variance while remaining independent of each

other. On the other hand, [25] explicitly minimize a loss

over the hypersphere to distribute embeddings uniformly.

Furthermore, incorporating asymmetry between inputs has

been shown to improve performance. [26, 27] uses a mo-

mentum encoder, while [28] and [29] add a projection

head and a stop-gradient operator on top of the network,

with [28] also using a teacher network. Finally, [30] in-

corporates asymmetry to contrastive- and clustering-based

representation learning.

Application to audio. While originally proposed for

computer vision, these methods have been successfully

adapted to audio and music as well. For example, [31],

[32], and [33] respectively adapted [22], [23], and [28] to

the audio domain. By training their large models on Au-

dioSet [34], they aim at learning general audio represen-

tations that are suited for many downstream tasks. More

specifically, [35] successfully adapts contrastive learning

to the task of music tagging by proposing more musically-

relevant data augmentations.

2.2 SSL to learn equivariant representations.

The purpose of the methods described above is to learn a

mapping f : X → Y that is invariant to a set of transforms

TX , i.e. so that for any input x ∈ X and transform t ∈ TX

f(t(x)) ≈ f(x) (1)

However, recent approaches [36–38] try instead to learn

a mapping f that is equivariant to TX , i.e. that satisfies

f(t(x)) ≈ t′(f(x)) (2)

where t′ ∈ TY with TY a set of transforms that acts on the

output space Y . In other words, if the input is transformed,

the output should be transformed accordingly. Representa-

tion collapse is hence prevented by design.

2 The most common technique involves randomly applying data aug-
mentations to inputs to create pairs of inputs that share semantic content.

Equivariant representation learning has mostly been ap-

plied to computer vision and usually combines an invari-

ance and an equivariance criterion. E-SSL [36] trains two

projection heads on top of an encoder, one to return pro-

jections invariant to data augmentations while the other

predicts the parameters of the applied data augmentations.

[37] predicts separately a semantic representation and a ro-

tation angle of a given input and optimizes the network

with a reconstruction loss applied to the decoded content

representation rotated by the predicted angle. Finally, SIE

[38] creates a pair of inputs by augmenting an input and

learns equivariant representations by training a hypernet-

work conditioned on the parameters of the augmentation

to predict one embedding of the pair from the other.

Application to audio. Finally, a few successful exam-

ples of equivariant learning for solving MIR tasks recently

emerged [19,20]. In particular, [20] introduces a simple yet

effective equivariance criterion for tempo estimation while

preventing collapse without any decoder or regularization:

pairs are created by time-stretching an input with two dif-

ferent ratios, then the output embeddings are linearly pro-

jected onto scalars and the network is optimized to make

the ratio of the scalar projections match the time-stretching

ratio within a pair.

2.3 Pitch estimation.

Monophonic pitch estimation has been a subject of inter-

est for over fifty years [39]. The earlier methods typically

obtain a pitch curve by processing a candidate-generating

function such as cepstrum [39], autocorrelation function

(ACF) [40], and average magnitude difference function

(AMDF) [41]. Other functions, such as the normalized

cross-correlation function (NCCF) [1, 2] and the cumula-

tive mean normalized difference function [3,42], have also

been proposed. On the other hand, [4] performs pitch es-

timation by predicting the pitch of the sawtooth waveform

whose spectrum best matches the one of the input signal.

Recently, methods involving machine learning tech-

niques have been proposed [5, 6]. In particular,

CREPE [16] is a deep convolutional network trained on

a large corpus to predict pitch from raw audio waveforms.

SPICE [19] is a self-supervised method that takes as inputs

individual Constant-Q Transform (CQT) frames of pitch-

shifted inputs and learns the transposition between these

inputs. It achieves quite decent results thanks to a decoder

that takes as input the predicted pitch and tries to recon-

struct the original CQT frame from it.

Finally, some works [43, 44] aim at disentangling the

pitch and timbre of an input audio, thus predicting pitch

as a side effect. In particular, DDSP-inv [45] is a DDSP-

based approach [46] that relies on inverse synthesis to infer

pitch in a self-supervised way.

3. SELF-SUPERVISED PITCH ESTIMATION

3.1 Transposition-equivariant objective

We focus on the problem of monophonic pitch estimation

and model it as a classification task. Our model is com-
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Figure 1. Example of k-transpositions. Visually, y and

y
′ are just translated versions of each other. The sign of

k and its absolute value respectively indicate the direction

and the distance of the translation.

posed of a neural network fθ that takes as input an audio

signal x and returns a vector y = (y0, . . . , yi, . . . , yd−1) ∈
[0, 1]d, which represents the probability distribution of

each pitch i. yi represents the probability that i is the pitch

of x. We propose here to train fθ in a SSL way. For this,

similarly to [22, 24, 26, 28, 29], we use data augmentations

and Siamese networks.

Given x, we first generate x
(k) by pitch-shifting x by

a known number k of semitones. Then, both x and x
(k)

are fed to fθ which is trained to minimize a loss function

between y=fθ(x) and y
(k)=fθ(x

(k)).

Definition. For two vectors y,y′ ∈ R
d and 0 ≤ k < d, y′

is a k-transposition of y if and only if for all 0 ≤ i < d










y′
i+k

= yi when 0 ≤ i < d− k

y′
i
= 0 when i < k

yi = 0 when i ≥ d− k − 1

(3)

Similarly, for −d < k ≤ 0, y′ is a k-transposition of y if

and only if y is a −k-transposition of y′.

The concept of k-transposition is illustrated in Figure 1.

Note also that for a vector y ∈ R
d, exists at most one

vector y
′ ∈ R

d that is a k-transposition of y. We can

therefore refer to y
′ as the k-transposition of this vector y.

Equivariance loss. We then design our criterion based

on the following assumption: the probability of x to have

pitch i is equal to the probability of x(k) to have pitch i+k,

i.e. yi should be equal to y
(k)
i+k

3 . In other words, if x(k) is a

pitch-shifted version of x, their respective pitch probability

distributions should be shifted accordingly, i.e. y(k) should

be the k-transposition of y.

We take inspiration from [20] to design our equivari-

ance loss. However, in our case, the output of our network

fθ is not a generic representation but a probability distri-

bution. We therefore adapt our criterion by replacing the

learnable linear projection head from [20] by the following

deterministic linear form:

φ : R
d → R

y 7→ (α, α2, . . . , αd)y
(4)

where α is a fixed hyperparameter 4 .

3 For example, if k = 2 semitones, the probability of x to be C4 is

exactly the probability of x(k) to be a D4, and the same holds for any
pitch independently of the actual pitch of x.

4 We found α = 21/36 to work well in practice.

Indeed, with this formulation, for any k if y
′ is a k-

transposition of y then φ(y′) = αkφ(y). Hence we define

our loss as

Lequiv(y,y
(k), k) = hτ

(

φ(y(k))

φ(y)
− αk

)

(5)

where hτ is the Huber loss function [47], defined by

hτ (x) =

{

x
2

2 if |x| ≤ τ
τ
2

2 + τ(|x| − τ) otherwise
(6)

Regularization loss. Note that if y
(k) is the k-

transposition of y then Lequiv(y,y
(k), k) is minimal. How-

ever, the converse is not always true. In order to ac-

tually enforce pitch-shifted pairs of inputs to lead to k-

transpositions, we further add a regularization term which

is simply the shifted cross-entropy (SCE) between y and

y
(k), i.e. the cross-entropy between the k-transposition of

y and y
(k):

LSCE(y,y
(k), k) =

d−1
∑

i=0

yi log
(

y
(k)
i+k

)

(7)

with the out-of-bounds indices replaced by 0. The respec-

tive contribution of Lequiv and LSCE is studied in part 4.4.3.

Invariance loss. Lequiv and LSCE allow our model to

learn relative transpositions between different inputs and

learn to output probability distributions y and y
(k) that sat-

isfy the equivariance constraints. However, these distribu-

tions may still depend on the timbre of the signal. This

is because our model actually never observed at the same

time two different samples with the same pitch.

To circumvent this, we rely on a set T of data augmen-

tations that preserve pitch (such as gain or additive white

noise). We create augmented views x̃ = t(x) of our inputs

x by applying random transforms t ∼ T .

Similarly to [35], we then train our model to be invari-

ant to those transforms by minimizing the cross-entropy

between y = fθ(x) and ỹ = fθ(x̃).

Linv(y, ỹ) = CrossEntropy(y, ỹ) (8)

Combining the losses. For a given input sample x and

a given set of augmentations T ,

• we first compute x
(k) by pitch-shifting x by a random

number of bins k (the precise procedure is described

in section 3.2);

• we then generate two augmented views x̃ = t1(x) and

x̃
(k) = t2(x

(k)), where t1, t2 ∼ T ;

• we compute y=fθ(x), ỹ=fθ(x̃) and ỹ
(k)=fθ(x̃

(k)).

Our final objective loss is then:

L(y, ỹ, ỹ(k), k) = λinv Linv(y, ỹ)

+ λequiv Lequiv(ỹ, ỹ
(k), k)

+ λSCE LSCE(ỹ, ỹ
(k), k)

(9)

We illustrate this in Figure 2. To set the weights λ∗ we

use the gradient-based method proposed by [48–50].
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Pitch-Shift Augmentation Prediction Loss computation

Figure 2. Overview of the PESTO method. The input CQT frame (log-frequencies) is first cropped to produce a pair of

pitch-shifted inputs (x,x(k)). Then we compute x̃ and x̃
(k) by randomly applying pitch-preserving transforms to the pair.

We finally pass x, x̃ and x̃
(k) through the network fθ and optimize the loss between the predicted probability distributions.

3.2 Audio-frontend

The inputs x are the individual frames of the CQT. We

have chosen the CQT as input since its logarithmic fre-

quency scale, in which bins of the CQT exactly correspond

to a fixed fraction b of pitch semitones, naturally leads to

pitch-shifting by translation. CQT is also a common choice

made for pitch estimation [17, 19, 51].

To compute the CQT, we use the implementation pro-

vided in the nnAudio library [52] since it supports parallel

GPU computation. We choose fmin = 27.5 Hz, which is

the frequency of A0 the lowest key of the piano and select

a resolution of b = 3 bins per semitone. Our CQT has in

total K = 99b log-frequency bins, which corresponds to

the maximal number of bins for a 16kHz signal.

3.3 Simulating translations.

To avoid any boundary effects, we perform pitch-shift by

cropping shifted slices of the original CQT input frame as

in [19] 5 . From a computational point of view, it is indeed

significantly faster than applying classical pitch shift algo-

rithms based on phase vocoder and resampling.

3.4 Transpostion-preserving architecture

The architecture of fθ is illustrated in Figure 3. It is in-

spired by [17]. Each input CQT frame is processed inde-

pendently: first layer-normed [53] then preprocessed by

two 1D-Conv (convolution in the log-frequency dimen-

sion) with skip-connections [54], followed by four 1D-

Conv layers. As in [17], we apply a non-linear leaky-

ReLU (slope 0.3) [55] and dropout (rate 0.2) [56] between

each convolutional layer. Importantly, the kernel size and

padding of each of these layers are chosen so that the fre-

quency resolution is never reduced. We found in practice

that it helps the model to distinguish close but different

5 Specifically, we sample an integer k uniformly from the range
{−kmax, . . . , kmax}, then generate two CQT outputs, denoted as x

and x(k), where x is obtained by cropping the input CQT at indices

[kmax,K− kmax − 1], and x(k) is obtained by cropping the input CQT
at indices [kmax − k,K − kmax + k − 1], with K the total number of
bins of the original CQT frame and kmax = 16 in practice (see Figure 2).

40 40 30 30 10 3

Toeplitz fc

Figure 3. Architecture of our network fθ. The number of

channels varies between the intermediate layers, however

the frequency resolution remains unchanged until the final

Toeplitz fully-connected layer.

pitches. The output is then flattened, fed to a final fully-

connected layer and normalized by a softmax layer to be-

come a probability distribution of the desired shape.

Note that all layers (convolutions 6 , elementwise non-

linearities, layer-norm and softmax), except the last final

fully-connected layer, preserve transpositions. To make the

final fully-connected layer also transposition-equivariant,

we propose to use Toeplitz fully-connected layers. It

simply consists of a standard linear layer without bias but

whose weights matrix A is a Toeplitz matrix, i.e. each of

its diagonals is constant.

A =



















a0 a−1 a−2 · · · a−n+2 a−n+1

a1 a0 a−1
. . .

. . . a−n+2

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...

am−1 · · · · · · · · · · · · am−n



















(10)

Contrary to arbitrary fully-connected layers, Toeplitz ma-

trices are transposition-preserving operations and only

have m + n − 1 parameters instead of mn. Furthermore,

they are mathematically equivalent to convolutions, mak-

ing them straightforward to implement.

6 Convolutions roughly preserve transpositions since the kernels are
applied locally, meaning that if two transposed inputs are convolved by
the same kernel, then the output results will be almost transpositions of
each other as well
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Raw Pitch Accuracy

Model # params Trained on MIR-1K MDB-stem-synth

SPICE [19] 2.38M private data 90.6% 89.1%

DDSP-inv [45] - MIR-1K / MDB-stem-synth 91.8% 88.5%

PESTO (ours) 28.9k MIR-1K 96.1% 94.6%

PESTO (ours) 28.9k MDB-stem-synth 93.5% 95.5%

CREPE [16] 22.2M many (supervised) 97.8% 96.7%

Table 1. Evaluation results of PESTO compared to supervised and self-supervised baselines. CREPE has been trained in

a supervised way on a huge dataset containing in particular MIR-1K and MDB-stem-synth. It is grayed out as a reference.

For DDSP-inv, we report the results when training and evaluating on the same dataset.

3.5 Absolute pitch inference from y

Our encoder fθ returns a probability distribution over

(quantized) pitches. From an input CQT frame x, we first

compute the probability distribution fθ(x), then we infer

the absolute pitch p̂ by applying the affine mapping:

p̂(x) =
1

b
(argmax fθ(x) + p0) (11)

where b = 3 is the number of bins per semitones in the

CQT and p0 is a fixed integer shift that only depends on

fθ. As in [19], we set the integer shift p0 by relying on a

set of synthetic data 7 with known pitch.

4. EXPERIMENTS

4.1 Datasets

To evaluate the performance of our approach, we consider

the two following datasets:

1. MIR-1K [57] contains 1000 tracks (about two hours)

of people singing Chinese pop songs, with separate

vocal and background music tracks provided.

2. MDB-stem-synth [58] contains re-synthesized

monophonic music played by various instruments.

The pitch range of the MDB-stem-synth dataset is wider

than the one of MIR-1K. The two datasets have different

sampling rates and granularity for the annotations.

We conduct separate model training and evaluation on

both datasets to measure overfitting and generalization per-

formance. In fact, given that our model is lightweight and

does not require labelled data, overfitting performance is

particularly relevant for real-world scenarios, as it is easy

for someone to train on their own dataset, e.g. their own

voice. However, we also examine generalization perfor-

mance through cross-evaluation to ensure that the model

truly captures the underlying concept of pitch and does not

merely memorize the training data.

4.2 Training details

From an input CQT (see part 3.2), we first compute the

pitch-shifted CQT (see part 3.3). Then two random data

augmentations t1, t2 ∼ T are applied with a probability

of 0.7. We used white noise with a random standard de-

viation between 0.1 and 2, and gain with a random value

7 synthetic harmonic signals with random amplitudes and pitch

picked uniformly between -6 and 3 dB. The overall archi-

tecture of fθ (see part 3.4) is implemented in PyTorch [59].

For training, we use a batch size of 256 and the Adam opti-

mizer [60] with a learning rate of 10−4 and default param-

eters. The model is trained for 50 epochs using a cosine an-

nealing learning rate scheduler. Our architecture being ex-

tremely lightweight, training requires only 545MB of GPU

memory and can be performed on a single GTX 1080Ti.

4.3 Performance metrics

We measure the performances using the following metrics.

1. Raw Pitch Accuracy (RPA): corresponds to the per-

centage of voiced frames whose pitch error 8 is less

than 0.5 semitone [61].

2. Raw Chroma Accuracy (RCA): same as RPA but

considering the mapping to Chroma (hence allowing

octave errors) [61].

RCA is only used in our ablation studies.

4.4 Results and discussions

4.4.1 Clean signals

We compare our results with three baselines: CREPE [16],

SPICE [19] and DDSP-inv [45]. CREPE is fully-

supervised while SPICE and DDSP-inv are two SSL ap-

proaches. To measure the influence of the training set, we

train PESTO on the two datasets (MIR-1K and MDB-stem-

synth) and also evaluate on the two. This allows to test

model generalization.

We indicate the results in Table 1. We see that PESTO

significantly outperforms the two SSL baselines (SPICE

and DDSP-inv) even in the cross-dataset scenario (93.5%

and 94.6%). Moreover, it is competitive with CREPE (-

1.7% and -1.2%) which has 750 times more parameters

and is trained in a supervised way on the same datasets.

4.4.2 Robustness to background music

Background noise and music can severely impact pitch es-

timation algorithms, making it imperative to develop ro-

bust methods that can handle real-world scenarios where

background noise is often unavoidable.

We therefore test the robustness of PESTO to back-

ground music. For this, we use the MIR-1K dataset,

which contains separated vocals and background tracks

8 i.e. distance between the predicted pitch and the actual one
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Raw Pitch Accuracy (MIR-1K)

Model clean 20 dB 10 dB 0 dB

SPICE [19] 91.4% 91.2% 90.0% 81.6%

PESTO

β = 0 94.8% 90.7% 79.2% 50.0%

β = 1 94.5% 94.2% 92.9% 83.1%

β ∼ U(0, 1) 94.7% 94.4% 92.9% 81.7%

β ∼ N (0, 1) 94.8% 94.5% 93.0% 82.6%

β ∼ N (0, 1
2 ) 94.8% 94.5% 92.9% 81.0%

CREPE [16] 97.8% 97.3% 95.3% 84.8%

Table 2. Robustness of PESTO and other baselines to

background music with various Signal-to-Noise ratios.

Adding background music to training samples significantly

improves the robustness of PESTO (see section 4.4.2).

and allows testing various signal-to-noise (here vocal-to-

background) ratios (SNRs).

We indicate the results in Table 2. As foreseen, the per-

formance of PESTO when trained on clean vocals (row

β = 0) and applied to vocal-with-background consider-

ably drop: from 94.8% (clean) to 50.0% (SNR = 0 dB) 9 .

To improve the robustness to background music, we

slightly modify our method to train our model on mixed

sources. Instead of using gain and white noise as data aug-

mentations, we create an augmented view of our original

vocals signal xvocals by mixing it (in the complex-CQT do-

main) with its corresponding background track xbackground:

x = xvocals + βxbackground (12)

Then, thanks to Linv, the model is trained to ignore the

background music for making its predictions.

The background level β is randomly sampled for each

CQT frame. The influence of the distribution we sample

β from is depicted in Table 2. This method significantly

limits the drop in performances observed previously and

also makes PESTO outperform SPICE in noisy conditions.

4.4.3 Ablation study

Table 3 depicts the influence of our different design

choices. First, we observe that the equivariance loss Lequiv

and the final Toeplitz fully-connected layer (eq.(10)) are

absolutely essential for our model not to collapse. More-

over, data augmentations seem to have a negligible influ-

ence on out-of-domain RPA (-0.2%) but slightly help when

training and evaluating on the same dataset (+1.2%).

On the other hand, it appears that both Linv and LSCE do

not improve in-domain performances but help the model to

generalize better. This is especially true for LSCE, whose

addition enables to improve RPA from 86.9% to 94.6% on

MDB-stem-synth.

Finally, according to the drop of performances in RPA

and RCA when removing Linv, it seems that the invariance

loss prevents octave errors on the out-of-domain dataset.

9 It should be noted that the difference between the 96.1% of Table 1
and the 94.8% of Table 2 is due to the fact that we do not apply any data
augmentation (gain or additive white noise) when β = 0.

MIR-1K MDB

RPA RCA RPA RCA

PESTO baseline 96.1% 96.4% 94.6% 95.0%

Loss ablations

w/o Lequiv 5.8% 8.6% 1.3% 6.1%

w/o Linv 96.1% 96.4% 92.5% 94.5%

w/o LSCE 96.1% 96.5% 86.9% 93.8%

Miscellaneous

no augmentations 94.8% 95.4% 94.8% 95.2%

non-Toeplitz fc 5.7% 8.7% 1.2% 6.1%

Table 3. Respective contribution of various design choices

of PESTO for a model trained on MIR-1K.

5. CONCLUSION

In this paper, we presented a novel self-supervised learning

method for pitch estimation that leverages equivariance to

musical transpositions. We propose a class-based equiv-

ariant objective that enables Siamese networks to capture

pitch information from pairs of transposed inputs accu-

rately. We also introduce a Toeplitz fully-connected layer

to the architecture of our model to facilitate the optimiza-

tion of this objective. Our method is evaluated on two stan-

dard benchmarks, and the results show that it outperforms

self-supervised baselines and is robust to background mu-

sic and domain shift.

From a musical perspective, our lightweight model

is well-suited for real-world scenarios, as it can run on

resource-limited devices without sacrificing performance.

Moreover, its SSL training procedure makes it convenient

to fine-tune on a small unlabeled dataset, such as a spe-

cific voice or instrument. Additionally, the resolution of

the model is a sixth of a tone but could eventually be in-

creased by changing the resolution of the CQT. Moreover,

despite modelling pitch estimation as a classification prob-

lem, we make no assumption about scale or temperament.

These features make our method still a viable solution,

e.g. for instruments that use quartertones and/or for which

no annotated dataset exists. We therefore believe that

it has many applications even beyond the limitations of

Western music.

Overall, the idea of using equivariance to solve a clas-

sification problem is a novel and promising approach that

enables the direct return of a probability distribution over

the classes with a single, potentially synthetic, labelled el-

ement. While our paper applies this approach to pitch es-

timation, there are other applications where this technique

could be useful, such as tempo estimation.

Moreover, modelling a regression task as a classifica-

tion problem can offer greater interpretability as the output

of the network is not a single scalar but a whole probability

distribution. Finally, it can generalize better to multi-label

scenarios.

Our proposed method hence demonstrates the potential

of using equivariance to solve problems that are beyond the

scope of our current work. In particular, it paves the way

towards self-supervised multi-pitch estimation.
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ABSTRACT

Throughout history, a consistent temporal and spatial

gap has persisted between the inception of novel knowl-

edge and technology and their subsequent adoption for ex-

tensive practical utilization. The article explores the dy-

namic interaction and exchange of methodologies between

musicology and computational music research. It focuses

on an analysis of ten years’ worth of papers from the Inter-

national Society for Music Information Retrieval (ISMIR)

from 2012 to 2021. Over 1000 citations of ISMIR papers

were reviewed, and out of these, 51 later works published

in musicological venues drew from the findings of 28 IS-

MIR papers. Final results reveal that most contributions

from ISMIR rarely make their way to musicology or hu-

manities. Nevertheless, the paper highlights four examples

of successful knowledge transfers between the fields and

discusses best practices for collaborations while address-

ing potential causes for such disparities. In the epilogue,

we address the interlaced origins of the problem as stem-

ming from the language of new media, institutional restric-

tions, and the inability to engage in multidisciplinary com-

munication.

1. INTRODUCTION

In 2005, Cook [1] critically addressed the prospects and

difficulties of collaborations between Music Information

Retrieval (MIR) and musicology, many of which were re-

visited by Downie in 2009, further examining their impli-

cations and potential advancements [2]. With the emer-

gence of empirical research methods and advancements in

technology, music research has encompassed multiple aca-

demic fields, leading to a transformation in the structures

of these disciplines, including Music Information Retrieval

(MIR) and contemporary musicology. Given their multi-

disciplinary nature, the categorization of either is becom-

ing increasingly arbitrary. However, for the purpose of

© VN. Borsan, M. Giraud, and R. Groult. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: VN. Borsan, M. Giraud, and R. Groult, “The Games We

Play: Exploring The Impact of ISMIR on Musicology”, in Proc. of the

24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

the clarity of further arguments in this paper, we classify

“traditional” and humanities-centred music research fields

(musicology, music theory, ethnomusicology, etc.) under

the umbrella term “musicology.” Conversely, we use the

term “MIR” to encompass all fields that engage in natural-

sciences-based (typically computational) research related

to music, such as acoustics, informatics, physics, mathe-

matics, engineering, and more 1 .

Despite the significant impact of both fields in broad-

ening our understanding of music, unresolved issues high-

lighted by Cook continue to hinder their collaboration to

this day [1]. In recent years, a growing number of mu-

sicologists, along with humanities researchers in general,

have shown a preference for working with digital materials

rather than physical ones [3], but the application of com-

putation to research can be approached at various levels.

There are general-purpose software, such as word proces-

sors or spreadsheet editors, and music-oriented software,

such as Sibelius, Finale, and Audacity; there are program-

ming music/MIR platforms and libraries, such as Hum-

drum [4], music21 [5], Librosa [6] and Essentia [7] and

then there are methods and algorithms as developed by the

MIR community, for example [8–11] and others (see [12]

for a detailed review). While computer usage is preva-

lent among many researchers there are fewer musicologists

who adopt or contribute to similar methodologies. How-

ever, through new media and computational advancements,

music and our relationship to it are changing [13]. Given

the expansion of what is deemed significant in the “realm

of music,” it raises the question of whether familiarity with

computational languages is becoming a prerequisite for its

exploration.

Computational methods assist researchers in handling

larger and more varied datasets, but, would musicologists

agree that “working with [these] datasets [have] open[ed]

up new areas of musicology?” [1] Or, has this shift evoked

new areas of research, which are (almost) independent

from the musicological domain? The goal of this paper is

to ask to what extent the MIR contributions (in the frames

of ISMIR) resonate throughout the musicological commu-

nity. The very results of these particular analyses may also

1 Our labels are arbitrary categories for rough orientation, considering
disciplines like music cognition that fit into both/neither category.
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highlight some of the core issues of miscommunication be-

tween the two domains.

We start by outlining the “ready-made” arguments of

collaboratory issues of the fields (Section 1), followed by

a methodology introduction for a bibliographical study of

ten years of ISMIR papers (2010–2021) and their cita-

tions, where we present some empirical results (Sections 2

and 3). As an example of “good collaboratory practice”,

we detail four examples, where ISMIR findings were later

used by/for a musicological audience through datasets,

methodologies, and tool and/or code (Section 4). In con-

clusion, we discuss the results, examine potential reasons

for the outcomes, and draw on theories of play and media

studies to support our findings (Section 5).

2. THE WEB OF ARGUMENTS

Numerous authors have explored the advantages and/or

drawbacks of interdisciplinary research in the realm of mu-

sic. We acknowledge the tensions within musicology with-

out delving into the detailed evolution of historic musicol-

ogy, ethnomusicology, and systematic (empirical) musi-

cology, as these topics have already been extensively cov-

ered( [14]). We focus on the development of (pro and con)

arguments, generally raised in the 2000s and 2010s.

2.1 Years 2000–2010: Enticement Versus Restraint

The critical discussions began with the emergence of more

empirically-centred approaches, mostly labelled as sys-

tematic musicology. Following the iconic question “Who

stole systematic musicology?”, Leman [15] observed, that

even systematic musicology had no longer belonged to

“itself.” Conversely, transdisciplinary musicology gained

traction among engineering departments (MIR, sound pro-

cessing), as and neuroscientists and psychologists, who de-

veloped a growing interest in the study of music.

Amidst the rapid growth of music-related technology

production, papers in the early 2000s addressed contem-

porary musicology, its redefinition, and future methodolo-

gies and goals. For some, technologies were viewed as a

natural extension for quantitative, big-data, and empirical

music analyses [1], while others thought of music research

as an interdisciplinary ground of “somewhat equal” sub-

disciplines, including musicology and MIR. Addressing

the benefits of these collaborations, [16, 17], many authors

highlighted the benefits of multidisciplinary projects in ex-

panding the boundaries of isolated disciplines for more

comprehensive outcomes. In contrast, others warned that

in “an era in which interdisciplinarity has become a kind

of mantra, verbally subscribed to by nearly everyone, dis-

ciplines continue to police their own boundaries [18].” A

similar opinion was shared by Parncutt [14], and Leman,

who stressed that, even though they like talking about in-

terdisciplinary projects, “it was very rare that researchers

went beyond the boundaries of their own disciplines [15].”

Additionally, knowledge transfers are anything but fluid

among computational scientists and musicologists, thus

the ideas expand poorly, if at all [19], hence, they must

be improved [12]. The scepticism towards uncondition-

ally welcoming the emerging collaboratory changes thus

remained. In 2009, [2] reflected on interdisciplinary dy-

namics during the first 10 years of ISMIR, highlighting

its shortcomings, such as the inability to communicate the

produced tools to the user (performer, musicologists, ...),

favouring low-level over high-level features and audio over

other symbolic music representations, and so forth.

2.2 Years 2010–Today: The Quest for Consensus

The scepticism and critiques were not far-fetched nor prop-

erly addressed, as Urberg later noticed that the method-

ological visions of “fundamentally-renewed” music re-

search, had “not [yet] taken over the majority of musico-

logical scholarship [20].” Nonetheless, he imposed that the

methodology of research has already shifted, as there is an

ascending trend of new research tools and digitized (mu-

sic) data representations, a lot of them consciously used by

musicologists. So what seems to be the problem?

Finding balance in methodology, data collection and in-

terpretation. Still in the second decade of the 21st century,

when the introduced arguments began to overlap, Inskip et.

al. [25] conducted a survey in order to answer this ques-

tion. The study suggests that “[...] efforts should be made

into supporting the development of their digital skills and

providing usable, useful and reliable software created with

a ‘musicology-centred’ design approach.” Otherwise, the

“data richness will lead to information overload [26].” As

Dahling expressed in 2012, there are many tools for music

collection and analysis, of which many “suffer from var-

ious shortcomings, such as specificity to a certain reper-

toire or approach, lack of robustness and flexibility, flawed

user interfaces, or output is difficult to interpret [26].” A

similar concern has been expressed by others, such as [27]

and [28], or, for textual analysis [29]. All of them advo-

cate not only for a more accessible and flexible computa-

tional methods, but also express the need understand what

these methods do and how. Alongside epistemological

confusion and other (methodological) drawbacks, a similar

problem was stressed by Aucouturier and Bigand. Their

dialogue-style paper revealed the flaws and prospects for

collaborations between MIR and music research (specifi-

cally music cognition) [30]. In Drucker’s words, “the hu-

manities are not a mere afterthought, simply studying and

critiquing the effects of computational methods. [Their

theory] can provide ways of thinking differently [31].” In

a different light, the latter was also implied by [32].

Cyclical collaboration vs discontinuity. Following

Downie’s call for improvements [2], some authors dis-

cussed refined measurements that need to be considered re-

garding data collection and interpretation, for “obtaining or

accessing high-quality datasets remains a serious hurdle,

especially on a large scale [33].” These hurdles limit the

(digital) quality of music research, but not only that. All
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Claim/link to musicology ISMIR papers Examples of claim

None, “musicolog” is only present in
one of the references

147 (42.7%)

Application of musicological con-
cepts, by only explaining citation,
or apply musicological concepts, or
hinting towards the possibility of
musicological application.

81 (23.6%) [21] “In order to select relevant low-level features, we refer to musicology papers such as
[...] which suggest that arousal is related to features including rhythm density, note
density, key, dynamic, tempo, etc.”

[22] “We assume that the music tradition is known, and that the rhythm class (tāl.a) of the
piece is from a set of known (from musicological literature) tāl.as.”

Some claim of musicological utility. 114 (33.7%) [23] “[...] retaining the rest of the presented framework, e.g. for an analytical ontology
of musicological terms supporting the use of digital score annotations to illustrate
points in scholarly musicological arguments.” (see Section 4)

[24] “These features can serve as inputs to machine learning algorithms, or they can be
analyzed statistically to derive musicological insights.” (see Section 4)

Table 1. Links and/or claims regarding musicology in 342 ISMIR papers from 2012 to 2021 where “musicolog” occurs.

music cannot be collected and/or represented in the same

manner, and it is not feasible to investigate and discuss it

within identical methodological frameworks [28,34]. They

believe that this perspective should be considered not only

by musicologists but should also be of equal importance

for the field of MIR. Schüler and Huron argued that mu-

tual theoretical awareness is essential for musicologists

and MIR researchers [19,35]. Methodological tools should

not be confused with philosophical worldviews [35], and

due to the importance of theory and “practice”, there must

exist a cyclical collaboration between the disciplines [27].

Humanities scholars express concern about detached inter-

pretation and the prioritization of “facts” and algorithmic

success in studies [28, 29]. Thus, the algorithms must be

transparent enough for the scholars to actively participate

in the building blocks of their framework and methods.

“[I]n the long run, the most ’useful’ computational anal-

yses will be the ones which are interactive, confronting a

human user with the results of computational analysis and

allowing that user to modify or intervene in the procedure

to arrive at an acceptable or interesting result [28].”

From a more critical standpoint, Becker asks whether

“our failure [is] due to our own shortcomings in not becom-

ing thoroughly versed in the protocols and expectations of

another discipline? Or, was the failure due to too strin-

gent protocols and expectations for publication in a [...]

journal?”, concluding that some disciplinary barriers may

be unbreachable due to rigid institutional formations [18].

Leman, conversely, sees the “failure” of collaboration in

the notion of the absence of “concrete planned goal at long

term, except some vague idea of what all these research

activities are up to [15].” Although no firm solutions have

been introduced, some humanities authors [29, 36, 37] of-

fered partial theoretical frameworks. Our methodology, in-

spired by the latter (e.g., Moretti’s Distant Reading), will

be introduced in the following section.

3. METHODOLOGY AND RESULTS

In this section, we discuss the filtering process of ISMIR

2012–21 to examine whether and how such papers were

used in musicological studies. We also provide statistics

and information on data availability.

3.1 Article Selection and Filtration: Which papers

claim to have some musicological utility?

We downloaded all 1055 ISMIR papers 2 from the past

10 years (2012–2021) 3 and converted the .pdf files to

.txt files. We retrieved 342 articles which included the

root “musicolog”, meaning the article contained words

like “musicological,” “musicology”, and “ethnomusicol-

ogist” 4 . Next, we reviewed these 342 papers to deter-

mine their musicological implications, categorizing them

into 3 categories (see Table 1 for examples and details).

Subsequently, we focused on the 114 ISMIR papers that

claimed some musicological relevance and the citations, if

any.

3.2 Citations Analysis: Were the papers later used “in

musicology”?

To study how and if these 114 papers may have had an

impact on musicology, we identified 907 citations of them

through Google Scholar. The median of all citations per

cited paper is 16. The most cited paper was cited 208

times, while 10 were never cited. We retrieved almost all

of these citations 5 and sorted the citing papers by these

two (slightly ambivalent) categories.

➀ Is any “citator” a musicologist? As “musicologists”,

we classified researchers with a Master’s or PhD degree

in a “musicological” research field or most of their ac-

tivity was mostly conducted in a musicological environ-

ment (see Introduction). Together, there were 210 cita-

tions to 67 unique ISMIR papers that corresponded with

this category.

➁ Does the citing paper appear in a musicological jour-

nal/conference? Here, we focus on venues instead of in-

2 https://www.ismir.net/conferences/
3 Due to time constraints, we couldn’t thoroughly analyze all ISMIR

papers. Instead, we focused on the impact of early 2000s ideas on the
MIR and musicology collaboration, exploring new tools, and acknowl-
edging changes due to improved technology and online publication ac-
cessibility.

4 We acknowledge potential exclusions of articles using terms like
“music research,” “music theory,” or “music history”, and that ISMIR
papers may hold musicological significance without explicitly stating so.

5 About 20 were excluded due to inaccessibility of the article or lack
of information, among which 6 belong to centred dataset.
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Journal/Conference Citations
(Cited ISMIR papers)

Digital Libraries for Musicology (DLfM)⋆ 31 (15)
Journal of New Music Research (JNMR)⋆ 17 (15)
Acta Musicologica 7 (7)
Frontiers in Digital Humanities⋆ 6 (5)
Empirical Musicology Review (EMR) 6 (5)
Folk Music Analysis (FMA) 6 (5)

4: Musicae Scientiae; Zeitschrift der Gesellschaft für Musikthe-
orie; Digital Scholarship in the Humanities⋆; McGill University
(Schulich School of Music, Music Technology⋆); Utrecht Uni-
versity (MA or PhD Thesis)⋆; 3: Music Theory Online (MTO);
Computational Music Analysis; UC San Diego⋆; 2: Compu-
tational Phonogram Archiving: Current Research in Systematic
Musicology⋆; The Musical Quarterly; Journal on Computing and
Cultural Heritage⋆; Digital Humanities Quarterly⋆; +33 more (ap-
pear once)

70 citations in total

Table 2. Somewhat musicology-centred jour-

nals/conferences/books/institutions, in which ISMIR

papers were cited 143 times. The venues marked with (⋆)

have both, musicology/MIR goals.

dividuals, because researchers with musicological back-

grounds can have a strong root in MIR as well, while

musicological journals mainly target and publish works

of primarily musicologically-motivated research activ-

ity. We defined “musicological venues” by their pri-

mary motivation and targeted audience (Table 2), some

of them also have (secondary) MIR motivations (⋆ in

Table 2). ISMIR was fully excluded, with the intention

to show to which extent these contributions manage to

“leave” the ISMIR community. Together, there were

143 citations in rather musicologically relevant publi-

cations to 55 ISMIR papers.

From here, we focus on the 143 citations, as the rest

either focused on the MIR audience only (was published

in technical, science, MIR conference) or did not imply

the musicological utility.

3.3 Filtered Citations Analysis: What is the type of

citation/utility?

We sorted the 143 citations (or 114 unique citing articles)

of previously mentioned 55 ISMIR papers, focusing on if

and how the first use the latter.

✘ Only referencing the ISMIR paper. 92 citations only ref-

erence 43 ISMIR papers. The authors referenced the ar-

ticle, because it was relevant to the topic, however, their

contribution was not actually used.

The other 51 citations cited and somewhat used 28 IS-

MIR contributions 6 , split into the following types:

✓ Dataset (10 citations to 5 ISMIR papers): The author(s)

of citation (partially) used the dataset, presented in cited

ISMIR paper.

6 Certain ISMIR papers were referenced and utilized in various con-
texts, and/or classified under multiple utility categories.

2017

51015

ISMIR yearISMIR papers citing papers

2016

2015

2014

2013

2012

2018

2019

2020

2021

(a) (b) (c)

10 205 15 25

(f) (d)(e)

Figure 1. Distribution of the papers reported in this study

among the years. Left. (a) 114 ISMIR papers with “musi-

colog” root and claiming to have some musicological util-

ity; (b) from which 43 ISMIR papers cited in musicologi-

cal venues; (c) from which 28 ISMIR papers actually used

at least once. Right. (d) 143 citations in 51 citing papers

(of the 43 ISMIR papers) from musicological venues; (e)

from which 87 citations (74 unique citing papers) with at

least one musicologist as an author; (f) from which 35 (or

31 unique citing papers) with actual usage (of the 28 IS-

MIR papers). Even for citations, the considered year is the

year of the original ISMIR paper.

✓ Methodology (22 citations to 17 ISMIR papers): The

author(s) of citation (partially) used the methodology,

presented in cited ISMIR paper.

✓ Code/Tool (19 citations to 13 ISMIR papers): The au-

thor(s) of citation (partially) used the code and/or tool,

presented in cited ISMIR paper.

3.4 Statistics on these Papers and Citations

About 10% of ISMIR articles mention “musicolog” every

year. As expected, most recent papers are not cited (Fig-

ure 1). Despite the limited 10-year time span, papers that

received at least one citation showed an average gap of

three years between publication and the first citation. If

we consider the 81 “older papers” published between 2012

and 2018, about the third of them have been actually used

at least once in another study.

The list of musicological venues is also revealing (Ta-

ble 2): The conference that most frequently included IS-

MIR’s contribution was DLfM, a community that started

as a satellite event of ISMIR and that “provides a fo-

rum for musicians, musicologists, librarians, and technol-

ogists to share findings and expertise 7 .” It is followed by

JNMR, which “publishes systematic, scientific and tech-

nological research on music, musical processes and musi-

cal behaviours, including popular, cultural and canon mu-

sic” 8 . The majority of the 143 citations (see Figure 1)

appear in journals/conferences with a clearly stated incli-

nation to MIR and/or digital humanities ((⋆) in Table 2)

and include several MIR scientists.

7 https://dlfm.web.ox.ac.uk
8 https://www.tandfonline.com/journals/nnmr20
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Among 51 citations that used ISMIR papers, 16 papers

were (partial) self-citations, meaning there was at least one

common author. However, in 12 cases, new team members

were involved (often from outside the initial institution),

and in 4 cases, a new musicologist was present.

3.5 Data Availability

The annotated data on the 114 papers, which claim to

have some musicological utility, and the one of 143 cit-

ing papers of the 28 papers are available on a git repository

through open licences (Open Database License, Database

Contents License) at algomus.fr/data.

4. FOUR EXAMPLES OF KNOWLEDGE AND

IDEA TRANSFERS

51 citations in musicological venues were thus used one

of the 28 ISMIR papers through its dataset, methodology,

code and/or tool. We focused on four of these stories: In

the qualitative observation, we picked examples that de-

scribe the type of utility of ISMIR contribution.

Despite some self-citations, promising collaborations

were observed within research teams integrating interdis-

ciplinary dynamics between musicology and MIR. These

teams included both computer/MIR scientists and “con-

ventionally” trained musicologists.

Tool: VIS Framework. In an ISMIR 2014 paper, re-

searchers from the Distributed Digital Music Archives &

Libraries Lab at McGill University introduced the VIS

Framework, a Python library for music analysis together

with a case study on counterpoint patterns in symbolic mu-

sic scores [38]. The library was further used and cited

by the same group in “musicological” venues, such as

a study on encoding and translation issues published in

DLfM [39]. Two PhD theses from the Schulich School

of Music (McGill University) also used the framework.

First proposed a computer-assisted approach to the study of

interval-succession treaties [40], while second studied the

tonality practice of seventeenth-century Italian composers

in trio-sonatas [41] and used VIS to extract features. The

VIS GUI was found to be essential in making the analysis

task easier for non-computational scientists.

Dataset: The Story of Jingju. The Music Technology

Group (UPF, Barcelona, Spain) includes the ethnomusi-

cologist, Repetto. His ISMIR 2017 paper with Serra intro-

duced JMSC, of collection of scores or Jingju (also called

“Beijing Opera”) [42]. Two citing DLfM 2017 papers 9

analyzed the melodic syllabic contours in JMSC [43, 44],

each paper including another member of the MTG joining

the two authors of the ISMIR paper.

Multidisciplinary environments have been created by

MIR and music teams globally, fostering collaboration

9 DLfM was a satellite event of ISMIR at that time, meaning the papers
and their citations appeared (and were likely prepared) simultaneously.

with external groups, attracting more scientists, and ex-

panding opportunities for obtaining PhD positions from

both sides. The following story exemplifies how a mul-

tidisciplinary group can attract new collaborations.

Methodology/Tool: The Lohengrin TimeMachine. An

ISMIR 2017 paper by Weigl and Page, from the Univer-

sity of Oxford, presented an update on the MELD frame-

work [23], used to encode information of and about mu-

sic (e.g., digital representations of notation, audio, contex-

tual information) inside MEI. MELD has been cited by 25

other papers. One of the “MELD applications”, the Lohen-

grin TimeMachine was presented at DLfM in 2021 [45]

by Lewis and Page, as well as Dreyfus, an American mu-

sicologist who was previously not involved with the MIR

community. In his late career, he was appointed at the Uni-

versity of Oxford – but in the music department. The ap-

plication explored a few extracts of Wagner’s Lohengrin

through scores, motives, orchestration, structure, texts, au-

dio/video, musicological analysis, etc. It offers interesting

representations to a wider audience of both musical knowl-

edges but also on the very methodology of the musicolog-

ical research. This citation is also a good example of the

time it may take to cross domains (here, 4 years).

Tool: Mindfulness and Music Performance Study . In

ISMIR 2017, researchers from IRCAM presented the PiPo

plugin, designed for data stream processing in various do-

mains including interactive audio processing and MIR.

This API-based tool facilitates the extraction of low-level

descriptors from audio and motion data streams [46]. A

2021 citing paper in Psychology of Music, from a com-

pletely independent group, in Israel, examined whether

short-term mindfulness meditation activity would improve

music performance (vocal skills) regarding pitch intona-

tion, dynamics transmission, and vocal resonation [47].

They use the PiPo tool in the processing phase, using PiPo

modules for the automatic segmentation of markers by on-

set (time-tagged frames) for low-level descriptor extraction

(pitch, dynamics, timbre ...). Focusing on music psychol-

ogy, this application doesn’t qualify as a musicological

study. However, it showcases how MIR methods can be

applied to humanities-based music research. Interestingly,

out of the 114 ISMIR papers examined, this is the only one

reused in a “musicological” context independently of the

original authors.

5. DISCUSSION AND CONCLUSION

While ISMIR is not exclusively focused on musicology,

certain researchers who publish at ISMIR assert their im-

pact on the field. Our examination of the last five years as

well as a ten-year period of ISMIR reveals that the majority

of these contributions seldom make their way into musico-

logical or humanities scholarship. Out of the 28 ISMIR pa-

pers, which have been cited and used, the majority of them

are partly self-cited, and/or are “re-used” within the same

group, lab etc. Somehow, we did not find a single example
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of independent musicological application of ISMIR 2012-

2021 contributions in a traditional musicological journal.

We are aware that our study has some biases. To broadly

observe how MIR and other music research interact, we

should explore the utility dynamics both ways (ISMIR to

musicology, and musicology to ISMIR), as well as analyze

roots other than “musicolog” in multiple venues (both MIR

and music) and thoroughly explore the organizers, institu-

tions, and authors. There are also time 10 and space 11 vari-

ables, which could have had an impact on the results. Re-

search and collaboration cannot always be measured solely

by points or numbers. Non-citable research and pedagogi-

cal activities at universities are valuable components that

may not be easily quantifiable. In some cases, tools or

datasets may be used for inspiration without being cited

in the final report. Similarly, ISMIR-presented tools may

be employed without direct citation, with references made

to non-ISMIR contributions or other sources.

Various technologies have undoubtedly made their way

to musicologists, inspiring the creation of a quasi-common

ground with IT and other domains. However, further ef-

forts are necessary to establish a consistent circulation of

knowledge. While some are managing this challenge (see

Section 4), most still struggle.

This struggle could be understood through theories of

the game (or play) by Huizinga [48] then Caillois [49].

They discuss how the games we play are not only those of

“leisure” (sports, video games, ...) but also “law and order,

commerce and profit, craft and art, [...] and science. All

are rooted in the primaeval soil of play [48].” Caillois con-

siders day-to-day games people play in the light of com-

petitive examinations and economic competition [49], and

his six rules very much resemble the scientific atmosphere.

Like play, it is 1. not obligatory to participate in science,

which 2. must be conducted (or “played”) in an environ-

ment, pre-defined in time and space. 3. The strategy (re-

search development) is left to the individual ideas 4. and

is generally locked in an infinite loop of “unproductivity”

(meaning, it is largely being developed and executed and

re-executed within itself). Both (games and science) fol-

low conventional rules and take place in 6. “make-believe”

world, which is accompanied by a special awareness of a

second reality. For example, this may as well be the daily

shift from one’s research to mundane events. Games (or

science) can only be played when all parties are in agree-

ment with the particular rules.

Several of these may be incompatible between the MIR

and musicology, one of them being, as mentioned in [50],

the language of new media (similar idea in [13]). As later

elaborated by [51] and [52], this language has, “in the

process of epochal technological change” never been im-

mediate, but instead adopted “through a process of tran-

sition [52].” Since the majority of new technologies (or

10 The contributions we examine may be applied in the future.
11 Some venues cannot be observed through Google Scholar, and some

contributions may not have cited the source when applying their tools or
databases in their research.

languages) for music analysis “skipped” the transitional

era, and are, for an average musicologist, incomprehensi-

ble or non-intuitive (algorithmic codes), the computational

products “do not manage to address them [musicologists]

in an intelligible way.” There seems to be a “clear dis-

connect between how MIR tasks are designed to evalu-

ate systems, and how end users are supposed to use those

systems [...] [making them] difficult and costly to imple-

ment [12]”. Consequently, the results, produced by such

processes also become unusable, as the “involvement in

the wheel of algorithms is indispensable for musicological

research [13, 52].” It is this kind of disruption alone, that

can disable the multidisciplinary game.

Reflecting on our discussion in Section 2, Huron, im-

posed the obligation for both parties (MIR and musicol-

ogy) to familiarize themselves with each other’s method-

ologies [35]. Additionally, [30] highlights the importance

of knowing which parts of whose methodology are to be

used for a fruitful collaboration. Leman suggests solving

the gap by inducing multi-modality, introducing context-

based approaches into empiricism [15]; and a more re-

served Parncutt, explains that the wall is set by the feeling

of superiority on both sides [14], and so on. Still, the rules

of the playground must first reach consensus (starting with

the transition towards a common “language”). And this

is where these “common grounds” come to light. ISMIR

in itself is a multidisciplinary environment, however, most

of the participants (deriving from natural rather than hu-

manities or social sciences), already play by similar rules

(or speak the same language). Consequently, the multidis-

ciplinary activity within MIR remains rather limited and,

despite numerous surveys [12] has yet been unable to prop-

erly address all of the (reasons for) constraints mentioned

by [2] about 14 years ago. As seen in 3.4, the most cited

papers in musicological venues are derived from DLfM

and JNMR. This is not a coincidence, as these are “institu-

tions”, whose “rules” derive from a compromise between

both disciplines, as well as the majority of yearly contri-

butions, manage to speak the language of both. It hence

makes sense, that one of the mentioned papers address-

ing these matters [30] is structured as a dialogue, as it is

exactly that, finding a practical working consent among

(the two) sciences, that can endorse a fertile collabora-

tion. Merely adapting to each other’s rules seems like try-

ing to simultaneously play football and handball, where

similar “material” surely cannot and will not bring a con-

sensus between the two games. The successful examples

(Section 4) and mentioned discussions, should be consid-

ered to help us advance our fundamental goals on institu-

tional grounds and go beyond both MIR and musicology.

In the process of transductive ergomimesis, “new digital

media drastically reposition the people” [13] and repeat-

edly evoke new (motor) skills and techniques, professions,

and multidisciplinary actions (see also [53]). The change

is hence indispensable for the two fields, “but we’ve got to

put in place the [institutional] conditions to make it actu-

ally happen” [1]. It seems that it is, in the end, this game

(digital) musicologists may want actually want to play.
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ABSTRACT

Supervised music source separation systems using deep

learning are trained by minimizing a loss function be-

tween pairs of predicted separations and ground-truth iso-

lated sources. However, open datasets comprising isolated

sources are few, small, and restricted to a few music styles.

At the same time, multi-track datasets with source bleeding

are usually found larger in size, and are easier to compile.

In this work, we address the task of singing voice separa-

tion when the ground-truth signals have bleeding and only

the target vocals and the corresponding mixture are avail-

able. We train a cold diffusion model on the frequency

domain to iteratively transform a mixture into the corre-

sponding vocals with bleeding. Next, we build the final

separation masks by clustering spectrogram bins accord-

ing to their evolution along the transformation steps. We

test our approach on a Carnatic music scenario for which

solely datasets with bleeding exist, while current research

on this repertoire commonly uses source separation models

trained solely with Western commercial music. Our evalu-

ation on a Carnatic test set shows that our system improves

Spleeter on interference removal and it is competitive in

terms of signal distortion. Code is open sourced. 1

1. INTRODUCTION

Music source separation (MSS) is a core task in the field

of music information retrieval (MIR) in which the aim is

to automatically separate the different sources in a musical

mixture. In this work, we focus on separating the singing

voice. In recent years, impressive performance for this dif-

ficult and highly undetermined problem has been achieved

through the use of deep learning (DL) approaches [1]. Tra-

ditionally, MSS models operate on time-frequency repre-

sentations [1–3], and more recently on waveforms [4, 5],

however, the latter are prone to introduce artifacts to the

estimated sources. While the combination of both domains

1 https://github.com/MTG/carnatic-separation-ismir23
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cense (CC BY 4.0). Attribution: G. Plaja-Roglans, M. Miron, A.
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fusion on training data with bleeding”, in Proc. of the 24th Int. Society

for Music Information Retrieval Conf., Milan, Italy, 2023.

has also shown impressive performance [6, 7], these mod-

els tend to be large in size and require extensive amounts

of computational power, especially for the training stage.

Supervised MSS approaches, which currently lead the

field, require fully-isolated multi-track recordings for the

target sources. Data of this kind are scarce and constrained

to few musical repertoires [8] because recording these at

high quality without bleeding is expensive. One solution

is to synthesize the signals [8–10], however, these datasets

may not be fully realistic and may produce domain mis-

match. On the other hand, multi-track datasets with source

bleeding, where the track corresponding to a source is con-

taminated by the leakage from other sources, are easier to

build, since these may be compiled through a less com-

plex process, and can be recorded in live performances.

We observe large multi-track datasets with bleeding for

diverse domains in the literature [11–14], therefore, dedi-

cated MSS systems to be trained with these would be bene-

ficial. In fact, MSS in the presence of bleeding has recently

gained interest: a dedicated leaderboard for this problem –

albeit in a slightly different context than here – has been

included in the Music Demixing Challenge 2023 [15].

In this work, we propose to address the MSS problem

for a repertoire that lacks clean isolated tracks: Carnatic

Music (CM). The computational analysis of CM has re-

ceived growing attention in recent years [16]. MSS is a

useful pre-processing step in many computational research

pipelines on CM. However, researchers use the available

models in the literature, typically the pip-installable ver-

sion of Spleeter [3] – some examples being [17–22] –,

which is trained on a large private dataset, presumably in-

cluding few or no CM examples. Despite not having in-

formation on that latter matter, we make the assumption

because the 4/5-stem Spleeter models target an instrument

arrangement not applicable to CM (vocals, bass, drum, pi-

ano, and other), and CM is rarely recorded stem-by-stem

in a studio. The domain mismatch between repertories

here may hinder the generalization given the unseen in-

struments and playing/singing techniques. That may also

produce a negative effect on the analysis of the separated

sources, as well as on further processes such as melody es-

timation or pattern recognition. Existing works focusing

on CM have pointed out the domain mismatch problem for

related tasks currently lead by data-driven models [23].

We propose an MSS model to be trained using the

Saraga dataset [11] which is, to the best of our knowledge,
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the largest open dataset for the computational analysis of

Indian Art Music (IAM). Saraga comprises multi-track au-

dio data recorded in live performances and is larger in size

(≈ 36h) than the rest of the real-audio MSS datasets in

the literature. However, in all multi-track audio signals in

Saraga, there is bleeding from the rest of the sources. Our

goal is to use the real-world data with bleeding in Saraga

to train an MSS model for this domain, while proposing

a strategy to output clean isolated signals, even though no

bleeding-free signals are available for development.

To achieve so, we train a cold diffusion model, followed

by unsupervised clustering on the resulting output. Cold

diffusion has shown promising results in recovering data

samples from a given distribution that have been iteratively

perturbed, in T steps, using a deterministic signal [24–26].

We apply said process to iteratively convert the amplitude

spectrogram of a mixture to that of a target source with

bleeding. This yields a separation as good as the target

source with bleeding in the training data. To address this

issue, we take advantage of all the intermediary cold dif-

fusion steps to further improve the output. In doing so, we

rely on the fact that the energy of the target source, which is

predominant, will evolve differently throughout the trans-

formation than the energy of the source bleeding. Note that

this process is cumbersome in a single-step non-diffusion

separation system, given the overlapping between vocal

and accompaniment at various time-frequency bins.

The key contribution of this study is an MSS system that

can be developed solely using data with bleeding. With

regards to that, solely the mixture and the target source

containing bleeding from other instruments are required.

Given its relevance to the repertoire, we focus on sep-

arating the singing voice. Also, the proposed model is

adaptable: the user may choose to be more restrictive with

interferences – at the expense of loss of vocal quality –

or vice versa. We put special emphasis on being able

to characterize the ubiquitous instruments in CM, to re-

liably remove the interferences from the singing voice. In

a computational musicology context, that would improve

the musicologically-relevant research done on the sepa-

rated vocal signal.

2. METHOD

Our separation pipeline assumes the existence of m, the au-

dio signal of the mixture, and the target source with bleed-

ing sb which is contained in the mixture, while we may not

have the remaining sources at hand. In our case, sb is the

singing voice with source bleeding. We present a two-step

method to estimate the isolated source ŝ by only having m

and sb during training, and solely m during inference.

(1) Cold diffusion process: we aim at running a cold

diffusion process to recursively convert the magni-

tude spectrogram of a mixture M into the magnitude

spectrogram of the singing voice with bleeding Ŝb.

(2) Unsupervised mask estimation: Note that step (1)

can only yield estimations as good as the source with

bleeding Sb used as ground truth. Toward refining

Figure 1. The spectrogram cold diffusion transforms, in

T steps, a mixture M into a target source with bleeding Sb.

these estimations, we build the final estimation mask

by clustering the frequency bins using the entire cold

diffusion process to understand how the energy of

each bin is evolving during the transformation.

2.1 Feature extraction

2.1.1 Spectrogram cold diffusion

We propose an approach inspired by diffusion models, a

class of generative models that define a Markov chain of

T steps to iteratively convert samples from a given data

distribution into Gaussian noise while learning to conduct

the reverse process [27]. The model learns to generate a

sample of the given input data distribution from a random

sample of noise. Recently, deterministic signals have been

successfully used in place of Gaussian noise for the diffu-

sion process [24–26], a technique known as cold diffusion.

In [25], the authors apply a transformative cold diffu-

sion process for SVS, using the mixture as the perturba-

tion signal to gradually convert a singing voice to the cor-

responding mixture, while learning to conduct the reverse

process, yielding improved separations for the evaluated

model. The process operates in the waveform domain.

Here, we propose an updated version of the cold diffusion

paradigm in [25] to apply it in time-frequency domain. The

cold diffusion process begins at X0 which is the target data

point at inference, in our case Sb, and ends at XT , in our

case M . Let αt be the perturbation schedule to control the

amount of perturbation added at each step and therefore

determining the intermediate states of the variable Xt, be-

ing t the cold diffusion step. We define αt as a 1D vector

of linearly spaced values from 1 to 0, and of length T . We

compute any step in the cold diffusion process as:

qt(Xt|M,X0) = αtX0 + (1−√
αt)M (1)

The process is depicted in Figure 1. In other words, the

proposed cold diffusion process gradually converts the am-

plitude spectrogram of the singing voice with source bleed-

ing into the corresponding mixture, while at inference we

aim at reverting said transformation. The use of cold diffu-

sion is motivated by the successful attempts to iteratively

transform two-dimensional signals using a diffusion pro-

cess through a U-Net [24], a well-known network for

source separation [2, 3]. Moreover, we can train the model

in a supervised fashion, which may lead to more consistent

performance than unsupervised procedures. Approaches to
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extract features from the spectrogams for clustering [28]

are a problem on its own, which in this context may be

hindered by source bleeding and the musical and spectral

characteristics of CM instruments, e.g. violin or tanpura.

Note that given Eq. 1, the singing voice stays predom-

inant, while the accompaniment gradually increases – in

the direction of the cold diffusion process – or decreases –

in the direction of the inference process–. This equation is

also aimed at amplifying the energy difference throughout

the steps between the singing voice and accompaniment

frequency bins, and that explains why X0 and M have dif-

ferent trajectories assigned. The weighting (1 −√
αt) ap-

plied to the mixture M ensures larger steps at the start of

the inference process, while more fine-grained estimations

are performed at the latter steps [27], aiming at obtaining

more refined separation outputs. Note also that the ex-

pected inference input of a singing voice extraction model

– in our case corresponding to XT – is a mixture. Given

the expressions in Eq. 1, the perturbation M ensures that

XT = M , otherwise the said condition is not given.

2.1.2 Reverse process

The reverse process iteratively removes the deterministic

perturbation, aiming at reaching Sb receiving the corre-

sponding mixture M as input. We directly chain the model

estimations, so that the model input at a particular step t is

the raw prediction of the model at the previous step t + 1
(note that the reverse process begins from step T to reach

step 1). Therefore, given a trained model D with parame-

ters θ, the reverse process can be defined as follows:

rt(X̂t−1|Xt) = Dθ(Xt, t) (2)

This process is iteratively performed for t = [T, T −
1..., 1], using M as input corresponding to XT .

2.1.3 Training algorithm

We aim at training a model that learns a mask Kt for each

diffusion step t so that Xt∗Kt = X̂t−1. For each t, we pre-

dict a different mask that transforms the signal into the next

step in the reverse process until we reach X̂0, which ideally

is as close as possible to Sb. Given Eq. 1, we effectively

optimize the model using the following objective [27]:

L(θ) = ∥Xt−1 −Dθ(qt(Xt|M,X0), t)∥2 (3)

where Xt−1 is the known next step in the reverse process

computed following qt(Xt|M,X0), whereas the model Dθ

predicts the next step X̂t−1 based on qt(Xt|M,X0), the

step t, the mixture M , and the input of the cold diffusion

process X0, corresponding to Sb.

We employ a U-Net to learn the reverse process, which

has been shown useful for the problem of MSS [2]. We

use a U-Net with 7 levels of depth and 4 residual blocks

at each level. Both frequency and time dimensions are en-

coded and then expanded by a factor of 2. The last layer is

a sigmoid in order to output the mask Kt of values ∈ [0, 1],
which is multiplied by the input Xt to get X̂t−1. We esti-

mate masks instead of spectrograms to obtain a more con-

sistent and linear evolution of the bins energy. Estimating

spectrograms may lead to unstable removal of accompa-

niment, which adds complexity to the proposed approach.

To inform the network about the current diffusion step t

in the reverse process, we encode it using a 16-dimension

sinusoidal positional vector [29]. Said embedding is pro-

cessed through two dense layers of 64 units. Next, the em-

bedded t is projected to the corresponding channel size at

each level of depth of the U-Net and added to the input of

each residual block. We inject the time-step embedding to

all residual blocks in the encoder, decoder, and bottleneck.

2.1.4 Inference

In standard diffusion models, the output of the last step

is considered to be the cleanest signal. We argue that we

can achieve better separation by studying how the time-

frequency bins evolve throughout the inference process.

We run inference using the trained Dθ to automatically

convert an input M to a predicted Ŝb while capturing and

stacking all intermediate representations, in order, in a fea-

ture matrix X̂T,...,0. These features are sized I × J × T ,

where I is time size, J number of frequency bins, and T

is the number of cold diffusion steps, and represent how

the iterative transformation of the magnitude spectrogram

of M changes over the cold diffusion steps until reaching

predicted Ŝb. We normalize the features by dividing all

X̂
(i,j)
T,...,0 – being (i, j) the coordinates of a given frequency

bin in X̂T,...,0 – by max(X̂
(i,j)
T,...,0). Therefore, the energy

vectors are studied on the same scale.

2.2 Unsupervised mask estimation

The final mask estimation is performed on top of the cold

diffusion feature matrix X̂T,...,0, as seen in Figure 2. Exist-

ing works use diffusion models to generate features or em-

beddings for downstream tasks [30], however, to our best

knowledge, this is the first attempt to use an entire diffu-

sion process rather than relying only on the output signal.

Note that in the proposed cold diffusion paradigm,

we iteratively convert the accompaniment into bleeding –

much lower in presence but not removed –, while preserv-

ing the cleanest possible voice. Therefore, the energy of

the time-frequency bins X̂
(i,j)
T,...,0 across the diffusion steps

fluctuates less for the voice than for the accompaniment,

which is iteratively lowered by the model. To this end, we

propose to cluster the frequency bins based on the evolu-

tion of these in X̂T,...,0. Clustering techniques have been

previously used in a separation context [28,31,32], aiming

at grouping the components belonging to the same source.

We use K-means clustering to automatically create

groups of frequency bins associated with sources, given

the computed features X̂T,...,0. For example, if a binary

separation mask is desired, one may use two clusters and

multiply by 0 the clustered bins belonging to the accompa-

niment, while leaving the rest unchanged. For a soft mask,

we consider more than two clusters, and the bins classified

in the middle clusters may be shared between the singing

voice and other sources, as seen in Figure 2, where we use

three clusters. In our case, ideally, the cold diffusion pro-

cess iteratively reduces the energy of accompaniment bins
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Figure 2. The unsupervised mask estimation step clusters the frequency bins given vector X̂T,...,0, which stores the

evolution from mixture M to the predicted source with bleeding Ŝb. The example in this figure uses C = 3, being C

the number of clusters. The cluster with centroid with lower value is considered the accompaniment cluster and assigned

0 in the mask and removed, while the furthest cluster to that is the vocal cluster and assigned value 1, so values are

left untouched. The bins in the shared clusters (we have more than one shared cluster for C > 3) are weighted given

wF . Therefore, the user can navigate, given parameter F , through the interference/artifacts trade-off. Using larger C (i.e.

considering more clusters) delivers a more granular masking.

while preserving the singing voice. Therefore, the features

per bin X̂
(i,j)
T,...,0 have higher values for those corresponding

to the singing voice. In this case, the centroid of the closest

cluster to the voice centroid has the largest L1 norm. We

can then sort the clusters by the L1 norm of the centroid.

Having the clusters ordered, a weight ∈ [0, 1] must be

assigned to each cluster to create the soft mask. Rather

than normalizing the cluster centroids, we discover that

it is desirable to assign a balanced weighting to the clus-

ters. Thus, we define w, a 1D array linearly spaced values

∈ [0, 1] of length C, which is the number of clusters. Note

that 0 and 1 are both included to directly give a weight of

0 to the accompaniment cluster and 1 to the vocal clus-

ter, which are the two furthest clusters. Now let F be an

integer representing weight factor that is used to control

how restrictive we want to be with the intermediate clus-

ters. Given w and F , we compute the final cluster weight

array as wF . For an F > 1, we are being more restrictive,

especially with the clusters closer to the accompaniment

one, and the bigger we set F , the more restrictive we are.

When evaluating the clustering, we experiment with vari-

ous parameter configurations. However, C and F may also

be given by the users to control the trade-off between inter-

ference and artifacts depending on their needs. Intuitively,

the more clusters are considered and removed, we obtain

an output with less interference from other sources, at the

expense of a loss of quality from the target source.

To take advantage of the first separation run given by the

cold diffusion process, we multiply the final mask with the

last step of the inference process X̂0, or Ŝb. Preliminary

results confirmed that this is beneficial over masking the

input mixture, and it does not imply added computational

expense since X̂0 is contained in the features X̂T,...,0.

Note that the use of the cold diffusion process allows

the development of differentiable operations for estimating

the final separation mask in the context of bleeding. We

observed that clustering is not feasible when using a one-

step prediction, e.g. two spectrograms do not yield enough

information to study the energy change between a vocal

and an accompaniment frequency bin.

3. EXPERIMENTS

3.1 Experimental setup

We perform our experimentation using qt(Xt|M,X0) with

T = 8. Generative diffusion typically uses larger T , e.g.

1000 [27]. Using large values for T in this context pro-

duces two consecutive steps in the process practically iden-

tical, and the optimization of the model becomes extremely

complex. We compute the STFT of m and sb with window

size 1024 and hop 256, at a sampling rate of 22050Hz. We

use ADAM optimizer with a learning rate of 2−4 and batch

size of 8, and we run the training process for 1M steps.

The larger in time the input mixture spectrograms are,

the more bins to cluster for the final mask estimation.

While using an oversized spectrogram may lead to a com-

plex clustering problem given the variations in playing in-

tensity, few points may hinder the estimation of the clus-

ters. Given the improvisatory nature of CM, we propose to

use chunks of 3 seconds in order to be robust to the recur-

rent changes in intensity and dynamics of the performers.

Since we operate on magnitude spectrograms, we re-

quire the phase information to reconstruct the estimated

audio signals. Here we reuse the phase from m, which is

not ideal but it is fast and broadly used in the MSS [2].

3.1.1 Objective evaluation

We evaluate the models on a real-audio test set we record

for the purpose of this work. It includes ≈ 2h of music

and two different singers (male and female). Bleeding-free

tracks for violin, mridangam, and tanpura are also avail-

able. We split the tracks into chunks of 30s, slightly mod-
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ifying the mixing parameters to enrich the diversity in the

dataset. The tracks are mixed with the assistance of an

audio engineer. The testing set is made available for repro-

ducibility and further MSS research.

MSS is commonly evaluated objectively using the

BSS_Eval metrics [33]: (1) SDR: overall quality, (2)

SIR: intrusiveness of the other sources in the estimated

source, and (3) SAR: quality of the estimated source. For

particular music genres SDR may not correlate with per-

ceptual quality [34–37]. Thus, we run a subjective evalua-

tion in which we contrast the two dimensions captured by

the objective evaluation: interference removal (SIR) and

signal quality (SAR). This is a common experimental setup

in perceptual evaluation of MSS [38]. Therefore, we put

more emphasis on these metrics on our objective evalua-

tion as well, rather than comparing solely SDR. Note that

our method allows for selecting the desired level of inter-

ference at the expense of signal artifacts. Therefore, we

aim at covering two scenarios: creative tasks e.g. practic-

ing or mixing, and analysis tasks, e.g. melody estimation.

In a first experiment we compare our system using

three different configurations with a baseline U-Net model

trained with raw Saraga as regular MSS models are. A sec-

ond experiment is intended to compare our system with:

(1) our cold diffusion model skipping the unsupervised

clustering mask estimation, and (2) Spleeter [3], a widely

used model in the literature, also in computational analy-

sis works for CM. We include this comparison considering

that Spleeter is trained using a much larger dataset with

an unknown distribution. To the best of our knowledge,

no Carnatic-specific separation models are available in the

literature. In the latter experiment we report the absolute

SIR and SAR difference of our models w.r.t. the alterna-

tives aiming at providing an intuitive comparison in terms

of interference removal and vocal signal quality. We com-

pute the global MSS metrics [15] for all testing samples

using the latest museval version [39], and we compute

the median to be robust to extreme cases in the testing set.

3.1.2 Perceptual evaluation

Despite the efforts to enhance the variety within our test-

ing set, it is restricted in size and all recordings are ob-

tained from the same source. This is added to the fact that

the objective metrics in [40] may not always correlate with

the perceptual quality of MSS estimations [34]. For these

reasons, we run a perceptual test with subjects including

samples from the non-multi-track recordings in Saraga (≈
17h) – which were not included in the training set for our

models, and ensuring there are no overlapping artists – and

from the private collection of the Dunya database [41]. We

first randomly sample 50 recordings from the said data col-

lections, and we extract the singing voice from a randomly

selected 30s chunk for each recording. Using the mix-

ture as reference, we manually collect 6 examples from the

batch of separations ensuring that the test includes differ-

ent audio qualities, gender balance, and tonic diversity.

We design an online survey based on the MUSHRA

framework [42]. We request the participants to rate, from 1

C F SDR SIR SAR

Baseline - - 6.10 10.71 8.16

Ours 3 1 5.88 13.69 6.72

Ours 4 2 5.12 14.94 5.57

Ours 5 3 4.56 15.84 4.68

Table 1. Comparison of the baseline with three configura-

tions for our system. C is no. of clusters and F the weight

factor. Results are given in dB.

to 5, the vocal quality and the intrusiveness of other sources

separately. The participants are shown the mixture as a ref-

erence and two stimuli: our system with C = 5 and F = 4,

and Spleeter. The test includes a tutorial stage with exam-

ples – these are not shown during the actual test and are

not passed through any of the evaluated models – to make

sure the participants have the difference between distortion

and intrusiveness from other sources clear. We randomize

the order of the stimuli at each example, to prevent the or-

der from having an impact on the ratings. The proposed

subjective evaluation follows closely the ITU-T P.835. We

include a short survey in the test to collect information on

the expertise of the subjects on MSS and CM.

For each testing example, we compute the mean and

standard deviation of all rankings. We finally report the

mean and standard deviation over the 6 excerpts. The devi-

ation serves as an indicator of the sparsity of the opinions.

3.2 Results

3.2.1 Objective results

We first compare, on our testing set, our system with T = 8
and three different cluster configurations with the baseline

U-Net separation model. Results are shown in Table 1.

The baseline system is more prone to leak other sources in

the estimated vocals given the source bleeding in the train-

ing data, while it better preserves the quality of the target

source. On the other hand, our system further eliminates

the CM instrumentation from the input signal. However,

additional masking comes with a drawback and especially

in the case of CM where all instruments are pitched and

tuned in the same tonic. That produces an important over-

lap, especially between vocals and violin. Therefore, by

removing more interference, we are penalizing the quality

of the singing voice.

Related to the latter observation, we confirm the adapt-

ability of our system. The more clusters we consider and

remove, we achieve better interference removal at the ex-

pense of a loss of vocal quality. However, as seen in Ta-

ble 1, this is translated into worse SDR values. In the per-

ceptual evaluation we study how these metrics correlate

with the perceived quality of the estimations.

In Table 2 we report the difference in SIR and SAR

(denoted, respectively, SIRd and SARd), first between two

versions of our system (with and without clustering), and

second between our system and Spleeter. Using roughly all

tested configurations, our system is able to outperform the
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No clustering Spleeter [3]

SIR SAR SIR SAR

9.39 10.28 14.21 10.95

Comparison of our system with T=8

Config vs. No clustering vs. Spleeter [3]

C F SIRd SARd SIRd SARd

2 1 +4.70 -3.43 +0.14 -4.09

3 1 +4.31 -3.56 +0.52 -4.22

3 2 +5.46 -4.49 +0.64 -5.16

4 2 +5.55 -4.71 +0.72 -5.38

4 3 +6.41 -5.53 +1.60 -6.20

5 2 +5.61 -4.69 +0.78 -5.35

5 3 +6.45 -5.59 +1.63 -6.26

5 4 +7.14 -6.25 +2.32 -6.91

Table 2. SIR and SAR difference of our full system with

(1) our system with no unsup. mask estimation and (2)

Spleeter. Results given in dB, + indicate that we improve.

On top, we provide the absolute metrics of the alternatives

for reference. C is no. of clusters and F weight factor.

alternatives in terms of interference removal, better charac-

terizing and cleaning the Carnatic accompaniment from the

singing voice, suggesting that we are taking advantage of

the in-domain data despite the bleeding. Note also the SIR

improvement – more than 4dB in the worst case – that the

unsupervised masking provides on top of the last step of

the cold diffusion model, which can only estimate, at most,

the vocals with bleeding. That is the problem of using data

with bleeding for training supervised MSS systems.

However, our system tends to perform worse in signal

quality. This may be given by frequency components of

the singing voice that are being removed while performing

the unsupervised mask estimation, especially those living

in the bins shared with other sources. On the other hand,

Spleeter maintains a more complete singing voice despite

being more prone to interference. We perceptually note

that our estimations are dryer, while Spleeter is able to bet-

ter capture components such as reverb and high-frequency

details. This may be explained by the much larger train-

ing dataset comprising several different vocal styles and

effects. In our case, given the proposed schedule and dif-

fusion steps, these components may be partially living on

the shared clusters and therefore negatively affected as we

use a more restrictive parametrization.

Note the small difference in SAR between our system

with no clustering-based masking and Spleeter. Said ob-

servation suggests that the cold diffusion process preserves

the vocal quality roughly as Spleeter achieves so. That may

also explain why masking the last cold diffusion step X̂0

provides an improved output over masking the mixture M .

3.2.2 Perceptual results

We run the MUSHRA test on 25 subjects. From the pop-

ulation, ≈ 44% of the subjects have mid-to-high expertise

Mean Opinion Scores (MOS)

Vocal quality Vocal isolation

Ours (C=5, F=4) 2.80 ± 0.29 3.72 ± 0.31

Spleeter [3] 3.73 ± 0.17 1.97 ± 0.19

Table 3. Comparison between our system and Spleeter [3]

on a perceptual test. Min=1 / Max=5, the higher the better.

in MSS, while ≈ 48% have listened CM at least once.

The results of the MUSHRA test (see Table 3) on the

intrusiveness of other sources – or how well the vocals are

isolated – present a notable correlation with the SIRd in

Table 2, suggesting that our model is able to better elim-

inate the Carnatic instruments from the separated singing

voice. Another relevant aspect that we observe is that while

Spleeter is still leading on source quality, the scores are

more balanced between both models than what the SARd

metrics in Table 2 suggest. That may be an indicator that

the singing voice components erroneously removed by our

model – which notably penalize metrics-wise – are not no-

tably perceivable to the naked ear. All deviations of partic-

ipant rankings per example are < 1, suggesting that gener-

ally there is a disagreement of 1 point at most. Addition-

ally, we run the Wilcoxon signed-rank test for paired data

on each example, observing for all cases a p-value < 0.05,

indicating that the subject ratings were not given randomly.

4. CONCLUSIONS

We present a system that uses an entire cold diffusion pro-

cess as features to perform singing voice separation when

no isolated ground-truth sources are available, and we

solely have the mixture and the target source with bleed-

ing at hand for training. The cold diffusion process, which

iteratively transforms a mixture into the target source with

bleeding, allows for unsupervised clustering to build the fi-

nal separation masks. We run our approach on the Saraga

dataset, a large Carnatic collection of multi-track audio

with bleeding. Despite being trained solely using these

data, our model is able to better eliminate the Carnatic in-

struments from the singing voice than Spleeter, the most

commonly used model in computational research for this

repertoire, which is trained on a much larger private dataset

of clean signals. Albeit the source separation metrics sug-

gest that our system performs worse in terms of vocal dis-

tortion, perceptual tests on a dedicated test set suggest that

the proposed system trained with noisy and considerably

fewer data than Spleeter is competitive with the said sys-

tem. This will allow to scale up our system since new in-

domain data with bleeding are easier to compile than clean

data, especially for under-represented music cultures.

As further research, we propose to investigate different

schedules, while exploring more sophisticated clustering

techniques, aiming at improving source distortion. We also

aim at running the proposed pipeline for the other available

instrument tracks in Saraga: violin and mridangam.
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ABSTRACT

When a user listens to a song for the first time, what mu-

sical factors (e.g., melody, tempo, and lyrics) influence the

user’s decision to like or dislike the song? An answer to

this question would enable researchers to more deeply un-

derstand how people interact with music. Thus, in this

paper, we report the results of an online survey involving

302 participants to investigate the influence of 10 musical

factors. We also evaluate how a user’s personal charac-

teristics (i.e., personality traits and musical sophistication)

relate to the importance of each factor for the user. More-

over, we propose and evaluate three factor-based functions

that would enable more effectively browsing songs on a

music streaming service. The user survey results provide

several reusable insights, including the following: (1) for

most participants, the melody and singing voice are im-

portant factors in judging whether they like a song on first

listen; (2) personal characteristics do influence the impor-

tant factors (e.g., participants who have high openness and

are sensitive to beat deviations emphasize melody); and (3)

the proposed functions each have a certain level of demand

because they enable users to easily find music that fits their

tastes. We have released part of the survey results as pub-

licly available data so that other researchers can reproduce

the results and analyze the data from their own viewpoints.

1. INTRODUCTION

When a user listens to a song for the first time on a music

streaming service and it matches her taste, she may listen

to it until the end or add it to her favorites or a playlist.

On the other hand, if the song does not match the user’s

preferences, she may stop playing it partway through [1,2].

By accumulating logs of such listening behaviors, music

streaming services can estimate users’ music preferences

and implement functions such as recommendations [3, 4].

However, when a user first listens to a song and de-

cides whether or not she likes it, which musical factors

influence the decision? For example, one user may like

a song because of its lyrics, another may like it because

of its melody, and third may like it because of the sound

of a musical instrument. Several prior studies investigated
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people’s preferred musical factors [5–7]. However, those

studies targeted songs that the study participants already

liked and investigated the reasons for liking those songs in

terms of factors that were specific to the songs. Accord-

ingly, when a participant answered that she liked a certain

song because of its lyrics, it was unclear that she would

always judge whether she liked or disliked a song because

of its lyrics. Thus, despite those studies, there is a lack

of research on the musical factors that influence people’s

judgment on whether they like a song on first listen. This

lack of research motivates our first research question:

RQ1 When people listen to a song for the first time and

judge whether they like it, which musical factors af-

fect this judgment, and to what extent?

To more deeply understand how people interact with

music, the effects of users’ personality traits and musical

sophistication on their music preferences and listening be-

haviors have also been studied [5, 8–21]. For example, it

has been reported that people with high openness tend to

show a preference for folk music [16] and that musical so-

phistication positively influences recommendation accep-

tance [20]. Following such studies, we address the second

research question:

RQ2 How do people’s personality traits and musical so-

phistication affect the importance of each musical

factor in judging whether they like a song?

If a certain musical factor influences judgments about

song preferences, it would be useful to propose practical

examples of its engineering use. In fact, proposed im-

provements to the functions of music streaming services

from user study results have provided useful insights to

the music information retrieval (MIR) community [22–35].

Hence, we investigate a third research question:

RQ3 What are the implications of musical factors for the

functions of music streaming services?

To address these research questions, we targeted 10 mu-

sical factors and conducted a questionnaire-based online

user survey involving 302 participants. Our main contribu-

tions can be summarized as follows.

• We reveal that the factors of melody and singing voice

have large influences on music preference judgment,

whereas the factor of danceability has a small influence.

• From a psychological perspective, we show that both

personality traits and musical sophistication affect the

importance of the various musical factors. Given these

results, we discuss the possibility that the important fac-

tors for a particular user could be estimated from the

user’s listening behaviors on a music streaming service.
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• From an engineering perspective, we propose three

functions that would enable users to effectively browse

songs by leveraging musical factors, and we show that

each function has a certain level of demand.

• We have made the English translation of the survey

questionnaire and the survey results publicly available

on the web to support future studies 1 .

2. RELATED WORK

2.1 Musical Factors

Understanding why people listen to music has been of in-

terest to researchers. One typical research direction fo-

cuses on the motivation to listen to music in daily life.

The main reasons include emotional reasons such as re-

laxation [18, 36–39] and relief [40, 41]. People also listen

to music to concentrate and to pass time [42].

Another research direction investigates the reasons for

listening to specific preferred songs in terms of musical

factors. Greasley et al. [6] conducted interviews about par-

ticipants’ music collections. Among the main reasons why

the participants liked their collections were musical fac-

tors such as the lyrics and instruments. Sanfilippo et al. [7]

asked participants to sample two songs from their music

library on a listening device and answer questions such as

“why do you enjoy listening to the track?” The participants

often answered the questions by using a vocabulary of mu-

sical factors. Boyle et al. [5] investigated the influence of

musical factors on young people’s pop music preferences.

Each participant listed his/her three favorite pop songs and

rated the importance of various musical factors in liking

those songs. The results revealed that melody, mood, and

rhythm had large influences. Although these studies inves-

tigated the influences of musical factors, they focused on

only songs that the participants already liked. Our study is

different in that we focus on the musical factors that peo-

ple emphasize when they listen to a song for the first time.

Since there is a vast number of songs that people have not

yet listened to, investigating such factors is beneficial to

support finding songs that match their preferences.

2.2 Personal Characteristics

In the music domain, user’s preferences, interests, and be-

haviors are influenced by personal characteristics. In par-

ticular, many studies have investigated the influences of

personality traits measured by the Big Five Inventory [8–

14,16,17,43–47]. For example, personality has significant

associations with genre preferences [11, 13, 14, 16, 43] and

audio preferences [47]. It also influences the desired level

of diversity in a recommended song list [46]. Ferwerda et

al. [45] revealed that when a user browses for music, the

preferred taxonomy (mood, activity, and genre) depends

on the user’s personality. Such personality-based results

can be used for personalization. In fact, several studies

have shown increased recommendation quality when per-

sonality is incorporated [48–51]. Musical sophistication

is another typical personal characteristic that influences

1 They can be downloaded from https://github.com/

ktsukuda/musical_factor.

music preferences. For example, musically sophisticated

users listen to more diverse songs on both the artist and

genre levels [52], are more familiar with the songs in a

recommended song list [53], and prefer a less personalized

playlist [19]. These findings can also be used to improve

music recommendations and user interfaces. Following

those studies, we investigate the influences of personality

traits and musical sophistication on the importance of mu-

sical factors, and we suggest how its results can be used to

improve the recommendations.

2.3 Design and Function Proposals

For user studies on music listeners’ needs, preferences, and

behaviors, it is common to not only report the results but

also propose designs and functions to improve music ser-

vices by applying the results [22–35]. Such proposals have

provided reusable insights for the MIR community. Ex-

amples of these proposals include song recommendations

according to the user’s attention level [27], support for re-

mote co-listening with a friend [31], and support for users

to add their interpretations of lyrics [33]. Inspired by those

prior studies, we propose three functions that enable music

streaming services to leverage musical factors. Whereas

the above studies only proposed designs and functions, we

also conducted a user study to evaluate users’ willingness

to use the proposed functions.

3. PARTICIPANTS

We recruited participants for our user study via an online

research company in Japan. We limited the participants to

those who were Japanese and listened to music an average

of at least one day per week via any music streaming ser-

vice. The participants answered our questionnaire through

a web browser. We paid about 13.21 USD (1,750 JPY)

to each participant. Although 354 participants answered

the survey, to make the analysis results more reliable, we

removed the answers from 52 participants who submitted

improper responses to a free-response question. The re-

maining 302 participants were diverse in both gender and

age range: 147 male (10s: 4; 20s: 31; 30s: 33; 40s: 44;

50s: 35) and 155 female (10s: 9; 20s: 39; 30s: 35; 40s: 34;

50s: 38). Hereafter, we report the results obtained from the

302 participants including section 6.

4. INFLUENCE OF MUSICAL FACTORS

4.1 Musical Factors

Referring to prior studies on people’s favorite songs [5–7,

54], we targeted the following 10 musical factors that may

influence a person’s judgment of liking or disliking music

on first listen: melody, singing voice, rhythm, lyrics, mood,

tempo, harmony, sentiment, instruments, and danceability.

Although these 10 factors are not completely independent

each other (e.g., there would be relatively high correlation

between mood and sentiment), we adopted them to analyze

as many factors as possible. In this study, all of these fac-

tors were determined entirely from the music. That is, we

did not consider social factors that depend on the context

of the music or the listener (e.g., the artist’s image, the pop-

ularity of music, and whether music was introduced by a
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Figure 1. Importance distributions of musical factors (x-

axis: number of participants).

friend). Rather, as this is an initial study on the influence of

musical factors for judging a song on first listen, we leave

the investigation of such social factors for future work.

4.2 Procedure

For each musical factor, we first showed the participants

the factor’s name, its meaning, and a question. In the case

of instruments, for example, we showed the following de-

scription to represent its meaning: “Instruments means the

type of instruments used in the piece and their sounds.”

Similarly, we showed the following question: “How im-

portant is the instruments in judging whether you like or

dislike a song on first listen?” The possible answers were

“not important,” “hardly important,” “somewhat impor-

tant,” “important,” and “very important.” When the an-

swer for a factor was “not important” or “hardly impor-

tant,” the participant was asked to respond freely on why

it was unimportant. On the other hand, when the answer

was “somewhat important,” “important,” or “very impor-

tant,” the participant was asked to respond freely with at

least one criterion for judging that he/she liked or disliked

a song according to the factor. The 10 musical factors were

displayed in a random order to each participant.

Note that in this survey, we asked the participants to an-

swer the questions without actually listening to music to

avoid answer bias caused by the music they listened to for

the survey. Instead, they were asked to imagine daily situ-

ations where they listen to a song for the first time and rate

the importance of each factor. This type of survey, which

involves imagining a certain situation, is an established

survey method in the MIR community [27, 31, 55–59].

4.3 Results

Figure 1 shows the importance distribution for each fac-

tor. We can see that the importance was high for melody

and singing voice; in fact, paired Wilcoxon signed-rank

tests with Bonferroni correction revealed that their medi-

ans (i.e., 4) were statistically higher than the medians of the

remaining eight factors at p < 0.01. Among the remaining

eight factors, more than half of the participants gave a rat-

ing of 3, 4, or 5 for rhythm, lyrics, mood, tempo, harmony,

and sentiment. To more deeply understand the relation-

ships between factors, we show the Spearman’s rank corre-

lations between them in Figure 2. There were high (> 0.4)

correlations between rhythm and tempo, mood and senti-

ment, and melody and singing voice. Although lyrics had a

relatively high average importance, it had low (< 0.3) cor-

relations with all other factors. Danceability, which had

Melody
Singing voice

Rhythm Lyrics Mood
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Instruments

Singing voice
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Figure 2. Spearman’s rank correlations of importance be-

tween musical factors.

the lowest average importance, showed a similar tendency.

For each factor, to analyze the free responses on crite-

ria for liking a song, we manually grouped the responses.

Because we allowed the participants to give more than one

criterion, each participant’s response could be assigned to

more than one group. Similarly, we grouped the responses

on criteria for disliking a song and reasons for the unim-

portance of certain factors. Here, we omit the reasons for

unimportance, because the most common response for all

factors was “I am not interested in this factor.” On the

other hand, the criteria for liking or disliking a song were

diverse, as seen in Table 1, which lists the top three criteria

for each factor in terms of the group size. Many criteria in-

volved opposite terms for liked and disliked songs: in the

case of tempo, for example, participants who gave “fast” as

a criterion for liking a song tended to give “slow” as a cri-

terion for disliking a song. In addition, the second column

indicates that, for all factors, more participants gave crite-

ria for liking a song than for disliking a song, which means

that it was more common to have criteria for liking a song

than to have criteria for disliking a song. An interesting ap-

plication of this finding would be to use criteria for liking a

song in explainable recommendation. For example, when

a song is recommended to a user who emphasizes melody,

she may be more willing to listen to it if it appears with

an explanation such as “this song is recommended to you

because the melody is easy to remember.”

The results in Figure 1 are somewhat similar to those

reported by Boyle et al. [5] (e.g., melody and rhythm had

high importance, while danceability had low importance).

Nevertheless, we provide three contributions that are dis-

tinct from their results: (1) our results are more general-

ized, because we did not focus on a specific genre and age

group, whereas they focused on young people’s pop music

preferences; (2) we analyzed the correlations between fac-

tors and the criteria for each factor; and (3) we will publish

the survey results on the web to support later studies.

5. INFLUENCE OF PERSONAL FACTORS

5.1 Personality Traits

Procedure. We measured the participants’ personality

traits in terms of five aspects (i.e., openness, conscien-

tiousness, extraversion, agreeableness, and neuroticism)

by using the 29-item Big Five Inventory (BFI) on a 7-

point scale (1: strongly disagree - 7: strongly agree) [60].

We used the BFI because of its popularity in past stud-

ies [8–14, 16, 17, 43–47] compared to other traits such as
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Table 1. Top three criteria for judging “like” and “dislike,” for each musical factor. Each number in parentheses indicates

the number of participants who responded with the corresponding criterion.
Factor 1st 2nd 3rd

Melody
Like (265) Easy to remember (35) Easy to sing or hum (33) Feels comfortable (28)

Dislike (193) Too loud (18) Difficult to sing or hum (16) Feels uncomfortable (15)

Singing voice
Like (261) Specific type (beautiful, powerful, soft, etc.) (74) Voice to my liking (54) Feels comfortable (51)

Dislike (203) Feels uncomfortable (50) Specific type (raspy, piercing, etc.) (47) Voice not to my liking (28)

Rhythm
Like (237) Groovy (53) Feels comfortable (23) Rhythm to my liking (19)

Dislike (167) Rhythm not to my liking (17) Slow (16) Not groovy (15)

Lyrics
Like (218) Sympathetic (71) Inspirational (41) Positive (10)

Dislike (164) Unclear meaning (41) Lack empathy (30) Pedestrian (26)

Mood
Like (219) Cheerful (51) Fits my mood/situation (25) Calm (21)

Dislike (162) Gloomy (32) Too loud (29) Feels uncomfortable (12)

Tempo
Like (220) Fast (40) Groovy (29) Feels comfortable (24)

Dislike (163) Slow (48) Fast (31) Feels uncomfortable (15)

Harmony
Like (174) Feels comfortable (43) Beautiful (23) Harmonious (22)

Dislike (116) Feels uncomfortable (25) Monotonous (7) Inharmonious (6)

Sentiment
Like (163) Positive (33) Inspirational (30) Sympathetic (25)

Dislike (114) Negative (32) Evokes no emotion (12) Doesn’t fit my mood/situation (7)

Instruments
Like (146) Include specific instruments (24) Fit the song (17) Feel comfortable (15)

Dislike (102) Too loud (24) Feel uncomfortable (11) Don’t fit the song (7)

Danceability
Like (66) Body moves naturally to music (13) Groovy (11) Rhythmic (9)

Dislike (46) Not groovy (6) Gloomy (5) Rhythm is bad (4)

Table 2. Spearman’s rank correlations between personality traits and musical factor importance (N=302). Significant

correlations are shown in bold (*: p< 0.05; **: p< 0.01; ***: p< 0.001).
Trait Melody Singing voice Rhythm Lyrics Mood Tempo Harmony Sentiment Instruments Danceability

Openness 0.127* 0.135* 0.155** 0.177** 0.107 0.109 0.255*** 0.050 0.157** 0.151**

Conscientiousness 0.076 0.128* 0.062 0.031 0.127* 0.128* 0.125* 0.119* 0.028 0.013

Extraversion 0.062 0.130* 0.172** 0.175** 0.098 0.114* 0.254*** 0.107 0.151** 0.219***

Agreeableness 0.025 0.123* 0.048 0.088 0.158** 0.029 0.021 0.060 0.049 0.065

Neuroticism 0.003 0.010 -0.081 0.036 -0.025 -0.004 -0.142* 0.109 -0.072 -0.120*

opinion leadership [15].

Results. Table 2 lists the Spearman’s rank correlations

between the personality traits and the importance of each

musical factor. Openness had significant correlations with

as many as seven factors. That is, participants with higher

openness had more diverse criteria for judging whether a

song fits their taste. This result is similar to a previous

finding that people with high openness tended to listen to

more diverse songs in terms of genres [16]. Similarly, ex-

traversion also had significant correlations with many fac-

tors, particularly, danceability. This result echoes a report

that people with high extraversion tended to listen to songs

with high danceability on a music streaming service [51].

Conscientiousness was the only trait that had a significant

correlation with sentiment. Both agreeableness and neu-

roticism had significant correlations with as few as two

factors. These results are similar to a previous finding that

those traits showed significant correlations with few gen-

res [16].

Prior studies correlated personality traits with genre

preferences and music audio preferences [16, 47]. For ex-

ample, people who often listen to folk music were found

to have high openness [16]. As seen in Table 2, people

with high openness emphasize lyrics; accordingly, for a

user who often listens to folk songs, it would be helpful to

recommend songs according to the similarity of lyrics.

5.2 Musical Sophistication

Procedure. To measure the musical sophistication, we

used the following nine questions on a 7-point scale.

1. InstExp: I engage in regular, daily practice of a musical

instrument (1: never - 7: ≥ 10 years).

2. DanceExp: I engage in regular, daily dancing (1: never

- 7. more than 10 years).

3. NoticeBeat: I can tell when people sing or play out of

time with the beat (1: strongly disagree - 7: strongly

agree).

4. NoticeTune: I can tell when people sing or play out of

tune (1: strongly disagree - 7: strongly agree).

5. LsnMusic: I listen to music (1: < 15 minutes per day -

7: ≥ 4 hours per day).

6. LsnNew: I listen to music that is new to me (1: < 1

song per month - 7: ≥ 31 songs per month).

7. ViewLyrics: I view lyrics while listening to music (1:

< 1 song per month - 7: ≥ 31 songs per month).

8. Karaoke: I sing karaoke (1: < 1 time per year - 7: ≥ 4

times per week).

9. AttEvt: I attend live music events as an audience mem-

ber (1: < 1 time per year - 7: ≥ 11 times per year).

Questions 1, 3, 4, 5, and 9 derive from the Goldsmiths Mu-

sical Sophistication Index (Gold-MSI) [61]. In addition,

we asked four questions of our own (questions 2, 6, 7, and

8). For questions 5-9, we asked the participants to give the

average frequencies of those behaviors.

Results. Table 3 lists the Spearman’s rank correlations

between musical sophistication and the importance of each

musical factor. Overall, many of the results matched our

intuition. For example, DanceExp had a significantly high

correlation with danceability; participants who were sen-

sitive to beat and tune deviations emphasized audio-based

factors such as melody, singing voice, and harmony; and

ViewLyrics had the highest correlation with lyrics. It is

also convincing that participants who often sang karaoke

emphasized lyrics; those who often attended live music
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Table 3. Spearman’s rank correlations between musical sophistication and the importance of each musical factor (N=302).

Significant correlations are shown in bold (*: p< 0.05; **: p< 0.01; ***: p< 0.001).
Question Melody Singing voice Rhythm Lyrics Mood Tempo Harmony Sentiment Instruments Danceability

InstExp 0.100 0.061 -0.019 0.108 0.037 -0.099 0.134* 0.093 0.091 0.101

DanceExp -0.041 0.039 -0.047 0.126* 0.030 -0.024 0.044 0.098 -0.005 0.341***

NoticeBeat 0.228*** 0.228*** 0.126* 0.082 0.107 0.073 0.302*** 0.205*** 0.147* 0.072

NoticeTune 0.272*** 0.231*** 0.099 0.088 0.121* 0.039 0.276*** 0.167** 0.078 0.001

LsnMusic 0.041 0.054 0.111 0.141* 0.135* 0.101 0.078 0.108 0.051 0.090

LsnNew 0.003 0.107 0.152** 0.152** 0.112 0.194*** 0.115* 0.101 0.126* 0.169**

ViewLyrics 0.001 0.085 0.118* 0.243*** 0.120* 0.147* 0.136* 0.128* 0.101 0.110

Karaoke 0.085 0.087 0.005 0.210*** 0.154** -0.015 0.057 0.129* -0.033 0.081

AttEvent -0.038 0.037 -0.023 0.200*** 0.004 0.016 0.039 -0.005 0.088 0.179**
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Figure 3. Overview of the three proposed functions. In the user study, these images were presented to the participants.

events emphasized both lyrics and danceability; and Ins-

tExp had a significant correlation with harmony. Table 3

also indicates certain high correlations that are not obvious

(e.g., between LsnMusic/LsnNew and lyrics and between

LsnNew and danceability).

Certain metrics, such as LsnMusic, LsnNew, and View-

Lyrics, can be computed for each user on a music stream-

ing service [59,62,63]. Thus, the results in Table 3 can also

be used to increase the confidence in estimating the impor-

tance of each factor to a user without explicitly asking the

importance. For example, if a user often listens to folk

music (i.e., the user would have high openness as has been

reported by Ferwerda et al. [16]) and new songs, we can es-

timate from the results in Tables 2 and 3 that rhythm is one

of the user’s important factors. Hence, the user would be

more likely to accept recommendations by recommending

songs according to the similarity of their rhythms.

6. FUNCTIONS BASED ON MUSICAL FACTORS

In section 4, we showed that certain musical factors in-

fluence a person’s judgment of liking or disliking a song

on first listen. Following those results, in this section,

we propose three functions, illustrated in Figure 3, that

could enrich and diversify the music listening experience

on streaming services. Then, we investigate the usefulness

of these functions from the results of a user study.

6.1 Functions

6.1.1 Function 1: Registration of Factor Importance

With this function, shown in Figure 3 (a), users register the

importance of each of the 10 musical factors on a 5-point

scale when judging whether they like or dislike music on

first listen. It is not necessary to register the importance of

all factors. For example, the importance of rhythm is not

registered in Figure 3 (a). The registration process only

needs to be done once, and the registered information can

be changed later.

This function supports the users as follows. Suppose

that a user is listening to her favorite song s. The user has

registered lyrics as “very important” and tempo as “hardly

important.” Hence, among songs that are new to this user,

we can recommend songs that have various tempos and

similar lyrics to s. By listening to the recommended songs,

the user can find new favorite songs.

6.1.2 Function 2: Evaluation of Songs by Factors

This proposed function allows users to rate their song pref-

erences on a factor-by-factor basis, as shown in Figure 3

(b). The ratings are not mandatory: users only need to rate

the songs that they want to rate. In addition, they do not

need to rate songs in terms of all 10 factors. For exam-

ple, in the figure, the user does not rate mood. For each

song, by computing the average value of all users’ rating

results for each factor, we can display others’ evaluations

(averaged ratings) like those shown in Figure 3 (b).

This function supports the users as follows. Suppose

that a user is interested in an artist named “Betty,” and

that danceability is an important factor for the user. Then,

songs by “Betty” can be sorted and displayed in order of

the averaged ratings for danceability. This enables effi-

cient discovery of songs that match the user’s preferences.

6.1.3 Function 3: Presentation of Factor Information

With this function, information on factors that a user wants

to know for a song is displayed as shown in Figure 3 (c).

The information on each of the 10 factors can be automat-

ically estimated by using techniques from existing stud-

ies [64–70]. Thus, unlike the two previous functions, this

one does not require the user to input any information.

This function supports the users as follows. When a

user checks a list of newly released songs, usually only

basic information such as the artist and title is displayed

for each song. In contrast, our proposed function can dis-

play information on the musical factor for each song. For

example, if the user prefers slow-tempo songs with piano,

she can listen only to such songs by referring to the dis-

played information on tempo and instruments. This allows

the user to efficiently find songs that match her preferences

among a vast number of new songs.
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Table 4. Top three free-response reasons for “reasonably willing” or “willing” to use each of the proposed functions. Each

number in parentheses indicates the number of participants who gave that reason.
Function 1: registration of factor importance Function 2: evaluation of songs by factors Function 3: presentation of factor information

1st Easy to find music that fits my taste. (46) Would like to refer to others’ evaluations. (22) Easy to find music that fits my mood/situation. (27)

2nd Helpful for listening to new songs. (33) Easy to understand others’ evaluations. (14) Easy to find music that fits my taste. (26)

3rd Looks interesting to use. (11) Easy to find music that fits my taste. (13) Helpful for listening to new songs. (16)

0 50 100 150 200 250 300
Function 3

Function 2

Function 1

1: unwilling
2: not very willing

3: undecided
4: reasonably willing

5: willing

Figure 4. Distribution of the willingness to use each of the

proposed functions (x-axis: number of participants).

6.2 Procedure

For each function, we showed the participants an overview

of the function and examples of the user support that the

function would enable as we described in section 6.1 2 .

The participants were asked to indicate their willingness to

use the function, on a 5-point scale (“unwilling,” “not very

willing,” “undecided,” “reasonably willing,” and “will-

ing”), if it were implemented on the music streaming ser-

vice that they used regularly. They were also asked to pro-

vide free responses on their willingness. The three func-

tions were displayed in a random order to each participant.

6.3 Results

Figure 4 shows the answer distribution for each function.

Functions 1 and 3 were more positively received than func-

tion 2. To analyze the results, we manually grouped nega-

tive responses (i.e., the free responses for “unwilling” and

“not very willing”). As we had anticipated, a reason of “I

do not need the function” was common for all three func-

tions. Regarding function 2, although we explained that the

ratings were not mandatory, a response of “It is tedious to

rate songs” was also common. This is why the distribution

for function 2 was more biased in the negative direction.

Here, note that our goal was not to propose functions that

all participants would be willing to use. Rather, we sought

to confirm that the proposed functions would have a cer-

tain level of demand; accordingly, the results in Figure 4

indicate that we achieved our objective.

We also manually grouped the positive responses (i.e.,

the free responses for “willing” and “reasonably willing”).

Table 4 lists the top three responses in terms of the group

size for each function. We can see that, in general, the par-

ticipants tended to appreciate functions that would make it

easy to find music that fits their taste (all functions) and

easy to listen to new songs (functions 1 and 3). The re-

sponses for function 2 also indicate that they were inter-

ested in referring to other users’ evaluations of a song. We

can also see that the participants felt it was valuable to

be able to find music according to their mood or situation

(function 3). These responses provide reusable insights for

later studies: when researchers or streaming services pro-

2 We leave it as future work to actually implement these functions and
conduct a long-term user study on them including how to visualize the
information.

pose a new function, such user demand could serve as a

useful guideline for its design.

If function 3 were implemented on a music streaming

service, it might be difficult to estimate the information for

all factors because of the platform’s resource limitations.

In such a case, a possible solution would be to decrease the

number of displayed factors according to the results shown

in Figure 2. For example, rhythm information could be

omitted, because tempo has a high correlation with rhythm,

and users who emphasize rhythm could thus refer to tempo

information instead. In contrast, lyrics should not be elimi-

nated because it has low correlations with the other factors,

and there would not be no alternative factor for users who

emphasize lyrics.

7. CONCLUSION

In this paper, we conducted an online user survey involving

302 participants. The reusable insights obtained from our

user survey can be summarized as follows.

• We showed that the melody and singing voice are im-

portant for most participants. Because there were trends

in the criteria for each factor, as seen in Table 1, the cri-

teria could be used to increase the explainability of song

recommendations, as discussed in section 4.3.

• Personality and musical sophistication influence the im-

portance of each musical factor. As discussed in sec-

tions 5.1 and 5.2, these results would be useful for es-

timating which factors are important to a user from the

user’s listening behaviors on a streaming service.

• The evaluation results for our proposed functions show

that there is a certain demand for functions that enable

users to browse songs according to musical factors. The

reasons for each function’s demand in Table 4 could

provide guidelines for other researchers and services to

propose novel factor-based functions.

Finally, we acknowledge a limitation of this paper in

that all the participants in our user study were Japanese.

Because peoples’ music preferences and listening behav-

iors, as well as music itself, vary widely from country to

country [26, 71–76], not all of the findings reported here

can be generalized. Nevertheless, we believe that our study

provides a worthwhile contribution to the MIR community

as a first step toward understanding how musical factors

influence whether people like a song on first listen. At

the same time, the above limitation can guide future work

such as investigating the differences in important musical

factors among countries and cultures. The publicly avail-

able dataset of results from our user study will enable re-

searchers not only to perform such comparisons but also to

analyze and compare results from different viewpoints.
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Jan Hajič jr.1 Gustavo A. Ballen2 Klára Hedvika Mühlová3

Hana Vlhová-Wörner1

1 Masaryk Institute and Archive, Czech Academy of Sciences, Czechia
2 School of Biological and Behavioural Sciences, Queen Mary University of London, UK

3 Faculty of Arts, Masaryk University, Czechia

hajic@mua.cas.cz

ABSTRACT

The historical development of medieval plainchant

melodies is an intriguing musicological topic that invites

computational approaches to study it at scale. Plainchant

melodies can be represented as strings from a limited

alphabet, hence making it technically possible to apply

bioinformatic tools that are used to study the relationships

of biological sequences. We show that using phylogenetic

trees to study relationships of plainchant sources is not

merely possible, but that it can indeed produce meaningful

results. We develop a simple plainchant substitution model

for Multiple Sequence Alignment, adapt a Bayesian phylo-

genetic tree building method, and demonstrate the promise

of this approach by validating the resultant phylogenetic

tree built from a set of Divine Office sources for the Christ-

mas Vespers against musicological knowledge.

1. INTRODUCTION

Gregorian chant is the universal sacred liturgical monody

of the Roman Catholic church, which exerts strong con-

trol over this musical tradition. There is an authoritative

edition of chant: if singers from multiple countries and

continents sing together, each from their print of liturgical

books, they should encounter no conflicts in performance.

However, this was not always so. During the five hundred

years of notated Gregorian chant manuscript culture, be-

tween Guidonian staff notation and the introduction of the

post-Tridentine printed liturgical books, rarely was a chant

melody written exactly the same in two sources. 1 Despite

its stated role as a unifying element of the Roman Catholic

church, Gregorian chant was a diverse tradition.

The diversity of Gregorian chant, both in terms of reper-

toire and melody, has been a staple of musicological study

1 See cf. a sample of melodies of an antiphon:
https://cantusindex.org/id/004237
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of plainchant [1, 2]. Already the relative importances of

chronology, geography, and cursus 2 are, aside from select

topics such as the Cistercian reform, not well understood.

Recent chant scholarship thrives on the large-scale digiti-

zation effort centered around the Cantus Index network of

databases [3], and there are ongoing efforts to apply digital

methods to the problem of chant transmission such as the

DACT project. 3

In this pilot study, we present a novel pipeline to model

the relationships between chant sources using tools from

bioinformatics: we adapt multiple sequence alignment and

phylogenetic tree inference for chant melodies. We qual-

itatively evaluate the method on a dataset of sources for

Christmas Eve vespers. 4

2. RELATED WORK

The study of melodic dialects of chant has a long tradi-

tion, most prominently in the distinction proposed between

“West Frankish” and “East Frankish” chant [4], as has the

theory of chant melody in general (i.a. the centonization

hypothesis [5, 6] and its criticism [7], [8, pp. 74-75]), but

has not yet been performed with computational models at

the scales that these enable. The fact that the diversity

within chant melodies is a subject worthy of study is fur-

ther reinforced by the debate on early chant as an orally

transmitted tradition [9, 10], justifying an ethnomusico-

logical perspective [11], although the extent of orality of

the tradition has since been contested [12]. The formu-

laic structure of great responsories has been studied in de-

tail [13], even in the pre-computer era [14].

Work on larger-scale computational analysis of chant

melodies has recently been done in the area of melody seg-

mentation [15], measurement of the melodic arch hypothe-

sis [16] and of the relationship between antiphons and dif-

ferentiae across modes [16]. Importantly, these works also

provide the Cantus Corpus v0.2 database, which presents

the contents of the Cantus Database in a manner ready

2 The ecclesiastical environment of a mansucript, such as a monastery
of a specific order, a city church, a cathedral.

3 https://dact-chant.ca/
4 Data is available at github.com/Genome-of-Melody/

christmas/releases/tag/ISMIR2023, tree inference code at
github.com/Genome-of-Melody/mrbayes_volpiano.
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for further processing. 5 Cantus Index 6 also provides the

Cantus Analysis tool, 7 which is however built solely for

analyzing repertoire, not melodies.

In MIR, the potential for applying bioinformatic tools

as string processing models has been previously noted in

the context of music similarity search. Tune family iden-

tification using Multiple Sequence Alignment (MSA) has

been tried [17, 18], and MSAs and and BLAST search has

been used for melody classification and fast melody re-

trieval [19], with mixed results.

More closely related to this work in terms of scientific

goals, the field of cultural evolution has also been map-

ping patterns of musical diversity [20], with roots in the

Cantometrics project [21]. Most notably, the evolution of

folk melodies in English/US and Japanese traditions has

been found to exhibit similar properties, using MSAs [22],

and phylogeny of electronic music has been mapped us-

ing dynamic community detection rather than phylogenetic

trees [23], citing limitations of the tree model in light of

horizontal cultural transmission. Cultural and biological

evolution was correlated in a study comparing populations

in terms of genetics and their folk music [24].

Few works in MIR go beyond leveraging MSA as a tool

for melodic similarity applications, and in one instance

also on chant [25]. From the cultural evolution field have

used some phylogenetic models to study music, but so far,

not on chant.

3. METHOD

We model the relationships among melodies from a set of

chant sources as a phylogenetic tree. The leaves of the

chant sources, which carry (artificially ordered) melodies

of the selected Cantus IDs in an analogy to how living

species carry genes. Each instance of a chant with a certain

Cantus ID in each source is a homologous sequence; the

collection of melodies from one Cantus ID across sources

is here termed a locus. The pipeline consists of the follow-

ing steps:

1. Concatenate cleaned melodies per source (in an ar-

bitrary but fixed order of Cantus IDs)

2. Compute a (partitioned) multiple sequence align-

ment (MSA) of the concatenated melodies

3. Infer a phylogenetic tree over the MSA

An overview of the pipeline is shown in Fig. 1.

In the Cantus network of databases, chant melodies are

transcribed as strings using Volpiano [26]. Volpiano is both

a standard for encoding chant melodies in a plain text for-

mat, 8 and a font that renders these strings. 9 The encoding

uses several non-tone characters, such as hyphens to in-

dicate boundaries between neumes, syllables, and words,

or barline characters to indicate sections. For our exper-

iments, we have removed non-note characters (retaining

5 https://github.com/bacor/cantuscorpus
6 https://cantusindex.org/
7 https://cantusindex.org/analyse
8 https://cantus.uwaterloo.ca/sites/default/

files/documents/2.\%20Volpiano\%20Protocols.pdf
9 http://www.fawe.de/volpiano/

syllable and word separators did not have an appreciable

effect on alignment, and would thus unnecessarily compli-

cate the state space).

Any string distance metric can then be used to model

between two melodies, and between any two sources (by

aggregating the distances between melodies). However,

we specifically chose Bayesian phylogenetic trees as the

model because (1) their inference procedure can distin-

guish between similarities that are substantial and those

that are the product of chance, (2) the resulting trees, while

perhaps not ideal as a model of transmission itself, are

optimal results in terms of a clearly defined probabilistic

model, and thus have a probabilistic interpretation that di-

rectly allows testing hypotheses about the dataset, rather

than post-inference normalization of arbitrary similarity

scores, (3) the software tools are readily available. 10

3.1 MSA and Score Matrix

Multiple sequence alignment (MSA) was carried out with

MAFFT v7.505 [27]. Mafft is used for the alignment of

melodies because it is a state-of-the-art MSA tool that al-

lows aligning arbitrary text using custom score matrices,

thus allowing to process data which are not standard bi-

ological sequences such as DNA and aminoacids. (It has

already been used in MIR, precisely for these advantages

[28].) with our custom score matrix described below. We

used a maximum of 1000 iterations and global pairing.

By default, Mafft aligns arbitrary text by checking

whether a given symbol is equal or not to other entries

in the alignment. This is not a good model for melodies,

as substitutions are not equally likely. The default choice

for melodic distance, Mongeau-Sankoff distance [29] ad-

dresses the unequal costs of substituting different steps of

the scale, but it and others are designed for tonal music,

which chant predates by several hundred years. We have

not in fact found sufficient music-theoretical understand-

ing of chant melodies (and mode) to design a similar scor-

ing function. Therefore, we resort to a basic physical re-

ality: the cost of a substitution is the number of steps be-

tween the two notes, thus crudely mimicking how physi-

cally different the position in the melody might feel for a

singer familiar with the alternative (see Fig. 2). The ap-

plication of B flats were assigned a low cost because they

were commonly applied without modifying considerably

the melody. Liquescences were treated as regular notes

of the same pitch. We stress that this is by no means a

definitive chant scoring matrix, but rather a starting point

to search for one.

3.2 Bayesian Inference of Phylogenetic Trees

A phylogenetic tree (hereafter: tree) is a graph represent-

ing the evolutionary relationships between the objects of

study. These trees have long been used in evolutionary

biology as a means to depict evolutionary relationships

10 This article is not meant to inspire the impression that a large amount
of technical work was performed: rather, we find it notable that already
with a limited amount of technical work, this method already seems to
obtain plausible results.
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Figure 1. Outline of the pipeline for inference of phylogenetic trees of sources from melodies.

Figure 2. Instances of scores from a reference pitch D. Ar-

rows represent the final pitch and numbers under note bod-

ies represent the score in the matrix. For MAFFT, scores

are positive: the furthest distance between pitches is from

G3 to D6, which has a score of 1, and the unison has the

largest score, which is 19.

among species, and we are here using it to represent the

evolution of sources containing melodies in a similar way.

Trees are composed of s leaf nodes of degree 1, called

tips or terminals, and up to s−1 internal nodes of degree 3

which represent ancestors. Trees may have a root node: an

internal node of degree 2. If a tree is unrooted, there are up

to s−2 internal nodes. Edges are called branches, and they

have lengths that represent some amount of evolutionary

change – usually (as in our case) the expected number of

changes per site.

Bayesian inference has been applied to phylogenetic

tree estimation since the 1990s [30] and consists of cal-

culating the posterior probability of the tree parameters

(topology and branch lengths) for a given tree τ [31]:

f(τi, Q|X) =
f(X|τi, Q)f(τi)f(Q)

∑B(s)
j=1 f(X|τj , Q)f(τj)f(Q)

(1)

In this model, f(X|τi) is called the phylogenetic like-

lihood function, which gives the likelihood of observing

the alignment data given the model of evolution parame-

ters Q and a particular tree τi [32, 33]. Both f(τi) and

f(Q) are priors for the topology and model of evolution.

The topology prior is usually set to be uninformative (uni-

form over all possible trees). The prior f(Q) is derived

from the Mkv+G model, which is the state of the art for

morphology-based phylogeny. 11 As can be anticipated

11 As opposed to phylogenies built from sequences of nucleotides
(DNA/RNA) or amino-acids (proteins), morphology-based phylogeny
models mostly model transition probabilities from one to a different char-
acter as equally likely.

by the fast-growing number of possible trees for a given

set of s terminals B(s) = (2s−3)!
2n−2(n−2) , this problem can-

not be solved by visiting all possible topologies in order to

calculate the normalising constant in the Bayes’ equation,

which also, cannot be analytically solved even for a sin-

gle topology. Therefore, MCMC sampling is used to con-

struct the posterior densities for all the parameters of the

model. The output of MCMC consists of inferred parame-

ter values (mostly branch lengths), sampled trees, and the

summary tree.The summary tree summarizes the posterior

density of topologies in using a majority-rule consensus: it

includes all bi-partitions which are at least in 50% of the

sampled topologies. Node posterior probabilities are cal-

culated from the relative frequency of bipartitions in the

posterior tree density. Inferred trees are in principle un-

rooted. 12

Unfortunately, all existing software for Bayesian phy-

logenetics restricts the input data to some sort of biolog-

ical data, be it DNA, aminoacid, or morphological data;

therefore, we had to adapt an existing tool to process

Volpiano-encoded chants. We chose to modify MrBayes

v3.2.7a [34]. We call our fork mrbayes_volpiano, in

order to make clear that it is intended for use only with

data in volpiano format. 13 mrbayes_volpiano ac-

cepts Volpiano-encoded chant melodies as input and anal-

yse them using a Markov model of evolution for an arbi-

trary number of the discrete character states [35]. It uses

all the tools from MrBayes available for standard coding,

which is the one applied to melody sequence data and

can carry out inference of both single-partition or con-

catenated settings composed of multiple partitions. It pro-

cesses alignments in nexus format and can be run both in

interactive and scripting mode.

4. CHRISTMAS VESPERS DATASET

In order to test the ability of our pipeline to resolve sub-

stantial relationships between chant sources, we apply it

on a dataset of Christmas divine office, specifically Ves-

pers for Vigilia Nativitatis Domini. The dataset was orig-

inally collected in order to study relationships between

12 They can be rooted for visualisation e.g. using FigTree (https:
//github.com/rambaut/figtree).

13 The source code is available at https://github.com/

gaballench/mrbayes_volpiano
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late medieval Bohemian sources with the data includ-

ing transcribed melodies available in the Hymnologica

database, 14 and we combined this data with all further

melodies available for Vig. Nat. Domini vespers from the

Cantus Index interface, in order to cover a broader Euro-

pean context.

The combined dataset contained 14 sources, and a to-

tal of 78 chants falling under 6 distinct Cantus IDs. Be-

cause the repertoire in office sources is not entirely con-

sistent across sources and our system aligns melodies di-

rectly, we had to select a subset of chants contained in

as many sources as possible, and then reduce the set of

sources to those that contained as many of these chants as

possible. The resulting dataset contained 14 sources, each

of which had fully transcribed melodies for the following

Cantus IDs: 001737, 002000, 003511, 004195, 007040a,

and 605019. 15

Some sources contained multiple instances of chants of

one Cantus ID: In that case, we retained the version with

the most complete version of the melody (as repeated in-

stances of the same chant are sometimes only written as

incipits in the sources), and if multiple full melodies were

available, we selected the melody that was directly in the

Vig. Nat. Dom. section (see Tab. 1).

Why use such a limited dataset, when the entirety of

the Cantus Database is available? We originally intended

to use the CantusCorpus dataset [15] of Office melodies.

However, the authors of the Cantus Database preferred

transcribing entire sources, so while there are more than

13000 fully transcribed antiphons in CantusCorpus v0.2 ,

the vast majority comes from less than 20 sources. This

is further compounded by the surprising diversity of of-

fice repertoire. Thus, in the entirety of CantusCorpus, it

is only possible to find 10 different sources that have tran-

scribed melodies for 5 antiphons. Hence, we decided to use

the Christmas dataset, with its advantage of having been

collected specifically in order to make the comparison be-

tween different sources possible. 16

4.1 Sources and Evaluation

Our methodology differs from machine learning experi-

ments in when data is used. The phylogenetic tree model

is selected and parametrized a priori, and only then we

use a dataset to validate the model: is the tree inferred on

the dataset plausible according to musicological expecta-

tions? Given that chant transmission provides few hard

predictions, these expectations are not expressed in terms

of target values. The evaluation of a tree’s plausibility is

qualitative.

Since we base the claim of valid results on comparing

the inferred tree against known relationships between the

sources, we must give an overview of the 14 sources in

terms of their placement along the three major dimensions

of chant culture: place, time, and liturgical context. This

14 http://hymnologica.cz/jistebnice
15 All available via https://cantusindex.org/id/(...).
16 This quest for data also highlights the major limitation of our pipeline

so far: we need comparable melodies from each source.

section essentially describes our “evaluation data”.

A-Wn 1799**. A 13th century Cistercian antiphoner

from the Rein monastery in Austria.

A-VOR Cod. 259/I. A 14th century antiphoner of the

collegiate chapter church of Vyšehrad, Prague. In the early

15th century, it was moved to Vorau because of Hussite

wars. In 1490-1500, it was adapted for Salzburg liturgy. 17

CDN-Hsmu M2149.L4. Cistercian antiphoner from

the Abbey of Salzinnes, Namur, in the Diocese of Liège,

central Belgium, completed in 1554-1555. 18

CH-E 611. A 14th-century antiphoner from the Bene-

dictine monastery of Einsiedeln, central Switzerland.

CZ-HKm II A 4. An antiphoner from the 1470s, be-

longing to the municipal Church of the Holy Spirit in

Hradec Králové, eastern Czechia. 19

CZ-PLm 504 C 004. A late antiphonary from the

St. Bartholomew municipal church in Pilsen, western

Czechia, from 1616. 20

CZ-Pu XVII E 1. A mixed Latin and Czech an-

tiphonary from the early 16th century, of Czech (but fur-

ther unspecified) provenance. 21

CZ-Pn XV A 10. Late 15th century notated breviary

from the cathedral cursus in Prague, Czechia. 22

CZ-Pu I D 20. An antiphonary from the Augustinian

monastery in Třeboň, southern Czechia, created in the 2nd

half of the 14th century. 23

D-KA Aug. LX. A complex 12th-century antiphoner,

of which the musical notation was almost completely

rewritten in the 13th or 14th centuries. From the Zwiefal-

ten Benedictine monastery in southwestern Germany,

moved to the abbey of Reichenau in the 15th century. 24

D-KNd 1161. A late 12th- and early 13th-century Cis-

tercian antiphoner, possibly written for use by the female

abbey of Saint Mechtern in Cologne, western Germany, re-

named Saint Apern in 1477. 25

F-Pn lat. 12044. An early 12th-century antiphoner

from the Benedictine abbey of St.-Maur-de-Fossés, close

to Paris, France. 26

F-Pn lat. 15181. An early 14th-century notated bre-

viary belonging to the Notre Dame cathedral in Paris,

France. 27

NL-Uu 406. A 12th-century antiphonary from St.

Mary’s church in Utrecht, Netherlands. Later 13th-15th-

century changes. Complex source that has multiple ver-

sions of some melodies. 28

What results should one expect from a phylogeny of

these chant sources? The three major dimensions of “ex-

17 https://manuscripta.at/hs_detail.php?ID=6267
18 https://cantus.uwaterloo.ca/source/123723
19 http://hun-chant.eu/source/1481?page=1
20 https://rukopisy.zcm.cz/view.php?ID=504C004
21 https://www.manuscriptorium.com/apps/index.

php?direct=record&pid=AIPDIG-NKCR__XVII_E_1___

_32Y2B65-cs#search
22 http://hymnologica.cz/source/47
23 http://hymnologica.cz/source/10721
24 https://cantus.uwaterloo.ca/source/123612
25 https://cantus.uwaterloo.ca/source/601861
26 https://cantus.uwaterloo.ca/source/123628
27 https://cantus.uwaterloo.ca/source/123631
28 https://cantus.uwaterloo.ca/source/123641
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Source Provenance Date Cursus 605019 001737 002000 003511 004195 007040a

A-Wn 1799** Rein 1200s Cistercian 1 NA 1 1 1 1

A-VOR Cod. 259/I Prague 1360 Secular 1 2 1 1 1 1

CDN-Hsmu M2149.L4 Salzinnes 1554 Cistercian 1 NA 1 1 1 1

CH-E 611 Einsiedeln 1300s Benedictine 1 3 1 1 1 1

CZ-HKm II A 4 Hr. Král. 1400s Secular 1 1 1 1 1 1

CZ-PLm 504 C 004 Plsen 1616 Secular 1 1 1 1 1 1

CZ-Pu XVII E 1 Bohemia 1516 Unknown 1 NA 1 1 NA 1

CZ-Pn XV A 10 Prague 1300s Secular 1 1 1 1 1 1

CZ-Pu I D 20 Passau 1300s Augustinian 1 1 1 1 1 1

D-KA Aug. LX Zwiefalten 1100s Benedictine 1 1 1 1 1 1

D-KNd 1161 Köln 1200s Cistercian 1 NA 1 1 1 1

F-Pn lat. 12044 Paris 1100s Benedictine 1 1 1 1 2 1

F-Pn lat. 15181 Paris 1300s Secular 1 NA 1 1 2 1

NL-Uu 406 Utrecht 1150 Secular 1 2 1 3 2 1

Table 1. Sources of the Christmas Vespers dataset with their provenance, approximate date, cursus, and presence of the

chant in each source (1 or more instances per source). NA represents chants not present in a given source.

ternal” similarity between chant sources, in terms of how

similar the segments of culture represented in these sources

are expected to be, are geography, chronology, and cursus

– space, time, and the liturgical context within which the

books were used. It is not entirely clear in chant scholar-

ship how strongly each of these factors should influence

chant melodies (the exception where cursus is clearly ex-

pected to dominate other factors is that of the Cistercian

order, which mandated that all monasteries must have iden-

tical liturgical books [36, p. 99]), but these organizing prin-

ciples should be observed in the resulting tree.

5. EXPERIMENTS AND RESULTS

For all our experiments, we set up Bayesian inference

using an Mkv model of evolution with options +I+G.

Metropolis-Hastings MCMC sampling was carried out

with four independent runs, each with four chains (one

cold and three hot), with 10.000.000 generations, sam-

pling each 1000 generations. Parameter and tree sum-

maries were generated combining the four trace files after

a burn-in of 50 % was applied to each. Parameter conver-

gence was assessed by examining the potential scale re-

duction factor (PSRF) [37] which should approach 1.0 as

runs converge, and the average standard deviation of split

frequencies (ASDPF) [38] which should be below 0.01 for

topological convergence. Other parameters had effective

sample size (ESS) values above 600. We do not root the

summary trees, because there is no clear outgroup in our

dataset.

5.1 Single-locus tree inference

We first computed a tree for sets of melodies under each of

the six Cantus IDs separately. In this setting, we examine

whether the model can resolve the structure of diversity of

individual melodies.

For each cantus ID, we aligned the sets of melodies to

obtain a nexus matrix that is then used as input for tree in-

ference. This resulted in six different summary trees, one

for each chant. We found varying but overall low degrees

of resolution in topology. Some chants had nearly no vari-

ation and consequently the majority-rule consensus tree is

almost a complete polytomy 29 (003511, 004195). Other

29 Star graph: a tree with only one internal node.

chants had several internal nodes resolved, therefore rep-

resenting some degree of information contained in a single

melodic line which shows changes across sources How-

ever, at the scale of individual melodies, there was insuffi-

cient signal for the model to find meaningful differences.

5.2 Multi-locus tree inference

A concatenated experiment, in which the set of 14 sources

was chosen to represent the terminals, was then conducted.

We prepared individual alignments for each of the loci so

that the boundaries for the same locus (Cantus ID) in the

resulting nexus matrix were in fixed positions. Here, a

tree was resolved (Fig. 3) that exhibits several properties

that we believe make it a plausible model of how chant

melodies in these sources are related.

First, cursus. All the Cistercian manuscripts (“white

monks”) are grouped tighlty together, with the lowest prob-

ability of differences – regardless of geographical area and

century of origin. This is not entirely the case for the

Benedictine manuscripts: the tree does keep together a

S. German and a N. Swiss source, but the French Bene-

dictine source is grouped with a French cathedral source.

The probability of changes (expressed as branch length) is

also much greater between the two closely related Bene-

dictine manuscripts. Finally, there is an interesting case

of the Augustinian CZ-Pu I D 20 manuscript and A-

VOR Cod. 259/1. The latter is not from an Augustinian

monastery, but belonged to a community of canon regu-

lars – a type of clerical community from which the Augus-

tinian order was organized in 1244. They are not particu-

larly close – they do not have an extra internal node like

e.g. the French manuscripts – but they are not separated by

one, either, and they lie in between the rest of the Czech

group and the rest of the tree.

Second, geography. If one briefly disregards the Cis-

tercian branch, the topology of the rest of the manuscripts

does roughly correspond to their geographical distribution,

from the French group in the west to the Czech group in

the east. Note also that while there is some resolution in

the group of Czech secular manuscripts, it is barely there:

the internal nodes occur at most in six out of ten MCMC

samples.

Finally, chronology seems to exert a relatively weak in-

fluence, but the dataset is not well suited to study the de-

velopment of chant melodies in time, as most of the Czech
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Figure 3. Main experimental result: summary of the posterior tree density as an unrooted majority-rule consensus tree

for the concatenated dataset where each chant is a partition. All bipartitions present in at least 50% of the posterior trees

are shown as internal nodes, with their nodal posterior probability. Terminals – tree leaves – are sources. Length of edges

corresponds to probability of mutation; scale bar (bottom left) for 1 % expected mutation rate. Flags indicate geographical

provenance, icons indicate cursus (black monks – Benedictines, white monks – Cistercians, heart – Augustinian, church

building – secular cursus). Century (or half-century) indicated directly; some sources (D-KA Aug. LX, NL-Uu 406) have

complex histories – see sec. 4.1.

sources are later than most other sources, so it is not clear

how to distinguish geographical and chronological factors,

and there is only one non-Cistercian clearly pre-1300 old

source (F-Pn lat. 12044) that was not modified in the later

centuries (which is the case both with D-KA Aug. LX and

NL-Uu 406).

6. CONCLUSIONS AND FUTURE WORK

The proposed chant phylogeny pipeline produced a mu-

sicologically plausible model of the melodic diversity

within the Christmas chant dataset. We do not claim that

the resulting tree in Fig. 3 is the only or best possible

way to model the relationships between the sources from

our Christmas Vigil dataset; however, while further work

should primarily focus on assembling a larger dataset and

designing a more robust validation procedure, we believe

that based on the current result, the proposed method can

meaningfully enrich digital chant scholarship.

A major limitation is that the model requires homolo-

gous melodies (indicated by a shared Cantus ID). For the

study of melodies to bypass this limitation, “morpholog-

ical” features derived from melodies would be needed, so

that we can process sources that do not share as many (tran-

scribed) melodies. This is especially important for Office

sources, where repertoire is strongly differentiated.

Provided one is not interested in the of melodic diver-

sity but only in repertoire structures of chant culture, one

can build trees from binary features representing the pres-

ence/absence of Cantus IDs at given liturgical positions,

using the same Bayesian model but with an alphabet of

two rather than 19 characters.

Another limitation is that the current method does not

model chronology: it is not yet a model of chant melody

evolution through time. This complicates interpreting the

tree: one potentially attractive idea is that the internal

nodes correspond to likely manuscript copying events, but

without a more explicit chronology, this remains specula-

tive. Chronology can be incorporated by using Bayesian

divergence time estimation (BDTE), an extension of topol-

ogy inference that produces branch lengths in absolute

time rather than the expected number of substitutions per

site by using time priors for either nodes or terminals. Fur-

thermore, BDTE could infer a posterior distribution for

nodes without observed time values, and thus we could es-

timate e.g. the times of origin of different layers of a more

complex source (such as D-KA Aug. LX or NL-Uu 406)

by using time priors rather than precise time values.

Many methodological choices merit further exploration

(such as the alignment scoring matrix, choice of tree

model, or different ways of combining individual chants).

However, based on the already plausible results of this pi-

lot study, we are confident that chant phylogeny is a viable

and exciting opportunity for digital chant scholarship.
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ABSTRACT

Music classification has been one of the most popular tasks

in the field of music information retrieval. With the devel-

opment of deep learning models, the last decade has seen

impressive improvements in a wide range of classification

tasks. However, the increasing model complexity makes

both training and inference computationally expensive. In

this paper, we integrate the ideas of transfer learning and

feature-based knowledge distillation and systematically in-

vestigate using pre-trained audio embeddings as teachers to

guide the training of low-complexity student networks. By

regularizing the feature space of the student networks with

the pre-trained embeddings, the knowledge in the teacher

embeddings can be transferred to the students. We use

various pre-trained audio embeddings and test the effec-

tiveness of the method on the tasks of musical instrument

classification and music auto-tagging. Results show that

our method significantly improves the results in comparison

to the identical model trained without the teacher’s knowl-

edge. This technique can also be combined with classical

knowledge distillation approaches to further improve the

model’s performance.

1. INTRODUCTION

The classification of music has always been a widely popu-

lar task in the field of Music Information Retrieval (MIR).

Music classification serves as an umbrella term for a variety

of tasks, including music genre classification [1], musical

instrument classification [2], and music auto-tagging [3].

The last decade has seen dramatic improvements in a wide

range of such music classification tasks due to the increas-

ing use of artificial neural networks [4–7].

One major contributing factor to these impressive ac-

complishments is the increased algorithmic complexity of

the machine learning models which also means that the

training process requires an increased amount of data. As

not all tasks have this abundance of annotated data, trans-

fer learning has been widely and successfully applied to

various music classification tasks [8]. In transfer learning,

a model is first pre-trained on a large-scale dataset for a

© Y. Ding and A. Lerch. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution: Y.

Ding and A. Lerch, “Audio Embeddings as Teachers for Music Classifi-

cation”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

(source) task that is somewhat related to the (target) task

and then fine-tuned with a comparably smaller dataset of

the target task [9]. This enables knowledge to be transferred

across datasets and tasks. Transfer learning has been repeat-

edly shown to result in state-of-the-art performance for a

multitude of MIR tasks [10–12].

Another side effect of the increasing model complex-

ity is the slow inference speed. One way to address this

issue is model compression by means of knowledge distilla-

tion. Here, a low-complexity (student) model is trained

while leveraging the knowledge in the high-complexity

(teacher) model [13, 14]. The teacher-student paradigm

has met with considerable success in reducing the model

complexity while minimizing performance decay [15, 16].

In this study, we integrate ideas and approaches from

both transfer learning and knowledge distillation and apply

them to the training of low-complexity networks to show the

effectiveness of knowledge transfer for music classification

tasks. More specifically, we utilize pre-trained audio em-

beddings as teachers to regularize the feature space of low-

complexity student networks during the training process.

Thus, the main contributions of this paper are a systematic

study of

• the effectiveness of various audio embeddings as

teachers for knowledge transfer,

• different ways to apply the knowledge transfer from

teachers to students, and

• the impact of data availability on the performance of

the investigated systems.

The models and experiments are publicly available as open-

source code. 1

2. RELATED WORK

This section first briefly introduces transfer learning and

knowledge distillation, which are both often used to transfer

knowledge between tasks and models, respectively, and then

surveys the application of feature space regularization in

the training of neural networks.

2.1 Transfer Learning

In transfer learning approaches, a model is pre-trained on a

source task with a large dataset and subsequently fine-tuned

on a (different but related) target task with a (typically

1 https://github.com/suncerock/

EAsT-music-classification. Last accessed on June 21,
2023.
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smaller) dataset [9]. By utilizing the knowledge learned

from the source task, models trained following the trans-

fer learning paradigm can often achieve significantly better

results than the same models trained directly on the target

task [17]; this is especially the case if these models have a

large number of parameters and the training data for the tar-

get task is limited. In the case where fine-tuning the whole

model might be too computationally expensive, another

way to do transfer learning is to use the pre-trained embed-

dings and train only the classification head. This allows for

a separation of the tasks of computing the embeddings and

the classification itself.

Transfer learning has been successfully applied to a wide

variety of areas ranging from computer vision [18, 19] to

natural language processing [20]. In MIR, transfer learning

has been used for a multitude of target tasks [8, 10, 11, 21].

Besides fine-tuning the whole model, pre-trained embed-

dings such as VGGish [22] and Jukebox [23] have also

shown good performance on many tasks including auto-

tagging [12,24], instrument classification [4,12], and music

emotion recognition [12, 24–26].

One disadvantage of transfer learning is the slow infer-

ence speed. In most cases, the model has a large number of

parameters, which means that both fine-tuning (if done on

the whole model) and inference potentially lead to a high

computational workload.

2.2 Knowledge Distillation

Approaches for knowledge distillation aim at model com-

pression, i.e., reducing the complexity of the network.

The knowledge of a (usually high-complexity) pre-trained

network (the teacher) is transferred to a different (low-

complexity) network (the student) during the training phase,

in which the student not only learns from the ground truth la-

bels but also from the teacher predictions. This is achieved

by adding a “distillation loss” term to the student’s loss

function to learn from the teacher’s prediction [13, 14].

The most popular distillation loss is the Kullback-Leibler

divergence between the logits of the student and the teacher,

with a hyperparameter called temperature to soften the

probability distribution of the teacher’s prediction over

classes [13]. The soft target provides more “dark” knowl-

edge than the ground truth hard label [27, 28]. The Pearson

correlation coefficient has also been proposed as a distance

measure between the logits as an alternative to the Kullback-

Leibler divergence [29].

Besides learning from logits, the student network can

also try to learn from the feature map from the intermedi-

ate layers of the teacher network [30–32]. As the feature

maps of the student and teacher do not necessarily share

the same dimension and the same size, a variety of ways to

match the feature space of the student and the teacher have

been proposed [31, 33, 34]. Therefore, feature-based knowl-

edge distillation has more flexibility than the logits-based

traditional approach, which, at the same time, also makes

it more challenging to find the best way of matching the

feature space [35, 36].

2.3 Feature Space Regularization

Feature-based knowledge distillation is a technique of reg-

ularizing the feature space of the network during training.

Besides knowledge distillation, there exists a wide vari-

ety of other ways to implement regularization. One exam-

ple is contrastive learning, which aims at contrasting the

features of instances with positive labels against negative

labels [37, 38]. Contrastive learning has been shown to

improve the performance of neural networks on music auto-

tagging [39, 40] and music performance assessment [41].

Regularizing the feature space using pre-trained audio

embeddings has also been reported to be effective in music

classification [42] and music source separation [43], where

Hung and Lerch proposed to use pre-trained embeddings

to help structure the latent space during training. This tech-

nique is similar to but different from both transfer learning

and knowledge distillation. In transfer learning, the same

model is used on two different datasets, and a typical setting

is that knowledge from the large dataset will be transferred

to the small dataset. In knowledge distillation, only one

dataset is used and the typical setting is that the knowledge

will be transferred from a large model to a small model. In

comparison, regularizing the feature space using embed-

dings requires neither the dataset nor the model to be the

same, yet still allows to transfer knowledge learned by the

teacher model from a large dataset to the low-complexity

student network for a different (small) dataset.

3. METHODS

Inspired by the promising preliminary results of prior work

[42], we integrate the idea of transfer learning and knowl-

edge distillation by using pre-trained audio embeddings

as teachers to regularize the feature space of the student

network during training. The overall pipeline is illustrated

in Figure 1.

3.1 Loss Function

Similar to knowledge distillation [13], we rewrite our loss

function as

L = (1− λ)Lpred + λLreg (1)

where Lpred is the loss function for conventional neural

network training, Lreg is the loss function that measures

the distance between the student network’s feature map and

the pre-trained embeddings, and λ ∈ [0, 1] is a weighting

hyper-parameter.

3.2 Regularization Location

Different stages in a neural network output different fea-

ture maps, and the optimal location to apply regularization

continues to be controversially discussed in feature-based

knowledge distillation [36]. In this study, we investigate

either regularizing only the final feature map before the

classification head as shown in Figure 1 or regularizing the

feature maps at all stages of the student network.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

580



C
N

N
 B

lo
c
k

s

C
N

N
 B

lo
c
k

s

C
N

N
 B

lo
c
k

s

C
la

s
s
if

ic
a
ti

o
n

 

H
e
a
d

P
re

d
ic

ti
o

n

=
+

Student

Pre-trained Teacher

B
lo

c
k

s

B
lo

c
k

s

B
lo

c
k

s

...

B
lo

c
k

s

E
m

b
ed

d
in

g
s

(E
x

tr
ac

te
d

b
ef

o
re

h
an

d
)

B
lo

c
k

s

Distance

Measurement

Figure 1: Overall pipeline of training a model by using pre-trained embeddings as teachers. The training loss is a weighted

sum (weighting factor omitted in the figure) of prediction loss and regularization loss. The regularization loss measures the

distance between pre-trained embedding and the output feature map after the feature alignment. During inference, only the

bottom part with the blue background is used.

3.3 Feature Alignment

To measure the distance between the student feature map

l ∈ R
Ts×Cs and the pre-trained teacher embeddings v ∈

R
Tt×Ct which might have different numbers of time frames

(i.e., Ts ̸= Tt), we first align the intermediate feature map

with the pre-trained embeddings in time by repeating the

one with fewer time frames, then compute the distance for

each frame and finally average them along the time axis.

3.4 Distance Measure

Considering that pre-trained embeddings and feature maps

have often different dimensionalities, the use of distance

measures that are independent of dimensionality allows for

easier application.

3.4.1 Cosine Distance Difference

Cosine distance difference 2 as proposed in previous work

[42, 43] measures the difference in the cosine distance

between pairs of samples. Given n pairs of samples of

single-time-frame features l1, l2, ..., ln and pre-trained em-

beddings v1, v2, ..., vn, the cosine distance difference for

one pair is

Dij = |dcos(li, lj)− dcos(vi, vj)|, (2)

and the distance for this time frame is averaged among all

pairs.

3.4.2 Distance Correlation

Distance correlation was proposed as a generalization of

classical correlation to measure the independence between

two random vectors in arbitrary dimensions [44]. It is

capable of handling features of different dimensionality;

furthermore, correlation-based distance measures have been

2 has been referred to in previous work as Distance-based Regulariza-
tion (Dis-Reg) [42, 43].

shown to be effective in knowledge distillation [29, 32].

Using the same notation as above, we define

aij = ∥li − lj∥, (3)

āi. =
1

n

n
∑

j=1

aij , ā.j =
1

n

n
∑

i=1

aij , ā.. =
1

n2

∑

i,j=1

aij

(4)

Aij = aij − āi. − ā.j + ā.. (5)

where i, j ∈ {1, 2, ..., n}, and similarly, bij = ∥vi − vj∥
and Bij = bij − b̄i. − b̄.j + b̄...

3 The distance for the time

frame is then

Lreg = 1−R2
n(l, v) = 1−

V2
n(l, v)

√

V2
n(l, l)V

2
n(v, v)

(6)

where

V2
n(l, l) =

1

n2

n
∑

i,j=1

A2
ij , V2

n(v, v) =
1

n2

n
∑

i,j=1

B2
ij ,

V2
n(l, v) =

1

n2

n
∑

i,j=1

AijBij .

Note that V2
n(l, l) and V2

n(v, v) will be 0 if and only if

all the n samples of features (or embeddings) within one

batch are identical [44], which we assume not to occur here.

To optimize both distance measures during training,

block stochastic gradient iteration is used, which means

that the distance is computed over mini-batches instead of

the whole dataset [45, 46]. With stochastic approximation,

the computational complexity of the distance measure for n

samples is reduced from O(n2) to O(mn) where m is the

batch size.

It is worth mentioning that both distance measures en-

sure that if the distance is zero, the feature maps would

3 Eq. (3) uses 2-norm following the implementation in https:

//github.com/zhenxingjian/Partial_Distance_

Correlation.
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differ from the pre-trained embeddings by only an orthogo-

nal linear transformation, which can be modeled in a single

linear layer. Therefore, if the regularization loss is zero, the

student would have the same performance as the teacher in

classification.

4. EXPERIMENTAL SETUP

We test the effectiveness of using pre-trained embeddings

as teachers on two different tasks, datasets, and models with

four different pre-trained embeddings as follows.

4.1 Tasks, Datasets, Models, and Metrics

4.1.1 Musical Instrument Classification with OpenMIC

Musical instrument classification is a multi-label classifi-

cation problem. We use the OpenMIC dataset [2], which

provides weakly labeled audio snippets of length 10 s. Fol-

lowing prior work [4, 49], we use the suggested test set and

randomly split 15% of the training data as the validation set,

resulting in 12,692 training observations, 2,223 validation

observations, and 5085 test observations. To ensure a con-

sistent sample rate, the audio is resampled to 32 kHz [5,49].

As the dataset is not completely labeled, i.e., parts of the

labels are missing and not labeled as positive or negative,

the missing labels are masked out when computing the loss

function as suggested in previous work [5, 10, 49].

We use receptive field regularized ResNet (CP-ResNet)

[5] for this task, as it reaches state-of-the-art performance

when trained only on the OpenMIC dataset (i.e., neither

trained with transfer learning nor trained with any knowl-

edge distillation). CP-ResNet has a ResNet-like struc-

ture [19] with an added hyper-parameter ρ to control the

maximum receptive field of the ResNet. We set ρ = 7
to match the setting which provides the best results in the

original work [5].

The results are reported with the metrics mean Average

Precision (mAP) and F1-score. The F1-score is calculated

in a macro fashion, which means that for each instrument,

the F1-score is computed for both the positive labels and the

negative labels and then averaged, and the final F1-score is

the mean of the F1-scores of all instruments. The detection

threshold for the prediction is set to 0.4 following previous

work [5].

4.1.2 Music Auto-Tagging with MagnaTagATune

Similar to musical instrument classification, music auto-

tagging is also a multi-label classification problem. We

use the MagnaTagATune dataset [3] for this task, which

comes with audio clips of approximately 29.1 s. Following

previous work, we use only the top 50 labels and exclude all

the songs without any positive label from the dataset [7,50].

For comparability, the data split is adopted from previous

work, with audio files in the directories ’0’ to ’b’ being

the training set, ’c’ being the validation set, and ’e’ and ’f’

being the test set [48, 51], resulting in 15,247 training clips,

1,529 validation clips, and 4,332 test clips.

We apply a modified fully convolutional neural network

(FCN) [6] to this task. It is the simplest model among the

benchmark models for the MagnaTagATune dataset [48]

and consists of several convolution and max-pooling layers.

To further reduce the complexity of the model, we apply

the MobileNet-like modification [52] to the network by

breaking the 3× 3 convolutions into depth-wise separable

convolutions and 1× 1 convolutions.

The results are evaluated with mAP and ROC-AUC.

4.2 Pre-trained Embeddings

4.2.1 VGGish

VGGish [22] is a widely used embedding in MIR, with

a VGG network [53] being trained on a large number of

Youtube videos. The open-source PyTorch implementation

is used to extract VGGish features 4 which by default ex-

tracts 128 principle components and then quantizes them to

8 bit. The time resolution is 960 ms.

4.2.2 OpenL3

The OpenL3 embedding [54,55] is trained on a music subset

of AudioSet [56] in a self-supervised paradigm. The audio

embeddings are extracted using the open-source Python

package OpenL3 5 with the dimensionality being 512. To

keep consistent with VGGish, the time resolution is set to

960 ms.

4.2.3 PaSST

PaSST [10] is a 7-layer transformer trained on AudioSet

for acoustic event detection. It applies the structure of a

vision transformer [16, 57] and proposes the technique of

Patchout to make the training efficient. We use the open-

source code 6 released by the authors to extract the 768-

dimensional embeddings. The time resolution is also set to

960 ms.

4.2.4 PANNs

PANNs [11] include several convolutional neural networks

and are also trained on AudioSet for acoustic event detec-

tion. We use the default CNN14 model from the official

repository 7 . The embedding dimensionality is 2048. Dif-

ferent from other embeddings, PANNs provide only one

global embedding for each clip of audio. Pilot experiments

have shown that extracting the embeddings for short seg-

ments and concatenating them does not improve perfor-

mance.

4.3 Systems Overview

The following systems are evaluated for comparison:

• Baseline: CP ResNet (on OpenMIC) and Mobile

FCN (on MagnaTagATune) trained without any extra

regularization loss.

4 https://github.com/harritaylor/torchvggish.
Last accessed on April 4, 2023.

5 https://github.com/marl/openl3/tree/main. Last
accessed on April 4, 2023

6 https://github.com/kkoutini/PaSST/tree/main.
Last accessed on April 4, 2023.

7 https://github.com/qiuqiangkong/audioset_

tagging_cnn. Last accessed on April 4, 2023.
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OpenMIC
None VGGish OpenL3 PaSST PANNs

mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

CP ResNet* [5] .819 .809 - - - - - - - -

SS CP ResNet* [5] .831 .822 - - - - - - - -

TeacherLR - - .803 .799 .803 .798 .858 .837 .853 .834

KD (w/ mask) ** - - .829 .820 .823 .813 .851 .834 .848 .823

EAsTCos-Diff - - .838 .824 .838 .820 .837 .822 .836 .814

EAsTFinal - - .842 .828 .835 .822 .847 .830 .849 .828

EAsTAll - - .836 .823 .835 .822 .845 .827 .845 .827

EAsTKD - - .836 .825 .836 .821 .852 .834 .857 .831

MagnaTagATune
None VGGish OpenL3 PaSST PANNs

mAP AUC mAP AUC mAP AUC mAP AUC mAP AUC

FCN† [6] .429 .900 - - - - - - - -

Mobile FCN .437 .905 - - - - - - - -

TeacherLR - - .433 .903 .403 .890 .473 .917 .460 .911

KD - - .447 .911 .439 .907 .454 .912 .448 .909

EAsTCos-Diff - - .446 .906 .438 .907 .453 .912 .453 .911

EAsTFinal - - .454 .912 .447 .910 .459 .912 .449 .909

EAsTAll - - .455 .911 .452 .911 .458 .913 .457 .911

EAsTKD - - .441 .908 .437 .904 .461 .915 .459 .912

Table 1: Results on OpenMIC (above) and MagnaTagATune (below) dataset for different models regularized with different

pre-trained embeddings. Best performances are in bold, and best results excluding the teachers are underlined. *Reported

results [5], SS means being trained with shake-shake regularization [47]. **When using KD, the missing labels in OpenMIC

were masked to avoid potentially adding more training data. †Results from the open-source re-implementation [48].

• TeacherLR: logistic regression on the pre-trained em-

beddings (averaged along the time axis), which can

be seen as one way to do transfer learning by freezing

the whole model except for the classification head.

• KD: classical knowledge distillation where the soft

targets are generated by the logistic regression.

• EAsTCos-Diff (for Embeddings-As-Teachers): feature

space regularization as proposed by Hung and Lerch

that uses cosine distance difference and regularizes

only the final feature map [42].

• EAsTFinal and EAsTAll: proposed systems based on

distance correlation as the distance measure, either

regularizing only at the final stage or at all stages,

respectively.

• EAsTKD: a combination of classical knowledge distil-

lation and our method of using embeddings to regular-

ize the feature space. The feature space regularization

is done only at the final stage.

We perform a search of λ for each of the EasT systems and

choose the best-performing value on the validation set. 8

5. RESULTS

This section presents the results of different systems and

their performance in the case of limited training data.

8 For all the hyperparameters, please refer to the config files in our
GitHub.

5.1 Results on OpenMIC and MagnaTagATune

Table 1 shows the results on the OpenMIC and the Mag-

naTagATune datasets.

We can observe that the models trained with the extra reg-

ularization loss consistently outperform the non-regularized

ones on both datasets, with all features, and all regular-

ization methods. This means that the knowledge in the

embeddings is successfully transferred to the student net-

works and consistently enhances the performance.

Although EAsTFinal appears to give better results on the

OpenMIC dataset while EAsTAll seems to have slightly

better performance on the MagnaTagATune dataset, the dif-

ference between them is very small, meaning that the model

does not benefit significantly from being regularized by pre-

trained embeddings at earlier stages where the feature maps

are still relatively low-level.

The results for the teacher systems show that the older

VGGish and OpenL3 embeddings are clearly outperformed

by the more recently proposed embeddings PaSST and

PANNs. In fact, the teacher systems for the newer em-

beddings perform so strongly that the students can rarely

outperform them, while the student systems trained with

VGGish and OpenL3 provide better results than the corre-

sponding teachers. We can see that whether the teachers

themselves have an excellent performance or not, students

benefit from learning the additional knowledge from these

embeddings, and the students’ upper limit is not bounded

by the performance of teachers.

Comparing KD and the EAsTFinal or EAsTAll systems,
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Model Parameters (M) Iteration / s

VGGish 72.1 172.2

OpenL3 4.69 117.9

PaSST 86.1 18.7

PANNs 79.7 70.6

Mobile FCN 0.34 319.3

CP ResNet 5.52 205.3

Table 2: Comparison of the model complexity.

we can see that with VGGish and OpenL3 embeddings,

regularizing the feature space provides better results than

simply using the teachers’ soft targets. On the other hand,

for the PaSST and PANNs embeddings, classical knowl-

edge distillation provides competitive results. The possible

reason is that the soft targets given by “weak” teachers

might have provided too much incorrect information to the

students while the high-quality soft targets generated by the

“strong” teachers provide good guidance for the students’

training.

The combination system EAsTKD gives us better results

with PaSST and PANNs embeddings (with the exception

of no noteworthy improvement with the PaSST embedding

on the OpenMIC dataset) while for VGGish and OpenL3

embeddings, the performance is not as good as EAsTFinal or

EAsTAll in most cases. This observation is in accordance

with our speculation that traditional knowledge distillation

performs best with a “strong” teacher. While learning from

audio embeddings benefits a student network even more in

the presence of a “strong” teacher, learning from “weak”

embeddings can still improve the model’s performance.

5.2 Comparison of Model Complexity

Table 2 lists the number of parameters as well as rough

inference speed measurements 9 of the models.

The numbers of parameters only take the backbone struc-

ture (i.e., excluding the final classification head) into ac-

count so that it does not vary across datasets with different

numbers of classes. Iterations per second are tested with

128×1000 input spectrograms.

We can see that Mobile FCN and CP ResNet are much

faster in inference than pre-trained models.

5.3 Limited Training Data

To investigate the impact of limited training data on our

methods, we present the system performances for reduced

training data, i.e., for 25%, 50%, and 75% of the original

training data. The results are shown in Figure 2. We use

VGGish and PaSST as the pre-trained embeddings.

We can observe that limiting the training data has the

greatest impact on the baseline systems, which show the

biggest performance drop.

On the OpenMIC dataset, EAsTCos-Diff and EAsTFinal

have similar decreases in mAP, and the KD system is less

9 reference GPU: NVIDIA 2070 Super
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Figure 2: Results with limited training data on two datasets.

affected. An interesting finding is that when the VGGish

embedding is used, KD shows better performance for lim-

ited data amounts while it is outperformed by EAsTCos-Diff

and EAsTFinal when the whole OpenMIC dataset is avail-

able. This means using embeddings as teachers might still

require a sufficient amount of data to have good guidance

on the student models.

On the MagnaTagATune dataset, however, the

EAsTCos-Diff and EAsTFinal systems show less performance

decay than either KD or the baseline when the training data

is limited. This suggests that in our training settings, there

is no certain answer to which method is least affected by the

lack of training data, and the answer might be dependent

on specific tasks, models, and data.

6. CONCLUSION AND FUTURE WORK

In this paper, we explored the use of audio embeddings as

teachers to regularize the feature space of low-complexity

student networks during training. We investigated several

different ways of implementing the regularization and tested

its effectiveness on the OpenMIC and MagnaTagATune

datasets. Results show that using embeddings as teachers

enhances the performance of the low-complexity student

models, and the results can be further improved by com-

bining our method with a traditional knowledge distillation

approach.

Future work will investigate the performance of our

method on a wider variety of downstream tasks and embed-

dings. Moreover, as there have been a wide variety of mod-

els to extract audio and music embeddings, we speculate

that using an ensemble of different pre-trained embeddings

also has considerable potential. Finally, the flexibility of

feature-based knowledge distillation offers a wide range of

possible algorithmic modifications. Our focus will be on

evaluating different distance measures and regularizing the

network using features from different stages of the teacher

network instead of using only the output embeddings.
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ABSTRACT

We present ScorePerformer, an encoder-decoder trans-

former with hierarchical style encoding heads for control-

lable rendering of expressive piano music performances.

We design a tokenized representation of symbolic score

and performance music, the Score Performance Music tu-

ple (SPMuple), and validate a novel way to encode the

local performance tempo in a local note time window.

Along with the encoding, we extend a transformer encoder

with multi-level maximum mean discrepancy variational

autoencoder style modeling heads that learn performance

style at the global, bar, beat, and onset levels for fine-

grained performance control. To offer an interpretation of

the learned latent spaces, we introduce performance direc-

tion marking classifiers that associate vectors in the latent

space with direction markings to guide performance ren-

dering through the model. Evaluation results show the im-

portance of the architectural design choices and demon-

strate that ScorePerformer produces diverse and coherent

piano performances that follow the control input.

1. INTRODUCTION

Musical expression is the human touch that transforms a

written piece of music into an emotionally moving experi-

ence. In musical interpretation and performance, the musi-

cian interprets a musical score and translates the intended

expression through the control of the musical instrument,

the sound of which conveys affect and emotion to the lis-

tener [1, 2]. However, effective control of musical instru-

ments often requires considerable expertise and training,

making musical expression less accessible than it could be.

Deep learning music performance models reduce the

need for musical expertise and open up new ways to cre-

ate and perform music [3, 4]. To render expressive perfor-

mances of written music [5, 6], the models mix recurrent

neural networks to learn temporal dependencies in music

with variational autoencoders to encode performance style

and enable controllable generation [7–11]. The models are

trained on real and categorical score and performance fea-

tures for aligned score and performance notes.

© I. Borovik and V. Viro. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

I. Borovik and V. Viro, “ScorePerformer: Expressive Piano Performance

Rendering with Fine-Grained Control”, in Proc. of the 24th Int. Society

for Music Information Retrieval Conf., Milan, Italy, 2023.

The related task of symbolic music generation is ap-

proached differently. Transformer models [12] are primar-

ily utilized due to their ability to effectively learn long-term

dependencies in music sequences [13–17]. The symbolic

music is encoded as sequences of musical tokens, either

individual [15, 18, 19] or stacked into tuples [16, 20]. Sim-

ilar approaches could be applied to the task of rendering

expressive music performances for written compositions.

Aiming to advance the research and make musical ex-

pression more accessible, we develop ScorePerformer 1 ,

a piano music performance rendering model with inter-

active fine-grained performance style control. The model

combines encoder and decoder transformers [12] with hi-

erarchical maximum mean discrepancy variational autoen-

coders [21, 22] that encode performance style representa-

tions at the global, bar, beat, and onset levels.

To interpret the learned style embedding spaces, we

train embedding classifiers that associate local perfor-

mance contexts with written musical score direction mark-

ings. For each marking, we use the classifier predictions to

compute the average delta vectors in the style space from

negatively to positively classified style embeddings. These

vectors provide quantified model control inputs to move

the performance rendering per given direction marking.

For data encoding, we design a tokenized representa-

tion of score and performance music, a Score-Performance

Music tuple (SPMuple). It introduces a local window on-

set tempo function that produces smoother and more robust

tempos than inset-bar, -beat, or -onset tempo functions.

The experiments and evaluation results show that the

model trained on the designed encoding successfully cap-

tures different performance styles, can sample diverse and

coherent piano performances, and can be used for expres-

sive performance rendering with fine-grained style control.

Our main contributions are:

1. We extend transformers for expressive piano per-

formance rendering with hierarchical style encoding

and control at the global, bar, beat, and onset levels;

2. We design a tokenized encoding for aligned score

and performance music that proposes an efficient lo-

cal tempo computation function;

3. We introduce performance direction classifiers to

provide musical language-driven performance con-

trol by modifying the learned style latent spaces.

1 Source code and demo are available at: https://github.com/
ilya16/scoreperformer
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2. RELATED WORK

Expressive Music Performance: Recent expressive mu-

sic performance rendering models mainly utilize deep

learning methods [3, 6]. Jeong et al. [8] and Maezawa et

al. [9] use conditional variational autoencoders for perfor-

mance style encoding and recurrent neural networks for

expressive performance rendering. Rhyu et al. [11] allow

performance style to be intuitively “sketched” by a set of

learned latent representations. We propose to use trans-

formers with self-attention mechanisms [12] to infer pat-

terns in music performance and model its style through hi-

erarchical style encoding heads.

Symbolic Music Generation: Symbolic music gen-

eration with deep learning [4] is dominated by trans-

formers for learning long-term sequential musical patterns

[13, 15–17, 23] and variational autoencoders for unsuper-

vised style encoding and control [19, 23–26]. The models

offer unconditional or priming melody-based music gen-

eration [14], global control of performance style [14, 25]

or fine-grained control of music through learned high-level

features [23, 26] and descriptions [19]. Our model is close

to the melody-conditioned transformer autoencoder [14],

but introduces modifications for the task of score-based

performance rendering with style control.

Symbolic Music Encoding: The simplest way to en-

code symbolic music is a MIDI-like encoding with note-

on, note-off, and time-shift events [13, 18]. REMI [15],

REMI+ [19], and Compound Word [16] replace position

shifts with absolute bar, position, and beat tempo tokens.

OctupleMIDI [20] shortens sequence lengths by stacking

note attributes into tuples of 8 tokens. For expressive mu-

sic performance rendering, it is common to mix real, cat-

egorical and pianoroll-based score and performance fea-

tures parsed from MusicXML and MIDI files [8,9,11,27].

Transformers work well with tokenized data [12, 28, 29].

Inspired by OctupleMIDI, we design a tuple-like token en-

coding that naturally fits aligned score-performance data.

3. DATA ENCODING

3.1 Score and Performance Data Matching

Expressive music performance rendering models require

datasets of aligned score and performance music [5,30]. In

this work, we consider piano music performances in MIDI

format and use the following data preparation pipeline.

First, we compute alignments using Nakamura’s alignment

tool [31]. The alignments may contain errors, such as

alignment holes or close performance notes aligned with

distant and unrelated score notes. Following the litera-

ture [8, 32], we revise the alignments and filter out notes

that deviate from the local performance tempo. After the

cleanup, we omit performances with less than 80% aligned

notes. Finally, to achieve a perfect match, we remove ex-

tra performed notes and interpolate missing notes using the

local performance tempos and dynamics, since taking only

matched notes and discarding score notes can result in the

removal of important chord and bar information.

3.2 SPMuple Encoding

We introduce the Score-Performance Music tuple (SPMu-

ple), a tokenized representation for aligned symbolic score

and performance music. It encodes performed notes using

tuples of 8 score and 4 performance tokens.

Score Tokens: a set of features extracted from the score

MIDI. Pitch is a MIDI pitch number in the range 21 to

108. Duration is a score note value, encoded by 128 to-

kens with high and low resolution tokens for short and long

durations, respectively [20,33]. Bar is an index of the mu-

sical bar to which the note refers, ranging from 0 to the

maximum bar in the data. Position is the position of the

note in the bar, one of 128 tokens with 64th note resolution.

TimeSignature is the time signature of the beat containing

the note, a set of 22 tokens for 2nd, 4th, and 8th note beat

lengths, with a maximum bar length of 2 whole notes for

2nd note, and 1.5 for 4th and 8th note. OnsetShift is the

positional interval between the current and previous note

onsets (chords). NotesInOnset and PositionInOnset are

the number of notes and the index of the note in the onset,

ranging from 1 to 12, notes are ordered by pitch.

Performance Tokens: a set of performance features

extracted from the performance MIDI and processed us-

ing the aligned score note features. Velocity is a MIDI

velocity from 1 to 127. Tempo is the performance tempo

at the bar, beat or onset level, encoded by a geometric se-

quence of 121 tokens for beats per minute tempos from 15

to 480. RelOnsetDeviation models the exact timing of the

note, encoded as the ratio of the absolute note-onset posi-

tion deviation to the inter-onset interval scaled by the local

onset tempo using 161 tokens for values in the range -2 to

2. RelPerformedDuration is an articulation of the per-

formed note, computed as the ratio of the performed dura-

tion to the score duration, scaled by the local onset tempo,

and encoded by 121 tokens for logarithmically distributed

values between 0.1 and 3.

The score and performance token sequences are sorted

by score note start position, pitch and duration.

3.3 Local Tempo

Inset-onset tempos are noisy and have very high variance,

while beat and bar tempos are smoother but still fluctuate

at beat/bar boundaries, which can lead to degraded musical

experience [34–36]. We design a smooth alternative, local

onset tempos, weighted with respect to previous onsets in

the local onset time window.

Let {IOIsi} and {IOIpi } be the sets of score and per-

formance inter-onset intervals between the onset o and N

preceding onsets oi in the time window W . The weights

wo
i for inter-onset tempos

IOIsi
IOIp

i

are computed as:

wo
i = 1−

IOIpi
maxj{IOIpj}+ 10−2

(1)

The weights give more attention to the closest preceding

onsets, but still consider the more distant onsets to smooth

the local tempo. Based on the decoding quality, we set

the time window length W to 8s as the optimal one. In
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Figure 1. The overall architecture of ScorePerformer, hierarchical style encoding heads and direction classifiers.

addition to the window W , we filter out the nearest onsets

with IOIpi < 0.5 to reduce the effect of immediate tempo

changes, and take at least Nmin = 8 past onsets with any

IOIp to have enough points for smoothing (N ≥ Nmin).

4. MODEL

With a focus on hierarchical performance style control

and efficient training on tokenized sequences, we present

ScorePerformer, an encoder-decoder model that com-

bines transformers [12] and maximum mean discrepancy

variational autoencoders (MMD-VAE) [21,22] for control-

lable expressive rendering of piano performances for writ-

ten scores. The model is illustrated in Figure 1.

4.1 Model Architecture

Score Encoder is an encoder transformer that computes a

contextual representation of the written music. It maps a

score note sequence y+ ∈ N
N×10 (score tokens y + score

tempos and velocities) to note embeddings cs ∈ R
L×D.

Performance Encoder is an encoder transformer that

computes performance style representations at different

levels of the musical hierarchy. It takes a sequence of mu-

sic tuples of score and performance tokens m = [y, x],
y ∈ N

N×8, x ∈ N
N×4, and outputs performance context

embeddings cp ∈ R
N×D. The embeddings are grouped

and averaged over the entire sequence, bars, beats, and on-

sets, and iteratively passed through conditional linear lay-

ers to compute global, bar, beat, and onset latents zG, zB ,

zb, and zo. With the idea of learning missing lower-level

details hierarchically, at each step t the latent z∗t depends

on the context c
p
t and all higher-level latents containing the

note, e.g. zbt = f b
φ(c

p
t , z

G
t , zBt ). All note latents are stacked

to produce note-level style embeddings z ∈ R
N×Dz .

The latent spaces are fit into the Gaussian distribution

using a maximum mean discrepancy objective:

LMMD(p∥q) = Ep(z),p(z′)[k(z, z
′)] + Eq(z),q(z′)[k(z, z

′)]

− 2Ep(z),q(z′)[k(z, z
′)], (2)

where k(z, z′) = e−
∥z−z′∥2

2σ2 is a Gaussian kernel.

We use MMD-VAE [21, 22] to solve issues with poste-

rior collapse and latent space holes [37] common to con-

ventional variational autoencoders [38], especially, when

trained on sequential data [39].

Performance Decoder is a decoder transformer that

renders performance by sequentially predicting perfor-

mance tokens xt for score note tokens yt. The input token

sequence combines two sequences: 1) a sequence ms = y

with the current score notes to be rendered; 2) a sequence

m−1 = [y−1, x−1] shifted one step into the past score y−1

and rendered performance tokens x−1 describing the past

performance history. To reuse the SPMuple token embed-

der, the first sequence is extended with the masked per-

formance tokens. The two sequence embeddings are con-

catenated with the score context cs and passed to the trans-

former layers together with the style embeddings z.

We use style-adaptive layer normalization (SALN) [40]

and pass style embeddings z to the decoder’s layer nor-

malization layers, rather than concatenating the style and

input token embeddings, to increase the focus on the per-

formance style at each transformer layer.

The performance decoder minimizes the negative log-

likelihood for the sequence of performance tokens x:

Lperf = −

N∑

t=1

log pθ(xt|x<t, y≤t, c≤t, z≤t) (3)

4.2 Transformer Modifications

Discrete+Continuous Tokens: Discrete musical tokens

do not explicitly encode the absolute and relative informa-

tion about note attributes, e.g. that pitches C2, C3, and

C4 differ by an octave, or that velocity 80 is louder than

60. We mix discrete and continuous tokens by summing

learned discrete token embeddings with delta embeddings

provided by a learned nonlinear mapping of the real values

associated with tokens to the token embedding dimensions.

Relative Attention: We use the learned ALiBi relative

positional bias [41] in the decoder and the learned bidi-

rectional symmetric bias [42] in the encoder for efficient

interpolation to sequence lengths not seen during training.
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Other: We use single key-value attention heads [43] to

speed up decoding, SwiGLU activation [44,45] in feedfor-

ward layers, reuse token embedding weights between the

encoders and decoder since they share token vocabularies,

and tie input and output embeddings in the decoder [45].

4.3 Performance Direction Classifiers

We provide an intuitive interpretation of the learned style

embedding space by training performance direction clas-

sifiers on the learned note style embeddings. We extract

performance direction markings from MusicXML files

and associate score notes with performance direction la-

bels where they are present. We train classifiers for dy-

namics (degrees of piano and forte), dynamic changes

(crescendo and diminuendo), tempo (adagio, largo, etc.),

tempo changes (accelerando, ritardando, etc.) and note

articulation binary classes (staccato, fermata, etc.).

Classifiers take as input the combined note-level perfor-

mance style embeddings z = [zG, zB , zb, zo] and output

the probabilities of directions being performed in a given

performance context. The module minimizes the sum of

cross entropy losses for K classifiers with Ck classes each:

Lclf =

K∑

k=1

Lk
clf = −

1

N

K∑

k=1

N∑

t=1

Ck∑

c=1

dkt,c log(d̂
k
t,c), (4)

where dkt,c and d̂kt,c are true and predicted labels for direc-

tion c of the classifier k at step t.

Given the smoothness of the learned latent space, the

differences between embeddings with high and low classi-

fication scores for a given marking may provide a direction

in the latent space to move the generation toward the mark-

ing. We compute and use mean per-marking delta embed-

dings to control performance rendering. Since markings

are related to defined musical concepts, we can map natu-

ral language commands, such as “play more piano here”

or “switch to largo”, to quantitative model control inputs.

4.4 Training and Inference

The total loss minimized by the model during training is:

L = Lperf + LMMD + Lclf (5)

To avoid overfitting of the decoder to lower-level perfor-

mance embeddings during training, we drop bar, beat, and

onset embeddings with probabilities of 0.1, 0.2, and 0.4,

respectively. The embeddings are dropped inclusively, i.e.

if the bar latent is dropped out, all beat and onset latents

are also dropped. Additionally, the classifiers are trained

on detached style embeddings z, as we found the model to

overfit the unbalanced direction markings labels.

During inference, the sampled or modified reference

performance embeddings can be used to control the render-

ing of the music performance. Based on the learned style

spaces, the control can range from high-level global to low-

level onset. The extracted performance direction delta em-

beddings can be used to provide intuitive, command-driven

performance manipulation. The model supports real-time

inference on the CPU for use in interactive applications.

5. EXPERIMENTS

Datasets: For all experiments, we use the ASAP dataset of

matched piano scores and performances [46], preprocessed

as described in Section 3.1. The prepared dataset repre-

sents 212 musical compositions by 15 composers with a

total of 937 performances, 79 hours of performed music.

The data is divided into training and evaluation sets with an

approximate ratio of 9:1 for the number of performances in

the entire dataset and for each composer.

Implementation: The SPMuple data encoding is im-

plemented using miditok’s [33] MIDI tokenizer inter-

face. The encoders and decoders in all experiments have a

hidden dimension of 256, 4 layers, and 4 attention heads,

except for the score encoder, which has 2 layers. The to-

ken embedding dimension is set to 128 for each token type,

the projected embedding dimension for input embeddings

is set to 256. The global, bar, beat, and onset latent dimen-

sions are set to 32, 20, 8, and 4, respectively.

Training: The maximum sequence length during train-

ing is set to 256 tokens. To regularize the model and arti-

ficially increase the variety of data, we augment the data

with sampled pitch shifts (up to ±3 semitones) and ve-

locity shifts (up to ±12 MIDI values). In addition, we

randomly replace real performances with deadpan perfor-

mances with a probability of 25% to allow the model to

learn the style of both expressive and inexpressive music.

We use the ADAM optimizer [47] with an initial learning

rate of 2 · 10−4, decaying by 0.995 after each epoch. Mod-

els are trained for 70,000 iterations with batch size 128.

Evaluation: We conduct three sets of experiments: 1)

evaluation of the designed data encoding and different lo-

cal tempo calculation functions; 2) comparison of different

latent style hierarchies and their impact on performance

rendering; 3) an ablation study on the model architec-

ture design. For the metrics, we use Pearson correlation

[9, 11, 48] and mean absolute error for performance fea-

tures: inter-onset intervals (IOI), absolute onset deviations

(OD), performed note durations (PD), and velocity (Vel).

We generate 3 samples for each performance in the evalu-

ation set and compute and average the metrics between the

ground truth and the generated performances, decoded to

MIDI. The errors are measured in seconds, except for ve-

locities, which are measured in MIDI velocity values. Af-

ter the objective evaluation, we analyze the generation and

control capabilities of the designed ScorePerformer model.

6. EVALUATION

6.1 Encoding and Local Tempos

The tokenized representation of performance is not loss-

less, since some information is lost during feature quanti-

zation. We evaluate the decoding quality and performance

of ScorePerformer on sequences encoded using SPMuple

with different local tempo functions.

Table 1 shows the evaluation results. The local window

onset tempo function (Section 3.3) shows the least degra-

dation in decoding quality for inter-onset intervals and on-

set deviations. It captures local tempo changes and note
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Decoded Generated, ∆z = 0

Error ↓ Correlation ↑ Error ↓ Correlation ↑

Tempo IOI OD PD IOI OD PD IOI OD PD Vel IOI OD PD Vel

Bar 0.092 0.002 0.026 0.770 0.953 0.954 0.140 0.012 0.063 2.354 0.650 0.361 0.837 0.940

Beat 0.084 0.002 0.027 0.836 0.971 0.958 0.116 0.009 0.066 2.627 0.727 0.406 0.854 0.932

Onset 0.019 0.001 0.006 0.921 0.977 0.982 0.124 0.011 0.056 2.856 0.709 0.339 0.890 0.932

Window 0.028 0.001 0.011 0.963 0.985 0.979 0.090 0.008 0.048 2.583 0.901 0.538 0.907 0.943

Table 1. Encoding evaluation on decoded performances and performances generated with unaltered style embeddings from

the performance encoder. IOI – inter-onset interval, OD – onset deviation, PD – performed duration, Vel – velocity.

G B b o z IOI OD PD Vel

32 20 8 4 64 0.901 0.538 0.907 0.943

32 20 12 ✗ 64 0.464 0.194 0.739 0.861

32 32 ✗ ✗ 64 0.417 0.067 0.722 0.812

64 ✗ ✗ ✗ 64 0.327 0.066 0.658 0.576

✗ 32 ✗ ✗ 32 0.410 0.069 0.702 0.792

✗ ✗ 12 ✗ 12 0.384 0.066 0.711 0.767

✗ ✗ ✗ 4 4 0.590 0.063 0.735 0.748

32 20 8 ✗ 60 0.410 0.065 0.764 0.847

32 20 ✗ 4 56 0.842 0.224 0.881 0.857

32 ✗ 8 4 44 0.863 0.386 0.886 0.913

✗ 20 8 4 32 0.890 0.485 0.904 0.939

Table 2. Correlation with ground truth performances for

samples generated by models trained with different com-

binations of latent hierarchies. G – global, B – bar, b –

beat, o – onset, and z – total latent dimensions.

timing more efficiently than bar, beat and onset tempos.

These findings are supported by the generation results. The

model trained with local window tempo tokens renders

samples with smaller errors and closer to the ground truth

than the models trained with bar, beat, or onset tempo to-

kens. In particular, it shows more consistency in modeling

local tempo changes and note timing. For future work, the

encoding could be further improved by incorporating ped-

als, an essential element of piano performance [49].

6.2 Style Embedding Hierarchies

Table 2 shows the impact of different learned style em-

bedding hierarchy combinations in ScorePerformer on the

quality of performance rendering. Replacing lower-level

latents with higher-level ones, using only a single level,

or omitting any level of the hierarchy leads to a decrease

in quality for all musical features. The lower-level onset

latents account for most of the variation in performance

features, while the higher-level latents provide the missing

performance timing, articulation, and dynamics informa-

tion at the beat, bar, and global levels. The results suggest

that a hierarchical style representation is advantageous for

modeling global and local changes in music performance.

The search for an optimal configuration of latent dimen-

sions is beyond the scope of this study.

IOI OD PD Vel

ScorePerformer 0.901 0.538 0.907 0.943

w/o Score Encoder 0.885 0.526 0.889 0.951

w/o input seq. ms 0.844 0.422 0.895 0.925

w/o SALN 0.871 0.469 0.920 0.930

w/o in-out emb. tie 0.901 0.459 0.873 0.951

w/o Continuous Tokens 0.576 0.116 0.747 0.561

Table 3. Evaluation of model configurations using the cor-

relation between ground truth and generated performances.

6.3 Ablation Study

The ablation study on the ScorePerformer model is sum-

marized in Table 3. Removing any of the proposed design

choices degrades the quality for all features in almost all

cases. The score encoder adds a local future score context

to the decoder and contributes to a slight quality improve-

ment. The same is true for the additional decoder input

sequence ms, which explicitly highlights the currently ren-

dered score notes. Without style-adaptive layer normaliza-

tion or input-output embedding weight sharing, the corre-

lation for timing features decreases. The most noticeable

quality degradation occurs after using only discrete tokens

without continuous input tokens, demonstrating the posi-

tive impact of value-aware inputs on model predictions.

6.4 Performance Embeddings Analysis

We explore the learned performance style spaces using the

trained performance direction marking classifiers. We take

the style embeddings z for note onsets in the dataset and

project them into two dimensions using principal compo-

nent analysis [50]. Figure 3 shows the projected embed-

dings labeled by the selected dynamics, tempo, and ar-

ticulation markings classifiers and their ground truth la-

bels. We can see the gradient moving from the light col-

ors (high probabilities) to the darker colors (low probabil-

ities). Despite the class imbalances and low representation

of some labels in the dataset, the positive classifier predic-

tions match the areas of the ground truth labels shown in

the right plots for each marking. This suggests that the vec-

tors for moving the performance toward the markings exist

in the original latent style space and can be used to attempt

to control the performance rendering through the model.
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Figure 2. Pianorolls and performance features (inter-onset tempo, articulation, and velocity) for the first 12 musical bars of

Bach’s “Prelude and Fugue No.19”, rendered by ScorePerformer with unconditional or conditional style control. The title

of each plot indicates the form of the control input. Colored areas highlight the regions with the applied control.

Figure 3. Projected style embeddings classified by chosen

direction marking classifiers. The left and right plots for

each marking highlight predicted and ground truth labels.

The direction classifiers can also be used to analyze

performance practices. For example, take all performance

contexts with a given notated performance direction mark-

ing and sort them by the classification scores using the as-

sociated direction classifier. Further analysis of the score

contexts can provide insight into the reasons why musi-

cians follow or interpret differently certain markings.

6.5 Performance Rendering Control

For performance rendering control, we add control embed-

dings ∆z to the encoded style embeddings and pass them

to the decoder. We analyze both uncontrolled generation

with sampled control embeddings and direction-based con-

trol using the computed delta latents for markings.

Figure 2 shows examples of music performance render-

ing for a composition from the evaluation set. The sample

(a) shows the successful reconstruction of the performance

variations from the encoded style embeddings. When gen-

erated using sampled delta latents (b), the added noise is

transferred to higher variations in tempo than in articula-

tion and dynamics. In our observations, small amounts of

delta noise can result in both pleasant and diverse samples.

From the evaluation of the performance direction based

control, we can see that in most cases the model follows

the musical meaning of the marking. Example (c) shows

that piano and forte delta embeddings lead to the expected

decrease and increase in dynamics. The più mosso (more

movement, faster) and largo (slowly and broadly) in the

example (d) lead to the expected changes in tempo, ar-

ticulation and dynamics. An interesting behaviour can be

found in example (e), where the model values one mark-

ing over the other. During the alternation of crescendo and

diminuendo, the model follows diminuendo more and falls

on the path of slow and quiet performance. The last exam-

ple (f) shows that the control can also be applied effectively

to individual notes. As the definitions suggest, the staccato

on higher pitched notes makes them more abrupt, and the

fermata on other notes holds the notes a bit longer.

Despite the positive examples of piano performance

rendering control, the model has some limitations. The

proposed marking delta embeddings encode the highest

learned deviations between performance styles and lead to

immediate changes in performance, which can sound un-

natural. One solution is to scale or interpolate the control

inputs for smoother performance changes. Another issue

to be addressed is disentangling the learned latent space

across direction classes for a more controllable generation.

Finally, the study was limited by low performance varia-

tion for some markings and compositions in the dataset.

We believe that the proposed approach has a high potential

for both analytical and musical creativity applications that

could be fulfilled with orders of magnitude larger datasets.

7. CONCLUSION

We presented ScorePerformer, an encoder-decoder trans-

former with hierarchical MMD-VAE style encoding heads

for fine-grained controllable expressive rendering of pi-

ano music performances. We also introduced performance

direction classifiers, trained on performance style embed-

dings, to map notated direction markings and natural lan-

guage inputs to model control inputs. Evaluation showed

that the model captures performance style variations and

follows control intents. Future work will focus on improv-

ing the diversity of training data to enable large-scale anal-

ysis, and may include in-depth subjective evaluation of the

proposed and existing performance rendering models.
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ABSTRACT

Roman Numeral analysis is the important task of identify-

ing chords and their functional context in pieces of tonal

music. This paper presents a new approach to automatic

Roman Numeral analysis in symbolic music. While exist-

ing techniques rely on an intermediate lossy representation

of the score, we propose a new method based on Graph

Neural Networks (GNNs) that enable the direct description

and processing of each individual note in the score. The

proposed architecture can leverage notewise features and

interdependencies between notes but yield onset-wise repre-

sentation by virtue of our novel edge contraction algorithm.

Our results demonstrate that ChordGNN outperforms ex-

isting state-of-the-art models, achieving higher accuracy in

Roman Numeral analysis on the reference datasets. In addi-

tion, we investigate variants of our model using proposed

techniques such as NADE, and post-processing of the chord

predictions. The full source code for this work is available

at https://github.com/manoskary/chordgnn

1. INTRODUCTION

Automatic Chord Recognition is one of the core problems

in Music Information Retrieval. The task consists of iden-

tifying the harmonies or chords present in a musical piece.

Various methods have been proposed to address this task

using either an audio or symbolic representation of the mu-

sic [1]. In the symbolic domain, most approaches focus

on the related and arguably more complex problem of Au-

tomatic Roman Numeral Analysis, which is a functional

harmony analysis problem that has its roots in musicologi-

cal research of Western classical music.

Roman Numeral Analysis is a notational system used in

music theory to analyze chord progressions and identify the

relationship between chords in a given key. In this system,

each chord in a piece of music is assigned a Roman numeral

based on its position within the key’s scale. For example, in

the key of C major, the I chord is C major, the IV chord is

F major, and the V chord is G major. Roman Numerals are

© E. Karystinaios and G. Widmer. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribution:

E. Karystinaios and G. Widmer, “Roman Numeral Analysis with Graph

Neural Networks: Onset-wise Predictions from Note-wise Features”, in

Proc. of the 24th Int. Society for Music Information Retrieval Conf., Milan,

Italy, 2023.

an important tool for understanding and analyzing the har-

monic structure of music, and they are a valuable resource

for musicians, composers, and arrangers alike.

In Music Information Retrieval, a lot of work has been

done to automate Roman Numeral analysis. However, cur-

rent approaches still face significant challenges. Some of

these are related to the large chord symbol vocabulary. A

common way to address this problem is to divide a Roman

Numeral into several components (e.g., key, degree, inver-

sion) and transform the analysis into a multitask learning

scenario. However, multitask approaches themselves face

challenges with interdependencies among tasks. Lastly, Ro-

man Numeral analysis faces a score representation problem

related to existing models such as CNNs whose inputs must

be in fixed-sized chunks. Recent state-of-the-art approaches

follow an audio-inspired strategy, dividing a musical score

into fixed-length time frames ("windows") which are then

processed by a Convolutional Recurrent Neural Network

(CRNN). However, such a representation is unnatural for

scores and has the added practical disadvantage of being

time-limited (for example regarding notes extending be-

yond the current window) and, due to the fixed-length (in

terms of score time) constraint, capturing varying amounts

of musically relevant context.

In this paper, we propose a new method for automatic

Roman Numeral analysis based on Graph Neural Networks

that can leverage note-wise information to address the score

representation issue. Our model, ChordGNN, builds on

top of existing multitask approaches but introduces several

novel aspects, including a graph convolutional architecture

with an edge contraction pooling layer that combines convo-

lution at the note level but yields the learned representation

at the onset level.

Our proposed method, ChordGNN, is evaluated on a

large dataset of Western classical music, and the experimen-

tal results demonstrate that it outperforms existing state-

of-the-art methods, in terms of the commonly used Chord

Symbol Recall measure. To address the interdependencies

among tasks we investigate the effect of post-processing

and other proposed techniques such as NADE and gradient

normalization. Finally, we look at a qualitative musical

example and compare our model’s predictions with other

state-of-the-art models.

597



Figure 1. A Roman Numeral analysis for two bars for four-

part harmony in C major. Capital letters stand for major

quality and lowercase for minor quality. The third chord has

a dominant seven as its primary degree and the dominant of

C major as its secondary degree. The V 6
5 indicates a major

with a seven quality in second inversion. The bass (lowest

chord note) of that chord is F sharp, the root is D, and the

local key is C major.

2. RELATED WORK

There is a big body of literature covering the topic of Au-

tomatic Chord Recognition applied in the audio domain;

however, in our work, we focus on the problem of auto-

matic Roman Numeral Analysis in the symbolic domain.

It consists of labeling the chords and harmonic progres-

sions in a piece of music using Roman Numerals, where

each numeral represents a chord built on a particular scale

degree. Numerous approaches have tried to automate Ro-

man Numeral analysis or infer harmonic relations between

chords. Notable work includes statistical models such as

Melisma [2], HMM-based models [3], and grammar-based

approaches [4].

In recent years, research has shifted towards a deep learn-

ing and data-driven approach. Due to the large vocabulary

of possible Roman Numerals, the problem has been divided

into several component subtasks, thus resulting in a multi-

task learning setting [5]. As a multitask problem, a Roman

Numeral is characterized by the following components: the

primary and secondary degree (as illustrated in Figure 1),

the local key at the time point of prediction, the root of the

chord, the inversion of the chord, and the quality (such as

major, minor, 7, etc.). Although the root can be derived

from the other components, it was pointed out by [6] that

redundancy is assisting Roman Numeral analysis systems

to learn. An example of Roman Numerals and their com-

ponents can be viewed in Figure 1. Recent state-of-the-art

approaches decompose the numeral prediction task to the

simultaneous prediction of those 6 components [5–9].

Most deep learning approaches to Roman Numeral anal-

ysis are inspired by work in audio classification, cutting

a score into fixed-size chunks (in terms of some constant

score time unit; e.g., a 32nd note) and using these as input

to deep models. Using this quantized time frame repre-

sentation, [6] introduced a CRNN architecture to predict

Roman Numerals. Other work has continued to build on the

latter by introducing more tasks to improve performance

such as the AugmentedNet model [7], or introducing intra-

dependent layers to inform in an orderly fashion the predic-

tion of one task with the previously predicted task, such as

the model introduced by [8]. Other architectures, such as

Figure 2. Different representations of the score excerpt

shown in the middle. Top: quantized time frame representa-

tion, bottom: graph representation.

the CSM-T model, have demonstrated good results by intro-

ducing modular networks which treat a score as a sequence

of notes ordered first by onset and then by pitch [9].

Should a musicologist perform music analysis on a piece

of music, they would consider the individual notes exist-

ing in the score. Thus, a time frame representation would

come across as unnatural for symbolic music and in partic-

ular for such an analysis task. In this paper, we present a

method that no longer treats the score as a series of quan-

tized frames but rather as a partially ordered set of notes

connected by the relations between them, i.e., a graph. A

visual comparison of the two representations is shown in

Figure 2. Recently, modeling scores as graphs has also been

demonstrated to be beneficial for problems such as expres-

sive performance generation [10], cadence detection [11],

voice separation [12], or boundary detection [13].

Automatic Roman Numeral analysis, as a multitask prob-

lem, is mostly tackled with hard parameter-sharing models.

These models share part of the model across all tasks as an

encoder, and then the common embeddings are branched

to a classification model per task [6–8]. However, some

approaches separate tasks from this paradigm to a more

modular or soft parameter sharing approach [9].

In the field of multitask learning, a lot of research has

been done on the problem of conflicting gradients during

backpropagation in hard parameter-sharing models. Issues

with multi-objective optimization have been early addressed

by Zhang et al. [14] and recent solutions have been pro-

posed for the multitask setting in the form of dynamic task

prioritization [15], gradient normalization [16], rotation

matrices [17], or even game-theoretic approaches [18]. In

our work, we experimentally evaluate some of these tech-

niques in the multitask setting to investigate whether Roman

Numeral analysis subtasks conflict with each other (see Sec-

tion 5.2).
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Figure 3. The proposed Architecture Chord-GNN

3. METHODOLOGY

3.1 Roman Numeral Analysis

We already discussed, in Section 2, how Roman Numeral

analysis can be viewed as a multi-task problem. In this

section, we describe in detail the additional tasks introduced

by [7] that we also use for training and prediction. First,

let us assume that the prediction can be broken down into

specific time points, and each time point is attributed to a

unique onset in the score.

The Roman Numeral prediction can be viewed as a si-

multaneous prediction of the local key, degree (primary

and secondary), quality, inversion, and root. Each one of

these tasks is a categorical, multiclass classification prob-

lem. However, [7] indicated that only three tasks would be

sufficient for 98% of the Roman Numeral annotations in

our dataset (detailed in Section 4.1). These three tasks com-

prise the prediction of a restricted vocabulary of common

Roman Numeral symbols in combination with the local key

and the inversion. We refer to Roman Numeral prediction

involving the 5 tasks as conventional RN, and the combined

prediction of key, inversion, and restricted RN vocabulary

alternative RN, as RNalt, in accordance with [7].

Several other tasks have been introduced that have been

shown to improve the performance of related models [7].

These include the Harmonic Rhythm, which is used to infer

the duration of a Roman Numeral at a given time point; the

Tonicization task, a multiclass classification task that refers

to a tonicized key implied by the Roman Numeral label and

is complementary to the local key; the Pitch Class Sets task,

which includes a vocabulary of different pitch class sets,

and the Bass task, which aims to predict the lowest note in

the Roman Numeral label.

3.2 Graph Representation of Scores

Our approach to automatic Roman Numeral analysis no

longer treats the score as a sequence of quantized time

frames but rather as a graph, which permits us to specify

note-wise information such as pitch spelling, duration, and

metrical position. We use graph convolution to model inter-

dependencies between notes. We model our score generally

following Karystinaios and Widmer [11], but we opt for a

heterogeneous graph convolution approach, i.e., including

different edge relations/types. Furthermore, we develop an

edge contraction pooling layer that learns onset-wise rep-

resentations from the note-wise embeddings and therefore

yields a sequence.

After the edge contraction, we follow [6–8] by adding

to the graph convolution a sequence model for the hard-

sharing part of our model, and simple shallow multi-layer

perceptron heads for each task. In essence, we replace the

CNN encoder that works on quantized frames of the score

in previous approaches, with a graph convolutional encoder

followed by an edge contraction layer. Our proposed archi-

tecture is shown in Figure 3.

The input to the GNN encoder is an attributed graph G =
(V,E,X) where V and E denote its node and edge sets and

X represents the node feature matrix, which contains the

features of the notes in the score. For our model, we used

pitch spelling, note duration, and metrical position features.

Given a musical piece, the graph-building process cre-

ates a set of edges E, with different relation types R. A

labeled edge (u, r, v) of type r between two notes u, v be-

longs to E if the following conditions are met:

• notes starting at the same time:

on(u) = on(v) −→ r = onset

• note starting while the other is sounding: on(u) >
on(v) ∧ on(u) ≤ on(v) + dur(v) −→ r = during

• note starting when the other ends:

on(u) + dur(u) = on(v) −→ r = follow

• note starting after a time frame when no note is sound-

ing: on(u) + dur(u) < on(v) ∧ ∄v′ ∈ V, on(v′) <
on(v) ∧ on(v′) > on(u) + dur(u) −→ r = silence

3.3 Model

In this section, we introduce and describe ChordGNN, a

Graph Convolutional and Recurrent Neural Network. The

structure of the network is visually outlined in Figure 3.

ChordGNN uses heterogeneous graphSAGE [19] convolu-

tional blocks defined as:

h
(l+1)
Nr(v)

= mean
(

{hl
u, ∀u ∈ Nr(v)}

)

h
(l+1)
vr

= σ
(

W · concat(hl
v,h

l+1
Nr(v)

)
)

h
(l+1)
v =

1

|R|

∑

r∈R

h
(l+1)
vr

(1)
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where h
(0)
v = xv and xu is the input features for node

u, N (u) are the neighbors of node u, and σ is a ReLU

activation function. We name the output representations of

all nodes after graphSAGE convolution H = {h
(L)
u | u ∈

V } where L is the total number of convolutional layers.

Given the hidden representation H of all nodes, and

onset edges EOn = {(u, v) | on(u) = on(v)}, the on-

set edge contraction pooling is described by the following

equations: first, we update the hidden representation with

a learned weight, H ′ = HW (cpool). Subsequently we need

to unify the representations for every node u, such that

∀v ∈ NOn(v), h
(cp)
u = h

(cp)
v :

h(cp)
u = hu +

∑

v∈NOn(v)

hv (2)

where, hu and hv belong to H ′. Subsequently, we filter the

vertices:

V ′ = {v ∈ V | ∀u ∈ V, (v, u) ∈ EOn =⇒ u /∈ V ′} (3)

Therefore, H(cp) = {h
(cp)
u | ∀u ∈ V ′} are the rep-

resentations obtained. Sorting the representations by the

onset on which they are attributed we obtain a sequence

S = [h
(cp)
u1

, h
(cp)
u2

, . . . h
(cp)
uk

] such that on(u1) < on(u2) <
· · · < on(uk).

The sequence S is then passed through an MLP layer

and 2 GRU layers. This concludes the hard-sharing part of

our model. Thereafter, an MLP head is attached per task,

as shown in Figure 3.

For training, we use the dynamically weighted loss in-

troduced by [20]. The total loss Ltot of our network is

calculated as a weighted sum of the individual losses for

every task, where the weights are learned during training:

Ltot =
∑

t∈T

Lt ∗
1

2γ2
t

+ log(1 + γ2
t ) (4)

where T is the set of tasks; Lt is the cross-entropy loss

relating to task t; the γt are learned scalars that give the

weight for each task t; and the log expression is a regular-

ization term [20].

Figure 4. Post-processing of Roman Numeral predictions.

3.3.1 Post-processing

We enhance our model with a post-processing phase after

the model has been trained. The post-processing phase com-

bines the logits of all tasks’ predictions by concatenating

them and, then, feeds them to a single-layer bidirectional

LTSM block. Then, again the embeddings of the sequential

block are distributed to 11 one-layer MLPs, one for each

task. The post-processing block is sketched in Figure 4.

4. EXPERIMENTS AND CORPORA

In the experiments, we compare our model, ChordGNN,

with other recent models for automatic Roman Numeral

analysis. We run experiments with our model in the ex-

act same way as described in the paper [7], including the

specific data splits, so that our results are directly compa-

rable to the figures reported there. A detailed comparison

of the results will be given in Table 1. Furthermore, we

develop variants of our model using proposed techniques

such as NADE [8], and post-processing of the chord pre-

dictions. We report a configuration study of our model on

the use of gradient normalization techniques and NADE

that should improve results on Multi-Task learning scenar-

ios and avoid common Multi-Task Learning problems such

as conflicting gradients. Lastly, we compare our model

with the updated version v1.9.1 of the state-of-the-art model

Augmented-Net [21] and datasets.

4.1 Datasets

For training and evaluation, we combined six data sources

into a single "Full" Dataset of Roman Numeral annota-

tions in accordance with [7]: the Annotated Beethoven Cor-

pus (ABC) [22]; the annotated Beethoven Piano Sonatas

(BPS) dataset [5]; the Haydn String Quartets dataset

(HaydnSun) [23]; the TAVERN dataset [24]; a part of

the When-in-Rome (WiR) dataset [25, 26]; and the Well-

Tempered-Clavier (WTC) dataset [25] which is also part of

the WiR dataset.

Training and test splits for the full dataset were also

provided by [7]. It is worth noting that the BPS subset splits

were already predefined in [5]. In total, approximately 300

pieces were used for training, and 56 pieces were used

for testing, proportionally taken from all the different data

sources. We draw a distinction for the BPS test set, which

includes 32 Sonata first movements and for which we ran

an additional experiment. The full test set also includes the

7 Beethoven piano sonatas.

In addition to the above datasets, we include data aug-

mentations identical to the ones described in [7]: textur-

ization and transposition. The texturization is based on a

dataset augmentation technique introduced by [27]. The

transposition augmentation boils down to transposing a

score to all the keys that lie within a range of key signatures

that have up to 7 flats or sharps. It should be noted that the

augmentations are only applied in the training split.

For our last experiment (to be reported on in Section 5.3

below), we add additional data that were recently introduced

by [21]. The additional data include the annotated Mozart
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Model Key Degree Quality Inversion Root RN RN (Onset) RNalt

B
P

S
Micchi (2020) 82.9 68.3 76.6 72.0 - 42.8 - -

CSM-T (2021) 69.4 - - - 75.4 45.9 - -

AugNet (2021) 85.0 73.4 79.0 73.4 84.4 45.4 - 49.3

ChordGNN (Ours) 79.9 71.1 74.8 75.7 82.3 46.2 46.6 48.6

ChordGNN+Post (Ours) 82.0 71.5 74.1 76.5 82.5 49.1 49.4 50.4

F
u

ll

AugNet (2021) 82.9 67.0 79.7 78.8 83.0 46.4 - 51.5

ChordGNN (Ours) 80.9 70.1 78.4 78.8 84.8 48.9 48.4 50.4

ChordGNN+Post (Ours) 81.3 71.4 78.4 80.3 84.9 51.8 51.2 52.9

Table 1. Model comparison on two different test sets, the Beethoven Piano Sonatas (BPS), and the full test set. RN stands

for Roman Numeral, RNalt for the alternative Roman Numeral computations discussed in Section 3.1. RN(Onset) refers

to onset-wise prediction accuracy, all other scores use the CSR score (see Section 5). Note that model CSM-T reports Mode

instead of Quality.

Piano Sonatas (MPS) dataset [28] for which we also applied

the aforementioned augmentations.

4.2 Configuration

For all our experiments, we train our network with the

AdamW optimizer. We fix our architecture with a hidden

size of 256, a learning rate of 0.0015, a weight decay of

0.005, and a dropout of 0.5 which is applied to each learning

block of our architecture.

5. RESULTS

As an evaluation metric, we use Chord Symbol Recall

(CSR) [29] where for each piece, the proportion of time

is collected during which the estimated label matches the

ground truth label. We apply the CSR at the 32nd note

granularity level, in accordance with [6, 7, 9].

5.1 Quantitative Results

In the first experiment, which compares our ChordGNN to

existing state-of-the-art approaches, we evaluate the full

dataset, but also the annotated Beethoven Piano Sonatas

(BPS) [5] subset, which many previous approaches had also

used. The results are shown in Table 1. We present the CSR

scores (where they are applicable) for Local Key, Degree,

Quality, Inversion, Root, conventional Roman Numeral, and

Alternative Roman Numeral (see Section 3). Furthermore,

we include the onset-wise accuracy score for our models’

conventional Roman Numeral predictions.

On the BPS subset, we compare our model ChordGNN

with the Micchi (2020) model [6], the CSM-T (2021)

model [9] and the AugmentedNet 2021 model [7]. Our

results on Roman Numeral prediction surpass all previous

approaches. Note that the AugmentedNet model exhibits

higher prediction scores on the individual Key, Degree,

Quality, and Root tasks, which are used jointly for the

prediction of the Roman numeral. These results indicate

that our model obtains more meaningfully interrelated pre-

dictions, with respect to the Roman numeral prediction,

resulting in a higher accuracy score.

Moreover, we compare ChordGNN to AugmentedNet on

the full test dataset. Our model surpasses AugmentedNet

Variant RN RNalt

ChordGNN (Baseline) 46.1± 0.003 47.8± 0.007
ChordGNN + WLoss 48.9± 0.001 50.4± 0.010
ChordGNN + Rotograd 45.5± 0.003 47.1± 0.005
ChordGNN + R-GradN 45.2± 0.006 46.7± 0.005
ChordGNN + NADE 48.2± 0.005 49.9± 0.005

Table 2. Configuration Study: Chord Symbol Recall on

Roman Numeral analysis on the full test set. RN stands for

Roman Numeral, RNalt refers to the alternative Roman Nu-

meral computations discussed in section 3.1. WLoss stands

for the dynamically weighted loss described in Section 3,

and R-GradN stands for Rotograd with Gradient Normal-

ization. Every experiment is repeated 5 times with the same

ChordGNN model as Table 1 without post-processing.

with and without post-processing in all fields apart from

local key prediction and quality. Our model obtains up

to 11.6% improvement in conventional Roman Numeral

prediction.

In both experiments, post-processing has been shown

to improve both RN and RNalt. However, ChordGNN

without post-processing already surpasses the other models.

5.2 Configuration Study

For a systematic study of multitask training, we investi-

gated the effects of extension modules, gradient normal-

ization techniques, and learnable weight loss. In detail,

we test 5 configurations using as baseline the ChordGNN

model (without post-processing) with standard CE loss and

no weighing. Furthermore, we test our proposed architec-

ture using the dynamically weighted loss described in Sec-

tion 3.3 (same as the model in Table 1), Rotograd [17] and

GradNorm [16] for Gradient Normalization, and NADE [8].

The models are run on the Full data set described above

and averaged over five runs with random initialization. The

results, summarized in Table 2, suggest that using the dy-

namically weighted loss yields better results compared to

other methods such as the Baseline or Gradient Normaliza-

tion techniques. Furthermore, the dynamically weighted

loss is comparable to NADE but also more robust on Con-

ventional Roman Numeral prediction on our datasets.
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Figure 5. A comparison between the human annotation, AugmentedNet, and ChordGNN on a passage of Haydn’s string

quartet op.20 No.3 movement 4. The red (wrong) markings on Human Analysis and AugNet (2022) are from [21]

5.3 Latest developments

Our last experiment focuses on specific developments that

have very recently been published in Nápoles López’s Ph.D.

thesis [21]. In the thesis, three additional tasks, related to

predicting the components of a canonical representation of

the current chord, as implied by the Roman Numeral, were

proposed and the dataset was extended with the Annotated

Mozart Piano Sonatas (MPS) corpus [28], as mentioned in

Section 4.1 above.

To test the relevance of these updates, we trained an

adapted version of our model, now with 11+3=14 individ-

ual tasks and including the Mozart data. It turns out that

the updated model improves significantly in performance,

achieving a 53.5 CSR score on conventional Roman Nu-

meral (compare this to row "ChordGNN (Ours)" in Table

1). Furthermore, post-processing can improve the results by

up to two additional percentage points. 1

5.4 A Musical Example

In Figure 5, we look at a comparison between the human an-

notations, AugmentedNet and Chord-GNN predictions (The

musical excerpt is taken from Nápoles López’s thesis [21],

and the predictions relate to the new models trained as de-

scribed in the previous section.). Marked in red are false

predictions, and marked in yellow are correct predictions

of the model with wrong ground-truth annotations. Both

models’ predictions are very similar to the human analysis.

However, our model correctly predicts the initial pickup

measure annotation. In measure 2, the ground truth anno-

tation marks a tonic in first inversion; however, the viola

at that point is lower than the cello and therefore the chord

is actually in root position. Both models obtain a correct

prediction at that point. Subsequently, our model predicts

a harmonic rhythm of eighth notes, which disagrees with

the annotator’s half-note marking. Analyzing the underly-

ing harmony in that passage, we can justify our model’s

choices.

1 Unfortunately, we cannot directly compare these numbers to [21], as
their results are not reported in comparable terms.

The human annotation suggests that the entire second

half of the 2nd measure represents a viio chord. However,

it should not be in the first inversion, as the cello plays

an F# as the lowest note (which is the root of viio). The

AugNet analysis faces the same issue, in contrast with the

predictions of ChordGNN. However, there are two conflict-

ing interpretations of the segment. First, the viio on the

third beat is seen as a passing chord between the surround-

ing tonic chords, leading to a dominant chord in the next

measure. Alternatively, the viio could already be part of

a prolonged dominant harmony (with passing chords on

the offbeats) leading to the V 7. The ChordGNN solution

accommodates both interpretations as it doesn’t attempt to

group chords at a higher level, treating each eighth note as

an individual chord rather than a passing event. The other

two solutions prefer the second option.

6. CONCLUSION

In this paper, we presented ChordGNN, a model for auto-

matic Roman Numeral analysis in symbolic music, based on

a note-level, graph-based score representation. We showed

that ChordGNN improves on other state-of-the-art models,

and that post-processing can further improve the accuracy

of the predictions. A configuration study suggests that gra-

dient normalization techniques or techniques for carrying

prediction information across tasks are not particularly ben-

eficial or necessary for such a model.

Follow-up work will focus on strengthening the robust-

ness of our models by pre-training with self-supervised

methods on large corpora. We believe that such pre-training

can be beneficial for learning helpful intrinsic musical in-

formation. Such a step is crucial since more data improves

predictions but Roman Numeral annotations are hard to

find or produce. Moreover, we aim to enrich the number of

tasks for joint prediction by including higher-level analyti-

cal targets such as cadence detection and phrase boundary

detection. Finally, we aim to extend our method to the audio

domain.
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ABSTRACT

We present a system to assist Subject Matter Experts

(SMEs) to curate large online music catalogs. The sys-

tem detects releases that are incorrectly attributed to an

artist discography (misattribution), when the discography

of a single artist is incorrectly separated (duplication), and

predicts suitable relocations of misattributed releases. We

use historical discography corrections to train and evaluate

our system’s component models. These models combine

vector representations of audio with metadata-based fea-

tures, which outperform models based on audio or meta-

data alone. We conduct three experiments with SMEs in

which our system detects misattribution in artist discogra-

phies with precision greater than 77%, duplication with

precision greater than 71%, and by combining the ap-

proaches, predicts a correct relocation for misattributed re-

leases with precision up to 45%. These results demon-

strate the potential of such proactive curation systems in

saving valuable human time and effort by directing atten-

tion where it is most needed.

1. INTRODUCTION

Online music catalogs such as Spotify’s contain millions

of releases, and new ones are added daily by providers

ranging from professionally-staffed music labels to DIY

artists via aggregators. In such large catalogs, it is common

that multiple artists share the same or similar names, or

that content by one artist comes from different providers.

For example, there are 14 distinct metal bands with the

name Burial 1 . When a new release by a Burial makes it to

the catalog, in the absence of a unique artist identifier, we

must make a decision of where to place the content: Is it by

the Italian doom metal band, the English death metal band,

one of the other 12 bands named Burial, or an entirely new

one? In general, to which artist do we attribute a release

when there are multiple artists with the same name?

Music streaming services have multiple systems to en-

sure that releases are correctly placed on artist discogra-

1
https://www.metal-archives.com/bands/Burial

© B. Regan, D. Hristova, and M. Beguerisse-Díaz. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: B. Regan, D. Hristova, and M. Beguerisse-

Díaz, “Semi-Automated Music Catalog Curation Using Audio and Meta-

data”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

phies. However, given the large volumes of content and the

diversity of sources, it is inevitable that on rare occasions

a release is incorrectly attributed (e.g. due to incomplete

or incorrect metadata, extreme ambiguity, or human error).

These errors can manifest in two different ways: 1) Mis-

attribution: when a release is incorrectly attributed to an

artist, so that their discography now contains releases from

two separate real-world artists; 2) Duplication: when a re-

lease is not attributed to the correct existing discography

but to a new one, so that a single artist’s work is split across

the two discographies. These errors negatively impact the

experience of both artists and users on the platform.

The problem of Named Entity Disambiguation (NED)

has been extensively researched to attribute scientific pa-

pers to homonym authors using metadata such as the au-

thor’s fields of research, academic affiliations, and co-

authors [1–3]. In Music Information Retrieval (MIR),

NED is primarily tackled as artist identification or multi-

class classification with known artist classes. Approaches

to this problem rely primarily on audio feature representa-

tions [4–6]. These methods cannot be applied to catalogs

with a large or unknown number of artists, and do not take

advantage of all existing information.

Here we present a semi-automated proactive curation

system to detect and correct attribution errors across large

music catalogs. The system consists of two machine

learning sub-systems: a system for detecting misattribu-

tion by splitting discographies with releases from multiple

real-world artists into their constituent sub-discographies

(Fig. 1a), and a deduplication system that takes pairs of

discographies or sub-discographies and decides if they

should be combined (Fig. 1b). Both sub-systems rely on

metadata and the acoustic similarity between releases, us-

ing deep convolutional network embeddings of their mel-

spectrograms [7]. We show that combining audio and

metadata features improves average precision in misattri-

bution and duplicate detection by 10% and 6% respec-

tively.

“In the wild” experiments with music catalog cura-

tion Subject Matter Experts (SMEs) show that our system

achieves over 77% precision on misattribution detection,

over 71% precision on duplicate detection, and 45% pre-

cision on finding the correct relocation of misattributed re-

leases. Together these results demonstrate the power of

proactive catalog correction systems in assisting human-

led curation efforts.
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2. RELATED WORK

Recent advances in audio feature representation using deep

learning [8] have applications to recommendations [7], au-

dio classification [4] and artist identification [4, 6, 9, 10].

These works typically focus on the audio and do not in-

clude additional information (the method in [9] uses genre

in its negative sampling method, but the model takes only

audio). Work in other Named Entity Disambiguation

(NED) applications shows that combining learned feature

representations and manually crafted diverse features out-

performs using either in isolation [11, 12]. This suggests

that combining multiple data types (e.g. content and meta-

data) can improve the performance of music NED systems.

Duplicate entity detection (also known as entity match-

ing or entity resolution) across or within databases typi-

cally has a blocking step [13] optimised for recall to re-

duce the set of pairwise comparisons, followed by an en-

tity matching step optimised for precision. If labelled pairs

of entities are available, supervised machine learning ap-

proaches can be used for matching. These are typically

based on various string-based similarity features, such as

entity name similarity [14].

Although state-of-the-art NED research focuses on au-

tomation [1], a human-in-the-loop (HITL) paradigm is

commonly used in practice. A HITL approach is useful

for resolving highly ambiguous cases and correcting au-

tomated decisions. In [3] the authors describe a machine

learning approach that optimises human effort spent on la-

belling for author disambiguation. In the Microsoft Aca-

demic Graph [2], the author disambiguation system uses

crowdsourced data as supervision signals.

Crowdsourced and authoritative sources such as Mu-

sicBrainz [15], VIAF [16], Wikidata [17], or ISNI [18] are

useful for artist name disambiguation, but their benefit is

limited for artists in the long tail or for brand new releases

without unique artist identifiers.

3. METHODOLOGY

Our system operates on music releases (i.e. albums) de-

noted as a, and on artist credits in them. The set of re-

leases credited to an artist forms the artist’s discography:

A = {ai, a2, . . . }. The objective of our system is two-

fold:

Correct discographies Every release within a discogra-

phy should credit the same real-world artist; i.e.

there is no misattribution in the discography.

Complete discographies A real-world artist’s releases

should not be split across multiple discographies; i.e.

there should be no more than one discography per

artist.

Figure 1 illustrates our approach to achieve these goals;

we achieve correctness and completeness by relocating

misattributed releases and resolving (i.e. merging) du-

plicate discographies. Note that there are cases where a

single real person performs under distinct artist identities

(e.g. Dan Snaith performs as Caribou and Daphni). These

a3

 a3 a4 a5

a1 a2

Discography

a1 a2

Discography

(a) Misattribution Detection

(b) Deduplication / Relocation

a4 a5

DiscographyDiscography

Discography

a1 a2 a3

Discography

a4 a5

Discography

Figure 1: System Overview: (a) Misattribution detection

is performed on each discography A. The misattributed

release a3 is split out from A1 into sub-discography A∗
1.

(b) All (sub-)discographies are considered for deduplica-

tion; A∗
1 is merged into A2, relocating the misattributed

releases into the correct discography.

discographies should not be considered duplicates. In ad-

dition, some releases can belong to multiple discographies

if they credit multiple distinct artists (e.g. collaborations

and remixes); however, a discography should always con-

tain releases under a common artist.

3.1 Misattribution Detection

The misattribution detection method, illustrated in Fig. 2,

processes an artist’s attributed discography A in two

stages: First, we obtain a distance dist(ai, aj) between all

pairs of releases ai, aj ∈ A using the combination of audio

and metadata signals in Table 1. Second, we partition A
using this distance by constructing a Minimum Spanning

Tree (MST) [19] and imposing a threshold θdist. When

we cut the MST edges where dist(ai, aj) > θdist, the

remaining connected components should contain releases

from the same artist. These partitions are disjoint subsets:

Ai ⊆ A, i = 1 . . .m, for which all releases belong to the

same real-world artist. If the cardinality of the partition

is m > 1, then there is at least one misattributed release

in the discography (i.e. more than one artist’s content is

detected) and the discography should be split.

3.1.1 Pairwise Model

To obtain the pairwise distance between releases in a

discography, we train a Random Forest ensemble classi-

fier [20] dist : A×A → (0, 1], where high values indicate

that the releases are likely to be from different artists.

Data. The training data consists of ∼45K release pairs

from ∼28K artist discographies. This data, which we call

the Relocations dataset, contains historical corrections of

artist misattributions. The genres of the releases in this data

are representative of Spotify’s catalog. Each relocation is

a move of an incorrectly-placed release from an artist’s

discography to the correct one. To construct the training
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0.85
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0.95

a1

a2

a3
0.05

0.85

a3a1 a2

(a) The artist discography containing 

misattribution
(b) Compute pairwise distances (c) Compute Minimum Spanning Tree (d) Threshold Minimum Spanning Tree

Figure 2: Misattribution detection: (a): An artist discography A = {a1, a2, a3} in which release a3 is misattributed. (b):

The pairwise distance matrix D computed using our model. (c): A Minimum Spanning Tree (MST) is computed from the

distances. (d): After applying a threshold θdist to the MST, the discography A is split into two partitions, which correspond

to the two distinct real world artists present in the discography.

data, consider a release ai1 that was moved from discog-

raphy Aj to Ai. We pair ai1 with a release a
j
1
∈ Aj from

the discography where it was incorrectly located: (ai1, a
j
1
),

and give it the “mismatched” label. Then, we pair ai1 with

a release from the correct discography: (ai1, a
i
2), a

i
2 ∈ Ai,

and give it the “not mismatched” label.

Model Features. We use a combination of metadata

and audio-based features, summarised in Table 1. Audio

features include deep acoustic embeddings from a propri-

etary model trained in a fashion similar to [7], originally

developed for music recommendations, and speechiness -

a probability that a track contains spoken word as deter-

mined by another proprietary model [21]. An advantage of

audio features is that they are available for every release. In

general, we expect releases from the same artist to sound

similar to each other. As mentioned in Sec. 2, previous

works report good performance using audio-based meth-

ods alone [4,9,10]. However, releases from different artists

can also sound similar (e.g. if they come from the same

genre), and releases from the same artist can be musically

different (e.g. an artist whose style evolved or spans many

genres).

On the other hand, metadata features such as music la-

bels, composers or lyricists can have high precision (e.g.

releases from the same discography delivered by the same

label are likely to be by the same artist), but in isolation

metadata matches can be sparse, or have mistakes. There-

fore, we supplement audio similarity with metadata based

features to improve the performance of our classifier.

3.1.2 Grouping releases in a discography

Our distance allows comparisons between individual pairs

of releases to decide whether they belong to distinct artists.

For example, if dist(ai, aj) > θdist for a given θdist ∈
(0, 1], we could say that it is unlikely that the releases share

an artist. However, this comparison ignores the context of

the whole discography A, and may fail when the sound of

an artist has evolved in time, the artists changed collabo-

rators or labels throughout their career. To mitigate these

2 The Dice score is the average of the Dice coefficient [22] for n-gram
values of 1,2,3 and 4.

3 Indicates whether the pair of releases have been identified by other
systems as duplicates

4 Number of pairs of artists with Dice score > 0.7

Attribute Functions

Music Label∗ Exact Match∗, Dice Score 2

Music Licensor∗ Exact Match
Music Source∗ Exact Match
Release Name Exact Match, Dice Score

Release Group∗ 3 Exact Match

Release Artists Overlap, Dice Overlap 4

Release Track Names∗ At Least 1 Exact Match, Min
Dice Score

Release Track Artists Max Overlap,
Max Dice Overlap

Release Track Language∗ At Least One Exact Match

Release Type†∗ Categorical

Release Is Remix† Categorical
At Least One Track Is
Remix†∗

Categorical

Track Audio Vectors∗ Min/Max/Mean Cosine Sim-
ilarity

Track Speechiness† Min/Max/Mean

Table 1: Pairwise Model Inputs. The features above the

line are metadata, and below are audio-based. Features

with ∗ were included in the model for the SME experi-

ment. Track level attributes are aggregated to release level

with the functions described. Attributes with † produce two

features, one for each release. Random permutations of

underlined feature values decreased test-set performance

>95% of the time.

issues, we consider each comparison in the context of all

the releases in A.

We construct the matrix D ∈ R
m×m where Dij =

dist(ai, aj), and use it to obtain a MST, which is a graph

with node set A, and edges with weight equal to the nodes’

pairwise distance (see Fig. 2c). The MST connects releases

that are “close” to each other, and provides a global sum-

mary of how the releases are organised in a latent space,

while capturing the continuity of the data arising from evo-

lution in the style and career of an artist. We can attribute

two dissimilar releases to the same artist if there is a path

of short hops along the MST that connects them. Put an-

other way, if we cut very long hops (i.e. long edges) in the

MST, we get connected components in which we can only

go between nodes by a series of short hops. Our hypothesis

is that these components (partitions of A) are releases that
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are likely to be from the same artist. Specifically, we need

to find a threshold θdist and cut all edges in the MST that

are larger. The remaining connected components preserve

transitive relations even when the distance is not transitive:

if dist(ai, aj) is low and dist(aj , ak) is low, dist(ai, ak)
can still be high, but one can traverse from ai to ak with

short hops via aj . This approach preserves the diversity

of releases over the careers of artists. If no edge is larger

than θdist, then the MST connects all releases with paths

of short hops, and we assume that they are all correctly

attributed to the same artist.

3.2 Discography Deduplication

The goal of deduplication is to merge existing discogra-

phies, or sub-discographies split out from misattribution

detection, that belong to the same artist (e.g. release a3 in

Fig. 1). Deduplication consists of two steps: (1) generating

candidates for deduplication through a blocking strategy,

and (2) a prediction step that determines whether the pair

of discographies belong to the same real-world artist.

3.2.1 Blocking

To reduce the comparisons between pairs of discogra-

phies while maintaining high recall, we want to create

small blocks of discographies that could belong to the same

artist. One way is to simply take homonym artist discogra-

phies as a block; however, errors which lead to misattri-

bution and duplication in music catalogs are often associ-

ated with varied spellings or aliases of the same real-world

artist. Therefore, we need a more robust blocking strategy.

We build an Elasticsearch [23] index of all artist names

in the catalog which we use to match and rank dedupli-

cation candidates. The matching strategy combines three

conditions: (1) n-grams with n = 2, 3, 4; (2) fuzzy string

matching with edit distance ≤ 2; and (3) normalised

string matching without spaces and stop-words. If one or

more of these conditions match a seed discography artist

name, Elasticsearch returns a list of all matching candi-

dates ranked by their elastic score [24]. We evaluate this

strategy on a dataset of source and target artist name pairs

from the Merges dataset (described below), and obtain a

recall@10 of 97%.

3.2.2 Duplicate detection model

We train a Random Forest classifier to compute the similar-

ity sim(Ai,Aj) ∈ (0, 1] between pairs of artist discogra-

phies within each block. A high similarity score means

that the two discographies are likely to come from the same

real-world artist and should be merged, while a low score

indicates that they are from different artists and should re-

main separate.

Data. The training data consists of ∼224K discogra-

phy pairs. This data, which we call the Merges dataset,

contains historical corrections of duplicate artist discogra-

phies. We assign a positive label to each merged pair and

generate up to 10 negative examples for each positive one

using the blocking strategy. During training we balance the

Attribute Functions

Elasticsearch relevance score See [24]
Artist name similarity 2-gram Dice coefficient

Release Names Jaccard similarity
Release Track Names Jaccard similarity
Release Artists Overlap between artist names

of collaborators on releases
Release Track Artists Overlap between artist names

of collaborators on release
tracks

Number of releases |Ai

⋃
Aj |

Track Audio Vectors Mean Cosine Similarity

Table 2: Duplicate Discography Detection Model In-

puts. Features above the line are metadata, and below are

audio-based. Random permutations of underlined feature

values decreased test-set performance >95% of the time.

data by applying a weight to each sample to be inversely

proportional to its class frequency.

Model Features. As in the misattribution model, we

combine engineered metadata features with acoustic em-

beddings (see Table 2). Duplicate entity detection sys-

tems typically rely heavily on string similarity, but there

are some challenges. For example, consider merging the

discography referencing the artist Prince, with the one ref-

erencing his alias Prince of Funk, while remaining dis-

tinct from another artist called Princess. Relying solely on

string similarity would suggest that the discographies from

Prince and Princess are more likely to belong to the same

artist than the ones from Prince and Prince of Funk. In

this scenario, including audio representations in the model

can improve performance in the absence of other distinc-

tive features.

4. EVALUATION

We evaluate our system’s performance with a series of ex-

periments: First, we examine the offline performance of

each sub-system under different feature ablations, includ-

ing audio and metadata signals alone, using the Reloca-

tions and Merges datasets. Second, we conduct three ex-

periments with Subject Matter Experts (SMEs) showing

the performance “in the wild” of the misattribution and

deduplication models, and their unification for the reloca-

tion of misattributed releases, as described in Fig. 1.

4.1 Audio and Metadata Feature Ablations

We test the hypothesis that metadata and learned audio rep-

resentations model catalog correction tasks (i.e. misattri-

bution and duplicate detection) better together than sepa-

rately. Figure 3 shows the performance of the two models

in three configurations: audio features only, metadata fea-

tures only and combined. The features for each model and

the distinction between audio-based and metadata-based

features can be found in Tables 1 and 2. For each set of

features, we separately tuned the hyperparameters with 5-

fold cross-validation.
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(a) (b)

(c) (d)

Figure 3: (a) - (b): Precision-Recall curves in offline experiments with combinations of audio and metadata features for

misattribution detection (a) and deduplication (b). Average precision (AP) is reported in the legend for each set of features.

(c) - (d): Annotation experiment results for misattribution detection (c) and deduplication (d). Precision is calculated for

each threshold bucket and reweighed by the distribution of predictions shown on the second y axis.

Figure 3a shows that the pairwise misattribution model

using audio-based features alone has good performance,

but combining both audio and metadata produces the best

performance. The full model has an average precision (AP)

increase of 10.69% over the metadata-only model, and

1.95% AP over the audio-based model. These improve-

ments come from a reduction in false positives (e.g. when

the sound is not similar, but metadata similarities exist be-

tween two releases). For example, the test data contains

the releases SHOOT MY SHOT and Hurts Like Hell (feat.

Offset) from the American rapper Offset. The audio-only

model predicts these releases come from different artists

(their distance is 0.77). The full model gives the pair a dis-

tance of 0.1 because “Kiari Kendrell Cephus” (which is

Offset’s real name), appears in the credits of both releases

as a writer and a composer/lyricist.

Figure 3b shows the performance of the duplicate de-

tection task under the different ablations. Using metadata

features alone outperforms audio features alone by 4% in

AP. This is not surprising, as entity resolution tasks are

usually heavily based on string similarity across aligned

fields. Here too we can achieve good performance with

metadata based features alone, but combining the features

boosts AP by 6%. This boost is driven by cases where

metadata features are insufficient. In the example of the

Prince and Prince of Funk discographies, in the absence

of shared collaborators or similarity on release titles we

would get a false negative. However, the acoustic similar-

ity between the two discographies is high, which allows us

to correctly identify them as by the same real-world artist.

4.2 Experiments with SMEs

We conducted three experiments with SMEs to understand

the performance of each task independently, and of the en-

tire correction system (Fig. 1) in the context of its intended

use, for a range of decision thresholds. We use precision

as our evaluation metric since we want to reduce human

effort spent reviewing and correcting the catalog.

4.2.1 Misattribution Detection

We ran the misattribution detection method from Sec. 3.1

using an early version of the pairwise model that was ready

when the SMEs were available. The difference between

the full model and this early version is that the latter uses

only subset of the features of the full model (marked with

* in Table 1). We selected a subset of artist discogra-

phies from the Spotify catalog, biased toward more pop-

ular artists, that reviewers are able to cross-reference ex-

ternally. Then, we randomly sampled a pair of releases

from each artist and calculated the value of the threshold

θdist that would split the pair into two different partitions

of the discography. This value is the largest edge weight

along the path connecting the releases in the MST of the

artist’s discography. In the example in Fig 2c, the thresh-

old between releases a1 and a3 would be θdist = 0.85. We

stratified our sample by these bucketed threshold values in

10 equally sized bins between 0 and 1, with a maximum of

100 pairs per bucket. The sampling produces ∼1K pairs,

each of which was reviewed by a SME who classified it as

“by the same artist” or “by different artists”. Figure 3c

shows the precision for each value of θdist (blue line, left

y-axis). For example, at a θdist > 0.7, we can achieve 77%
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precision. When θdist is small, many single-artist discogra-

phies are split into more than one group. This lowers pre-

cision but increases the fraction of artists that would have

their discography partitioned into more than one group at

each threshold (grey bars, right y-axis).

4.2.2 Duplicate Detection

To evaluate the duplicate detection model from Sec. 3.2,

we generated a list of 140K seed artist discographies of

popular artists from the catalog. Then, we generated 10

candidates for each seed artist using our blocking strategy

to form artist-candidate pairs. For each pair we compute

sim(ai, aj), and bucket the scores in the same way as for

the misattribution detection task above, sampling up to 100

per bin. For this task, 3 SMEs reviewed each sample and

answered the question: Do the two discographies belong to

the same real-world artist? We aggregated the annotations

per sample to reflect the majority vote (i.e. at least 2 out of

3 of the annotators agree) and got 94% agreement. The re-

maining 6% of cases are ambiguous, and were excluded

from the analysis. These cases are interesting and give

insight into edge cases for future iterations of the model.

For example, when the discographies were related but not

technically by the same artist, e.g. the Thelonious Monk

Quintet and the Thelonious Monk Quartet.

As in the misattribution task, as the threshold θsim in

Fig. 3d increases so does precision, but with fewer candi-

date pairs (shown as grey bars, right y-axis). At a θsim >

0.7, we achieve 71% precision.

4.2.3 Predicted Relocation

Discography pairs that have been reviewed and determined

to be duplicates can be merged in the catalog in a straight-

forward way. However, correcting misattributions is not

so easy, and we still need to identify the correct discog-

raphy in which they belong. Having validated both steps

in our discography correction system, we can use the du-

plicate detection method to predict the correct discography

(if any) for misattributed releases. To do this, we iden-

tify misattributions, using θdist > 0.7 based on the previous

experiments, and we treat the misattributed releases as a

sub-discography. Then, we generate and score candidate

duplicate discographies for these sub-discographies using

the deduplication model.

We evaluate performance on ∼1K release-discography

pairs. Since the model generates up to ten predictions per

seed, we take the highest predicted placement as a candi-

date for annotation. We asked SMEs to review the release

and its predicted relocation and answer the question: Does

the release belong with the discography?

Figure 4 shows the precision as a function of the two

steps in the correction system θdist and θsim. The highest

precision is 45%, which is achieved when both the misattri-

bution step and deduplication (relocation) step have a high

θ (top right corner of Fig. 4, representing 17% of the sam-

ple). The relocation task is more difficult and less precise

because it inherits the uncertainty and performance of mis-

attribution and duplicate detection. Additionally, we ex-

pect that a large number of misattributed releases might not
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sim

0.7
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0.9

di
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0.15 0.20 0.25 0.30 0.35 0.40
Precision

Figure 4: Precision of the combined system on the task of

predicted relocation of misattributed releases for varying

thresholds of the misattribution (θdist) and duplicate de-

tection (θsim) methods.

belong anywhere, and will become standalone discogra-

phies. This means that even if the system considered this

relocation to be the best out of ten candidates, a reloca-

tion might not be possible at all. Even in this scenario, the

human effort to detect and correct misattributed content is

significantly reduced.

5. DISCUSSION

We present a system designed for SMEs to maintain the

correctness and completeness of artist discographies in a

large online catalog. We demonstrate that leveraging both

audio and metadata-based signals for misattribution detec-

tion and deduplication of discographies outperforms either

in isolation. We validated each task separately, and the en-

tire correction system across different thresholds, showing

strong performance in three experiments with SMEs.

The power of this system is that it can scan a large cata-

log efficiently and direct the attention of human reviewers

to where errors are most likely to be found, as well as sug-

gest corrections for cases of misattribution and deduplica-

tion. This makes our system a key part of proactive catalog

curation strategies. It is possible that some curation steps

could be automated for high confidence predictions; how-

ever, due to the downstream impact of curation decisions

(e.g. recommendations, search, user experience) the toler-

ance for incorrect relocations is low.

The current implementation of this system runs weekly,

and the top-scoring candidates for misattibution, dedupli-

cation and predicted relocations are flagged for SMEs re-

view. These reviews, in turn, become new labelled data on

which the model can be re-trained and further improved.

Although discography errors are rare, it is important to

minimise them as much as possible. Systems such as this

are one tool among many that streaming platforms can use

to ensure their catalog is correct, and to safeguard the ex-

perience of users and artists.
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ABSTRACT

Musical instrument recognition enables applications such

as instrument-based music search and audio manipulation,

which are highly sought-after processes in everyday mu-

sic consumption and production. Despite continuous pro-

gresses, advances in automatic musical instrument recog-

nition is hindered by the lack of large, diverse and pub-

licly available annotated datasets. As studies have shown,

there is potential to scale up music data annotation pro-

cesses through crowdsourcing. However, it is still unclear

the extent to which untrained crowdworkers can effectively

detect when a musical instrument is active in an audio ex-

cerpt. In this study, we explore the performance of non-

experts on online crowdsourcing platforms, to detect tem-

poral activity of instruments on audio extracts of selected

genres. We study the factors that can affect their per-

formance, while we also analyse user characteristics that

could predict their performance. Our results bring further

insights into the general crowd’s capabilities to detect in-

struments.

1. INTRODUCTION

Studies of the last decade have shown the success of data-

driven algorithms to tackle complex classification tasks.

Such algorithms require large annotated datasets to train

and capture the nuances of multi-faceted problems, with

crowdsourcing being successfully utilized to scale anno-

tation processes to meet the ever higher demands [1–3].

While works such as [4] and [5] show that crowdsourcing

can be a viable and powerful tool to distinguish and an-

notate music audio, it still remains underutilised as a tool

in the domain, primarily due to the complexity of the an-

notation tasks [6] which are believed to demand extensive

domain knowledge and training – arguably, musical ele-

ments such as tempo, chords and timbre can be demanding

for an untrained human annotator to detect.

With this study, we aim at providing more evidence that

complex music audio annotation tasks can be performed on

crowdsourcing platforms. We focus on the task of musical

© I.P. Samiotis, C. Lofi, A. Bozzon. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: I.P. Samiotis, C. Lofi, A. Bozzon, “ Crowd’s Performance on

Temporal Activity Detection of Musical Instruments in Polyphonic Mu-

sic ”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

instrument activity detection, and investigate non-experts’

capability to recognise their activity and annotate the times

in which they perform. Our study builds upon the findings

of [4] where users were able to detect if an instrument was

present in an audio excerpt or not. We extend this detec-

tion task to also cover the exact time-frames of instrument

activity. This is a type of task where experts are commonly

employed [7] to annotate data, due to several challenges

such as multiple instruments playing simultaneously [8,9],

or instruments of the same family exhibiting similar tim-

bre [10, 11].

More specifically, we explore and analyse the capabili-

ties of crowd workers to effectively detect temporal aspects

of musical instrument activity in polyphonic audio (with

focus on trio ensembles). We seek answer to the following

questions:

• RQ1: To what extent non-experts can detect the on-

set and offset of a musical instrument’s activity on

polyphonic audio?

• RQ2: How their self-assessed perceptual abilities

and musical knowledge relate to their performance?

Our study takes place on Prolific 1 . The audio excerpts

were chosen from three different genres (namely classi-

cal, jazz and rock) to understand if different instruments

and rhythms can affect the performance of crowd work-

ers. We also utilize a set of pre-established and evaluated

questionnaires to retrieve user attributes, that can poten-

tially relate to their performance. We employ the “Musi-

cal Training” and “Perceptual Abilities” categories from

Goldsmith’s Music Sophistication Index (GMSI) [12], a

questionnaire specifically designed to capture an individ-

ual’s ability to engage with music. These specific cate-

gories were found previously to most significantly predict

the workers’ musical perceptual abilities [13].

Our results show that non-experts can demonstrate good

perception of musical instruments’ temporal activity for

the chosen audio excerpts. Their self-assessed percep-

tual abilities reflect reasonably well their actual perception

skill. These results open possibilities of further future stud-

ies on instrument activity annotation, and provide a posi-

tive outlook for systems relying on such annotations.

1 https://www.prolific.co
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2. RELATED WORK

The work in OpenMic 2018 [4] is one of the first attempts

to annotate instrument presence for instrument recognition

at scale, employing 2,500 unique annotators from Crowd-

Flower 2 , using excerpts from Free Music Archive 3 and

the AudioSet [14]. The researchers followed specific task

design approaches to assist the crowd workers in their task,

which they adapted after an initial study. The annotation

process was limited to binary annotations, indicating the

presence or absence of a musical instrument in an audio

excerpt. Showcasing that crowd workers are able to pro-

vide strongly-labeled data, e.g. with temporal annotation,

as in our study, can enable new opportunities for instru-

ment activity detection and source separation.

Even though the study in [15] is not based on music au-

dio, it demonstrates the crowd’s ability to annotate tempo-

ral aspects of audio events. Our interface design is inspired

by this study, as the crowd workers had to draw bounding

boxes on spectrogram visualisations of audio excerpts. The

sounds were synthesized using Scaper [16], for a greater

control over max-polyphony and gini-polyphony (amount

of sound overlap).

Our study is also motivated by recent findings regard-

ing crowd workers music perception abilities [13]. Users

of crowdsourcing platforms were shown to possess con-

siderable skills to detect music aspects such as tempo and

melody.

To the best of our knowledge, the current literature lacks

works that study the performance of crowd workers on

temporal activity detection of musical instruments in re-

lationship with worker demographic or musical properties,

which is the goal of this work.

3. EXPERIMENTAL DESIGN

We designed our experiment to study and understand if

users on crowdsourcing platforms can perceive the tempo-

ral activity of a musical instrument in audio excerpts. We

aim to focus on realistic use cases, thus testing the workers’

capacity to perceive instruments in audio excerpts that are

performed, recorded, mixed and mastered professionally.

Therefore, we used existing recordings instead of synthe-

sized audio which would have been less representative of

real-life scenarios, but could have given us higher control

on the musical aspects of the audio and instrumentation. To

that end, we carefully selected the audio excerpts to con-

trol, as much as possible, musical aspects such as timbre

and performance.

We employed previously established and evaluated

questionnaires, to learn about workers’ (a) “Perceptual

Abilities” and “Music Training” through Goldsmith’s Mu-

sical Sophistication Questionnaire (GMSI); (b) cognitive

load through NASA’s Task Load IndeX (NASA-TLX) sur-

vey 4 ; (c) equipment quality [17] and (d) outside noise

[18].

2 https://visit.figure-eight.com/

People-Powered-Data-Enrichment_T
3 https://freemusicarchive.org
4 https://humansystems.arc.nasa.gov/groups/tlx/

The task workflow started with simple demographic

questions, followed by the GMSI questionnaire. The user

was then introduced with the main task to annotate audio

excerpts. The study concluded with a post-task survey re-

garding their cognitive load, equipment and a general feed-

back entry.

3.1 Selected Audio Excerpts

For the main annotation task, we made use of audio ex-

cerpts from trio ensembles of three major genres, classi-

cal, jazz and rock. We used audio excerpts of these partic-

ular three genres due to their wide discrepancy in instru-

mentation and rhythm. Even though in some occasions the

instruments used in each genre can showcase timbre sim-

ilarities (like double bass and bass guitar), in other cases

the timbre can differ wildly (electric guitar compared to

cello). To the best of our knowledge, there is no previous

baseline of the crowd workers’ perception of polyphonic

music, so we decided to control for the maximum number

of instruments that would play simultaneously in an ex-

cerpt, by selecting recordings of trio ensembles for each

genre. Each audio excerpt had a length of 10 seconds, as

used also in similar studies [4, 15]. The authors annotated

the instrument activity per audio excerpt, which was later

used to evaluate the crowd’s annotations.

For the classical music excerpts, we made use of a spe-

cific type of a trio ensemble, namely piano, clarinet and

cello. On the selected music clip, we selected an excerpt

where both clarinet and cello have prominent parts, while

piano is mostly following in the background. For our jazz

excerpt, we used of the more standardized trio ensemble

of piano, double bass and drums, where double bass and

drums keep the rhythm and piano is performed in small

melodic bursts. Lastly, for the category of rock, we made

use of a music excerpt from "power trio" bands, which

most frequently consist of electric guitar, bass guitar and

drums. It follows the same performance pattern with the

jazz excerpt on the bass guitar and drums, while the elec-

tric guitar enters near the middle of the excerpt with a sus-

tained, distorted power chord.

We hypothesise that bass instruments will be more dif-

ficult to annotate in these genres, as bass-related sounds

are more often “pushed back” during the mixing stage for

such types of music. The different genres were selected to

lessen the impact of possible enculturation bias. We be-

lieve that if only one genre was selected, participants who

would be more familiar with it, would find it easier to spot

the activity of instruments prominent in the genre. With

the selected genres, we cover a variety of rhythms, instru-

mentations and performative aspects, which could impose

a challenge to non-experts.

3.2 Task and Interface Design

To assess the music expertise of the crowd we employed

parts of GMSI, namely: “Music Training” and “Perceptual

Abilities”. The choice of the categories was based on a

study on music perception skills of crowd workers [13],
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Figure 1: Main audio annotation task

where results in these two categories were found to most

significantly predict their auditory capabilities.

The questions of both GMSI categories were aggregated

to one questionnaire, with one attention question placed in-

between the questionnaire’s items. The users also had the

ability to use a “Back” button to return to a previous ques-

tion and alter their answer. We used the complete set of

questions on both “Music Training” and “Perceptual Abil-

ities”, after consulting the online GSMI “configurator” 5 .

The users were greeted with an “Instructions” message

before the main annotation task, which described the steps

to complete each microtask and a warning regarding the

volume (as seen in Figure 2). The main audio annotation

task (see Figure 1) consisted of four main parts: (a) audio

waveform and controls (center-right), (b) instructions and

instrument example (upper left), (c) description of controls

and (d) submission button with a simple progress indica-

tion. The instrument to be identified, was indicated on both

(a) and (b) in red, to draw the attention of the users.

Based on the findings during the OpenMic 2018 work

[4], the crowd workers were found to struggle to detect

multiple instruments at once. To that end, we followed

their task design of annotating one instrument at a time;

we presented the participants with the audio excerpt and

requested to annotate the regions where a chosen single

instrument, was active during the recording.

The worker would be presented with an audio excerpt

and was instructed to detect the activity of one of the instru-

ments present in the excerpt. The same procedure would

follow for each of the instruments per audio excerpt, pre-

sented in a random order across genres (e.g. piano from

classical music excerpt, followed by the electric guitar

from rock music excerpt).

In the audio annotation interface, the users could play

and pause the audio excerpt while also draw bounding

boxes on the audio waveform. The regions drawn on the

waveform were adjustable on both ends and the user could

5 https://shiny.gold-msi.org/gmsiconfigurator/

Figure 2: Task instructions and warning

easily dismiss them with a double-click. A single-click

on a region would play only the selected part of the audio

excerpt. A crowd worker could only progress to the next

excerpt if they had drew at least one bounding box on the

waveform.

For the design of the interface, we utilized

wavesurfer.js 6 to draw the waveform and used

the regions package to enable the bounding boxes

interaction. Our choice of these tools was based on

previous studies on audio annotation that utilized them

successfully [15, 19].

Finally, as mentioned in [4], crowd workers could ex-

perience high cognitive load during instrument detection

tasks, ultimately affecting their psyche. It was important

for us to capture such a phenomenon, so we included the

NASA-TLX questionnaire and a free text input to accom-

modate their feedback towards the study.

3.3 Evaluation methods

Our task design is based around one audio excerpt per

genre (10 seconds), where maximum three instruments

can play simultaneously. As described before, per task,

a worker had to draw the regions where they detect the ac-

tivity of the selected musical instrument.

6 https://wavesurfer-js.org
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To evaluate their performance, we followed the same

methods established in [15, 20] and in the Detection and

Classification of Acoustic Scenes and Events (DCASE)

challenge [21]. We segmented each excerpt into 100ms-

long frames which had binary values, depending on the

presence or absence of the selected instrument. A frame

is considered active when there is an overlap between the

annotation region and any portion of the time interval of

the frame. We believe that the frame’s resolution of 100ms

can help us to adequately assess the extent of crowd work-

ers’ precision when annotating the temporal activity of an

instrument. Based on the ground truth values, we later

calculated Accuracy, Precision and Recall of the workers’

annotations. To evaluate their performance, we followed

the same methods established in [15, 20] and in the De-

tection and Classification of Acoustic Scenes and Events

(DCASE) challenge [21]. We segmented each excerpt

(N = 3) into 100ms-long frames which had binary val-

ues, depending on the presence or absence of the selected

instrument. A frame is considered active when there is an

overlap between the annotation region and any portion of

the time interval of the frame. We believe that the frame’s

resolution of 100ms can help us to adequately assess the

extent of crowd workers’ capabilities to detect the tempo-

ral activity of an instrument. Based on the ground truth

values, we later calculated Accuracy, Precision and Recall

of the workers’ annotations.

4. RESULTS

The study took place on Prolific, employing 28 crowd

workers. We used the built-in prescreening filters of Pro-

lific, setting criteria for fluency in English – for instruc-

tions’ comprehension and higher chance of affinity to west-

ern music – and minimum task approval rate to 90% – to

maximise the chances for good-quality work. The reward

was set to 4.5 GBP (5.62 USD) which was classified as

“Good” by the platform. We preserved the results of the

14 workers (see their demographics on Table 1) that suc-

cessfully passed the attention question. Filtering the results

based on the attention questions.

Variables Statistics

Gender, n Female 10

Male 17

Prefer not to say 1

Age (years) Range 18-55

Occupation Full-time 12

Part-time 5

Unemployed 11

Education Associate degree 2

Bachelor’s degree 12

High school/HED 4

Master’s degree 4

Some college, no diploma 3

Technical/trade/vocational training 3

Table 1: Participant demographics

4.1 Demographics and Equipment

The workers used mostly earphones, headphones and lap-

top speakers, while three reported using dedicated speak-

ers. Most workers (15) reported the quality of their equip-

ment as “Excellent”, with the majority (22) reporting “Im-

perceptible” impairment. Finally, the majority (15) re-

ported that conducted the study in near silence conditions,

while one reported performing the tasks in an environment

with high noise levels.

4.2 Detecting Musical Instruments

The crowd workers showed high performance detecting

most instrument activities on all three audio clips (RQ1).

Studying the results per genre, we see on Table 2 that

“Clarinet” was the most easily identifiable instrument. In

the given audio excerpt, “Clarinet” had a prominent and

distinct timbre, compared to the rest of the instruments.

This might have helped annotators to detect its activity cor-

rectly. “Piano” on the other hand was more difficult to de-

tect its temporal activity, as it accompanied the rest of the

instruments with a softer tone.

Accuracy Precision Recall

Piano 70.6% 91.5% 66.5%
Clarinet 84.5% 95.8% 82.9%
Cello 62.6% 95.5% 59.6%

Table 2: Accuracy, Precision, Recall and F-score on Clas-

sical audio excerpt (the highest scores per metric are in

bold)

“Cello” though appears to be the hardest instrument to

detect in the audio excerpt, as both accuracy and recall are

near 60%. The high precision combined with low accu-

racy, could indicate that most workers mistook the activity

of another instrument, with that of a cello. The results are

surprising, as “Cello” was equally prominent as the “Clar-

inet”, playing at a lower register than the rest of the instru-

ments.

In the case of “Jazz” we find the “Drums” to be the most

recognizable instrument, while “Double Bass” yielded bet-

ter results than “Cello” in the “Classical” excerpt (see Ta-

ble 3. Recordings of “Double Bass” in jazz can vary from

barely noticeable to accentuated, depending on the record-

ing setting or the part of the song (being more prominent

during solo performance). Despite being the prominent in-

strument alongside “Drums” for a large portion of the ex-

cerpt, the workers still had trouble identifying the regions

where it was active.

Accuracy Precision Recall

Piano 81.8% 70.9% 87.7%
Double Bass 64% 100% 64%
Drums 84.4% 100% 84.4%

Table 3: Accuracy, Precision, Recall and F-score on Jazz

audio excerpt (the highest scores per metric are in bold)
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It is very interesting to highlight how the performance

on “Piano” which is present in both “Classical” and “Jazz”

music clips, changes greatly between the two samples. A

possible explanation could be on the rather more promi-

nent role it plays in piano jazz trios, where in most cases

carries the melodic part of a composition (which would

explain also the high recall score). In this specific exam-

ple, we see that on average the crowd workers accurately

selected the small rhythmic bursts of piano play, although

not as precisely. This shows that they could definitely de-

tect its activity correctly, but could not indicate precisely

its onset and offset regions.

Accuracy Precision Recall

Electric Guitar 91.7% 96.5% 91.6%
Bass Guitar 82.4% 100% 82.4%
Drums 73% 100% 73%

Table 4: Accuracy, Precision, Recall and F-score on Rock

audio excerpt (the highest scores per metric are in bold)

The participants performed better on average, in the

“Rock” excerpt. We speculate that the sounds of “Elec-

tric Guitar” and “Bass Guitar” are more familiar to the de-

mographics of the participating workers, who scored quite

highly on accuracy and recall, on both instruments.

The sustained power chord of the “Electric Guitar” was

easy to identify and correctly annotate its onset and offset.

On the other hand, despite “Drums” and “Bass Guitar” be-

ing present during the entirety of the audio excerpt, crowd

workers found “Drums” more difficult to recognize cor-

rectly, despite the results in the jazz excerpt. Difference in

“Drums” between the two excerpts, show higher use of the

snare drum in the jazz excerpt, while in the rock, the use of

lower tone tom drums was more prominent.

4.3 Self-assessed Music Characteristics and

Performance

On Table 5 we see the self-assessed “Perceptual Abilities”

and self-reported “Musical Training” of the participants.

The low “Musical Training” is consistent with the results

of [13] but pretty low when compared to the participant

pool of [12] (scoring near the bottom 30% of the popula-

tion in the original study).

Range Median Standard Deviation(1σ)

Perceptual
Abilities

29-63 47.5 8.19

Musical
Training

7-41 18.5 9.04

Table 5: Range, Median, Mean and Standard Deviation of

Perceptual Abilities and Musical Training

The self-assessed “Perceptual Abilities” are also low

compared to the sample of [12] but considerably higher

than in [13]. The results in our study certainly showcase

adequate perceptual skills, in regards with the task at hand.

We study the connection of their musical properties to

their performance from a more qualitative perspective, due

to the size of our participant pool. Their self-assessed “Per-

ceptual Abilities” show that the users felt quite confident

on the degree they can detect musical traits on sound, de-

spite their lack of expertise as shown by their “Musical

Training” average score (Table 5).

Comparing their assessment to their actual performance

we further see that their “Musical Training” is not indica-

tive of their capability to detect temporal activity of musi-

cal instruments. Their median score as shown on the ta-

ble, is close to the low 25th percentile of the results in the

original GMSI study [12], showing a general low formal

musical training. While formal training could certainly be

beneficial for such tasks, people are still exposed to dif-

ferent musical instruments through casually enjoying mu-

sic, especially as it is widely and easily accessible through

streaming services. We also believe that the task design

with the inclusion of an audio example of a given instru-

ment, assisted the workers in their task to identify instru-

ments.

4.4 Cognitive Load and Feedback

The results on the NASA-TLX questionnaire, show that

from the total of 14 crowd workers, 10 found the task’s

difficulty average, while 9 were very confident on their

performance. All of the participants reported average to

low mental and physical demand, with mental load being

higher than the physical. 10 workers experienced very low

temporal demand, with most finishing the study in near 10

minutes. The results though show that the workers’ self-

assessed performance varied greatly between individuals,

with scores from “Very Low” to “Very High”.

Finally, crowd workers expressed their opinions on the

study through a free form text area. Through their feedback

we found that they greatly enjoyed the study through com-

ments such as: “Study was very well thought out. Nothing

else to add.”, “It was fun, I would love to take part similar

studies again” and “the study was interesting and I am find-

ing the piano very interesting instrument after this study”.

Some even gave their insights for future improvements in

comments such as: “Put more instruments in there” and “it

was ok but i propose next time the sounds be played slowly

for us to easily identify. thank you”.

5. DISCUSSION

Non-experts exhibited high precision with a rather high

recall on most instruments, especially on the “Jazz” and

“Rock” audio clips. Despite their low expertise as indi-

cated through the “Musical Training” attribute, the results

show that they were capable of perceiving the temporal ac-

tivity of instruments. These abilities are in line with the

findings from [13] but also people’s innate understanding

of music, as shown in studies [22–24].

The high precision scores combined with lower accu-

racy and recall scores though, could indicate that the par-

ticipants underestimated the activity of the instruments in
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the excerpts. This means that the users although detected

correctly segments of an instrument’s activity, they weren’t

able to identify the totality of temporal activity for the

given instrument. By selecting more, smaller and precise

regions, one would select only the most prominent “True

Positive” frames in an excerpt, but fail to select all of them,

as is apparent on the cases of “Cello” and “Double Bass”.

Additionally, in our evaluation, we used a quite short and

strict frame resolution which could potentially affect their

recall scores. However, further studies are needed with

variable frame resolution to test its suitability for this type

of annotation task.

While it is inevitable to experience issues of sampling

bias when executing crowdsourcing studies (i.e. partici-

pants will always be a smaller set of the userbase, which

by itself is highly specific and smaller than the general

public), we justify the differences with [12] based on the

form of incentive from the side of participants, to perform

the study. In our case the incentive was strictly mon-

etary, therefore we employed participants who could be

less enthusiastic about music, compared to [12]. When

comparing to [13] though, while the results are consistent

regarding “Musical Training”, the results on “Perceptual

Abilities” were higher in our case, despite the use of the

same crowdsourcing platform. Of course, the landscape

of crowdsourcing platforms is constantly changing, but it

could be a nice indication of adequately, musically percep-

tive crowd workers.

Finally, we believe that our interface design with the in-

clusion of short examples of the musical instruments on

each task, must have assisted the crowd workers during

annotation. We encourage further experimentation on in-

terface design, to explore effective ways to assist workers

during their audio annotation task.

Limitations. Being an exploratory study, we acknowledge

that the number of participating crowd workers is lower

than in traditional crowdsourcing studies. Nonetheless, we

believe that the rigorous set up and the in-depth qualitative

analysis of the obtained results allow us to provide valu-

able and robust insights, which could be used to design

and deploy larger-scale studies in the future.

The music excerpts we used in our study focus on pop-

ular genres of music. As such, despite the diverse demo-

graphics of Prolific, the participants in our study were ex-

pected to be familiar with the instruments in our excerpts.

We strongly encourage future studies to experiment with

instruments of different traditions, as we believe that sim-

ilar techniques could yield equally promising results for

those instruments.

6. CONCLUSION

Our study focuses on exploring the ability of non-experts

to identify the temporal activity of musical instruments

in audio excerpts of western music. This is an important

task during dataset production for instrument recognition,

as it can provide strongly-labeled annotations which en-

able event detection classification tasks. Results show that

untrained crowd workers can successfully detect the ac-

tivity of instruments like clarinet and electric guitar, one

at a time, given an example of the instrument. The over-

all cognitive load that workers experienced was average,

while most of them expressed their enjoyment of the tasks

through free-form feedback. The positive outcomes of this

work encourage conducting further studies on the topic,

with focus on a larger participant pool and a more exten-

sive evaluation dataset that includes additional genres, in-

struments, and identification complexities.
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matic segmentation of ethnomusicological field record-

ings,” Applied Sciences, vol. 9, no. 3, p. 439, 2019.

[20] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for

polyphonic sound event detection,” Applied Sciences,

vol. 6, no. 6, p. 162, 2016.

[21] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange,

and M. D. Plumbley, “Detection and classification of

acoustic scenes and events,” IEEE Transactions on

Multimedia, vol. 17, no. 10, pp. 1733–1746, 2015.

[22] A. M. Liberman and I. G. Mattingly, “The motor theory

of speech perception revised,” Cognition, vol. 21, no. 1,

pp. 1–36, 1985.

[23] S. Koelsch, K. Schulze, D. Sammler, T. Fritz,

K. Müller, and O. Gruber, “Functional architecture of

verbal and tonal working memory: an fmri study,” Hu-

man brain mapping, vol. 30, no. 3, pp. 859–873, 2009.

[24] B. Gingras, H. Honing, I. Peretz, L. J. Trainor, and S. E.

Fisher, “Defining the biological bases of individual dif-

ferences in musicality,” Philosophical Transactions of

the Royal Society B: Biological Sciences, vol. 370, no.

1664, p. 20140092, 2015.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

618



MoisesDB: A DATASET FOR SOURCE SEPARATION BEYOND 4-STEMS

Igor Pereira Felipe Araújo Filip Korzeniowski Richard Vogl

Moises Systems Inc., Salt Lake City, USA.
igor@moises.ai

ABSTRACT

In this paper, we introduce the MoisesDB dataset for
musical source separation. It consists of 240 tracks from
45 artists, covering twelve musical genres. For each song,
we provide its individual audio sources, organized in a
two-level hierarchical taxonomy of stems. This will facili-
tate building and evaluating fine-grained source separation
systems that go beyond the limitation of using four stems
(drums, bass, other, and vocals) due to lack of data. To
facilitate the adoption of this dataset, we publish an easy-
to-use Python library to download, process and use Moi-
sesDB. Alongside a thorough documentation and analysis
of the dataset contents, this work provides baseline results
for open-source separation models for varying separation
granularities (four, five, and six stems), and discuss their
results.

1. INTRODUCTION

Source separation is the task of splitting an audio signal
into separate signals for each signal source. For music, the
signal sources are the instruments that appear in the track,
e.g.: guitar, bass, piano, drums, and vocals.

Music source separation is a relevant task within mu-
sic information retrieval. While it can be used as a pre-
processing step for other tasks (e.g. voice separation for
f0 tracking), source separation enables diverse applications
on arbitrary music tracks that would need manual creation
of stems otherwise. For example, in the context of music
education, the creation of play-along tracks for students,
facilitating by-ear transcription of relevant instruments, or
automatic creation of karaoke backing tracks. Such appli-
cations are relevant for industry, as demonstrated by initia-
tives like the demixing challenges 1 .

State-of-the-art source separation systems are usually
built using neural-network-based machine learning sys-
tems, trained in a supervised way [1–3]. In order to train
these systems, a large amount of training data is required.
For supervised approaches, the training data is represented

1 https://www.aicrowd.com/challenges/
music-demixing-challenge-ismir-2021/sound-demixing-challenge-2023

© I. Pereira, F. Araújo, F. Korzeniowski, and R. Vogl. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: I. Pereira, F. Araújo, F. Korzeniowski, and
R. Vogl, “MoisesDB: A Dataset for Source Separation beyond 4-Stems”,
in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

Dataset Year No. of Tracks Stems / Multitracks

MedleyDB [4] 2014 122 Multitracks
MedyleyDB-V2 [5] 2016 196 Multitracks

DSD100 [6] 2015 100 4 Stems
MUSDB18 [7] 2017 150 4 Stems
MUSDB18-HQ [8] 2019 150 4 Stems

MoisesDB 2023 240 Multitracks

Table 1. Overview of publicly released datasets for music
source separation. The datasets are grouped according to
the set of tracks they contain. For example, DSD100 is a
subset of MUSDB18. Additionally, 46 songs from Med-
leyDB are also used in MUSDB18.

by pairs of i. a mixed audio track and ii. a set of so-
called stems that, when combined, recreate the audio track.
Stems are audio signals containing only one (or a group
of related) sources, i.e. instruments. A pair of one mixed
track and its corresponding stems constitutes one training
example.

Besides the large amount of manual work involved in
any large-scale dataset creation, this kind of data is es-
pecially hard to come by for several reasons. Whenever
dealing with music audio data, legal issues may arise by
collecting and sharing a dataset. The copy and distribu-
tion rights for most music are held by music publishers
and record labels and are enforced rigorously. Obtaining
the audio recordings for the individual instruments (stems)
along with the final mix may expose recording, mixing,
and mastering techniques of the recording studios, respon-
sible for producing a track, which is why recording stu-
dios may oppose the publishing of stems in order to keep
their trade secrets. Finally, processing, exporting, and or-
ganizing stems from recording projects (often from a digi-
tal audio workstation) is a considerable task. Usually, these
recording projects are created without considering the re-
quirement of exporting instrument stems. All these fac-
tors hinder the creation and release of multitrack and stem
datasets.

While there exist source separation datasets aimed at a
specific task, like vocal separation [9, 10], these are only
of limited relevance for the more general task of splitting
audio tracks up into stems. A majority of the existing
stem datasets [6, 8] use a limited taxonomy of four stems,
namely: vocals, drums, bass, and other. While this has
become a de-facto standard for works on source separa-
tion [1–3] due to the availability of data and comparability
of results, this is a strong limitation of the resulting mod-
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Figure 2. Genre distribution of MoisesDB.

els. For many practical applications, separation of other,
widely used instruments may be relevant: e.g. guitars,
keys, strings, etc.

Datasets featuring individually recorded tracks (multi-
track, e.g. [5]), as well as other collections of multitrack
recordings, like Open Multitrack Testbed [11], do exist.
However, these are not prepared to be used for source sep-
aration, out of the box, and may come with license restric-
tions. Looking at recent source separation publications,
we see that non-public data usually represents the bulk of
training data (e.g. Bean dataset [12] in [1]; 800 tracks of
undisclosed source in [3]). This hints that by only using
publicly available data, it is not possible to train compet-
itive source separation models. Thus, there is a need for
more free data featuring a more detailed taxonomy, in or-
der to be able to successfully train and test robust source
separation models with the capability to separated more
stems.

To improve the current situation, we introduce Moi-
sesDB, a multitrack dataset featuring track annotations and
a taxonomy to group individual tracks into stems. This
dataset is offered free of charge for non-commercial re-
search use only. It consists of 240 music tracks from differ-
ent artists and genres with a total duration of over 14 hours.
Along with the dataset, we provide baseline performance
values for state-of-the-art source separation systems.

The remainder of this work is structured as follows:
Section 2 covers related work and contrasts it with the
dataset presented here. Section 3 discusses the details
of MoisesDB. Section 4 introduces baseline performance
evaluation statistics using freely available source separa-
tion models. Finally, Section 5 provides concluding re-
marks.

Stem Track

Bass Bass Guitar, Bass Synthesizer, Contrabass

Bowed Strings Cello, Cello Section, Other Strings, String Sec-
tion, Viola Section, Viola Solo

Drums Cymbals, Drum Machine, Full Acoustic
Drumkit, Hi-Hat, Kick Drum, Overheads,
Snare Drum, Toms

Guitar Acoustic Guitar, Clean Electric Guitar, Dis-
torted Electric Guitar

Other Fx

Other Keys Organ, Electric Organ, Other Sounds, Synth
Lead, Synth Pad

Other Plucked Banjo/Mandolin/Ukulele/Harp

Percussion A-Tonal Percussion, Pitched Percussion

Piano Electric Piano, Grand Piano

Vocals Background Vocals, Lead Female Singer, Lead
Male Singer, Other

Wind Brass, Flutes, Other Wind, Reeds

Table 2. MoisesDB stem-track taxonomy used to organize
individual tracks into stems.
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Figure 3. Number of stems per track in MoisesDB.

2. RELATED WORK

In the past, several multitrack and stem datasets have been
published by the community (see Tab. 1). This section will
discuss their properties and set the context for the dataset
presented in this work. Since the main focus of this work
is source separation into as many stems as possible, single
stem focused datasets (e.g. voice separation datasets [9,
10]) will be mainly ignored.

In 2014, Bittner et al. released the MedleyDB dataset
[4], which comprises 122 songs in multitrack format. It
was extended by 74 songs (totalling 196 songs) in 2016,
and published as MedleyDB 2.0 [5]. The dataset provides
audio files in a hierarchical structure, where the final mix
is split into multiple stems, each containing numerous raw
audio sources (multitracks). Besides the multitrack data,
the MedleyDB dataset provides an extensive list of meta-
data, such as artist, track name, origin, genre, and pro-
ducer, amongst others. Additionally it provides multiple
annotations, such as instrument activation, melody, and
pitch.

The annotations in MedleyDB make it useful for many
MIR tasks, including the source separation of diverse in-
struments. However, the shortcoming of MedleyDB for
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from moisesdb.dataset import MoisesDB

db = MoisesDB(data_path='./moises-db-data')

n_songs = len(db)

track = db[0]

# mix multitracks to stems

stems = track.stems

# stems = {

# 'vocals': np.ndarray (stem audio data),

# 'bass': np.ndarray (stem audio data),

# ...}

mixture = track.audio # mixture: np.ndarray

track.save_stems('./stems/track_0') # save mixed stems

Listing 1: Usage of the MoisesDB Python package.

music source separation is the way it organizes tracks into
stems. While it provides instrument information for each
of them, and functional annotations for stems (such as
“melody” or “bass”), stems are not meaningfully labelled,
only numbered. As a result, stem 01 of one song may
be the drum kit, while stem 01 of a another mix is the
bassoon. Furthermore, instruments—and thus tracks—are
grouped according to how they physically produce their
sound, rather than their role in the mix of a song. For ex-
ample, the “drum machine” falls into the same category
as “electric piano”, namely “electric→electronic”. These
shortcomings make it cumbersome to use for music source
separation out of the box and significant work has to be
done in order to use it for this task.

In 2016, Liutkus et al. released the DSD100 [6] dataset
as part of the 2016 signal separation evaluation campaign
to develop and benchmark source separation models. It
contains 100 songs and uses the the four-stems taxonomy
(vocals, drums, bass, and other). Later, in 2017, Rafii et
al. extended DSD100 to 150 songs by adding 46 pieces
from MedleyDB, and including four previously unreleased
recordings from commercial providers. This dataset be-
came known as the MUSDB18 [7] dataset, and was used
for the the 2018 signal separation evaluation campaign.
In 2019, Z. Rafii et al. released an uncompressed ver-
sion of the MUSDB18 dataset, MUSDB18-HQ [8]. As its
predecessor DSD100, this dataset provides four stems—
vocals, drums, bass, and other—as well as linear mixes.
MUSDB18 is widely used to train and benchmark source
separation models, but the limited number of stems pre-
vents researchers from building more granular source sep-
aration systems.
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Figure 5. Loudness and Dynamic Range distribution of
tracks in MoisesDB. For a comparison with commercially
mixed and mastered songs, we sampled 240 tracks from
the HarmonixSet [13].

In summary, data for training granular source separa-
tion systems is scarce: the 150 tracks from MUSDB18
are ready to use, but offer only four stems to separate;
the 140 remaining tracks from MedleyDB (46 of the orig-
inally 196 are already part of MUSDB18) are not orga-
nized in a way that easily supports source separation re-
search. This issue is also reflected in the fact that state-
of-the-art source separation models often use larger, non-
public datasets for training [1, 3], or have to resort to syn-
thetic training data (e.g. [14, 15]). Other works find that
MUSDB18’s "source groupings remain overly coarse for

many real-world remixing applications." [16]. To address
these issues and to foster more research in music source
separation, we created the MoisesDB dataset.

MoisesDB comprises the largest publicly available set
of multitrack audio recordings—240 previously unreleased
songs—organized in a taxonomy that reflects the needs
of source separation systems (as detailed in Sec. 3.1).
The large number of songs, the diverse types of stems
and tracks, and their organization in a source-separation-
focused taxonomy will allow researchers to build their own
stems according to their own requirements, and thus de-
velop more granular source separation systems.

3. DATASET

MoisesDB consists of 240 songs by 47 artists that span
twelve high-level genres. Both artists and genres follow
a power-law-like distribution, where the majority of songs
belong to few genres and are performed by few artists—see
Fig. 1 and 2. The total duration of the dataset is 14 hours,
24 minutes and 46 seconds, where the average recording is
3:36 seconds, with a standard deviation of 66 seconds.
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Figure 6. Distribution of tracks in MoisesDB.

3.1 Stem Taxonomy

Modern song recordings consist of multiple recorded
tracks, which can be grouped and down-mixed into a
smaller number of stems. For example, the “drums” stem
might comprise tracks for the snare drum, the bass drum,
hi-hat, cymbals, and so on. MoisesDB provides all individ-
ual tracks for each song, grouped into stems by the taxon-
omy shown in Table 2. This taxonomy reflects the record-
ing & mixing process, and thus facilitates its reversal—
music source separation—by grouping the raw tracks into
semantically labeled stems. This also means that songs
may consist of different numbers of stems, as shown in
Fig. 3. MoisesDB thus facilitates many future research di-
rections: source separation models for a larger number of
stems, data augmentation through mixing stems on-the-fly
from their tracks, or separation of individual tracks from a
stem, to name a few.

Given the genres of the songs in MoisesDB, certain
stems are more common in the dataset than others: “vo-
cals”, “drums”, and “bass” appear on virtually every song,
while “wind” is rare. Similarly, certain tracks appear much
more frequently than others, both within stems (“bass gui-
tar” vs. “contrabass”) and between stems (“snare drum”
vs. “cello”). Figs. 4 and 6 show the distributions of stems
and sources, respectively.

We anticipate that this imbalance will present a chal-
lenge in training source separation models for underrep-
resented stems, as it is likely that certain tracks, such as
“other plucked” tracks, will still be difficult to distinguish
from “guitar” tracks if trained solely on MoisesDB. How-
ever, the available data provides an opportunity for re-
searchers to better identify and characterize errors made
by their models. For instance, instead of simply observing
that the separated “other” stem bleeds into “guitar,” Moi-
sesDB enables researchers to pinpoint this issue to tracks
where “other” includes plucked instruments.

3.2 Recording and Mastering

The songs in MoisesDB are professionally recorded in
stereo. The individual tracks are combined additively to
create stems, which are then mixed together to produce the
final version of the song. Due to technical limitations dur-
ing recording, minuscule bleeding from other stems may
be present for some of the tracks. No compression, equal-
ization, or other effects are used during the mixing pro-
cess, and the songs are not subjected to mastering. As a
result, the song mixes have a lower loudness and a higher
dynamic range than professionally mastered commercial
songs. This raises concerns about the distributional shift
between un-mastered training data and commercial record-
ings. Indeed, Jeon and Lee [17] have found that training
separation models using mastered mixes can improve sep-
aration quality. However, providing un-mastered mixes is
common in existing datasets such as MUSDB18, and mod-
els such as HT-Demucs [3] generalize reasonably well to
mastered recordings, even if trained on un-mastered data.

Figure 5 shows the loudness and dynamic range dis-
tributions for the dataset, where loudness is measured in
LUFS (Loudness Units relative to Full Scale) [18], and
Dynamic Range is computed based on the definitions of
the “Pleasurize Music Foundation” as implemented in the
“DR14 T.meter” software 2 .

3.3 Python Library

With MoisesDB comes a Python library that facilitates
working with the dataset by parsing metadata and auto-
matically building stems and mixes. Listing 1 shows an
example usage of the library. The code shown there initial-
izes the library, retrieves the number of tracks, creates the
stems and the full mix, and saves the individual stems to a
directory. For a detailed and up-to-date documentation, we
refer the reader to the GitHub repository 3 .

2 https://github.com/simon-r/dr14_t.meter
3 https://github.com/moises-ai/moises-db
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4 stems (N = 235)

HT-Demucs Spleeter IBM IRM MWF
Mean ± Std Mdn Mean ± Std Mdn Mean ± Std Mdn Mean ± Std Mdn Mean ± Std Mdn

vocals 10.05 ± 2.48 9.62 7.61 ± 2.45 7.27 9.02 ± 2.13 8.67 10.72 ± 2.03 10.37 10.72 ± 2.11 10.27
bass 11.64 ± 3.35 11.99 6.46 ± 2.26 6.57 6.46 ± 2.08 6.31 8.43 ± 2.03 8.20 8.68 ± 2.07 8.38
drums 10.94 ± 2.30 10.91 6.65 ± 1.72 6.64 7.33 ± 1.77 7.30 8.98 ± 1.68 8.92 9.01 ± 1.67 8.83
other 7.00 ± 2.76 7.30 4.45 ± 2.26 4.69 5.77 ± 1.72 5.61 7.74 ± 1.65 7.57 7.90 ± 1.65 7.79
overall 9.91 ± 3.27 9.69 6.29 ± 2.47 6.24 7.14 ± 2.28 6.99 8.97 ± 2.16 8.81 9.08 ± 2.15 8.87

5 stems (N = 104)

vocals 6.99 ± 1.97 6.74 8.29 ± 1.66 8.08 9.94 ± 1.59 9.75 10.01 ± 1.71 9.68
bass 6.26 ± 2.27 6.28 6.13 ± 2.15 5.86 8.02 ± 2.07 7.82 8.32 ± 2.08 8.03
drums 6.89 ± 1.88 6.97 7.67 ± 1.94 7.87 9.29 ± 1.84 9.34 9.32 ± 1.84 9.36
other 1.97 ± 1.76 2.09 4.04 ± 1.47 4.13 6.00 ± 1.44 6.01 6.10 ± 1.48 6.19
piano 1.17 ± 1.86 0.75 3.04 ± 2.37 2.55 4.99 ± 2.32 4.60 5.30 ± 2.46 4.79
overall 4.66 ± 3.20 5.02 5.12 ± 2.81 4.87 7.65 ± 2.66 7.60 7.81 ± 2.66 7.83

6 stems (N = 88)

vocals 9.55 ± 1.87 9.39 8.09 ± 1.51 7.98 9.73 ± 1.46 9.61 9.81 ± 1.49 9.61
bass 11.93 ± 2.87 12.13 6.04 ± 1.98 5.83 7.92 ± 1.93 7.73 8.24 ± 1.96 8.03
drums 11.02 ± 2.44 11.28 7.58 ± 1.96 7.79 9.19 ± 1.86 9.21 9.23 ± 1.85 9.25
other 0.28 ± 1.84 0.39 2.85 ± 1.76 2.74 4.67 ± 1.76 4.57 4.72 ± 1.82 4.55
piano 1.60 ± 1.68 1.64 2.78 ± 1.61 2.49 4.71 ± 1.61 4.47 4.97 ± 1.74 4.70
guitar 3.07 ± 1.81 3.16 3.35 ± 1.54 3.44 5.28 ± 1.54 5.36 5.41 ± 1.65 5.46
overall 6.24 ± 5.17 6.05 5.12 ± 2.81 4.87 6.91 ± 2.70 6.69 7.06 ± 2.73 6.89

Table 3. Mean, standard deviation (Std), and median (Mdn) of the SDR in dB for each Model/Method and stem type. The
varying number of available tracks is denoted by N. Overall indicates performance over all tracks regardless of stem group.
Best results are marked in bold.
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4. BENCHMARKING

In order to establish reference values for each track of
the MoisesDB dataset, we computed the Source to Dis-
tortion Ratio (SDR) [19] scores for Ideal Binary Mask
(IBM) [20], Ideal Ratio Mask (IRM) [21], and Multichan-
nel Wiener Filter (MWF) [22] oracle separation methods.
Additionally, we assessed SDR scores for two popular pub-
lic available and open-source architectures: Hybrid Trans-
former Demucs (HT-DEMUCS) [3] and Spleeter [1]. The
SDR scores were calculated for three different groups of
sources: four, five, and six stems. Given the architecture of
the open-source models, results for Spleeter are available
for four and five stems, and for HT-DEMUCS for four and
six stems.

The SDR measure [19] represents how much of the en-
ergy in a true source signal is preserved in an estimated
source signal after applying a separation algorithm. The
equation can be defined as

SDR = 10 log
10

∑
n
|s(n)|

2
+ ϵ

∑
n
|s(n)− ŝ(n)|

2
+ ϵ

, (1)

where s(n) represents the true source signal at time n, ŝ(n)
represents the estimated source signal at time n, and the
result is given in decibels (dB).

Table 3 shows the SDR values in dB for each group
of stems (4, 5, and 6) evaluated in this benchmark. For
a better comparison, we chose the stems available in the
open-source models: vocals, bass, drums, other, guitar, and
piano. We also pick tracks containing at least all the stems
chosen for each group, which explains the distinct number
of tracks in Table 3. Songs with more individual tracks
than the ones specified for each group were merged into
the “other” stem using a linear sum strategy.

Figure 7 depicts boxplots representing the distribution
of the SDR metric for both oracle and separation methods,
calculated for each group of tracks comprising 4, 5, and
6 stems. The groups of stems evaluated were vocal, bass,
drums, other, piano, and guitar. Detailed results for every
track and each stem are provided in the GitHub 3 reposi-
tory.

The first fact that calls our attention can be seen in
Figure 7, where the SDR results of IRM and MWF ora-
cle methods did not show a significant difference for all
groups of stems. The striking fact is the performance of
HT-DEMUCS architecture, which outperforms the oracle
methods for bass and drums stems, for the groups of 4
and 6 stems tracks, as we can see in Figures 7 A and
C, respectively. Those results contrast with the slightly
worse performance of HT-DEMUCS for other, piano, and
guitar stems, compared with oracle methods, as seen in
Figure 7 C.

5. CONCLUSION

In this work, we introduced MoisesDB, a multitrack
dataset with a hierarchical taxonomy aimed at more-
than-four-stems source separation. We set the context
by analysing the current landscape of source separation
datasets and presented a comparison with other relevant
datasets along with a detailed analysis of MoisesDB.
Specifically, we discussed the organizational taxonomy fo-
cused on source separation, the distribution over track du-
ration, the distribution over genres, and the number of
songs for each stem and source available in the dataset.

Moreover, we include performance results for two pub-
licly available source separation methods: HT-Demucs,
which has the best overall SDR score evaluated on the
MUSDB18 test set, and Spleeter, which was one of the first
source separation models released and adopted by the gen-
eral public. We also added results for a few masking-based
oracle methods: IBM, IRM, and MWF, which indicate the
theoretical performance limits for mask-based source sep-
aration models. Additionally, we provide an easy-to-use
Python library to access the data which allows fast integra-
tion with machine learning libraries.

Overall, this paper represents a detailed report on the
MoisesDB dataset, which will hopefully prove to be a great
resource for the source separation community in the future.
This work aims at facilitating the development of better
and extended source separation models as well as provid-
ing opportunities to be applied for other use cases, such as
automatic mixing and generative accompaniment systems,
among others.
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ABSTRACT

Modeling the temporal unfolding of musical events and its
interpretation in terms of hierarchical relations is a com-
mon theme in music theory, cognition, and composition.
To faithfully encode such relations, we need an elegant
way to represent both the semantics of prolongation, where
a single event is elaborated into multiple events, and pro-
cess, where the connection from one event to another is
elaborated into multiple connections. In existing works,
trees are used to capture the former and graphs for the lat-
ter. Each such model has the potential to either encode
relations between events (e.g., an event being a repetition
of another), or relations between processes (e.g., two con-
secutive steps making up a larger skip), but not both to-
gether explicitly. To model meaningful relations between
musical events and processes and combine the semantic
expressiveness of trees and graphs, we propose a struc-
tured representation using algebraic datatype (ADT) with
dependent type. We demonstrate its applications towards
encoding functional interpretations of harmonic progres-
sions, and large scale organizations of key regions. This
paper offers two contributions. First, we provide a novel
unifying hierarchical framework for musical processes and
events. Second, we provide a structured data type encoding
such interpretations, which could facilitate computational
approaches in music theory and generation.

1. INTRODUCTION

When understanding music as a temporal art, there are at
least two properties we need to model. The first is that
musical events are ordered in a nontrivial way resembling
goal-directedness; the essence of a piece is lost if we “re-
compose” a piece by performing random temporal permu-
tations. The second phenomenon is the temporal hierarchy,
which is a central theme in the understanding of Western
tonal music, where we hear multiple entities as the mani-
festation of a single musical entity. Regarding this hierar-
chy, there are at least two kinds of such entities. The first
kind is a stationary process, such as key region, and har-

© Z. Ren, W. Gerstner, and M. Rohrmeier. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Z. Ren, W. Gerstner, and M. Rohrmeier, “Music as flow:
a formal representation of hierarchical processes in music”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,
2023.

mony; we can say a phrase that enforces a key contains
a tonic region (like some presentation in a non-modulating
sentence) and we can also describe a time span as an arpeg-
giation of a harmony. The second kind is a transitory pro-
cess, such as modulation region, passing, and neighboring
motion; a descending third progression contains two step-
wise downward motions.

There are multiple attempts to represent the hierarchical
structure of such entities. For stationary entities, trees of
musical events have been used to model tonal harmony [1,
2], extended tonal harmony [3], jazz harmony [4], rhythm
and meter [2, 5]. One limitation of using trees of musical
events is that semantics such as passing tones could not be
elegantly expressed because one is forced to select either
the left or the right parent event for the subordinate event
whereas we would like to express an intermediate event
subordinate to the melodic motion itself [2].

For the transitory process, trees on event transitions are
also sometimes used [6]. They could model the semantics
for a passing tone by describing how a melodic motion is
split into two motions, one going to the passing note and
one leaving the passing note. However, as the fundamen-
tal entities are transitions, it can not express the idea that
a single event being elaborated in the temporal dimension,
such as unfoldings, complete neighbor chords/tones, repe-
titions, and rearticulations [7].

There are attempts using graphical notations to capture
both stationary and transitory processes [7–9]. There are
also models [10] that extend such hierarchical organiza-
tions beyond the temporal dimension with inner structures
of events resembling concurrent processes.

One could potentially encode the hierarchical organiza-
tion between these two kinds of processes implicitly us-
ing networks and graphs, or more expressively using hy-
pergraphs where higher-order relations can be encoded as
hyper-edge. One could formulate a rewrite grammar on
such networks and hypergraphs to describe the elaboration
of nodes and edges. However, we believe there should be a
more direct, elegant, and specialized solution (in a similar
spirit as [11]) to not only implement but also characterize
such generative principles of hierarchical processes.

In summary, there is a lack of formal representation as
well as a specially designed data structure that explicitly
captures the intricate hierarchical organizations of both the
stationary and transitory processes, a fundamental idea in
reductive theories of tonal music. This paper offers two
contributions. First, we provide a novel unifying hierar-
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chical framework for stationary and transitory processes.
Second, we provide a structured data type encoding such
interpretations, which could facilitate computational ap-
proaches in music theory, musicology, and algorithmic
music composition.

2. THE HIERARCHICAL ORGANIZATIONS OF

GENERAL PROCESSES

To demonstrate how these two kinds of processes could be
hierarchically organized in the temporal dimension, per-
haps it is helpful to consider a scenario in everyday life:
“On his way back to home, John went to the supermarket,
where he got his favorite yogurt from the fridge. Although
he could take a bus directly to his house, he decided to
get off one stop earlier by the lake to enjoy a short walk.”
One hierarchical organization of this particular scenario is
depicted in Fig.1. The overarching process is that John
went back home from someplace. This transitory process
(represented by the arrow connecting “someplace” denoted
by X to “home”) contains three component processes: a
transitory process from “someplace” to “supermarket”, a
stationary process at “supermarket,” and a transitory pro-
cess from “supermarket” to “home.” The stationary pro-
cess at “supermarket” further contains a stationary process
at the “entrance” of the supermarket, a transitory process
from “entrance” to the “exit,” and a stationary process at
the “exit”.

2.1 The syntactic constraint of the hierarchical

organization of stationary and transitory processes

One pattern that we observe is the mutual recursive rela-
tionship between stationary and transitory processes. A
stationary process can contain three components (station-
ary, transitory, stationary). Symmetrically, a transitory pro-
cess can contain three components (transitory, stationary,
transitory).

However, it is clear from the above example (Fig. 1)
we can not arbitrarily subdivide a stationary process at X
(denoted by pX), or a transitory process from X to Y (de-

noted by XÑY
ÝÝÝÝÑ) into arbitrary triples of processes, even

if they conform to the (stationary, transitory, stationary) or
(transitory, stationary, transitory) patterns. We may allow a

transitory process AÑB
ÝÝÝÑ to be elaborated into three com-

ponents of the form

AÑX
ÝÝÝÝÑ pX XÑB

ÝÝÝÝÑ

But we would not allow a decomposition like

CÑD
ÝÝÝÝÑ pX EÑF

ÝÝÝÑ

because their states are not compatible.
We can summarize the constraints as the following: a

stationary process pX may contain ( pX , XÑX
ÝÝÝÝÑ, pX); like-

wise, a transitory process XÑY
ÝÝÝÝÑ may contain p

XÑZ
ÝÝÝÝÑ

, Ẑ,
ZÑY

ÝÝÝÑq. The “entrance” and “exit” in the previous ex-
ample, although being technically different, are equivalent
to “supermarket” from abstract level.

3. LINEAR PROCESSES

We start with characterizing linear processes representing
a single hierarchical stream.

3.1 An axiomatic system

We refer to a stationary process as Joint, and define it
as a predicate Jx indexed by a state x : A. We refer to
a transitory process as Link and define it as a predicate
Lx,y indexed by two states x, y of the same type. Then we
propose the following four axioms to characterize the hi-
erarchical interactions between of stationary and transitory
processes.

@px : Aq Dpj : Jxq (1)

@px, y : Aq Dpl : Lx,yq (2)

@pj, j1
: Jxq @pl : Lx,xq Dpj˚

: Jxq (3)

@pl : Lx,zq @pj : Jzq @pl1 : Lz,yq Dpl˚ : Lx,yq (4)

Axiom 1 states that we may form a stationary process for a
given state. Axiom 2 states that we may form a transitory
process by for a pair of states of the same kind. Axiom
3 states that we may form a stationary process at x from
any triple of processes pj, l, j1q, where j and j1 are both
of stationary processes at x and l is a loop starting and
ending at x . Axiom 4 states that we may form a transitory
process from any triple of processes pl, j, l1q, where l and l1

are transitory and j is stationary, provided that their states
are compatible.

3.2 A syntax based on dependent type theory

Using two mutually inductive algebraic datatypes, Joint
and Link, we formalize the notion of hierarchical process
in Backus–Naur form (Eq. 5,6,7,8). For a stationary pro-
cess, the base case (Eq. 5) of a Joint is a Point, which
means an atomic stationary process, whereas the inductive
case (Eq. 6) resembles a stationary process (on the current
level) containing two stationary process and a transitory
process. The base case of a Link is a Unit (Eq. 7), repre-
senting a indivisible change of state, whereas the inductive
case (Eq. 8) represents a composite motion that contains
two changes and one stationary process. Eq. (5,6,7,8) cor-
responnds to Axiom. (1,3,2,4) respectively.

Jointpx:aq :“xPointy px : aq (5)

| xJointy Jointx Linkx,x Jointx
(6)

Linkpx:aq,py:aq :“xUnity px : aq py : aq (7)

| xLinky Linkx,z Jointz Linkz,y
(8)

Dependent typing [12] allows us to define types de-
pending on value. This algebraic data structure with de-
pendent typing has an important application for a gener-
ative system. One can define a function using polymor-
phic recursion to sample a value of the given type. Do-
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pX XÑh
ÝÝÝÑ {home

pX XÑs
ÝÝÝÑ {supermarket

sÑh
ÝÝÝÑ {home

pX XÑs„en
ÝÝÝÝÝÝÑ {entrance

enÑex
ÝÝÝÝÑ yexit ex„sÑl

ÝÝÝÝÝÑ ylake lÑh
ÝÝÝÑ {home

pX XÑen
ÝÝÝÝÑ {entrance

enÑf
ÝÝÝÝÑ {fridge fÑex

ÝÝÝÝÑ yexit exÑl
ÝÝÝÑ ylake lÑh

ÝÝÝÑ {home

Figure 1: A hierarchical interpretation of John’s journey. Words on the transitions are abbreviated to save space. The
symbol s „ en means the "entrance" is functionally equivalent to "supermarket" in the interpretation of this journey

.

ing so will guarantee the syntactic correctness of the out-
put. For example, writing a harmonic transition between
I and V means sampling a value of type LinkI,V ; elab-
orating a melodic motion from 8̂ to 5̂ becomes sampling
a value of type Link

8̂,5̂. Note that between these two
examples, the type of the state is different; the first is
harmony(roman-numeral) while the second is scale degree.
However, within each example, the types of the states are
always the same by construction (Axiom 2, 3, 4).

3.3 A data structure in Haskell

Haskell is a functional programming language with an ex-
pressive type system [13]. Although the dependent type
is not yet built into the language, there exists an encoding
involving Algebraic Datatype and Singletons [14] to sim-
ulate the behavior of dependent type. The implementation
of the linear process is shown below 1 .

data Joint (x::a)

= Point (Sing x)

| Joint (Joint x) (Link x x) (Joint x)

data Link (x::a) (y::a)

= Unit (Sing x) (Sing y)

| forall (z::a). Link (Link x z) (Joint z) (Link z y)

3.4 A graphical notation system

To visualize an interpretation of hierarchical processes, we
use two types of slurs to connect states in a sequence. For
a Point, the base case of Joint, no visual representation
is needed as the state it expresses is sufficient. For a Unit,
the base case of Link, a dashed slur is drawn connecting
the starting state to the ending state. Nontrivial stationary
processes (the inductive cases) are represented as continu-
ous slurs whereas transitory processes are represented with
dashed slur. For a non-trivial processes, the left/right an-
chor point of the slur is the same as the left/right anchor
point of the slur of the process’s first/last component.

Five simple examples of such notation are provided in
Fig. 2. The easiest to understand is Ex. D, which is a

stationary process pI , decomposed into a pI IÑI
ÝÝÝÑ pI . This

expresses not just repetition but also the loop from I to it-
self. This loop can be the parent for further elaborations

1 Specifying the singleton arguments can be sometimes redundant and
cumbersome. Instead, one could use the "implicit-passed" singleton by
replacing the argument “Sing x" by a constraint “SingI x". In this way,
the “Point" and “Unit" constructor takes no explicit argument and the
state information is thus encoded as a phantom type that can be pattern
matched using type application such as “Point @IV".

such as passing and neighbor chords. Note that the contin-
uous slur covers a point, a dashed slur, and a point. This
visual "covering" is intend to convey the hierarchical rela-
tion of processes where parent processes contains its com-
ponent processes. Ex. C shows a more complex situa-
tion; although the top two level is the same as Ex. D (a
Joint containing two base case Joint and a Link), there
are richer structures within the Link in Ex. C. This dashed
slur covers a dashed slur, a continuous slur, and a dashed
slur, signaling a non-trivial transitory process that contains

a transitory process I V
ÝÝÝÝÑ, a stationary process at V , and

a transitory process V I
ÝÝÝÝÑ. This stationary process at V is

also a non-trivial one, capturing the sense of prolongation
within which passing notes can be generated connecting
its chordal pitches, forming a harmonic the entity V7´6´5

5´4´3
.

Ex. B expresses an overarching stationary process at I con-
taining a nontrivial initial stationary process, a nontrivial
transitory process and a trivial stationary process. The ini-
tial stationary process resembles a neighbor-passing chord
with in the harmony of I . Note that there is a difference in
semantic in drawing the continuous slur over the first two
Is vs the last two Is. The former means that the overarch-
ing motion is stationary first and then moving to the target
I chord, whereas the latter means the motion moves first
and then performs a stationary rest. This kind of fine dis-
tinction could be used to further express embodied musi-
cal concepts such as “momentum,” “potential energy,” and
“forces” [15]. Ex. A presents two interpretations of the
same chord progression, where the top and bottom analy-
sis reflects the melody and the bass respectively.

4. APPLICATIONS IN MUSIC ANALYSIS

We will demonstrate the potential usage of the proposed
model in reductive analysis in three different levels of com-
plexity.

4.1 The harmonic sequence of a hybrid theme type

For a harmonic sequence I ´ V ´ V ´ I ´ IV ´ V ´ I

in an 8-bar phrase, we may interpret the first four chords
as a tonic prolongation and the rest as an incomplete ca-
dential progression, as in an antecedent + cadential hybrid
theme type [16]. Such an interpretation is captured by the
derivation process in Fig. 3.
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Figure 2: Examples of the graphic notation for Hierarchical processes where continuous slurs represent Joint and dashed
slurs represent Link.

pI
pI IÑI

ÝÝÝÑ pI
pI IÑI

ÝÝÝÑ pI IÑV
ÝÝÝÑ pV V ÑI

ÝÝÝÑ pI
pI IÑV

ÝÝÝÑ pV V ÑI
ÝÝÝÑ pI IÑIV

ÝÝÝÝÑ xIV IV ÑV
ÝÝÝÝÑ pV V ÑI

ÝÝÝÑ pI

Figure 3: One derivation process for the harmonic se-
quence I ´V ´V ´ I ´ IV ´V ´ I . The first three steps
are elaboration of types whereas the last step is the instan-
tiations of the types (in the framework of formal grammar,
this corresponds to rules generating nonterminal and ter-
minal symbols)

4.2 The key-level modulation analysis of a simple

ternary form

Now we present an analysis of a section of Haydn, Pi-
ano Sonata in D, H.37, iii, using the proposed model (Fig.
4). The main focus of the analysis here is on key cen-
ter and functional harmony. This overall section resem-
bles a stationary process at the home key region. It con-
tains a stationary process expressing the home key region,
followed by a transitory process from to a home key re-
gion to another home key region. Within this transitory
process, there is a stationary process at the dominant key
region, as well as the two transitory processes function-
ing as key transition. The first connects the tonic chord
in the home key ItIu to the tonic chord in the dominant
key V tI6u as the pivot chord for modulation. The second
connects ItV u to ItIu as to signal the return to the home
key. In a prolongational framework of pitch reduction, this
link at mm.12 is the interrupted motion in a typical inter-
ruption, implying the restart of the fundamental line [8].
In a functional harmony framework, this same link is the
dominant to tonic preparation relation, also implying the
arrival of the tonic in the home key. Within the domi-
nant region the first stationary process corresponds to the
complete cadential progression signaling the stabilization
of the dominant key, whereas the following transitory pro-

cess
5̂Ñ||1̂

ÝÝÝÝÝÝÝÝÑ
V tIuÑ||ItV u

corresponds to first attempted descent

(interrupted) of the fundamental line accompanied by the
“Ponte” modulation schema [17] that gradually change the
underlying key of a chord.

4.3 A harmonic analysis of a Bach chorale

A more elaborated example of such harmonic organiza-
tion can be found in Bach Chorale No 9 BWV 248 (Fig.
5). This analysis interprets the overarching structure of the
piece as a stationary process in the home key tonic, con-
taining an establishment of the home key, detour around
the home key, and the re-stablization of the home key. This

transitory process 1̂Ñ8̂
ÝÝÝÝÝÝÝÑ
ItIuÑItIu

enforces its unity with an as-

cending linear progression of an octave, within which the
music modulates to the relative minor (vi) via its domi-
nant minor key (V {vi). The first stationary process around
the home key is elaborated into a I ´ V ´ I ternary-like
structure on the key level.

5. CONCURRENT PROCESSES

Besides providing a formalization for processes in the tem-
poral dimension, we also offer an extension to model the
processes that are simultaneous, which enables us to model
polyphonic texture.

5.1 The Formalism

To model concurrent processes, we add two non-

commutative binary 2 operations to construct Joint and
Link respectively:

p8q : Jointx Ñ Jointy Ñ Jointpx,yq (9)

pòq : Linkx,y Ñ Linkx1,y1 Ñ Linkpx,x1q,py,y1q (10)

The first constructor 8, called “when”, expresses the con-
currency of two stationary processes. The second construc-
tor ò, called “while”, expresses the concurrency of two
transitory processes. Applying these operators using infix

2 Although these operations are currently formulated as binary opera-
tions, they can be naturally extended to n-nary versions where the input
is a vector of Joint and Link respectively.
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notations, we have Eq. 11, 12:

px8py :“ zpx, yq (11)

xÑy
ÝÝÝÑò

x1Ñy1

ÝÝÝÝÑ :“
px,x1qÑpy,y1q

ÝÝÝÝÝÝÝÝÑ (12)

In addition we add an algebraic law (Eq. 13) on these two
operations:

ppx8pyqp
xÑx

ÝÝÝÑò
yÑy

ÝÝÝÑqppx8pyq

“ (13)

ppx xÑx
ÝÝÝÑ pxq8ppy yÑy

ÝÝÝÑ pyq

To model temporal displacement of concurrent pro-
cesses (like the suspension in fourth species counterpoint)
we define a function ÒÒ called “leads” that is derivable
from the basic operations in terms of Eq. 9,10 :

pÒÒq : Linkx,y Ñ Linkx1,y1 Ñ Linkpx,x1q,py,y1q

xÑy
ÝÝÝÑÒÒ

x1Ñy1

ÝÝÝÝÑ “
px,x1qÑpy,x1q

ÝÝÝÝÝÝÝÝÑ {py, x1q
py,x1qÑpy,y1q

ÝÝÝÝÝÝÝÝÑ
(14)

“ p
xÑy

ÝÝÝÑò
x1Ñx1

ÝÝÝÝÑqppy8 px1qp
yÑy

ÝÝÝÑò
x1Ñy1

ÝÝÝÝÑq
(15)

With Eq. 14, we formalize the relation about two pro-
cesses where that one process leads the other. For example,
in a typical suspension, this allows us to capture the mean-
ing that the bass motion leads the melody motion, causing
a consonance-dissonance-consonance pattern.

5.2 Concurrent processes in contrapuntal textures

Now we demonstrate that using the proposed formalism,
we can model many complex hierarchical coordination of
processes in both temporal (horizontal) and spatial (verti-
cal) dimensions.

5.2.1 First species counterpoint

For first species counterpoint, processes are always verti-
cally aligned in a one-to-one fashion.

3 ´ 2 ´ 1

1 ´ 7 ´ 1

can be modeled as:

zp3, 1q
´`

3Ñ2
ÝÝÝÑò

1Ñ7
ÝÝÝÑ

˘ zp2, 7q
`

2Ñ1
ÝÝÝÑò

7Ñ1
ÝÝÝÑ

˘¯
zp1, 1q

5.2.2 Second species counterpoint

For second species counterpoint, we encounter concurrent
processes where one is more elaborated than the other. A
segment of such texture

5 ´ 4 ´ 3

7 ´ 1

can be modeled as

zp5, 7q
`
p
5Ñ4

ÝÝÝÑ p4 4Ñ3
ÝÝÝÑq ò p

7Ñ1
ÝÝÝÑq

˘ zp3, 1q

Notice that the two-against-one coordination of the motion
is reflected in the structure of the encoding and we do not
need to "break" the 7̂ into two copies of 7̂ to convert it into
first species texture.

5.2.3 Third species counterpoint

Third species counterpoint is a more elaborated version of
the second species but the form of the representation is
very similar.

5.2.4 Fourth species counterpoint

Fourth species counterpoint presents the opportunity of
suspension. We can generalize such textures as overlay-
ing transitory processes in an alternating manner, creating
temporal displacement. Consider this 7-6 suspension (“=”
represents “tied-over”)

3 “ 3 ´ 2 “ 2 ´ 1

5 ´ 4 “ 4 ´ 3 “ 3

It can be modeled using Eq. 14 as the following:

zp3, 5q
´`

5Ñ4
ÝÝÝÑÒÒ

3Ñ2
ÝÝÝÑ

˘ zp2, 4q
`

4Ñ3
ÝÝÝÑÒÒ

2Ñ1
ÝÝÝÑ

˘¯
zp1, 3q

6. DISCUSSION

The contribution of this paper is to offer a characteriza-
tion and representation on the hierarchical organization of
both stationary and transitory musical processes as well as
how they can be concurrently structured. Linear processes
are modeled using two mutually inductive types Joint and
Link. Concurrent processes are modeled on top of linear
processes by adding two binary operations for Joint and
Link respectively. In addition, an algebraic law is imposed
on these two operators to express an isomorphism between
the horizontal view and the vertical view. We introduced a
graphical notation for linear processes and presented sev-
eral harmonic analysis using the notation to demonstrate
the music analytical application of the characterization of
linear processes. To demonstrate the analytical applica-
tion of the concurrent processes, we presented their cor-
responding encoding for contrapuntal textures in species
counterpoint.

This general formalism can be flexible to adapt to spe-
cific music theoretical constraints. One might encode spe-
cialized elaboration rules by equipping the Link construc-
tor with domain specific constraints on the type level and
reuse the function itself. In Eq. 8, such constraint could be
a predicate on the type variables px,z,y 3 .

3 Upper neighbor elaboration, for example, corresponds to the predi-
cate px,z,y “ px “ y, z “Ò xq. Likewise, downward passing elabora-
tion corresponds to the predicate px,z,y “ pz “Ó x, y “Ó zq.
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ABSTRACT

Symbolic Music Alignment is the process of matching
performed MIDI notes to corresponding score notes. In
this paper, we introduce a reinforcement learning (RL)-
based online symbolic music alignment technique. The
RL agent — an attention-based neural network — itera-
tively estimates the current score position from local score
and performance contexts. For this symbolic alignment
task, environment states can be sampled exhaustively and
the reward is dense, rendering a formulation as a simpli-
fied offline RL problem straightforward. We evaluate the
trained agent in three ways. First, in its capacity to identify
correct score positions for sampled test contexts; second,
as the core technique of a complete algorithm for symbolic
online note-wise alignment; and finally, as a real-time sym-
bolic score follower. We further investigate the pitch-based
score and performance representations used as the agent’s
inputs. To this end, we develop a second model, a two-
step Dynamic Time Warping (DTW)-based offline align-
ment algorithm leveraging the same input representation.
The proposed model outperforms a state-of-the-art refer-
ence model of offline symbolic music alignment.

1. INTRODUCTION

Music alignment refers to matching at least two different
versions of the same musical material. In this paper, we
address symbolic music alignment, for our purposes de-
fined as models that match individual notes of a perfor-
mance recorded as MIDI file to individual notes of a score
encoded as MusicXML file.

Alignment procedures can be separated into online or
offline classes. If the alignment procedure is carried out
with access to the full versions of the musical material, we
refer to it as offline alignment. Conversely, if one version
is only known up to the point currently to be matched, we
refer to it as online.

We introduce a reinforcement learning (RL)-based on-

line symbolic music alignment technique. It aligns sym-
bolically encoded music or, more specifically, MIDI per-
formances to their corresponding MusicXML scores by

© S. Peter. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: S. Peter, “On-
line Symbolic Music Alignment with Offline Reinforcement Learning”,
in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

matching individual notes of each version. The RL agent –
a small attention-based neural network – is trained to itera-
tively predict the current score position from limited score
and past performance contexts. The current performance
note and estimated score position are then processed to
compute a symbolic note-wise matching.

RL terminology introduces another online versus offline
differentiation. RL is termed online if the agent learns from
data created by the agent’s interaction with its environment
during training. In our case, we use offline RL, that is,
the agent is trained using a dataset of exhaustively sam-
pled environment states and associated rewards, effectively
turning agent training into a supervised learning problem.
Once trained in an offline fashion, the agent can be used in
online alignment.

The agent processes a purely pitch-based representa-

tion and timing information is only incorporated in a post-
processing step. Before addressing the online problem,
we investigate the same separation of pitch and time pro-
cessing in an offline setting: we develop a two-step (first
pitch, then time) Dynamic Time Warping (DTW) offline
model and evaluate it against the state of the art in note-
wise alignment in Section 3. The subsequent Section 4 ad-
dresses the RL-based online model reusing the input setup.

The rest of this paper is thus structured as follows: Sec-
tion 2 introduces related work. Section 3 discusses offline
symbolic music alignment. We develop as well as evalu-
ate an offline symbolic music alignment algorithm based
on two different applications of DTW, first on pitch infor-
mation, then on onset times. Starting from these results,
section 4 introduces a formulation of online alignment as
reinforcement learning problem. In particular, we train an
agent’s value function in an offline setting. In section 5
we evaluate the trained agent in three ways: as a stan-
dalone score onset identification model, as an online sym-
bolic alignment model (where the aim is the production
of correct note-wise alignments), and in a score following
scenario (where the aim is the precise temporal tracking
the current score position). Finally, Section 6 concludes
the paper with a critical appraisal of our models as well as
recommendations for future research.

2. RELATED WORK

Symbolic music alignment has been a popular research
area for many years. We begin our review of related work
with online symbolic music alignment, then we progress
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to offline symbolic music alignment, general music align-
ment, and finally applications of reinforcement learning.

Most often, online models have been presented in the
context of score following, where the principal aim is to
identify the current score position. Dannenberg [1] and
Vercoe [2] pioneered this area of research in the mid 1980s.
Recent works commonly use Dynamic Bayesian Networks
to track the performance [3–6]. Recently, A. Anonymous
compared both Hidden Markov Models (HMM) and On-
Line Time Warping (OLTW) techniques. We use their
OLTW model as comparison baseline for our online align-
ment technique. This model processes inputs represented
as piano rolls, as is common for OLTW and DTW applica-
tions to symbolic music alignment in general.

The offline setting has seen more recent work [3, 5, 7–
11]. Symbolic music alignment methods often perform
very well, with error rates rarely exceeding 10%. Con-
sequently, much recent work focused on the rare, indeter-
minate, or asynchronous events that make the errors diffi-
cult to identify and fix. Ornaments are one source of such
events [9]. Another is left-right hand asynchrony in piano
performance as discussed in Nakamura et al. [3]. Arbitrary
skips and repeats further present a very difficult challenge
for most algorithms, especially when runtime considera-
tions are important [10]. This series of articles by Naka-
mura et al. [3, 9, 10] culminated in one of the most widely
used automatic score-performance alignment tools and the
current state of the art (SOTA) [11]. We use this model as
reference for the evaluation of our offline algorithm.

Although beyond the scope of this article, no introduc-
tion of music alignment is complete without the mention
of the large body of work concerning alignment of non-
symbolic music formats, in particular audio. Wang [12],
Arzt [13], and chapter three in Müller [14] present intro-
ductory discussions of audio alignment. As in our offline
approach, applications of (non-standard) DTW are central
to audio alignment [15–18]. Audio score following is com-
monly computed using On-Line Time Warping and vari-
ants of Hidden Markov Models [19–23].

To the best of our knowledge, Dorfer et al. [24] (later
expanded upon by Henkel et al. [25]) are the only prior ap-
plication of RL in a music alignment task, namely online
audio to sheet music image alignment. For a general intro-
duction to RL, we refer the reader to Sutton and Barto [26],
for a discussion of the merits and disadvantages of offline
RL to Levine et al. [27].

3. OFFLINE SYMBOLIC MUSIC ALIGNMENT

In this section, we introduce an offline symbolic music
alignment based on two different DTW steps as well as
an intermediate cleanup step. We close the section with an
evaluation of our model against a state-of-the-art reference.

Symbolic music alignment produces note alignments,
i.e., it matches individual notes of a performance recorded
as MIDI file to individual notes of a score encoded as Mu-
sicXML file. Three types of note alignments exist: a match
is tuple of a performance note and a score note, a deletion
is a score note not played, and an insertion is a performed

Figure 1. First half measure of Chopin Op. 9 No. 2
(bottom score), encoded as pitch set sequence (left) and
warped to its performance, encoded as sequence of pitches
as played (top). The matrix shows the corresponding pair-
wise distance (shaded is distance of 1, see equation 1), red
lines indicate equivalent optimal warping paths.

note not notated.
Our proposed offline algorithm consists of the following

steps: First, the performance and score are aligned using
DTW on a purely pitch-based representation (Section 3.1).
Then, remaining gaps are filled by complete sequences of
a single pitch. Finally, individual notes are aligned using
an application of DTW on their onset times (Section 3.2).

3.1 Pitch Sequence Warping

In this approach, we align sequences of performance notes,
encoded as integer pitches pt ∈ I := {1...88}, with se-
quences of score onset notes, encoded as sets of integer
pitches st ∈ P(I) \ {∅}, with P(I) denoting the power
set of the set I. Since these sequence elements are of dif-
ferent types — integers and sets of integers — no standard
local distance metric can be used. Instead we opt for a non-
symmetric inclusion metric, with some abuse of the term.

m(pt, st) =

{

0 if pt ∈ st
1 else

(1)

Having defined the metric in Equation 1, two standard
DTW paths are computed, one forward and one backward,
i.e., using inverted sequences. Figure 1 shows the encoding
as well as examplary DTW paths computed from cumula-
tive pairwise distances. While the optimal DTW distance is
unique, the DTW paths are not necessarily so. In our case,
such ambiguity is often introduced by repeated pitches in
neighboring score onsets, see e.g., the two adjacent (left,
stacked vertically) notes of pitch D4/62 in Figure 1. To
pinpoint non-robust path segments, we use the backward
DTW path. Wherever the forward and backward paths dis-
agree, they effectively bracket ambiguous parts from both
sides, and we exclude all bracketed notes from the path.

These excluded segments are then processed using a
simple heuristic: The notes in bracketed segments are sep-
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arated by pitch. If two pitch-wise sequences with match-
ing number of notes (in the performance and the score) are
found, they are aligned and the result is added to the path.
If no matching sequence is found, the path is linearly inter-
polated. We finally compute a mapping from score time to
performance time from this merged and cleaned path.

3.2 Onset Sequence Warping

The next goal is to derive note-wise alignments from the
approximate score to performance mapping computed in
Section 3.1. To this end, the performance and score are
split into pitch-wise sequences for each pitch occurring in
the union of score and performance pitches. The approx-
imate score-time-to-performance-time mapping computed
in the previous step is used to project all score onsets (in
beats) to performance time points (in seconds). The last
step aligns the performance onset sequence with the score
onset sequence, now mapped to the same space.

This alignment is computed by a DTW path between the
onset sequences, this time using a simple L1 metric, and
for each non-unique alignment, keeping the tuple with the
lowest distance. A threshold of maximal distance is further
built-in (and set to 5 seconds) to avoid spurious alignment
of unrelated deletions and insertions.

3.3 Offline Model Evaluation

To test the full offline model (first pitch DTW 3.1,
then onset DTW 3.2), we compute alignments on four
datasets of high-quality note-wise alignment piano mu-
sic. The datasets are the Vienna 4x22 Dataset [28],
four excerpts performed by 22 performers each; the
Zeilinger Dataset [29], nine piano sonatas by Ludwig van
Beethoven performed by Clemens Zeilinger; the Magaloff
Dataset [30], the near complete solo piano works by Fred-
eric Chopin performed by Nikita Magaloff; and the Batik
Dataset [31], twelve piano sonatas by Wolfgang Amadeus
Mozart performed by Roland Batik. We compare our
model against the reference by Nakamura et al. [11], post-
processed to produce the same output format we employ.

To compare produced alignments to ground truth ones,
we have to define a metric. Recall that note alignments
consist of three types: matches (tuples of performance and
score notes), deletions (unplayed score notes), and inser-
tions (unnotated performed notes). We use an F-score met-
ric for matches: A predicted match is counted as a true pos-
itive (TP) only if the same notes are matched in the ground
truth alignment. A false positive (FP) is a predicted note
label that isn’t in the ground truth, a false negative (FN) is
a ground truth note label that isn’t predicted. The F-score
is defined as the harmonic mean of precision (TP / (TP +
FP)) and recall (TP / (TP + FN)).

Table 3.3 shows dataset-wise and globally averaged
F-scores for matches. Our proposed model outperforms
the reference on each dataset. A two-sided sign test on
performance-wise rankings shows significantly (α = 0.01)
higher performance for our proposed model on all datasets
except the Vienna 4x22 Dataset. On the Vienna 4x22
dataset, the models reach the same F-score of 1.0 for 38

Dataset DTW Offline Nakamura
Magaloff 98.4 ± 0.9 % 97.8 ± 1.4 %
Zeilinger 99.3 ± 0.9 % 98.8 ± 1.2 %
Batik 99.4 ± 0.7 % 98.5 ± 2.1 %
Vienna 4x22 99.8 ± 0.4 % 99.5 ± 0.5 %
Combined 99.0 ± 1.0 % 98.5 ± 1.5 %

Table 1. Dataset-wise averaged F-scores and standard de-
viations of each model.

performances and our proposed model has higher F-scores
for the remaining 50 performances.

4. ONLINE ALIGNMENT AGENT

Having established the effectiveness of the separation into
pitch-based and time-based input representations in the of-
fline setting, we now introduce a formulation of RL-based
online alignment. We continue with the model and training
setup used to approximate the agent’s value function.

Reinforcement learning is formalized as Markov Deci-
sion Process (MDP). An MDP consists of the following
components: a state space S , an action space A, an index
set T , a reward function R, transition probabilities P , and
a discount factor γ.

An agent is placed in an environment and perceives
this environment and itself as being in a possible state
St ∈ S(t ∈ T ). The agent now takes an action At ∈
A and receives a reward Rt+1 as well as a new state
St+1 ∈ S . Repeating this process iteratively yields a se-
quence of states, actions, and rewards, called an episode:
St, At, Rt+1, St+1, At+1, Rt+2, St+2, At+2, ... It is now
the agent’s task to infer actions from states that maximize
long-term reward. Before we look at our formulation of
this optimization problem, we discuss the online align-
ment’s state and action space in more detail.

4.1 Alignment as Reinforcement Learning

The state information St comprises both the current score
context as well as the most recent past performance.
Specifically, the score context is represented as a window
of the pitch set sequence introduced in Section 3.1. The
window centers the last predicted score onset position and
spans seven score onsets to the past as well as eight score
onsets to the future for a total windowed sequence of 16
pitch sets. The performance context is only derived from
past performance notes to enable real-time application. It
consists of the eight most recent notes in the performance
pitch sequence. Whenever less score or performance con-
text is available, e.g., at the very beginning or end of a
piece, the windows are shortened accordingly.

At each state St the agent aims to match the most recent
performance note to its most likely score onset. There are
16 actions at St; select one score onset as matching onset
position. Having decided on a next score onset, the agent
receives a reward Rt+1 which is set to one if the score on-
set is correctly aligned, zero otherwise. The environment
transition probabilities P determine a new state St+1: the
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performance context of the new state is determined by an
actual performance, i.e., the agent is presented a new state
based on the estimated next position in the score and a new
incoming performance note.

4.2 Simplified Deep Q-learning

The agent’s behavior is captured by its policy π(A|S), the
distribution of actions taken by the agent in state S. Al-
though it is possible to optimize the policy directly, we in-
stead adapt a value-function-based formulation, or more
specifically, deep Q-learning [32, 33]. Q-learning aims to
optimize a state-action value function Q : S × A −→ R,
an estimate of the expected cumulative discounted future
reward, also called return, given a state and an action.
In deep Q-learning the value function Q(S,A, θ) contains
trainable parameters θ which are fitted to the experienced
reward distribution. A typical optimization loss l looks like
this:

l = (Rt+1 + γmax
At+1

Q(St+1, At+1, θ)−Q(St, At, θ))
2

(2)
where the discount factor γ ∈ [0, 1] determines the

weighting of future rewards. For the alignment case we
can make several simplifications. We opt for a completely
myopic agent, i.e., γ = 0. The argument for this is that the
optimal action to take for each incoming performance note
is determined by the correct score onset which can in turn
be specified by the immediate reward. >For a discussion of
the implications of this modeling choice see section 6. Set-
ting γ = 0 removes the value function at subsequent states
from the loss. Using that R = {0, 1}, we make a second
reformulation and replace this squared error loss by a bi-
nary classification: For each state-action tuple (S,A) the
agent predicts the probabilities of the reward being 1 or 0,
optimized with a cross-entropy loss. Note that this formu-
lation still optimizes a state-action value function Q and
not a policy π(A|S), i.e., the probabilities of rewards are
computed for each possible action (that is, per score onset)
and do not sum to one over all actions. There are several
ways of deriving a policy from a value function; two are
discussed in section 4.5.

4.3 Value Function Model

To approximate Q(S,A, θ), we use an attention-based
Transformer Neural Network. The input of the network
consists of a sequence of tokens encoding the performance,
a delimiter token, the score, and an ending token. We en-
code 88 pitches of the piano keyboard, adding extra tokens
for "no_pitch", "delimiter", and "end" in a 64-dimensional
embedding space. The performance pitches are straight-
forward to embed, however, the score onset pitch sets re-
quire more processing. For our data, more than 99% of
score onsets can be represented with pitch sets with no
more than seven different pitches, we thus limit our pitch
sets to this length (with a subset of seven taken randomly
at onsets with more pitches). Pitch sets with fewer than
seven pitches are filled up with a pitch corresponding to the

Figure 2. Setup of the value function model: states are en-
coded as contiguous token sequence of past performance
(red) and current score (blue) contexts. Pitch set embed-
dings are summed over individual pitch embeddings. The
model is set up as token classifier as each score onset in
the context corresponds to a possible action (= "select this
onset as next score onset") and is classified according to its
expected reward class. The vector on the right shows the
reward probability for each action (pink).

"no_pitch" token. To create score onset embedding with
no more than 64 dimensions independent of the number
of pitches at any onset, the pitch set tokens are summed
up. Figure 2 shows the setup of the value function model.
The model is set up with eight heads, and six layers, layer
normalization, and a single feedforward head for binary
classification, making for a total of 157250 parameters.

4.4 Training

The training is set up as token classification problem; i.e.,
for each token in the sequence, the probability of receiv-
ing a reward is estimated. The aligned piano datasets from
Section 3.3 are used again. For our offline RL setting, a
dataset of states is created before training. We extract lo-
cal score and performance contexts from the aligned data,
shifting the performance window such that true next score
onsets fall from leftmost (current position minus seven) to
rightmost (current position plus eight) to cover the possible
states exhaustively. During training, batches of states are
sampled randomly, not in sequence. To aid generalization,
we further augment the data by random pitch shifting of all
notes in the state within +/- one octave. We use an ADAM
optimizer with a learning rate with warm-up followed by
square root decay. The batch size is set to 8192, the models
are trained for 50 epochs.

4.5 Online Models

Using a trained value function model, we derive two
complete models. First, a simple score follower model
("Greedy Agent Model") that outputs only greedily esti-
mated score onsets for incoming performance notes. Sec-
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Figure 3. Schematic overview of the Online Alignment
Model with a monophonic piece and 8 onset context. Score
(blue, top) and performance (red) contexts are inputs to
the Value Function Model which outputs value estimates
(pink, bottom). The top three onsets (1,2,3) are passed to
a tempo extrapolator, along with existing alignments (yel-
low). The tempo extrapolator predicts three onsets (1̂, 2̂)
for the the candidate onsets. The one with lowest distance
(∆1) to the newest performance note (*) is aligned (pink).

ond, a note-level alignment model ("Online Alignment
Model") that produces both note alignments as well as an
estimate of the next score onset for the score following set-
ting. The Greedy Agent Model consists of an agent fol-
lowing a greedy policy based on the trained value function
model, i.e., an agent picking the action A with maximal
estimated reward Q(S,A).

For the Online Alignment Model a few additional steps
are taken. See Figure 3 for an overview of the alignment
loop. In this model, an action is selected from the top three
value estimates for a given score and performance context.
To pick one of these three actions, onset time informa-
tion is incorporated. A simple local tempo estimator ap-
proximates an expected performed onset time for each of
the three possible score onsets using linear extrapolation
of beat periods computed from previously aligned notes.
This process takes on the role of the second onset-wise
DTW step in the offline model (see Section 3.2): to match
notes that are closest together according to an approximate
score-to-performance mapping.

There are two further heuristics worth mentioning. If
the current performed pitch is not available at any of the
three highest ranking score positions, the performed note
is counted as an insertion, and the current score position is
unchanged. Furthermore, we decrease the number of calls
made to the agent in a real-time setting by directly aligning
pitches that are trivially missing at the current score onset.

5. ONLINE EVALUATION

In the following, we evaluate the agent and the proposed
online alignment model. In section 5.1, we address a
greedy agent’s capacity to identify correct score positions
for sampled test contexts. In section 5.2, the Online Align-

ment Model is evaluated with respect to correct note-wise
alignment. Finally, we use both the Greedy Agent Model
as well as the Online Alignment Model as real-time sym-
bolic score followers in an experiment in section 5.3.

5.1 Agent Evaluation

Top0 Top1 Top2
94.5 ± 0.8 % 96.6 ± 0.5 % 97.6 ± 0.4 %

Table 2. Average topK score onset hit rate and standard
deviation across the five test folds.

For direct value function evaluation, we assume a
greedy policy for each testing state S. That is, the
agent picks the action A with the highest estimated value
Q(S,A). We evaluate this action (= chosen score onset)
via the distance from the ground truth score onset. Specif-
ically, we compute three metrics: the number of states
where this action corresponds exactly to the true score
onset ("Top0"), the number of times this action picks a
score onset in the neighborhood of ± one score onset of
the true location ("Top1"), and the number of times this
action picks a score onset in the neighborhood of ± two
score onsets of the true location ("Top2"), each normal-
ized by the total number of test states. We use five-fold
cross-validation on the same combined datasets used in
section 3.3, and report mean and standard deviation val-
ues across testing folds. The fold splitting is carried out
piece-wise with roughly the same number of score onsets
in each fold.

Table 2 shows the results. Greedy action selects the cor-
rect score onset with more than 94 % probability on unseen
pieces. Furthermore, for more than half of the remaining
errant actions, the greedy action is not further than two on-
sets from the correct one.

5.2 Online Note-wise Alignment

Piece OAM DTW Offline Nakamura
B. Op. 53 3rd. m. 99.0 % 99.4 % 98.2 %
C. Op. 9 No. 1 97.6 % 98.4 % 98.8 %
C. Op. 9 No. 2 97.4 % 99.1 % 97.6 %
C. Op. 10 No. 11 90.3 % 96.3 % 94.3 %
C. Op. 60 95.1 % 97.9 % 94.7 %

Table 3. Piece-wise F-scores of each model. OAM = On-
line Alignment Model, DTW Offline = model of section
3.3, Nakamura = reference SOTA model [11].

To evaluate the Online Alignment Model’s perfor-
mance, we perform alignments for five selected perfor-
mances: Nocturnes Op. 9 No. 1 and 2, Etude Op. 10
No. 11, Nocturne Op. 15 No. 2, the Barcarole Op. 60 by
F. Chopin, and the third movement of the Sonata Op. 53
(Waldstein) by L. v. Beethoven. The value function model
used in this section was trained on all data except these five
pieces for 100 epochs, the rest of the training and model
setting remains the same. The same metrics of section 3.3
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Model Async ≤ 25ms ≤ 50ms ≤ 100ms

OLTW 60.6 ms 38.0 % 63.3 % 86.7 %
GAM 36.0 ms 89.0 % 91.4 % 94.6 %
OAM 15.7 ms 91.4 % 93.8 % 96.6 %

Table 4. Asynchrony of the models in score follower set-
ting. Column "Async" presents the median asynchrony.
Columns 3, 4, 5 present the percentage of onset estimates
with lower asynchrony than 25ms, 50ms and 100ms, re-
spectively.

apply, namely the F-score of retrieved matched note tuples.
For comparison we also add piece-wise F-scores of our
proposed offline model as well as the model by Nakamura
et al. Table 3 shows the F-scores of note alignments. As
expected, the proposed online alignment performs worse
than offline methods, albeit with small difference. Notably,
all models show the lowest performance on Chopin’s Op.
10 No. 11.

5.3 Score Following

In the score following setting, the core metric is the accu-
rate prediction of the current position. We thus compute
asynchrony values in milliseconds which give the absolute
time between any onset in a performance and the onset in
the same performance that corresponds to the estimated
score onset. The data used for this experiment consists
of the same five pieces used in the previous section 5.2
with the same value function model training. Three mod-
els are compared in this setting: The Online Alignment
Model (OAM) previously evaluated in terms of note align-
ment F-scores in Table 3, the Greedy Agent Model (GAM),
and an On-Line Time Warping (OLTW) Model. This lat-
ter OLTW model performed best in a recent music score
following comparison by Cancino-Chacón et al. [34] and
is added as a reference. However, this model does not pre-
dict note alignments, hence a comparison in terms of note
alignment F-score as in Section 5.2 is not possible.

Both the GAM and the OAM outperform the reference
model in all metrics in Table 4. Most of the lower per-
formance of the GAM is due to the fact that for Chopin’s
Op. 10 No. 11, this agent loses track of the performance
close to the end when a full measure is deleted. All subse-
quent performance notes are estimated very wrongly. The
online alignment model on the other hand follows all test
performances robustly until the end.

6. DISCUSSION AND CONCLUSION

In this paper, we introduce two models, an offline align-
ment model based on dual DTW steps, and an online align-
ment model based on an RL agent trained in an offline fash-
ion. Both models perform competitively; with the offline
model surpassing the relevant state of the art.

In the setup of the RL training we made some simpli-
fications that warrant further discussion. Specifically, we
set the discount factor γ to zero and train using a dataset

of sampled states. In section 4.2, we claim that the opti-
mal action for each step is determined by the correct score
onset. While this is true for the states in the dataset and if
optimality is defined by accuracy in note-wise alignment, it
might not be for out-of-distribution states or if the focus of
the agent is shifted to robustness, i.e., following the entire
performance even at the cost of some misaligned notes.

For offline RL, a crucial issue is distributional drift [27];
i.e., the fact that the agent learns from states that follow a
different distribution that the states it would encounter in
an online setting. Even though we can sample the state
space exhaustively for the training set, out-of-distribution
states are expected in test sets consisting of previously un-
seen pieces and performances. Furthermore, the relative
frequency of training samples does not necessarily corre-
spond to the states an online agent is likely to see dur-
ing training, where all target locations have the same fre-
quency. Specifically, for an agent that already learned to
predict the score onset with some accuracy, the targets
at the limits of the context are going to be less frequent
than the center ones. In other words, a non-myopic on-
line agent is likely to behave more conservatively, avoiding
large skips as they do not occur that frequently in actual
performances.

On the other hand, the offline RL formulation success-
fully leverages prior knowledge about the task and — more
importantly — stabilizes the gradient, rendering the train-
ing of a complex value function approximator feasible. Fu-
ture work includes shifting this trade-off back towards on-
line RL, for example with online RL training after initial
offline training.

The RL agent learns to align purely on pitch informa-
tion. Including onset or even duration information is likely
to increase the accuracy of following at the cost of requir-
ing a more expressive model which in turn affects infer-
ence speed — a hard bottleneck for real-time application.
In fact, running the value estimation for every incoming
performance note (such as the score follower "GAM" in
Table 4) uses up to a minute of computation time for the
7273 notes in the performance of Beethoven’s Op. 53 Mvt.
3 (Roughly 10 ms per note). A further increase is liable to
affect real-time score following in fast passages.

In terms of post-processing steps, both our offline and
online models are comparatively crude, making little use
of score information such as ornaments. As Nakamura et
al. [11] correctly remark, their post-processing step is in
principle able to improve upon any prior more error-prone
alignment. Further research is needed to know whether the
offline model can be improved in this way.

To conclude, we developed and evaluated two models of
symbolic music alignment which both outperform relevant
prior work. To the best of our knowledge, this RL-based
online alignment model is one of the first applications of
not only trainable but effectively trained models to sym-
bolic music alignment.
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7. REPRODUCIBILITY

Our alignment models are available at: https:

//github.com/sildater/parangonar
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ABSTRACT

Synthesizers are widely used electronic musical instru-
ments. Given an input sound, inferring the underly-
ing synthesizer’s parameters to reproduce it is a diffi-
cult task known as sound-matching. In this work, we
tackle the problem of automatic sound matching, which is
otherwise performed manually by professional audio ex-
perts. The novelty of our work stems from the introduc-
tion of a novel differentiable synthesizer-proxy that en-
ables gradient-based optimization by comparing the in-
put and reproduced audio signals. Additionally, we in-
troduce a novel self-supervised finetuning mechanism that
further refines the prediction at inference time. Both con-
tributions lead to state-of-the-art results, outperforming
previous methods across various metrics. Our code is
available at: https://github.com/inversynth/
InverSynth2.

1. INTRODUCTION AND RELATED WORK

Sound synthesis has been an active research field since the
end of the previous century [1]. Given a query audio in-
put, the task of crafting a specific sound is known as sound

matching. Synthesizer sound matching, also known as in-

verse synthesis, involves carefully tuning parameters from
an exponentially large number of possible configurations-
a task mostly reserved for professional audio experts. This
paper presents a novel algorithmic approach for automated

sound matching.
Algorithmic approaches for inverse synthesis can

be loosely categorized into search-based methods and
modeling-based methods [2]. Search-based methods of-
ten utilize genetic algorithms (GA) which are based on
principles of Darwinian evolution to determine the opti-
mal synthesizer configurations. For instance [3] initiated a
set of randomly sampled configurations and used GA op-
timization to reconstruct the original audio signal. Other
search-based methods include Particle Swarm Optimiza-
tion (PSO) [4] and Hill-Climbing [5]. Search-based meth-
ods can employ different objectives such as mel-frequency
cepstral coefficients (MFCCs) or a combination of mul-
tiple objectives [6, 7]. However, optimizing configura-

© Barkan et al.. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Barkan
et al., “InverSynth II: Sound Matching via Self-Supervised Synthesizer-
Proxy and Inference-Time Finetuning”, in Proc. of the 24th Int. Society

for Music Information Retrieval Conf., Milan, Italy, 2023.

tions through search-based methods can be both resource-
intensive and time-consuming for every sound sample.
Consequently, the rise of deep learning techniques has led
to a shift from search-based methods to model-based ones,
which avoid the previously mentioned drawbacks. How-
ever, search-based methods still possess a unique advan-
tage: they can establish a loss term that directly contrasts
the reconstructed audio signal with the input signal.

The aforementioned advantage is absent in most
modeling-based methods, as they usually cannot propagate
gradients through an external, commercial synthesizer. As
a result, they depend on setting an optimization goal fo-
cused on reconstructing the parameters rather than the re-
produced signal. In general, modeling-based methods em-
ploy deep learning in order to predict a synthesizer’s con-
figuration based on the input audio signal. For example,
[8] employed long short-term memory (LSTM) networks
for predicting the parameters in FM synthesizers. Inver-
Synth (IS) [9] employed strided convolution neural net-
works (CNNs) to estimate a synthesizer’s parameters as
a multi-objective classification problem. When compared
to the LSTMs approach of [8], IS provides improved accu-
racy with the ability to scale for longer audio sequences.
Another direction involves employing variational infer-
ence [10] and normalizing flows [11, 12] to automatically
tune an open-source replica of the Yamaha DX7 synthe-
sizer [13]. Finally, [14–16] introduce a different versions
of audio synthesizer models for sound matching.

A completely different direction for sound matching
and synthesis is through neural synthesizers [17–22]. For
example, in [19] the authors train Generative Adversarial
Networks to synthesize sounds that simulate natural audio
samples. However, these directions are inherently different
from the current line of work, as they do not deal with the
problem of tuning existing musical synthesizers. Instead,
these works suggest alternatives to familiar synthesizers,
which may be useful for future applications but are less
relevant to mainstream musicians that use existing com-
mercial synthesizers.

In this paper, we present InverSynth II (IS2) - an in-
novative inverse-synthesis model that introduces a differ-
entiable synthesizer-proxy capable of learning to “imitate”
the behavior of any given synthesizer. This allows for a dif-
ferentiable relationship between the synthesizer’s parame-
ters and the produced audio signal. As a result, IS2 learns
to focus on the synthesizer parameters that have more im-
pact on the reproduced signal. Our evaluations indicate
that this approach leads to a better reconstruction of the
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original audio signal in terms of spectral loss and human
perception.

Our contributions are as follows: (1) We introduce IS2
that effectively incorporates the synthesizer’s functionality
into the computational graph. By learning a differentiable
synthesizer-proxy, IS2 facilitates self-supervision based on
the difference between the input and reproduced audio sig-
nals. This is in contrast to previous model-based works
that optimized on the predicted synthesizer parameters
alone [8, 9, 23]. (2) We introduce a novel self-supervised
finetuning technique that utilizes the learned synthesizer-
proxy to further refine predictions at inference time. (3) We
compare IS2 against the state-of-the-art methods from [10]
and [9] on the three datasets, including the datasets from
both of these works. Our findings show that IS2 outper-
forms both methods on all datasets, across all metrics.

2. INVERSYNTH II

2.1 Problem Setup

Let x ∈ X be the audio signal i.e., raw waveform, Short-
time Fourier transform (STFT) spectrogram, etc. Let f :
Y → X be a synthesizer function that generates a sig-
nal f(y) ∈ X according to the parameters configuration
y ∈ Y , where y encodes the exact value for each of the
configurable synthesizer parameters. For example, these
parameters determine the oscillators’ waveform types, the
amplitudes’ values, modulation indexes, ADSR envelopes,
filter cutoff frequency, etc. The inverse-synthesis task is to
learn an encoder function eθ : X → Y , parameterized by
θ, that receives an audio x ∈ X and predicts the parameters
configuration eθ(x) ∈ Y s.t.

f(eθ(x)) = x′ ≈ x. (1)

2.2 The IS Model

The IS model from [9] receives an input signal x and
aims at inferring a parameters configuration ŷ which best
matches the true yet unknown parameters configuration y
that produced x = f(y). To this end, a dataset D =
{(xi, yi)}

N
i=1

is generated, where yi is the synthesizer’s
configuration used by f to generate the sound xi, hence
f(yi) = xi. IS trains an encoder network eθ to predict yi
from xi by minimizing the objective

θ∗ = argmin
θ

N∑

i=1

Lp(eθ(xi), yi), (2)

where Lp : Y × Y → R is the parameters loss that quan-
tifies the difference between the predicted configuration
eθ(xi) and the ground truth configuration yi. In [9], each
synthesizer parameter was treated as a categorical vari-
able (continuous parameters were quantized), hence solv-
ing multiple classification problems simultaneously (one
for each parameter). Accordingly, the loss Lp was the sum
of P cross-entropy (CE) losses, where P is the number of
the synthesizer parameters.

2.3 The IS2 Model

IS does not optimize on the actual reproduced audio sig-
nal. Instead, it only optimizes on the parameters con-
figuration according to Eq. 2. However, minimizing Lp

is just a proxy to the original task from Eq. 1 that aims
at minimizing the difference between the original sig-
nal x and the reproduced signal f(eθ(x)). This obser-
vation motivates an additional self-supervised loss term
La : X×X → R, namely the audio loss, that measures the
discrepancy between the input signal x and the reproduced
signal f(eθ(x)):

θ∗ = argmin
θ

N∑

i=1

Lp(eθ(xi), yi) + λLa(f(eθ(xi)), xi),

(3)
where λ is a hyperparameter. The audio loss term La

provides feedback on the quality of the reproduced signal
f(eθ(xi)) itself, hence better aligns with the ultimate task
of Eq. 1.

Yet, a key challenge arises - how to backpropagate the
error induced by La via f? A naive approach may pro-
pose implementing the synthesizer f as part of the com-
putational graph. However, this approach suffers from
several limitations: First, it requires a specific implemen-
tation per synthesizer and hence does not scale. Sec-
ond, most commercial synthesizers are not open-source,
and even if the source code was provided, it would still
require rewriting of the entire codebase to support an
auto-differentiation platform (e.g., PyTorch). Furthermore,
some synthesizer functionalities are not differentiable and
require workarounds that may incur discrepancies and hin-
der gradient-based optimization.

To this end, IS2 introduces a synthesizer-proxy decoder
network dφ : Y → X , parameterized by φ, that serves as a
differential replacement to the true synthesizer function f .
dφ is trained to minimize La w.r.t. φ over the dataset D,
which leads to the IS2 training objective

Θ∗ = argmin
Θ

N∑

i=1

Lp(eθ(xi), yi) + λLa(dφ(eθ(xi)), xi),

(4)
with Θ = {θ, φ}.

2.4 IS2 Training

IS2 employs stochastic gradient descent optimization [24]
on the objective from Eq. 4 as depicted in Fig. 1(a) (the
exact implementation and optimization details will follow
in Secs. 2.6 and 3.2). We apply a K-fold cross-validation
procedure over the dataset D, where each fold defines dif-
ferent training, validation, and test sets. For each fold, we
train the IS2 model on the training set and monitor the fol-
lowing measure on the validation set V ⊂ {1..N}:

Lf
V :=

∑

i∈V

La(f(eθ(xi)), xi). (5)

Finally, the best-performing model (in terms of Lf
V across

all epochs) is used for reporting results on the test set.
Note that the predicted parameters eθ(x) in Eq. 5

are propagated to the true synthesizer f and not to the
synthesizer-proxy dφ (see Fig. 1(b)). This enables select-
ing the model that minimizes the discrepancy between x
and f(eθ(x)), which aligns with the ultimate task of Eq. 1.
Yet, f does not participate in the optimization objective
(Eq. 4) since it is not necessarily differentiable. Instead,
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IS2 Training
 IS2 Inference


Figure 1: (a)-(b) depict the IS2 training phase (Sec. 2.4) that utilizes the differentiable synthesizer-proxy dφ, while monitor-
ing for the best model via the true synthesizer f . (c)-(d) depict the IS2 inference phase (Sec. 2.5) that employs ITF, utilizing
the optimized dφ∗ for improved parameters prediction on the specific test example. Again, f is used for monitoring.

the audio loss term La in Eq. 4 utilizes dφ as a differen-
tiable proxy to f in order to propagate gradients as part of
the optimization process.

2.5 IS2 Inference

A unique feature of IS2 is the ability to improve the pre-
dictions at inference time, by employing Inference-Time
Finetuning (ITF). Given a test input xt, we utilize the au-
dio loss La for leveraging self-supervision from xt, and
refine the prediction specifically for xt. To this end, we
freeze the trained decoder parameters φ∗ (Eq. 4) and fine-
tune the trained encoder parameters θ∗ to obtain finetuned
parameters θt:

θt = argmin
θ

Lt + λBLB , (6)

where

Lt = La(dφ∗(eθ(xt)), xt),

LB =
1

|B|

∑

i∈B

Lp(eθ(xi), yi) + λLa(dφ∗(eθ(xi)), xi),

and B ⊂ {1..N} is a subset of indexes from the training set
(a training batch). While one could optimize only Lt w.r.t.
θ, we found that the inclusion of LB serves as a regular-
ization (controlled by the hyperparameter λB) that leads to
more accurate predictions. This can be explained by the
fact that LB enforces the encoder to predict accurate con-
figurations for the examples in B, effectively safeguard-
ing the encoder from forgetting what it has learned during
the training phase (Sec. 2.4) and avoid overfitting the test
example xt. In practice, the ITF procedure alternates be-
tween sampling a batch of examples from the training set
B ⊂ {1..N}, and performing gradient descent update to
θ according to the objective in Eq. 6, until either conver-
gence w.r.t. Lf

t := La(f(eθ(xt)), xt) is met or the number
of alternations exceeds a prescribed threshold. ITF opti-
mization and monitoring are depicted in Fig. 1(c)-(d).

It is important to clarify that ITF is applied per test
example, i.e., for each test example xt, we first initialize

θ ← θ∗, where θ∗ are the optimal encoder parameters ob-
tained from the IS2 training procedure (Eq. 4). Then, ITF
alternations are employed according to Eq. 6 to obtain fine-
tuned encoder parameters θt that might improve Lf

t . How-
ever, improvement is not guaranteed due to an inherent dis-
crepancy that may exist between the synthesizer-proxy de-
coder dφ∗ (used in Lt) and the synthesizer f (used in Lf

t ).
Therefore, if none of the ITF alternations yield improve-
ment to Lf

t , we fallback to the prediction obtained by the
originally trained encoder eθ∗(xt) (that serves as a starting
point for the ITF procedure).

2.6 IS2 Implementation

In [9], various encoder implementations were investigated
and the spectrogram-based strided CNN encoder stood out
as the best performer. Following this finding, we imple-
ment the encoder eθ and decoder dφ as strided CNNs. Ac-
cordingly, x ∈ X stands for the processed log-magnitude
spectrogram or mel-spectrogram domain (where the spec-
trogram is obtained by the application of the STFT to the
waveform), and La is set to the Mean Absolute Error,
hence measuring the spectral difference between the input
and reproduced signals.

The synthesizer parameters configuration is encoded by
a super-vector y ∈ Y that concatenates one-hot vectors and
normalized scalars representing the categorical and contin-
uous parameters, respectively. Accordingly, the parame-
ters lossLp is set to the average of the cross-entropy and L2
losses for categorical and continuous parameters, respec-
tively. The exact details of the data processing, data repre-
sentation, and hyperparameters settings appear in Sec. 3.

3. EXPERIMENTAL SETUP AND RESULTS

3.1 Datasets, preprocessing, and data representation

In this study, we present findings from analyses conducted
on three distinct datasets. As a consequence of space con-
straints, it is not feasible to detail all the numerous con-
figurable parameters of every synthesizer utilized in our
experiments. Nevertheless, a comprehensive account of
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Metric Flow IS IS2xITF IS2
FM Dataset

Spec (x100) 4.89 1.61 1.54 1.51
Melspec (x100) 193.93 56.77 54.65 53.84
MFCC (x100) 73.49 28.83 27.74 27.29
SC 0.0941 0.0383 0.0367 0.0361
ACC (%) 93.01 93.89 93.97 94.04

DX7 Dataset
Spec (x100) 65.31 58.83 58.59 58.18
Melspec (x100) 24.04 19.29 19.37 19.26
MFCC (x100) 1502.2 1309.5 1300.4 1280
SC 1.0472 0.8578 0.8594 0.8532
ACC (%) 85.36 86.07 86.34 86.74
MAEparam (x100) 10.77 9.79 9.68 9.56

TAL Dataset
Spec (x100) 0.44 0.1809 0.177 0.173
Melspec (x100) 106.5 68.06 67.07 64.64
MFCC (x100) 8.95 5.85 5.72 5.8
SC 0.51 0.512 0.467 0.424
ACC (%) 80.94 80.62 80.73 81.17

Table 1: Aggregated results on all datasets and metrics.

each synthesizer parameter can be found in the supplemen-
tary material accompanying this manuscript. The datasets
which were used in this research are as follows: (1) FM: is
based on the FM synthesizer implementation that is avail-
able in IS2 GitHub repository. The synthesizer is com-
posed of a FM oscillator, AM modulation, and low-pass
filter. It includes 9 configurable parameters, each repre-
sented by a categorical variable. Continuous parameters
were discretized and binned to create a finite set of values.
A dataset of 180K audio samples (1 second, 16KHz) was
generated based on a random sampling of parameter con-
figurations. Samples were transformed into 257x129 spec-
trograms using log-magnitude STFT (with window size
512 and hop size 128) followed by normalization to [-
1,1]. (2) DX7: is the dataset from [10] which is based
on the Dexed synthesizer 1 which is a virtual replica of
the Yamaha DX7 synthesizer with 144 configurable pa-
rameters (represented by 54 categorical and 90 continu-
ous variables). It contains 30K audio samples (3 seconds,
22.05KHz). Each sample was transformed into a 257x347
mel-spectrogram (257-bins) of the log-magnitude STFT
(with window size 1024 and a hop size 256), followed by
normalization to [-1,1]. (3) TAL is based on the commer-
cial synthesizer: TAL-NoiseMaker 2 . It consists of 180k
audio samples generated using 9 configurable parameters
controlling the oscillator, LFO1, LFO2, and cutoff param-
eters. Each sound has a duration of 1 second sampled at
16kHz and is converted into a 257x129 spectrogram. The
spectrograms are normalized to the range [-1, 1] using the
same method as the FM synthesizer dataset. The code for
the generation of the datasets, including the parameter dis-
cretization process is available in our GitHub repository.

The above datasets encompass a broad spectrum of
sounds that vary from basic sine waves to intricate wave-
forms with a wealth of harmonics. The TAL Noisemaker
and FM synthesizer datasets comprise a range of sounds in-
cluding bass, leads, pads, plucks, and percussion, while the
DX7 dataset comprises percussive, bell-like, and metallic
sounds, in addition to rich pads and complex bass sounds.

1 https://github.com/asb2m10/dexed
2 https://tal-software.com/products/

tal-noisemaker

Our GitHub repository includes scripts that can reproduce
the these datasets.

3.2 Evaluated methods and hyperparameters setting

The following models were evaluated: (1) IS2: our model
from Sec. 2. eθ and dφ are implemented by strided and
transposed CNNs with 9 hidden LeakyReLU activated lay-
ers and Batch Normalization [25] (the exact hyperparam-
eters which were chosen for each layer can be seen in our
GitHub code). The IS2 objective (Eq. 4) was optimized
with λ = 1 using the Adam optimizer [26] with β1 = 0.9,
β2 = 0.99, batch size 64 and learning rate scheduling
from 10−4 to 10−6 for 100 epochs. While training, we
monitored Lf

V (Eq. 5) on the validation set, and the best-
performing model was selected eventually. For each test
sample, we employed 30 ITF alternations according to the
objective from Eq. 6, with λB = 1, and B is a stochas-
tic sample of 64 examples drawn randomly from the train-
ing set at each alternation. Finally, L

f
t was monitored

for selecting the best result as explained in Sec. 2.5. (2)
IS2xITF: an ablated version of IS2, in which ITF is not
employed and the predictions are performed by the trained
encoder eθ∗ . (3) IS: the IS method from [9]. (4) Flow: the
method from [10] which is based on variational inference
with normalizing flows. We tuned hyperparameters for all
models using the validation set.

3.3 Evaluation metrics

We report the average results obtained by a 5-fold cross-
validation procedure with 80%-10%-10% (training, vali-
dation, test) splits, on the following metrics: (1) Spec: the
Mean Absolute Error (MAE) between the log-magnitude
STFTs of a - the signal reproduced by the application of
f to the predicted parameters configuration, and b - the
ground truth configuration signal. (2) Melspec: the MAE
between the mel-spectrograms of a and b. (3) MFCC: the
MAE between the 40-band MFCCs of a and b. (4) SC:
the Spectral Convergence [27] between a and b. Note that
SC was found less correlated with human perception [10],
nevertheless we report this metric for the sake of complete-
ness. (5) ACC: the accuracy of the predicted categorical
synthesizer parameters. (6) MAEparam: MAE between
the predicted and ground truth numerical synthesizer pa-
rameter values. This metric is reported for the DX7 dataset
only, as all parameters in the FM and TAL dataset are mod-
eled by categorical variables. Metrics (1)-(4) measure er-
rors in the reproduced signal f(eθ(x)), while metrics (5)-
(6) measure accuracy / error w.r.t. the ground truth param-
eter configurations.

To complete our evaluations, we also present the results
of a MOS (Mean Opinion Score) test [28] with N = 20.
The MOS test involves presenting a set of synthesized
sounds to a panel of listeners, who are then asked to rate
the sound quality of the reconstructed sound with respect to
the original sound using a standardized rating scale: [1−5].

3.4 Quantitative Results

Table 1 displays the results obtained by all methods
across all datasets and evaluation metrics. The ACC and
MAEparam are averages across all categorical and contin-
uous parameters, respectively. It is important to note that
the Flow results reported in [10] were replicated, and our
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TAL Dataset FM Synth Dataset DX7 Dataset
IS2 IS2xITF Flow IS IS2 IS2xITF Flow IS IS2 IS2xITF Flow IS

Low (x100) 608 627 619 642 0.62 0.63 1.88 0.79 0.53 0.54 0.61 0.533
Mid (x100) 86.82 90.26 102 91.64 0.18 0.19 0.51 0.24 0.02658 0.02652 0.0338 0.0265
High (x100) 5.82 6.12 7.7 6.64 0.0036 0.0037 0.0224 0.0098 0.0038 0.0037 0.0043 0.0035
All bands (x100) 654 675 676 691 0.63 0.64 0.19 0.8 0.53 0.538 0.6 0.537

Table 2: Spectral analysis for different Mel-frequency bands (x100).

DX7 Param Type Flow IS IS2 IS2xITF

ALGORITHM cat 0.5758 0.6660 0.6676 0.6627
FEEDBACK cat 0.6938 0.7056 0.7179 0.7151
OSCKEYSYNC cat 0.8227 0.8269 0.8356 0.8356
LFOSPEED num 12.5070 11.5924 11.6528 11.6337
LFODELAY num 16.5244 15.0604 14.9376 14.8934

LFOPMDEPTH num 13.0251 11.7224 11.5284 11.5593
LFOAMDEPTH num 17.8000 17.7326 17.5715 17.6148
LFOKEYSYNC cat 0.8008 0.8112 0.8163 0.8150
LFOWAVE cat 0.7599 0.7622 0.7665 0.7618
PMODESENS cat 0.6214 0.6473 0.6598 0.6590
PITCHEGRATE1 num 17.6189 16.8161 16.6582 16.6706
PITCHEGRATE2 num 17.7838 16.7808 16.8625 16.8100
PITCHEGRATE3 num 18.2013 17.6938 17.4543 17.5203
PITCHEGRATE4 num 19.5772 18.6485 18.7511 18.7084
PITCHEGLEVEL1 num 6.2437 6.3104 6.3948 6.3948
PITCHEGLEVEL2 num 6.5503 6.8803 6.8803 6.8803
PITCHEGLEVEL3 num 6.8834 7.1543 7.1543 7.1543
PITCHEGLEVEL4 num 6.1773 6.4220 6.4220 6.4220
OP_EGRATE1 num 13.4020 12.2691 12.1219 12.1169

OP_EGRATE2 num 17.7775 16.8140 16.9248 16.8298
OP_EGRATE3 num 17.9113 17.0677 17.1096 17.0545

OP_EGRATE4 num 12.6359 11.8326 11.8028 11.7685

OP_EGLEVEL1 num 10.6051 10.7961 10.8860 10.9058
OP_EGLEVEL2 num 17.9278 16.8495 16.7416 16.7842
OP_EGLEVEL3 num 21.2140 20.3835 20.2471 20.2462

OP_EGLEVEL4 num 12.1882 15.1754 15.1754 15.1754
OP_OUTPUTLEVEL num 12.4545 11.5483 11.5102 11.5341
OP_MODE cat 0.9359 0.9404 0.9446 0.9430
OP_FCOARSE cat 0.6951 0.7486 0.7538 0.7513
OP_FFINE num 13.8020 13.3172 13.2250 13.2555
OP_OSCDETUNE cat 0.6578 0.7275 0.7346 0.7299
OP_BREAKPOINT num 16.3170 15.4886 15.5501 15.4929
OP_LSCALEDEPTH num 16.0303 16.0030 15.9739 16.0440
OP_RSCALEDEPTH num 16.3427 15.7286 15.6248 15.6984
OP_LKEYSCALE cat 0.8476 0.8505 0.8574 0.8526
OP_RKEYSCALE cat 0.8533 0.8541 0.8643 0.8580
OP_RATESCALING cat 0.7187 0.7528 0.7598 0.7579
OP_AMODSENS cat 0.9112 0.8987 0.9185 0.9052
OP_KEYVELOCITY cat 0.6777 0.7236 0.7290 0.7267
MEAN CAT - 0.7551 0.7796 0.7875 0.7838
MEAN NUM - 14.3 13.8434 13.8064 13.8067

Table 3: Aggregated DX7 parameters’ accuracy. The
functionality of each parameter is explained in the supple-
mentary materials (appears in our GitHub repository).

Param TAL Flow IS IS2 IS2xITF
x3_FilterCutoff (%) 86.08 72.01 75 72.8
x24_Osc2Waveform (%) 99.82 99.38 99.48 99.39
x20_Osc2Tune (%) 95 93.49 93.7 93.6
x26_Lfo1Waveform (%) 68.28 78.33 78.8 78.38
x28_Lfo1Rate (%) 47.54 52.93 53.34 52.97
x30_Lfo1Amount (%) 73.37 71.74 72.19 71.78
x27_Lfo2Waveform (%) 88.86 88.87 88.85 88.76
x29_Lfo2Rate (%) 84.77 84.56 84.67 84.59
x31_Lfo2Amount (%) 84.77 84.28 84.45 84.31
MEAN (%) 80.94 80.62 81.17 80.73

Table 4: TAL parameters’ accuracy. The parameters are
prefixed with “xAB”, where AB denotes the index of the
parameter within the synthesizer. The functionality of each
parameter is explained in the supplementary materials (ap-
pears in our GitHub repository).

Param FM Flow IS IS2 IS2xITF
osc1_wave (%) 99.98 99.94 99.94 99.94
osc1_freq (%) 91.26 98.7 98.83 98.81
osc1_mod_index (%) 93.08 96.43 96.5 96.45
lfo1_freq (%) 99.95 99.86 99.88 99.87
lfo1_wave (%) 99.52 98.75 98.69 98.67
am_mod_wave (%) 67.73 71.02 71.74 71.59
am_mod_freq (%) 86.23 82.71 82.88 82.86
am_mod_amount (%) 99.43 97.62 97.64 97.61
filter_freq (%) 99.98 99.93 99.95 99.94
MEAN (%) 93.02 93.89 94.01 93.97

Table 5: FM Synth parameters’ accuracy. The function-
ality of each parameter is explained in the supplementary
materials (appears in our GitHub repository).

Dataset Flow IS IS2xITF IS2

FM 4.7 4.85 4.6 5
DX7 1.35 2.45 3.28 3.5
TAL 3.87 3.37 3.85 3.95

Table 6: MOS test results. Scores on a scale of [1 − 5]
represent the perceptual reconstruction quality w.r.t. the
original audio.

results are consistent with the original findings. Table 1
demonstrates that our IS2 method outperforms the other
baselines in all metrics and datasets, except for the MFCC
score on the TAL datasets, where the ablated version of
IS2, IS2xITF, outperforms it. Furthermore, the results in-
dicate that the ablated version IS2xITF is highly effective
in comparison to previous baselines which highlights the
general utility of the IS2 architecture even without the ITF
phase. In the following section, we aim to provide a more
comprehensive analysis and interpretation of these results.

To provide additional perspective, we conducted the fol-
lowing analysis: We partitioned the 257 mel-spectrogram
bins into “Low”, “Mid”, and “High” equally sized mel-
frequency bands. Then, for each sound in the test set, we
computed the L2 loss between the reproduced version and
the ground-truth of each mel-frequency band. The results
for the different frequency bands, including the entire mel-
spectrogram (’All bands’) are presented in Table 2. First,
We observe that IS2 outperforms the other models on the
entire mel-spectrogram (’All bands’), across all datasets,
which is consistent with the results presented in Table 1
(note that Tables 1 and 2 report different metrics, i.e, MAE
vs. L2). Specifically, IS2 performs particularly well on low
frequency regime (’Low’). Arguably, this finding might be
explained later where we shall see that the IS2 model at-
tains the best loss in 4 out of 6 low-frequency oscillator
(LFO) parameters, which have a stronger impact on the
low bands. This calls for further research into the relation-
ship between parameter prediction accuracy and the mel-
spectrogram error.

In terms of the “Mid” band, the IS2 model demon-
strated superior performance on the TAL and FM datasets,
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whereas the IS model exhibited better results on the DX7
dataset. For the “High” band, different baselines achieved
the best outcomes. This observation is not surprising since
high frequencies typically undergo rapid changes and can
be less perceptible even to experienced listeners. Overall,
our findings indicate that the IS2 approach exhibits robust
performance across various datasets and frequency bands,
with exceptional accuracy in estimating low frequencies.

Next, we turn to evaluate the accuracy of predicting
each parameter specifically. The DX7 synthesizer con-
sists of two types of parameters: categorical, denoted as
“cat”, and numerical, denoted as “num”. To evaluate
performance, ACC was reported for categorical parame-
ters, while MAEparam was calculated for numerical pa-
rameters, as previously mentioned. The DX7 parameters
are further categorized into several groups, including Al-
gorithm, Feedback, Operators, Pitch Envelope Generator,
LFO, and Filter, with a comprehensive explanation of each
parameter available in the supplementary material. Ta-
ble 3 outlines the prediction results for the DX7 parame-
ters. Note that parameters beginning with the prefix “OP”
are an average aggregation of the six operators of the syn-
thesizer, as explained in the supplementary material.

The results reveal that the IS2 method consistently out-
performed other models in predicting all categorical pa-
rameters. Furthermore, the IS2 model also outperformed
other models in 9 out of 25 numerical parameters. No-
tably, the IS2xITF model performed best among all mod-
els for the “OP_EGRATEi” (i=1...4) numerical param-
eters, demonstrating superior performance even without
fine-tuning (ITF). Specifically, this model exhibited bet-
ter performance in all numerical parameters and outper-
formed other models in 5 out of 25 numerical parameters.
In contrast, the IS and Flow models demonstrated similarly
robust performance, outperforming other models in fewer
numerical parameters, namely 11 out of 25.

Overall, Table 3 displays a trend where all categori-
cal parameters are more accurately estimated by the IS2
model. In terms of numerical parameters, the IS2 model
performs better in predicting parameters with greater per-
ceptual significance, such as LFO. However, parameters of
lesser perceptual significance, such as the envelope level
of pitch (PITCHEGLEVEL), exhibit lower estimation ac-
curacy. These trends are consistent with the findings pre-
sented earlier in Table 2

The trends observed in Table 3 repeat themselves in the
TAL dataset (Table 4) and the FM Synth dataset (Table 5),
with slightly improved accuracy for the alternative models.
Nevertheless, the IS2 model maintains the highest mean
accuracy. IS2 does not achieve the highest accuracy in cer-
tain parameters, such as filter cutoff, which are of lesser
significance for perceived quality. For example, if the filter
cutoff is estimated for class A instead of the correct class
B, and A and B are neighboring classes, the impact on
perception might be insignificant. Another set of param-
eters that demonstrate negligible differences in accuracy
between models is Oscillator 2, LFO1 amount, and LFO2
values. In contrast, parameters such as LFO1 waveform
and rate play a crucial role in controlling Oscillator 2 mod-
ulation and impacting the low frequencies of the sound,
making them significant in terms of perception. Here, IS2
achieves significantly higher accuracies compared to other
models. These findings are consistent with the low losses

of the IS2 model for low frequencies, as presented in Ta-
ble 2.

In Table 5, Oscillator 1 waveform, LFO1, and filter
cutoff frequency exhibit negligible differences in accuracy
in favor of the alternative baselines. Higher differences
are observed in AM modulation parameters. Neverthe-
less, these parameters primarily affect the Tremolo effect,
which has a relatively no impact at all on the frequency
composition, and for small changes, leading to less influ-
ence on human perception and less impact on the metrics
presented in Table 1. Compared to the Flow model, the
parameters with the most significant differences are Oscil-
lator 1 frequency and modulation index, which have a sig-
nificant impact on perception by affecting the carrier fre-
quency of the signal.

Overall, the results in Tables 1-5 indicate that by lever-
aging information on the difference between the original
and reproduced signal during training and inference (ITF),
IS2 promotes accurate predictions for parameters that have
the most significant impact on human perception, espe-
cially FM modulator parameters which very challenging to
estimate. Consequently, IS2 produces reconstructions that
more closely resemble the original signal, which is the ul-
timate goal of sound matching. In what follows, we further
substantiate our findings via human subjective evaluation.

3.5 MOS Test and Qualitative Results

Table 6 presents MOS test results conducted using N = 20
individuals. Participants were asked to rate the reconstruc-
tion score of 80 random audio samples on a [1 − 5] scale.
The results are inline with those of Table 1, showing that
the IS2 model outperforms the other models. Furthermore,
the MOS test results indicate that the IS2 model has the
highest perception quality of all the models evaluated. The
samples from this test are available for listening on the
GitHub repository.

Finally, in the supplementary materials, we provide ex-
tensive qualitative comparison between the ground-truth
spectrograms and the reconstructions produced by each of
the evaluated methods. Additionally, the audio signals for
these examples are provided are available in our Google
Drive folder 3 .

4. CONCLUSION

We presented IS2 - a novel model for automatic synthe-
sizer sound matching. IS2 introduces two novel contribu-
tions: (1) a differentiable synthesizer-proxy decoder that
enables gradient-based optimization of the reproduced au-
dio signals, and (2) the ITF technique that enables im-
proved model predictions at inference time. These contri-
butions lead to state-of-the-art results compared to existing
methods across multiple datasets and metrics.
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ABSTRACT

Query-by-Humming (QbH) is a task that involves finding

the most relevant song based on a hummed or sung frag-

ment. Despite recent successful commercial solutions, im-

plementing QbH systems remains challenging due to the

lack of high-quality datasets for training machine learning

models. In this paper, we propose a deep learning data

collection technique and introduce Covers and Hummings

Aligned Dataset (CHAD), a novel dataset that contains 18

hours of short music fragments, paired with time-aligned

hummed versions. To expand our dataset, we employ a

semi-supervised model training pipeline that leverages the

QbH task as a specialized case of cover song identifica-

tion (CSI) task. Starting with a model trained on the initial

dataset, we iteratively collect groups of fragments of cover

versions of the same song and retrain the model on the ex-

tended data. Using this pipeline, we collect over 308 hours

of additional music fragments, paired with time-aligned

cover versions. The final model is successfully applied to

the QbH task and achieves competitive results on bench-

mark datasets. Our study shows that the proposed dataset

and training pipeline can effectively facilitate the imple-

mentation of QbH systems.

1. INTRODUCTION

Query-by-Humming (QbH) is a well-known task in Music

Information Retrieval. It aims to enable users to find a par-

ticular song within a retrieval system by providing a small

audio segment of their voice or humming as a query. Such

systems rely on a large database of songs and display the

most similar matches to the user’s query.

One significant benefit of the QbH system compared to

other music search systems [1] is that users do not have to

play a copy of the song or recall its lyrics. Instead, they can

hum or sing the melody of the desired song, and the sys-

© A. Amatov, D. Lamanov, M. Titov, I. Vovk, I. Makarov,

M. Kudinov. Licensed under a Creative Commons Attribution 4.0 Inter-

national License (CC BY 4.0). Attribution: A. Amatov, D. Lamanov,

M. Titov, I. Vovk, I. Makarov, M. Kudinov, “A Semi-Supervised Deep

Learning Approach to Dataset Collection for Query-by-Humming Task”,

in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

tem will use advanced audio processing and deep learning

techniques to locate it.

A similar task to QbH is Cover Song Identification

(CSI) task [2–4]. CSI aims to identify cover songs per-

formed by different artists as versions of original songs

within a music database. Although CSI systems often rely

on neural networks, traditional QbH systems mainly uti-

lize audio processing and music information retrieval tech-

niques like pitch estimation, note extraction, and time se-

ries matching [5–7]. The main reason QbH lacks deep

learning models is the absence of large datasets for train-

ing. This is primarily due to the high cost and limited avail-

ability of humming/singing data for QbH compared to CSI,

where multiple versions of the same song are sufficient

for training. Additionally, QbH requires the alignment of

humming/singing fragments with the original versions of

the song.

To overcome the challenges of limited data, we propose

a novel dataset CHAD - Covers and Hummings Aligned

Dataset. This dataset contains groups of time-aligned mu-

sic fragments, primarily consisting of vocal segments from

popular songs. Time alignment is the process of syn-

chronizing a fragment from a humming or cover version

of a song with its corresponding fragment from the orig-

inal version to have the same temporal structure. The

groups are separated into two categories: one with hum-

ming fragments collected via crowdsourcing and another

with cover fragments collected using a semi-supervised

training pipeline. We use this dataset to train our deep

learning model for matching audio fragments with simi-

lar melodies using metric learning paradigm. We demon-

strate that these techniques can also be successfully applied

in the QbH task, achieving results comparable to the best

performing scores on popular QbH benchmarks. Further-

more, we evaluate our model’s performance on a large in-

ternal song database, showing its ability to generalize to a

wider range of songs.

The paper is structured as follows. Section 2 briefly

reviews existing approaches to the QbH task. Section 3

describes the proposed deep learning model and training

method for the QbH task. Section 4 outlines the dataset

and semi-supervised data collection pipeline. Section 5

describes the experiments conducted on public and private

data. Finally, Section 6 concludes the paper.
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2. RELATED WORK

QbH systems typically have two components: audio tran-

scription and search modules. Many approaches in QbH

research have focused on designing effective representa-

tions of hummings that can be easily matched with MIDI

targets. Some standard methods include using Hidden

Markov Models [5] to transcribe hummings into a se-

quence of symbols, discretizing fundamental frequency

into semitones [6], and transcribing hummings into a note-

like structure using pitch, interval, and duration features

[7].

Once the humming has been transcribed into a for-

mat that can be compared to database entries, the search

module is responsible for finding the most relevant songs.

Dynamic Time Warping [6, 8] has been a popular algo-

rithm for comparing the humming query to MIDI-audio

entries in the database. This algorithm finds the minimum

path between the discretized humming and the MIDI-audio

database. Another approach, top-down melody match-

ing [9], involves dynamically aligning the humming query

with a song from the database. A third approach, pro-

gressive filtering [10], involves multiple stages of song

recognition with increasingly complex recognition mecha-

nisms. These algorithms serve to match humming queries

with songs in a database effectively. In the approach [11],

authors use melody extraction network to extract robust

features from audios and match them with songs from

database using an ensemble of melody matching algo-

rithms.

In contrast to QbH, the latest research on the Cover

Song Identification (CSI) task has been focused on deep

learning-based techniques. A popular approach in CSI is to

use deep neural networks for audio representation and met-

ric learning for similarity search. In [12], the authors use

Constant-Q Transform (CQT) of audio and train a mod-

ified version of ResNet with two losses - triplet loss for

intra-class compactness and classification loss for inter-

class discrimination. In the next study, [13], the authors

improve results by integrating the PCA module into the

fully-connected layer of ResNet. Metric learning is widely

used in CSI. It is shown that different model and loss ar-

chitectures like Siamese Network [3], triplet loss [12], and

contrastive loss [4] can produce competitive results.

In [2], the authors use VGG on CQT features with vari-

able length to tackle the problem of tempo changes of the

cover songs. In [14], the authors use an audio signal’s Mel-

Frequency Cepstrum Coefficients (MFCC) as the represen-

tation. They build cross-similarity matrices between songs

and collect the nearest neighbors of each song based on

these matrices.

Several datasets are available for CSI tasks [15–18].

These datasets contain audio features alongside music

metadata and provide researchers with a way to evaluate

and validate their models without collecting large amounts

of audio data.

 extraction

Vocal extraction model

Initial audio waveform

Convolutional encoder

 projection layer

...

...

 extraction... ...

Figure 1: Audio encoder model. Vocal part is extracted

from the input waveform. Then, either f0 or CQT features

are calculated on the vocal part. Finally, the features are

processed by a convolutional encoder model and, then, the

output embeddings are normalized.

3. MODEL

Our encoder model, M , is presented in Figure 1 and in-

spired by [4]. The whole fingerprints extraction pipeline

can be described in the following steps:

1. The first step of the encoding process is to extract

the vocal part of the audio waveform y using a pre-

trained audio source separation model V (.). The

model is applied only to cover fragments since hum-

ming fragments do not contain any accompaniments.

We used Spleeter [19] as a model due to its high-

speed performance.

2. The vocal part of the audio is then sent to the fea-

ture extractor model. In this study, two different ex-

tracted feature types are used: the first is the funda-

mental frequency (f0) extracted using the CREPE

model [20], which is considered a robust representa-

tion of the melody. The second is Constant-Q Trans-

form (CQT) as its faster alternative. The melody is

crucial for search as it contains essential song infor-

mation while ignoring irrelevant singing person de-

tails.

3. The extracted feature matrix is then separated into

overlapping segments, called analysis windows with

length W and step H , which are fed separately to a

convolutional encoder F (.) ResNet18 [21]. The fi-

nal layer of the encoder is a L2-normalization layer

G(.), which normalizes the output of the encoder

along the embedding dimension.
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Figure 2: Semi-supervised training and data collection

pipeline used to train the initial model, and iteratively

gather new aligned audio fragments and retrain the model.

4. The output fingerprints Z = {zi}i=1...T , where T is

the total number of fingerprints for a waveform and

128 is its dimension size.

We use the metric learning method similar to [4] as

a learning framework. To form a batch of audio frag-

ments for training, we randomly sample K groups of time-

aligned audio fragments. By group, we refer to a collection

of original song and humming/singing fragments. Then,

we select n random audio fragments from each group and

extract a random analysis window of size W . Since our

data is aligned, all windows from each group will repre-

sent the variations of the same data. Afterward, we apply

our model and extract in total N = K · n fingerprints for

n in each group.

Our loss is defined as follows:

ℓ = −
K∑

k=1

∑

zi
k
,z

j

k
∈Zk

log
exp(

sim(zi
k,z

j

k
)

τ
)

∑
zl ̸∈Zk

exp(
sim(zi

k
,zl)

τ
)
, (1)

where Zk = {z0k, . . . z
n−1
k } is the group of fingerprints, zik

and z
j
k are different fingerprints from Zk, zl ̸∈ Zk stands

for all fingerprints not in a given group k, sim(zi, zj) =
zTi zj is the similarity function, and τ is a temperature pa-

rameter. The final loss is computed across all possible pos-

itive pairs and averaged afterward.

4. DATASET

This section describes the process of collecting a dataset

for the QbH task, its statistics, and its limitations.

4.1 Semi-supervised pipeline

Figure 2 presents our proposed semi-supervised pipeline.

The dataset used in this study is structurally divided into

two parts: H and C. The first part, H, consists of orig-

inal music fragments fo paired with time-aligned hum-

ming/singing fragments fh, making groups Fh. The fo

fragments are represented by various vocal and instrumen-

tal parts of music clips. The fh fragments were collected

Algorithm 1: Aligned fragments extraction algo-

rithm of data collection pipeline.

Input : yo - original song;
Y c - set of cover songs;
dmin - fragment’s minimal length;
dmax - fragment’s maximal length;
Dp - set of pause lengths;
Ldb - set of dB levels;
αcorr - threshold value to exclude same fragments;

Output: F - set of groups of aligned fragments from original
and cover songs

1 F
o,Fo

prev ← {}, {} ;

2 M ← initialize_model(.);
3 rms← rms(yo);
4 foreach dp ∈ Dp do

5 foreach ldb ∈ Ldb do

6 msilence ← find_silence_mask(rms, ldb);
7 F

o ← split_by_silence(yo,msilence);
8 F

o ← merge_fragments(Fo, dp, dmin, dmax);
9 F

o
emb
←M(Fo);

10 Acorr ← build_correlation_matrix(Fo
emb

);

11 F
o ← find_unique_fragments(Fo,Acorr, αcorr);

12 F
o,Fo

prev ← max(Fo,Fo
prev);

13 end

14 end

15 F← {};
16 foreach fo ∈ F

o do

17 foreach yc ∈ Y
c do

18 fo
emb
←M(fo);

19 yc
emb
←M(yc);

20 F
c ← cross_correlation(yc, yc

emb
, fo

emb
);

21 F
c ← filter(Fc, βrel, βirrel);

22 F← F ∪ (fo,Fc)

23 end

24 end

using a crowdsourcing service Yandex.Toloka. The sec-

ond part of the dataset, C, was created by collecting the

100 most popular songs from the Billboard Charts for each

year from 1960 to 2020. For each song, up to 10 cover ver-

sions were retrieved from YouTube top results using query

"{song name} {artist name} cover".

Because H already has groups of time-aligned frag-

ments, we can train the initial encoder model M0 with

this data. However, C only contains groups of full song

versions instead of time-aligned fragments, so extracting

fragments from these groups is necessary. We propose

Algorithm 1 for this task. This algorithm is designed to

extract the maximum amount of unique fragments from

the original versions of the songs and find the correspond-

ing aligned fragments from cover versions of the songs in

C. The algorithm can be described in three stages:

Initialization stage

1. As input, the algorithm takes the vocal part of the

original song yo and a group of cover songs Y c. Ad-

ditionally, the algorithm takes the minimal and max-

imal length of the fragment dmin and dmax, respec-

tively, the set of dB levels Ldb by which to count the

region in song as silent or non-silent, the set of max-

imal pause lengths Dp between adjacent fragments

in a song separated by silence to be considered as

one fragment, and threshold values αcorr, βrel, and

βirrel to exclude unwanted fragments from the out-
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put set.

2. Initialize empty sets of unique fragments F
o and

F
o
prev , the encoder model M , and rms of the wave-

form yo (lines 1-3).

Fragmentation stage

1. To find the best combination of Dp and Ldb to yield

F
o of maximal size, start two loops by iterating over

these sets (lines 4-5).

2. Compute the binary mask of non-silent regions

msilence using rms and ldb ∈ Ldb and find a set

of initial fragments by splitting the waveform yo us-

ing this mask. Then, merge adjacent fragments, the

pause between which is less than dp ∈ Dp. Addi-

tionally, the length of such fragments should satisfy

the condition dmin < |f | < dmax, f ∈ F
o. (lines

6-8).

3. Apply model Mi to the found fragments and extract

the fingerprints. Then, build the correlation matrix

Acorr based on the fragments’ fingerprints Fo
emb and

exclude the ones with a correlation higher than the

threshold αcorr. We used the maximum of cross-

correlation function to measure the correlation of

fingerprints with different lengths (lines 9-11).

4. Find the parameters of dB levels and pause lengths

that yield the maximum amount of unique fragments

(line 12).

Matching stage

1. Once the unique fragments from the original version

of the song F
o are extracted, initialize the empty set

F to be filled with groups of the time-aligned frag-

ments from original and cover songs and iterate over

each found original fragment fo ∈ F
o and each

cover song yc ∈ Yc (lines 15-17).

2. Extract fingerprints from original fragment fo
emb and

cover song ycemb using M . Search for the same frag-

ments in the cover song using a cross-correlation

function and peak detection algorithm (lines 18-19).

3. Filter out noise cover fragments by establishing two

thresholds:

(a) The cover fragments with correlation above

βrel are considered relevant, indicating a high

level of certainty that the content of the cover

fragment is similar to that of the original frag-

ment.

(b) The cover fragments with correlation below

βirrel are considered irrelevant fragments and

are excluded. Fragments with a correlation be-

tween these two thresholds are counted as un-

certain and require double-checking via addi-

tional crowdsourcing.

Save the gathered groups of aligned fragments (lines

20-22).

We apply this pipeline to song batches of C, which gen-

erates new groups of aligned data. These groups are then

added to H, and the model, M , is retrained on the newly

gathered data. In such a way, we first train M0 on ini-

tial humming data, then iteratively update our model from

Mi → Mi+1 and fill our dataset with new data.

For the unique fragments extraction algorithm, we set

dmin = 8, dmax = 20, Dp = {0.5, 1, 1.5} seconds, Ldb =
{52, 56, 60, 64, 68} dB, αcorr = 0.8. When searching for

fragments in cover versions of songs, we set the optimal

thresholds to βrel = 0.5 and βirrel = 0.3. All fragments

from the same group have equal duration to retain the time-

alignment consistency.

4.2 Statistics

We call the collected dataset Covers and Hummings

Aligned Dataset (CHAD). Here are the dataset’s statistics:

• CHAD contains 5494 original songs, 31630 cover

songs, and 5164 hummings fragments.

• The total number of audio fragments is

81781, which amounts to over 270 hours of

singing/humming audio fragments and 51 hours of

original song fragments. The group size varies from

2 to 31, with an average size of 6 fragments.

• In H, the duration of the fragments ranges from 4 to

20 seconds, with a mean of 11.06 ± 2.67 seconds,

and a total for original fragments - 2.12 hours, and

for humming fragments - 15.83 hours.

• In C, the duration ranges from 8 to 20 seconds, with

a mean of 14.66±2.03 seconds, and a total for orig-

inal fragments - 49.54 hours, and cover fragments -

259.03 hours, where 194.53 hours are for fragments

with correlation above βrel, and 64.50 hours are for

fragments with correlation between βrel and βirrel.

• Additionally, the metadata is collected. It includes

YouTube video ID, title, author, correlation value,

and whether the fragment is double-checked. The

dataset’s audio IDs, metadata, start and end times-

tamps and data download script are available in our

GitHub repository 1 .

4.3 Limitations

However, our semi-supervised pipeline has some limita-

tions. First, it can only extract vocal data, and the algo-

rithm needs modification to extract instrumental segments.

Second, the number of covers is limited, as there are usu-

ally fewer cover versions for non-popular songs. Lastly,

there will still be some noisy unrelated fragments in the

final set due to the automatic validation threshold. Future

research could explore using generative networks [22] to

overcome these limitations.

1 https://github.com/amanteur/CHAD
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5. EXPERIMENTS

5.1 Experimental setup

Input features. We used CREPE [20] activations as f0
features, yielding output features with a size of (360, T ).
We further enhanced the robustness of the melody fea-

ture by trimming it to include only 3 octaves around its

mean pitch, following the approach used in [25]. Addition-

ally, we downscaled this representation to the size (80, T
4 ).

However, we encountered issues with the slow speed of

the melody extraction model during evaluation, rendering

the overall approach unscalable. To address this, we incor-

porated CQT features into our model, extracted with the

following parameters: 12 bins per octave with a total of

7 octaves, Hann window, hop length 512, and a sampling

rate of 16 kHz.

Augmentations. We found an optimal set of augmen-

tations to every batch of waveform fragments, which in-

cluded continuous pitch shifting (with a shift range of -4.0

to 4.0 semitones and probability of 0.5), time stretching

(with a stretch rate range of 0.8 to 1.25 and probability

of 0.8), SpliceOut [26] (with 10 random intervals of 500

frames and probability of 0.8), mixing with other audio

samples in the batch (with an SNR range of 5 to 10 dB and

probability of 0.8), and adding background noises (with an

SNR range of 3 to 30 dB and probability of 0.8).

Model. We discovered that as the length of a hummed

or sung recording increases, the tempo/rhythm becomes

more mismatched from the original song. So we trained

two models with different analysis window lengths (W )

and hop sizes (S): Mshort for shorter recordings (up to 15
sec) with W=3 sec and S=0.25 sec, and Mlong for longer

recordings with W=8 sec and S=0.64 sec. Both models

used a vanilla ResNet18 encoder model, with output em-

beddings of size (128, T ), where T is the number of fin-

gerprints.

Training setup. We trained the encoder model using the

ADAM optimizer, with a learning rate of lr = 0.001 and a

batch size of 32 for 100 epochs. We used the NT-Xent Loss

[27] with a temperature of t = 0.05. We employed the

Multi-similarity miner [28] and an adaptive batch sampler

to improve convergence speed. The batch sampler selects

up to 4 fragments with a random starting point for each

fragments group. We trained the model under two settings:

only on the C part and on both C + H parts of CHAD.

Models were trained on 1 NVIDIA GeForce RTX 2080 Ti

12 Gb.

To evaluate the performance of our model, we con-

ducted a series of experiments, which involved:

• Experiments on the MIREX QbH datasets [29],

specifically the Roger Jang and ThinkIt datasets,

where MIDI recordings were used as references.

The MIR-QBSH corpus of Roger Jang consists of

4431 query hummings and 48 original MIDI files,

while the Thinkit corpus contains 355 queries and

106 original MIDI files. The song database was con-

structed according to MIREX QbH Challenge stan-

dards, with 2600 MIDI files. These experiments

aimed to find the ground-truth MIDI by a given

query humming.

• Experiments on MIREX QbH datasets according to

Subtask 2 testing protocol in MIREX evaluation sys-

tem. In this protocol, queries are also considered as

"versions" of ground truth, and the objective is to re-

trieve all variants related to a searched ground truth

by given query humming.

• Experiments on a dataset of real recordings, which

included MIREX Roger Jang Dataset with all MIDI

files replaced with real recordings extracted from

YouTube videos (Jang Real), and MTG-QbH [24]

dataset with 118 queries and 118 original songs. The

additional database comprises 1886 random songs

from the internal dataset to serve as imposter songs.

• Experiments on a large-scale internal database

(DB90K) containing more than 90k real song

recordings. For this experiment, we used two types

of queries: 126 humming fragments for 126 songs

collected by our team as search-by-humming setup

and 2000 singing fragments from karaoke record-

ings gathered from the DAMP-VPB dataset [30] as

search-by-singing setup. In the latter case, we se-

lected 5 of 16 original songs and their sung perfor-

mances and manually split them into fragments.

For all real recordings, we extract the vocal part before-

hand. Also, we ensure that CHAD does not contain any

songs that are also present in the evaluation datasets. This

was achieved by excluding such songs from the training

set.

Retrieval. We use two variants of sequence matching

methods at the retrieval phase: maximum Pearson correla-

tion coefficient (Corr) or Dynamic Time Warping (DTW)

[31]. For the large-scale experiment on DB90K, we use a

two-step search procedure with a first step of fast retrieval

of preliminary candidates using the FAISS Approximate

Nearest Neighbors (ANN) algorithm with Euclidean dis-

tance followed by a second step of reranking. After further

analysis, we discovered that Euclidean distance and Cosine

distance yielded similar results. To maintain simplicity, we

chose to use Euclidean distance. The ANN search returns

the top 5000 candidates, which are reranked based on the

Pearson correlation score.

Metrics. We follow the MIREX evaluation protocols [29]

for the QbH task and compute the mean of the Top-n hit

rate for every humming/singing fragment. There was only

one related song in the database for every query fragment.

5.2 Results

We compare our model Mshort trained on C + H with 2

best performing methods according to the latest available

result of MIREX QbH Challenge [32]. The first one [8]

is based on f0-matching technique. The second one is a

proprietary method for which only scores were reported in

the leaderboard. We use only one of our models (Mshort

on CREPE and CQT features) in this experiment as most
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Method
Top-10 hit rate ↑

Jang [23] Thinkit Subtask 2 Jang Real MTG-QBH [24]

Ours
metric learning(CREPE) 0.921 0.966 0.959 0.868 0.883

metric learning(CQT ) 0.840 0.786 0.866 0.867 0.747

Stasiak [8] f0-matching 0.948 0.907 0.968 - -

ACRCloud proprietary 0.990 0.986 0.972 - -

Table 1: Evaluation of model Mshort trained on dataset C +H with two types of features - CREPE and CQT . Evaluation

is provided on MIREX datasets - Jang, Thinkit, and Subtask 2, and datasets - Jang Real, and MTG-QBH, which are more

applicable to real-world scenarios.

query fragments are shorter than 16 seconds. We use DTW

for matching feature sequences on MIDI-based datasets

and Corr for non-MIDI datasets as we found that corre-

lation coefficient gives performance improvement on real

data.

The results are summarized in Table 1. Our model

demonstrates competitive though slightly inferior perfor-

mance on the given benchmarks. On real (non-MIDI) data

our implementation of [8] produced near-random results

which can be explained by the difficulty of tracking and

matching f0 in real music recordings. Also, we see that

while using CQT features led to a performance drop, it is

not prohibitively large so CQT features can be used when

computing f0 is infeasible.

Table 2 shows the scalability of our approach in the ex-

periment with DB90k. We do not track the top-1 hit rate as

the database contains several versions of the same song.

Table 2a reports the results of the search-by-humming

setup. We used Mshort, Mlong , and their combination

model Mfused, which worked on a simple rule: Mshort

was used for hummings shorter than 15 seconds, while

Mlong was used otherwise. All presented models are

trained with CQT features. We observed that Mfused

worked better than Mshort and Mlong separately in all sce-

narios. Comparing models trained on C and C + H, the

accuracy gap suggests that training on real humming data

is crucial for search-by-humming setup. In Table 2b, we

report our results for search-by-singing setup with Mfused

on DAMP-VPB. Our model, trained on both C and C +H,

retrieves the correct songs with high precision, with no per-

formance drop observed for the model trained on C alone,

due to the dominance of sung fragments in our training

dataset.

Additionally, we evaluate the retrieval speed of our

models Mshort and Mlong on DB90k, as shown in Ta-

ble 3. We find that Mlong performs better than Mshort

in both search steps (ANN and Reranking) due to its abil-

ity to process longer humming recordings and thus require

less processing of fragments. Our results demonstrate the

scalability and efficiency of our search system in efficiently

achieving high-precision results.

6. CONCLUSIONS

In this paper, we propose a novel dataset CHAD alongside

a semi-supervised data collection and training pipeline for

Partition Model
Top-n hit rate↑

100 10 5 3

C
Mshort 0.643 0.548 0.524 0.476
Mlong 0.412 0.277 0.270 0.262
Mfused 0.759 0.621 0.603 0.517

C +H
Mshort 0.659 0.595 0.571 0.484
Mlong 0.595 0.508 0.413 0.389
Mfused 0.776 0.707 0.691 0.586

(a) Results on humming queries.

Partition Model
Top-n hit rate↑

100 10 5 3

C
Mfused

0.931 0.904 0.885 0.865
C +H 0.923 0.899 0.885 0.856

(b) Results on singing queries.

Table 2: Evaluation on DB90K with humming and singing

fragments using models Mshort, Mlong , and their fusion

model Mfused trained on C and C+H with CQT features.

Model
Search step, s

ANN Reranking

Mshort 1.41 ± 0.57 5.37 ± 0.87

Mlong 0.52 ± 0.11 2.39 ± 0.43

Table 3: Query search speed on DB90K using models

Mshort and Mlong trained on C + H with CQT features

using 32 CPU.

a Query-by-Humming system. We show that cover songs

could be used to train query-by-humming models with

competitive performance. Although the model trained on

open data performs well on sung queries, the pure search-

by-humming setup requires adding a portion of real hum-

ming data into the training set for acceptable performance.

The main disadvantage of the proposed approach is that

it cannot be used for searching instrumental tracks. One

possible solution to this problem would lie in the field of

dominant melody extraction and generative networks and

is left for future research.
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ABSTRACT

In deep learning research, many melody extraction mod-

els rely on redesigning neural network architectures to im-

prove performance. In this paper, we propose an input

feature modification and a training objective modification

based on two assumptions. First, harmonics in the spectro-

grams of audio data decay rapidly along the frequency axis.

To enhance the model’s sensitivity on the trailing harmon-

ics, we modify the Combined Frequency and Periodicity

(CFP) representation using discrete z-transform. Second,

the vocal and non-vocal segments with extremely short du-

ration are uncommon. To ensure a more stable melody

contour, we design a differentiable loss function that pre-

vents the model from predicting such segments. We apply

these modifications to several models, including MSNet,

FTANet, and a newly introduced model, PianoNet, modi-

fied from a piano transcription network. Our experimen-

tal results demonstrate that the proposed modifications are

empirically effective for singing melody extraction.

1. INTRODUCTION

Singing melody extraction is a challenging task that aims

to detect and identify the fundamental frequency (F0) of

singing voice in polyphonic music recordings. This task

is more complicated than the monophonic pitch detection

task due to the presence of various instrumental accompa-

niments and background noises, making it more difficult

to accurately extract the singing melody. Singing melody

extraction is not only crucial for music analysis by itself,

but also has many downstream applications, such as cover

song identification [1], singing evaluation [2], and music

recommendation [3].

Deep neural networks have been widely adopted in the

singing melody extraction task to produce promising per-

formance in terms of extraction accuracy. Early models

[4–6] simply leveraged deep neural networks (DNN) and

convolutional neural networks (CNN) [7]. In more recent

*The first two authors have equal contribution.

© K. Shao, K. Chen, T. Berg-Kirkpatrick, S. Dubnov. Li-

censed under a Creative Commons Attribution 4.0 International License

(CC BY 4.0). Attribution: K. Shao, K. Chen, T. Berg-Kirkpatrick, S.

Dubnov, “Towards Improving Harmonic Sensitivity and Prediction Sta-

bility for Singing Melody Extraction”, in Proc. of the 24th Int. Society

for Music Information Retrieval Conf., Milan, Italy, 2023.

models, musical and structural priors were incorporated to

improve performance. These include MSNet [8] with a

vocal detection component at the encoder-decoder bottle-

neck, joint detection model [9] setting up an auxiliary net-

work, and TONet [10] with tone-octave predictions. Ad-

ditionally, models can capture frequency relationships bet-

ter with multi-dilation [11], cross-attention networks [12],

graph-based neural networks [13], or harmonic constant-Q

transform (HCQT) [14].

One of our observations relates to the input representa-

tions of the models, which play an important role in affect-

ing the extraction performance. Timbre, which is closely

related to harmonics, is one of the key components that

helps models distinguish the vocal from other instruments.

When the CFP representation [15] is chosen as the in-

put representation, its second feature, the generalized cep-

strum, allows the model to learn the strength of harmonics

of any given fundamental frequency in a localized man-

ner. However, in music, the harmonics of a single sound

usually decays rapidly along the frequency axis (detail in

section 2.1), which can pose a challenge for the model to

distinguish sounds that only differ significantly at the trail-

ing harmonics.

The transformation from the spectrum to the general-

ized cepstrum in CFP is a Fourier transform, and hence

mostly captures the first few peaks with large magnitudes.

As a result, this representation is not helpful in sensing the

trailing harmonics. This motivates us to apply a different

transformation function that produces a generalized cep-

strum with better harmonics sensitivity.

Another observation relates to the vocal detection com-

ponent. Extremely short vocal segments surrounded by

non-vocal regions, and vice versa, rarely occur since vo-

calists typically sing a melody for at least half a second or

rest for at least a few hundred milliseconds. Threshold-

based removal [16], mean or median filtering [17, 18] and

Viterbi-based smoothing [19, 20] are frequently used to

address the problem. When they are implemented along-

side a network-based algorithm, however, the network re-

mains unaware of our smoothing intention and configura-

tion. To investigate whether such awareness can increase

the prediction performance, we derive a differentiable loss

component that specifically penalizes spurious short-term

predictions of these kinds during training, thus potentially

guiding the model to produce consistently stable predic-

tions.

In this paper, we propose two techniques that attempt
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Figure 1. Top: the transformation pipeline of the original

CFP representation, and our proposed z-CFP representa-

tion. Bottom: modified Spectrum S̃ with different growing

rates k applied. Note that the original CFP corresponds to

the case of k = 0.

to improve the two concerns mentioned above, namely the

harmonic sensitivity and the prediction stability of singing

melody extraction models. Our contributions are as fol-

lows:

• We propose to use exponentially growing sinusoids

along the frequency axis to transform the spectrum

into the generalized cepstrum of the CFP represen-

tation. This approach is equivalent to taking a z-

transform instead of Fourier transform, which in-

creases the harmonic sensitivity of the input.

• We design a differentiable loss function as part of the

training objective to teach the network to avoid pre-

dicting unrealistically short sequences of vocal and

non-vocal at the voice detection bin.

• We evaluate our techniques by applying them on

several melody extraction models. Additionally, we

adapt PianoNet [21], originally developed for piano

transcription, into the melody extraction task. Ex-

perimental results demonstrate state-of-the-art per-

formance of our improved models.

2. METHODOLOGY

In this section, we introduce three main parts of our

methodology. First, we propose a modified CFP repre-

sentation, z-CFP, to enhance the harmonic sensitivity of

the network input. Second, we introduce extraction mod-

els used for evaluating our techniques, namely MSNet,

FTANet, and PianoNet. Third, we propose a new loss func-

tion as part of training objective to improve the prediction

stability of models.

2.1 z-CFP Representation for Harmonic Sensitivity

Our input representation of audio data is a modified ver-

sion of the CFP representation. A CFP representation

X ∈ R
3×T×F contains three features, with T the length of

time frames and F the number of frequency bins. At each

time slice, it contains: (1) a power spectrum S ∈ R
1×F ;

(2) a generalized cepstrum GC ∈ R
1×F ; and (3) a gener-

alized cepstrum of spectrum GCoS ∈ R
1×F ,

As illustrated in the upper part of Figure 1, the standard

CFP generation process begins by computing the frame-

wise spectrum of an input audio waveform using short-

time Fourier transform (STFT). We then obtain the magni-

tude of each spectrum, which serves as the first feature of

CFP, denoted as S. To derive the second feature, we com-

pute the generalized cepstrum using the following equa-

tion:

GC = |F−1(sγ(S))| = |F(sγ(S))| (1)

whereF andF−1 denotes the Fourier transform and its in-

verse, sγ : R → R is an element-wise applied, logarithm-

like modification function as described in [15], and the

absolute value sign represents an element-wise complex

norm operation. The second equality comes directly from

the fact that norm of a complex number equals to that of its

conjugate.

As mentioned in the introduction, GC is not sensi-

tive to the trailing harmonic dynamics, as it mostly cap-

tures the first few peaks with large magnitudes. Since the

harmonics decay rapidly along with the frequency axis,

we shall revert the decay to better preserve such dynam-

ics. In other words, instead of applying complex sinu-

soids
∑

n sγ(S[n])e
−iwn as in Fourier transform (n is the

entry of frequency bins in S), we apply growing com-

plex sinusoids
∑

n sγ(S[n])e
(k−iw)n, where k ∈ R and

k > 0. This is equivalent to taking a discrete z-transform∑
n sγ(S[n])z

−n, where z = eiw−k.

In the actual implementation, k is manually assigned

and fixed across different w. Therefore, as illustrated in

Figure 1, we can separate the computation of k part and w

part as follows:

S̃[n] = eknsγ(S[n]) for ∀n (2)

G̃C = |F−1(S̃)| = |F(S̃)| (3)

In the lower part of Figure 1, we present S̃ of an audio

waveform with different values of k. We can observe that

the harmonics of S̃ at the tail gets amplified so that the sub-

sequent Fourier transform can better capture their dynam-

ics. While we observe some amplifications of harmonics at

frequencies other than the fundamental frequencies, their

magnitudes are always smaller than those of nearby fun-

damental frequencies. Therefore, they pose no sufficient

distraction for the extraction model, as long as the chosen

k is not too large. In our experiments, we set k = 0.0006.

We then generate the generalized cepstrum of spectrum
˜GCoS from cepstrum G̃C the same way as in the original

CFP. Finally, each time slice of our modified CFP repre-

sentation X̃ ∈ R
3×T×F consists of {S, G̃C, ˜GCoS} with

log-scaled frequency axis. For the rest of the paper, we

denote it z-CFP.
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Extraction Models

2 × Conv2D (3,5,48)

2 × Conv2D (3,5,96)

2 × Conv2D (3,5,128)
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Bi-GRU

2 × Conv2D (3,5,128)

Dense + Softmax

PianoNet

3 × Conv2D (5,5,3 → 128)

SF-Module
FTA-Module

SF-Module
FTA-Module

Softmax

Softmax

3 × Conv2D (5,5,128 → 1)

MSNet

FTANet

downsampling-block (kernel, kernel, channel)
upsampling-block (kernel, kernel, channel)

Figure 2. The model architecture. Note that we choose

only one of the three extraction models at a time.

2.2 Model Architecture

Our extraction models are referred from three state-of-

the-art (SoTA) models, MSNet [8], FTANet [12], and Pi-

anoNet [21]. Different from MSNet and FTANet, Pi-

anoNet is the SoTA model of piano transcription. Given its

superior performance on piano transcription, we incorpo-

rate a sub-network of PianoNet into singing melody extrac-

tion, as we hypothesize that it may also yield good results

for melody extraction.

MSNet contains a 3-layer encoder, a 3-layer decoder,

and a bottleneck module. The channel size is shifted as

3 → 32 → 64 → 128 → 64 → 32 → 1. The bottleneck

module maps the encoder output to a 1-channel featuremap

for voice detection. All 2D-convolutional layers come with

(5 × 5) kernel size. FTANet contains a 4-layer encoder, a

3-layer decoder, and a 4-layer bottleneck module. Both en-

coder and decoder contain FTA-modules and SF-modules

to process the audio latent features. The channel size is

shifted from 3 to 128, then back to 1. More specifications

of MSNet and FTANet can be found in their papers [8,12].

The PianoNet we use for this task is modified from

a sub-network of [21]. It starts with four convolutional

blocks, each block containing two 2D-convolutional layers

with kernel sizes (3, 5) and (3, 3) respectively, a batch nor-

malization layer and a ReLU activation. Then it is followed

by bidirectional-GRU and softmax layers, with dense lay-

ers as transitions. The layer bias is turned off for all layers

before the Bi-GRU.

Figure 2 illustrates a more detailed structure of the three

extraction models. Following the pipeline, we first process

1.0

0.0

0.5

Time Frame

V-
D

 P
ro

b

Subsequence Processing

reject such segments

accept such segments

Figure 3. The illustration of how we perform the loss func-

tions Lv and Lnv on the subsequences of the voice detec-

tion prediction. Each loss components L are used to give

large penalties (i.e., ✗) to certain types of subsequences.

the audio waveform into z-CFP representations. Then we

feed them into the extraction model, which produces out-

put feature maps Ỹ ∈ R
T×(F+1). The additional one fea-

ture along the frequency axis denotes the voice detection

bin output. It is then compared against the ground truth

label Y ∈ R
T×(F+1), through the loss function introduced

in the following section.

2.3 Loss Function for Prediction Stability

We add two differentiable training objectives, Lv and Lnv ,

to the conventional binary cross entropy loss LBCE to

teach the extraction model to avoid unrealistically short

vocal and non-vocal sequences at the vocal detection bin.

Since the design for these two cases are symmetric, we first

introduce the loss object Lv , for the vocal case.

As shown on the top of Figure 3, the predictions at the

vocal detection bin is a time series {a1, a2, ..., aT }. First,

since our training objectives are dealing with certain types

of short burst segments of vocal and non-vocal, we extract

all possible subsequences, with stride 1. For example, for

3-length subsequences we have {a1:3, a2:4, ..., aT−2:T },
and similarly {a1:4, a2:5, ..., aT−3:T } for subsequences of

length 4, etc.

Second, to simplify the problem a bit at the beginning,

we assume that the voice detection output is binary val-

ued a ∈ {0, 1}. Formally, we do not want “sharp-burst"

sequences inside the following set:

Bv =

Mv
⋃

m=3

{a1...am|a1 = am = 0, ai = 1 for ∀i ̸= 1,m} (4)

where Mv is a hyperparameter threshold, above which the

duration of vocal segments becomes reasonable. Figure 3

illustrates examples of “sharp-burst" sequences in Bv (and

Bnv) as red segments inside black-border boxes.

Suppose m = 3, all possible binary sequences are

{000, 001, 010, 011, 100, 101, 110, 111} and 010 ∈ Bv .

To make the model avoid predicting the short burst vocal
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segment, i.e., 010, we construct a polynomial objective that

can fulfill the goal by satisfying the following:

L
3

v(a1a2a3) =

{

1 where a1a2a3 = 010
0 otherwise

(5)

A decent choice will then be

L
3

v(a1a2a3) = (1− a1)a2(1− a3) (6)

which can be easily extended to sequences with longer

length m.

L
4

v(a1a2a3a4) = (1− a1)a2a3(1− a4)

...

L
m
v (a1...am) = (1− a1)(1− am)

m−1
∏

i=2

ai (7)

However, there is a small caveat in this extension when

we move back from binary values to probability values

a ∈ [0, 1]. For example, our loss component will be

having trouble capturing sequences like {0.1, 0.4, 0.6, 0.1}
and {0.1, 0.6, 0.4, 0.1} as both L3

v and L4
v result in rela-

tively small values. However, we observe that polynomials

(1−a1)(1−a2)a3(1−a4) and (1−a1)a2(1−a3)(1−a4)
respectively works better than our original L4

v , but still in-

sufficient to work standalone.

Since none of the polynomials above gives high values

to sequences outside of Bv in 4-length, a simple solution

would be to redefine L4
v to be the sum of all such polyno-

mials:

L
4

v = (1− a1)(1− a4)(a2a3 + a2(1− a3) + (1− a2)a3)

...

L
m
v = (1− a1)(1− am)

∑

c1...cm∈{0,1}m

at least one ci ̸=0

m−1
∏

i=2

a
ci
i (1− ai)

1−ci

= (1− a1)(1− am)(1−

m−1
∏

i=2

(1− ai)) (8)

This redefined loss Lv allows better recognition of the

bad sequences mentioned above while not falsely flagging

sequences outside of Bv . Furthermore, when dealing with

longer sequences, for example {0.1, 0.9, ..., 0.9, 0.1} with

increasingly many 0.9s in the middle, the original Lv’s out-

put quickly diminishes while the redefined Lv does not.

This redefined objective does come with a small side

effect, as it over-counts the shorter bad sequences. For ex-

ample, (0.1, 0.9, 0.1, 0.1) now gets a high loss value not

only in L3
v , but also in L4

v . However, we believe this side

effect does not have significant impact as it does not matter

whether neural network decides to stop producing shorter

bad sequences or longer bad sequences first.

A further improvement is to pass the value of Lm
v into

the S-curve function:

Lm
v ←

(Lm
v )r

(Lm
v )r + (1− Lm

v )r
(9)

where r ∈ R and r > 1. It will amplify those sequences

that receive loss values closer to 1 and suppress those se-

quences with loss values closer to 0.

Finally, for each m ∈ [3,Mv], we compute Lm
v across

all m-length subsequences in the model’s output. The ag-

gregated loss function Lv is then computed by concatenat-

ing all these Lm
v arrays and taking the average.

Now analogously, assuming non-vocal sequences be-

yond length Mnv become reasonable, we can perform the

same analysis on the following set of sequences:

Bnv =

Mnv
⋃

m=3

{a1...am|a1 = am = 1, ai = 0 for ∀i ̸= 1,m}

(10)

and consequently obtain Lnv . Practically, Lm
nv of any se-

quence a1...am can be computed as Lm
v of the flipped se-

quence b1...bm, where bi = 1− ai for all i ∈ {1..m}. Our

final loss function will then be:

L = LBCE + Lv + Lnv (11)

3. EXPERIMENTS

3.1 Datasets and Experiment Setup

For the training data, we complied with the setting of

[10, 12] and chose all 1000 Chinese pop songs from MIR-

1K 1 and 35 vocal tracks from MedleyDB [22]. For the

testing data, we chose 12 tracks in ADC2004 and 9 tracks

in MIREX05 2 . We also selected 12 tracks from Med-

leyDB that are disjoint from those already used for train-

ing.

For the signal processing part, we used 8000Hz sam-

pling rate to process audio tracks. We use a window size

of 768, a hop size of 80 to compute the STFT of audio

tracks. Note that the time resolution of our labels is 0.01

seconds, and this hop size was chosen to match that. Then,

when creating z-CFP representations, we set the time di-

mension of the representation to be T = 128, or 1.28 sec-

onds, and the number of frequency bins F = 360, or 60
bins per octave across 6 octaves. The start and stop fre-

quencies are 32.5Hz and 2050Hz. Hence, the input shape

becomes X ∈ R
3×128×360 and the output/label shape be-

comes Y ∈ R
128×361.

Within the extra loss component, we set the duration

threshold of vocal segments Mv = 30 (0.3 seconds), the

duration threshold of non-vocal segments Mnv = 7 (0.07

seconds), and the S-curve exponent parameter r = 5.

For the training hyperparameters, we use a batch size

of 10, the Adam optimizer [23] with a fixed learning rate

of 1 × 10−4. The maximum training epoch is 500. Dur-

ing the evaluation, we use the standard metrics of the

singing melody extraction task, namely, voice recall (VR),

voicing false alarm (VFA), raw pitch accuracy (RPA),

raw chroma accuracy (RCA), and overall accuracy (OA)

from the mir_eval library [24]. Following the conven-

tion of this task, overall accuracy (OA) is regarded as the

most important metric. All models are trained and tested

in NVIDIA RTX 2080Ti GPUs and implemented in Py-

Torch 3 .

1 http://mirlab.org/dataset/public/MIR-1K.zip
2 https://labrosa.ee.columbia.edu/projects/melody/
3 https://pytorch.org/
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Dataset ADC 2004 MIREX 05 MEDLEY DB

Metrics VR VFA↓ RPA RCA OA VR VFA↓ RPA RCA OA VR VFA↓ RPA RCA OA

PianoNet 87.21 14.62 84.28 84.30 84.48 91.98 6.14 86.54 86.55 89.19 69.38 13.74 61.81 62.80 73.70

PianoNet + z-CFP 88.25 7.58 84.87 84.93 86.27 93.44 6.21 86.78 86.79 89.33 68.76 11.91 62.22 63.10 74.80

PianoNet + 3 point median 87.33 14.58 84.35 84.38 84.55 92.08 6.15 86.60 86.62 89.23 69.49 13.77 61.86 62.86 73.71

PianoNet + 7 point median 87.58 14.53 84.46 84.48 84.65 92.47 6.14 86.78 86.8 89.35 69.71 13.83 61.92 62.91 73.71

PianoNet + 15 point median 89.13 14.21 84.89 84.91 85.06 93.27 6.58 86.82 86.84 89.21 70.31 14.43 61.91 62.90 73.42

PianoNet + {Lv,Lnv} 90.92 13.58 86.06 86.12 86.13 91.87 5.79 87.50 87.50 89.94 71.16 15.77 63.66 64.81 73.66

PianoNet + z-CFP + {Lv,Lnv} 90.50 7.99 85.76 85.82 86.92 92.84 6.39 87.57 87.59 89.76 68.88 12.29 62.05 62.91 74.53

MSNet 89.78 23.12 80.83 81.60 80.10 84.85 11.44 77.76 78.09 81.68 53.49 9.41 46.90 48.24 68.15

MSNet + z-CFP + {Lv,Lnv} 90.61 14.62 81.96 82.57 82.59 88.38 14.85 80.83 81.01 82.39 62.95 14.60 53.60 55.31 69.07

FTANet 81.26 2.70 77.17 77.36 80.89 87.34 5.11 81.56 81.61 86.40 62.44 10.41 55.94 56.58 72.30

FTANet + z-CFP + {Lv,Lnv} 90.29 10.83 85.06 85.19 85.82 90.50 6.63 83.94 83.99 87.36 63.71 9.35 56.32 57.29 73.02

Table 1. Ablation studies on ADC2004, MIREX05 and MedleyDB testsets. Baselines use CFP as the input representation

and LBCE as the loss function. {Lv,Lnv} denotes the use of our proposed loss function in section 2.3. Among median

filter sizes in the range [3, 100] ⊂ Z, 3 point works best for MedleyDB, 7 point works best for MIREX 05, and 15 point

works best for ADC 2004. But they neither significantly outperform our proposed loss component in any single dataset,

nor uniformly outperform in all three datasets.

3.2 Ablation Study

We choose three extraction models, namely MSNet [8],

FTANet [12], and PianoNet [21], to evaluate our z-

transform and loss functions. We conducted ablation stud-

ies and presented the results in Table 1. We re-trained these

models from scratch, and the results are largely consis-

tent with the original reports of [8, 10, 12]. The option z-

transform denotes the use of z-CFP representations. Note

that {Lv,Lnv} in the table denote the use of loss functions

to address short burst segments of vocal and non-vocal.

Due to the page limitation, we present a detailed ablation

study on PianoNet while ablating MSNet and FTANet in

an all-or-nothing fashion.

From Table 1 we can clearly observe decent perfor-

mance of both z-CFP and {Lv,Lnv} when added to the

PianoNet, MSNet, and FTANet. Among these results, the

addition of loss functions {Lv,Lnv} increases the overall

accuracy while improving the VR, RPA, and RCA. The

median filter postprocessing [18] is used as a comparison.

Since our loss component focuses on the vocal detection,

we took the pitches predicted by median filters only when

the original predictions are non-vocal. Further, to ensure

fairness, we optimized the filter size against each single

dataset within the range [3, 100] ⊂ Z and listed the evalu-

ation results of those optimal ones. As we can see in Table

1, none of these median filters outperforms our loss com-

ponent in a consistent manner, nor do they obtain consid-

erable margins in any single dataset.

The z-CFP also increases several metrics, especially ei-

ther VR or VFA, on each dataset. This indicates that by

preserving more dynamics in the high frequency bins, the

model can distinguish different sounds better and conse-

quently improve the extraction performance. Also, note

that unlike TONet [10] and JDC [9], which achieved this

through model design or music inductive bias, this tech-

nique relies solely on the inherent characteristics of the

data.

When we incorporate both techniques into the extrac-

tion models, we observe a promising increase in each met-

ric compared to the original models. However, we notice

that some models with both techniques carried do not yield

better performance than the models carrying only one of

the techniques. These models appear to be an averaging

weighting or an ensemble of models improved with either

technique, implying better generalization.

3.3 Comprehensive Performance Comparison

Table 2 presents the results as we compare our best model,

i.e., PianoNet with z-transform and {Lv,Lnv}, with other

SoTA models. Among these SoTAs, there are two models

with “*", indicating that these are only partial comparisons.

For SpecTNT [25], since there is no official open-source

implementation, we report its results based on our own re-

implementation. For H-GNN [13], we directly copied its

reported performance from the original paper.

From Table 2, our improved PianoNet with z-transform

and {Lv,Lnv} yield the best OA performance over all

datasets, the best RPA and RCA on ADC 2004 and MIREX

05 datasets. We do note, despite the use of the extra loss

component, that our model’s VFA is not necessarily the

smallest. This is because the extra loss component only

targets a particular type of false positive, and is not meant

to minimize the false positive rate in general. For exam-

ple, sometimes the network’s vocal to non-vocal transition

happens later than the reference labels. In this case, since

the vocal sequence itself lasts long enough, the extra loss

component will not mark this type of false positives. Ad-

dressing this type of errors is potentially a future work.

Another thing we found is that the PianoNet, as one of

SoTAs in the piano transcription task and ported by us to

the melody extraction task in this paper, has already yields

very high performance on MIREX 05 dataset. This indi-

cates that there may exist more powerful network architec-

tures for this task yet to be explored. Additionally, it is

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

661



Dataset ADC 2004

Metrics VR VFA↓ RPA RCA OA

MCDNN [4] 65.0 10.5 61.6 63.1 66.4

DSM [14] 89.2 51.3 75.4 77.6 69.8

MSNet [8] 89.8 23.1 80.8 81.6 80.1

FTANet [12] 81.3 2.7 77.2 77.4 80.9

TONet [10] 91.8 17.1 82.6 82.9 82.6

SpecTNT* [25] 85.4 8.2 83.5 83.6 85.0

H-GNN* [13] 89.2 21.3 84.8 86.1 83.9

Ours 90.5 8.0 85.7 85.8 86.9

Dataset MIREX 05

Metrics VR VFA↓ RPA RCA OA

MCDNN [4] 66.5 4.6 64.1 64.4 75.4

DSM [14] 91.4 45.3 75.7 77.0 68.4

MSNet [8] 84.8 11.4 77.8 78.1 81.7

FTANet [12] 87.3 5.1 81.6 81.6 86.4

TONet [10] 91.6 8.5 83.8 84.0 86.6

SpecTNT* [25] 82.2 8.7 77.4 77.5 82.5

H-GNN* [13] 93.2 21.7 85.2 86.4 81.3

Ours 92.8 6.4 87.6 87.6 89.8

Dataset MEDLEY DB

Metrics VR VFA↓ RPA RCA OA

MCDNN [4] 37.4 5.3 34.2 35.3 62.3

DSM [14] 86.6 44.3 70.2 72.4 64.8

MSNet [8] 53.5 9.4 46.9 48.2 68.1

FTANet [12] 62.4 10.4 55.9 56.6 72.3

TONet [10] 64.2 12.5 56.6 58.0 71.6

SpecTNT* [25] 62.7 18.8 54.7 56.4 63.9

H-GNN* [13] 71.7 21.6 61.2 65.8 67.9

Ours 68.9 12.3 62.1 62.9 74.5

Table 2. The comprehensive performance comparison

among our improved models and current baselines.

noteworthy that our proposed PianoNet architecture has a

small number of parameters (5.5 million), which is com-

parable with MCDNN (5.6 million), FTANet (3.4 million)

and far less than TONet (152 million). This demonstrates

its potential in practical applications where computational

resources are limited. Again, as demonstrated in Table

1, our techniques could help models other than PianoNet

achieve higher performance than their original versions.

3.4 Loss Value and Extraction Visualization

To empirically verify if applying the polynomial loss func-

tions Lv and Lnv could reduce the voice detection errors,

i.e., short burst segments of vocal and non-vocal, we visu-

alize two types of plots in Figure 4. The top three plots

demonstrate the loss values of L30
v between the original

extraction models and the improved models with Lv and

Lnv , across the entire MIREX05 dataset (i.e., we concate-

nate all tracks in the dataset). We see that cases in which

the improved models’ prediction receive loss values close

to 1 diminishes comparing to those of the original mod-

els. This phenomenon implies that after applying Lv and

Lnv , the chance of models to predict short burst segments

Time (second)

Time (second)

Time (second)

Original MSNet Improved MSNet

Original FTANet Improved FTANet

Original PianoNet Improved PianoNet

Time (second)

Fr
eq

. (
H

z)

0

1000 1000

0

Original PianoNet Improved PianoNet Groudtruth Label

Figure 4. The effect of applying the loss Lv and Lnv .

The top three plots are values of L30
v across the entire

MIREX05 dataset. The bottom two plots are one 5-sec

MIREX05 predictions.

significantly reduces.

The pair of plots in the last row compares the prediction

performance of PianoNets, trained without and with the ex-

tra loss components, on a zoomed-in section of MIREX05.

Note that the original PianoNet has a short burst non-vocal

segment in between the 10th second and 11th second. Fur-

ther, it has a considerable number of short burst vocal seg-

ments around the 12th second. Once trained with the extra

loss components, these issues are resolved. Also note that

both the original version and the improved version make

a mistake in between the 13th and the 14th second. This

is because the length of that non-vocal transition is greater

than our threshold Mnv , which ends up not triggering Lnv .

All these observations further verify the effectiveness of

our proposed loss components.

4. CONCLUSION

In this paper, we propose two techniques to respectively

utilize the two assumptions we made for improving the

performance of singing melody extraction models. First,

comparing to Fourier transform, the use of z-transform in

generating cepstrum allows the network to better recognize

the strength of harmonics of any fundamental frequencies.

Empirically, while the trailing harmonics of those frequen-

cies that do not actually appear in the audio also get ele-

vated, the benefit of the technique is greater than its set-

back. Second, our extra loss components make the net-

work less prone to predict vocal and non-vocal sequences

are unreasonably short, while not affecting the network’s

overall accuracy due to its differentiability. Along with

different extraction models, we achieve better performance

when compared to their original version and other state-of-

the-art models. We regard these two techniques as decent

improvements on singing melody extraction models.
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ABSTRACT

This paper introduces GlOttal-flow LPC Filter (GOLF), a
novel method for singing voice synthesis (SVS) that ex-
ploits the physical characteristics of the human voice using
differentiable digital signal processing. GOLF employs
a glottal model as the harmonic source and IIR filters to
simulate the vocal tract, resulting in an interpretable and
efficient approach. We show it is competitive with state-
of-the-art singing voice vocoders, requiring fewer synthe-
sis parameters and less memory to train, and runs an or-
der of magnitude faster for inference. Additionally, we
demonstrate that GOLF can model the phase components
of the human voice, which has immense potential for ren-
dering and analysing singing voice in a differentiable man-
ner. Our results highlight the effectiveness of incorporating
the physical properties of the human voice mechanism into
SVS and underscore the advantages of signal-processing-
based approaches, which offer greater interpretability and
efficiency in synthesis.

1. INTRODUCTION

Singing voice synthesis (SVS) has attracted substantial in-
terest as a research topic over the last decades, and a va-
riety of techniques have been developed. Early success-
ful SVS systems were usually based on sample concatena-
tion [1–4], while parametric systems have become much
more prevalent. The actual synthesis process in parametric
systems is carried out by a vocoder controlled by synthesis
parameters generated from a separate acoustic model given
some musical context factors (i.e. note number, duration,
phoneme, etc.). Early systems of this kind use a linear
source-filter model as vocoder [5, 6]. Deep Neural Net-
works (DNNs) have subsequently become the dominant
approach for state-of-the-art vocoders [7–13]. However,
mel-spectrograms are often chosen as input features to
these models, which are less interpretable than traditional
vocoder parameters (e.g. f0, aperiodicity ratios). Also, a
significant amount of data is needed to cover various vocal
expressions to achieve generalisation.

© C.-Y. Yu and G. Fazekas. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: C.-Y. Yu and G. Fazekas, “Singing Voice Synthesis Using Differ-
entiable LPC and Glottal-Flow-Inspired Wavetables”, in Proc. of the 24th

Int. Society for Music Information Retrieval Conf., Milan, Italy, 2023.

In contrast, Differentiable Digital Signal Processing
(DDSP) models [14–16] incorporate existing signal pro-
cessing operations into neural networks as an inductive
bias, making them more interpretable and generalisable.
DDSP additive synthesis has been proposed for SVS by
Alonso et al. [17]. Wu et al. [18] improved this further
by using subtractive synthesis and sawtooth as the har-
monic source. Nercessian et al. [19] proposed a differ-
entiable version of the WORLD vocoder [20] for doing
end-to-end singing voice conversion. Yoshimura et al. [21]
used Taylor expansion to approximate the mel-log spec-
trum approximation filter’s (MLSA) exponential function
and embedded it into an SVS system. However, most of
their architectures only assume the target signal is a mono-
phonic instrument, which can potentially lead to solutions
that do not reflect some properties of voice. In their de-
sign, the harmonic sources are fixed to a specific shape
(e.g. sawtooth, pulse train), and the filters are symmetric
in the time domain, except Yoshimura et al. [21] which use
a minimum-phase MLSA filter. Incorporating constraints
specific to the human voice on the harmonic source and the
filters could lead to a more interpretable and compact SVS
vocoder.

In this work, we propose GlOttal-flow LPC Filter
(GOLF), an SVS module informed by the physical prop-
erties of the human voice. We build upon the Harmonic-
plus-Noise architecture of DDSP [14] and the subtractive
synthesis of SawSing [18], but replace the harmonic source
with a glottal model and use IIR filters. We developed
a differentiable IIR implementation in PyTorch [22] for
training efficiency. We then used this module as a neural
vocoder and compared its performance with other DDSP-
based vocoders. Specifically, a simple and lightweight NN
encoder converts the mel-spectrogram into synthesis pa-
rameters, and the synthesiser decodes the signal from it.
We paired different synthesisers with the same encoder and
trained them jointly.

Our contributions are twofold. First, GOLF has signifi-
cantly fewer synthesis parameters but is still competitive
with state-of-the-art SVS vocoders. Second, GOLF re-
quires less than 40% of memory to train and runs ten times
faster than its alternatives for inference. Moreover, we in-
directly show that GOLF could model the phase compo-
nents of the human voice by aligning the synthesised wave-
forms to the ground truth and calculating the differences.
This characteristic has excellent potential for analysing
singing voice in a differentiable manner. Decomposing the
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human voice into the glottal source and vocal tract could
also enable us to adjust the singing style in different ways,
such as altering the amount of vocal effort with varying
shapes of the glottal pulse.

2. BACKGROUND

We first introduce the relevant notation. xi denotes the ith

column vector and xi,j denotes the entry at the ith row
and the jth column of the matrix X. Concatenating two
matrices along the column dimension is denoted by [; ]. xi

denotes the ith entry of the vector x or a time sequence
x indexed by i. X(z) denotes the response of xn in the
z-domain. Unless stated otherwise, we use n as the time
index and k as the frame index. Angular frequencies and
periods are normalised to the interval [0, 1]. We use one-
based indexing for elements with finite dimensions.

2.1 Glottal Source-Filter Model

In the source-filter model, we have the following simplified
voice production model:

S(z) = (G(z) +N(z))H(z)L(z), (1)

where G(z) represents the periodic vibration from the vo-
cal folds, N(z) represents random components of the glot-
tal source, H(z) represents the vocal-tract filter, and L(z)
represents the radiation at the lips [23]. Since this for-
mulation is linear, the radiation filter L(z) and the glot-
tal pulse G(z) can be merged into a single source G′(z)
called the radiated glottal pulse. If we assume L(z) is a
first-order differentiator 1 + z−1 [24], then G′(z) is the
derivative of the glottal pulse, which can be described by
the LF model [25], a four-parameter model of glottal flow.
H(z) is usually a Linear Predictive Coding (LPC) filter.

2.2 Linear Predictive Coding

LPC assumes that the current speech sample sn can be pre-
dicted from a finite number of previous M samples sn−1

to sn−M by a linear combination with residual errors en:

sn = en −
M
∑

i=1

aisn−i, (2)

where ai are the linear prediction coefficients. This is
the same as filtering the residuals, equivalent to the glottal
source in our case, with an M th-order all-pole filter, a fil-
ter that has an infinite impulse response (IIR). We can use
the LPC filter to represent the response of the vocal tract
if the vocal tract is approximated by a series of cylindri-
cal tubes with varying diameters [26], providing a physical
interpretation.

Using LPC for neural audio synthesis is not new [8,
27, 28], and works have been conducted to incorporate
IIR filters and train them jointly with deep learning mod-
els [29–35]. The difficulty of training IIR in deep learning
framework (e.g. PyTorch) using Eqn (2) is that its compu-
tation is recursive, i.e. the output at each step depends on

the previous results, and to make the calculation differen-
tiable, separated tensors are allocated in each step. This
generates a significant number of memory allocations and
overheads for creating tensors, thus leading to performance
issues, especially for long sequences. One way to miti-
gate this is to allocate shared continuous memory before
computation. However, in-place modification is not differ-
entiable in these frameworks. Some studies sidestep the
recursion by approximating IIR in the frequency domain
using Discrete Fourier Transform (DFT) [27, 30, 32–35],
but the accuracy of this approximation depends on the DFT
resolution. Moreover, the IIRs used in practice are usually
low-order; in this case, it is faster to compute them directly,
especially on long sequences.

3. PROPOSED MODEL

Usually, N(z) in Eqn (1) is treated as amplitude-
modulated Gaussian noise [23, 24]. Our early experiments
found this formulation to be challenging to optimise. As
an alternative, we move the noise components N(z) out-
side the glottal source and filter it with time-varying filter
C(z), resulting in

S(z) = G′(z)H(z) +N(z)C(z). (3)

This resembles the classic Harmonic-plus-Noise

model [36] and was used in previous DDSP-based
SVS [17, 18]. Alonso et al. [17] modelled G′(z)H(z)
jointly using additive harmonic oscillators and time-
varying Finite Impulse Responses (FIRs) as C(z); Wu
et al. [18] introduced a sawtooth oscillator as G′(z) and
zero-phase time-varying FIRs as H(z). In this work, we
use a glottal flow model to synthesise harmonic sources
and time-varying IIRs as filters.

3.1 Glottal Flow Wavetables

We adopted the transformed-LF model [37] for generat-
ing glottal pulses. This model re-parameterises the LF
model [25] using just one parameter Rd, which has been
found to correspond to the perceived vocal effort well and
covers a wide range of different glottal flow shapes. We
sampled K values of log(Rd) with equal spacing inside
[log(0.3), log(2.7)] according to the value range suggested
by [23]. We calculate the flow derivative function g′(t;Rd)
in continuous time t for each sampled Rd and then sam-
pled L points in one period to get its discrete version. The
details for calculating g′(t;Rd) were given in [38]. By
stacking these sampled glottal flows, we built wavetables
D ∈ R

K×L, with each row containing one period of a sam-
pled glottal pulse (see Fig. 1). The rows are sorted based
on Rd.

The model generates glottal pulses g′n by linearly inter-
polating the two D axes. The encoder network first pre-
dicts instantaneous frequency fn ∈ [0, 0.5] and the frac-
tional index τn ∈ [0, 1] for Rd. We then use the instan-
taneous phase φn =

∑n
i=1 fi to interpolate the waveform
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Figure 1. An example of the wavetables we used, corre-
sponding to matrix D with K = 31.

as:

g′n = (1− p)
(

(1− q)d̂⌊k⌋,⌊l⌋ + qd̂⌊k⌋,⌈l⌉

)

+ p
(

(1− q)d̂⌈k⌉,⌊l⌋ + qd̂⌈k⌉,⌈l⌉

)

, (4)

where l = (φn mod 1)L + 1, k = τn(K − 1) + 1, p =
k − ⌊k⌋, q = l − ⌊l⌋, and D̂ = [D;d1] ∈ R

K×(L+1). The
wavetables D are fixed in our case, contrary to [16], and
we only pick one wavetable at a time, not a weighted sum.

3.2 Frame-Wise LPC Synthesis

Time-varying LPC synthesis is usually done by linearly in-
terpolating the LPC coefficients to the audio resolution and
filtering sample by sample. This is not parallelisable and
slows down the training process. As an alternative, we ap-
proximate LPC synthesis by treating each frame indepen-
dently and using overlap-add:

sn =
∑

k

LPC(g′nγnun−kT ;ak)wn−kT , (5)

where LPC(en;a) represents Eqn (2), ak ∈ R
M are the

filter coefficients at the kth frame, un and wn are the win-
dowing functions, γn ∈ R

+ is the gain, and T is the hop
size. un is fixed to the square window. In this way, the
computation can be parallelised. We found that the voice
quality differences between overlap-add LPC and sample-
by-sample LPC are barely noticeable if we use a suffi-
ciently small hop size. We empirically found that a 200
Hz frame rate is sufficient.

3.3 LPC Coefficients Parameterisation

For the LPC filter to be stable, all of its poles must lie in-
side the unit circle on the complex plane. Stability can be
guaranteed using robust representations, such as reflection
coefficients [28]. The representation we chose in this work
is cascaded 2nd-order IIR filters, and we solve the stabil-
ity issue by ensuring all the 2nd-order filters are stable. We
use the coefficient representation from [33] to parameterise

the ith IIR filter’s coefficients 1 + ηi,1z
−1 + ηi,2z

−2 from
the encoder’s outputs and cascade them together to form
an M th-order LPC filter:

(1 + η1,1z
−1 + η1,2z

−2)(1 + η2,1z
−1 + η2,2z

−2)

· · · (1 + ηM
2
,1z

−1 + ηM
2
,2z

−2)

= 1 + a1z
−1 + a2z

−2 + · · ·+ aMz−M = A(z).

(6)

3.4 Unvoiced Gating

The instantaneous frequency fn predicted by the encoder is
always non-zero and keeps the oscillator working. Without
constraint, the model would utilise these harmonics in the
unvoiced region creating buzzing artefacts [18]. We pro-
pose to mitigate this problem by jointly training the model
to predict the voiced/unvoiced probabilities as vn ∈ [0, 1]
and feeding the gated frequency f̂n = vnfn to the oscilla-
tor instead.

4. OPTIMISATION

Training deep learning models is usually accomplished by
backpropagating the gradients evaluated at a chosen loss
function L throughout the whole computational graph back
to the parameters. Partially inspired by Bhattacharya et
al. [29], we derived the closed form of backpropagation

through time to utilise efficient IIR implementation to solve
the problems we mentioned in Section 2.2 while keeping
the filter differentiable. Here, e ∈ R

N is the input, a ∈
R

M is the filter coefficients, and s ∈ R
N is the output.

Assuming we know ∂L
∂s

, we can get the derivatives ∂L
∂e

and
∂L
∂a

, using chain rules ∂L
∂s

∂s
∂e

and ∂L
∂s

∂s
∂a

.

4.1 Backpropagation Through the Coefficients

Taking the derivatives of Eqn (2) with respect to ai we get:

∂sn

∂ai
= −sn−i −

M
∑

k=1

ak
∂sn−k

∂ai
, (7)

which equals LPC(−sn−i;a). sn|n≤0 does not depend on
ai so the initial conditions ∂sn

∂ai
|n≤0 are zeros. We can get

∂sn
∂a

with one pass of filtering because ∂sn
∂aj

is ∂sn
∂ai

shifted by

an offset j − i. Lastly, we calculate ∂L
∂ai

as
∑N

n=1
∂L
∂sn

∂sn
∂ai

.

4.2 Backpropagation Through the Input

To get the derivatives for input en, we first re-write Eqn (2)
as the following convolutional form:

sn =
n
∑

m=1

emhn−m, (8)

where hn = Z−1{H(z)}, H(z) = 1
A(z) . From Eqn (8)

we see that ∂sn
∂em

= hn−m. The derivative of loss L with
respect to em depends on all future samples sn, which is:

∂L

∂em
=

N
∑

n=m

∂L

∂sn

∂sn

∂em
=

N
∑

n=m

∂L

∂sn
hn−m. (9)
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By swapping the variables n,m and considering the equiv-
alence of Eqn (2) and Eqn (8), Eqn (9) can be simplified to

∂L

∂en
=

N
∑

m=n

∂L

∂sm
hm−n

=
∂L

∂sn
−

M
∑

i=1

ai
∂L

∂en+i

.

(10)

Eqn (10) shows that we can get the derivatives ∂L
∂en

by just

filtering ∂L
∂sn

with the same filter, but running in backwards.

The initial conditions ∂L
∂en

|n>N are naturally zeros.
In conclusion, backpropagation through an IIR filter

consists of two passes of the same filter and one matrix
multiplication 1 . We implemented the IIR in C++ and
CUDA with multi-threading to filter multiple sequences si-
multaneously 2 . The differentiable IIR is done by register-
ing the above backward computation in PyTorch, and we
submitted the implementation to TorchAudio [39] as part
of the torchaudio.functional.lfilter.

5. EXPERIMENTAL SETUP

5.1 Dataset

We test GOLF as a neural vocoder on the MPop600
dataset [40], a high-quality Mandarin singing voice dataset
featuring nearly 600 singing recordings with aligned lyrics
sung by four singers. We used the audio recordings from
the f1 (female) and m1 (male) singers. For each singer, we
selected the first three recordings as the test set, the follow-
ing 27 recordings as the validation set, and used the rest as
training data (around three hours in total). All the record-
ings were downsampled to 24 kHz. The vocoder feature
we choose is the log mel-spectrogram. We computed the
feature with a window size of 1024 and 80 mel-frequency
bins and set the hop size T to 120. We normalised the fea-
ture to between zero and one and sliced the training data
into two seconds excerpts with 1.5 seconds overlap.

5.2 Model Details

We adopted the encoder from SawSing but replaced the
transformer layers with three layers of Bi-LSTM for
favourable implementation, resulting in around 0.7M pa-
rameters in total. A final linear layer predicts the synthe-
sis parameters {fk, vk, γk, βk,ak,bk}. The first four pa-
rameters are linearly upsampled to {fn, vn, γn, βn}. βn

and bk are the Gaussian noise’s gain and filter coefficients.
We added an average pooling layer with a size of 10 and
two convolution layers after the encoder to predict the Rd

fractional index τo at a lower rate and then linearly up-
sampled to τn. This step avoids possible modulation ef-
fects caused by switching the wavetables too quickly. A

1 The computation of the IIR does not need to fulfil the implementation
requirements set by the automatic differentiation framework, thus can be
highly optimised.

2 Although the single-core performance of a GPU is usually inferior to
a CPU, and we can only use at most one thread for each IIR, the GPU has
a much higher number of cores, which is beneficial for training on a large
number of sequences at once.

system diagram of GOLF is shown in Fig. 2. We set
K = 100, L = 2048, Hanning window for wn, and
M = 22 for both LPC filters. We used the same hop size
T and a window size of 480 for frame-wise LPC. We nor-
malised all wavetables to have equal energy and aligned
them with the negative peak.

Figure 2. Overview of the GOLF synthesis process. phase

offset is only introduced at test time, where the details are
given in Section 6.1.

We compare GOLF with three DDSP-based baselines
using the same NN encoder to predict their synthesis pa-
rameters. The first two are the original DDSP [14] and
SawSing [18]. We set their noise filter length to 80 and har-
monic filter length to 256 for SawSing. The third model is
PUlse-train LPC Filter (PULF), which is similar to GOLF
but replaces the glottal flow wavetables with a band-limited
pulse train [19] using additive synthesis, while the LPC or-
der for the harmonic source is increased to 26 to accom-
modate the glottal pulse response. The number of oscil-
lating sinusoids was set to over 150 for all the baselines.
We did not compare GOLF with Nercessian et al. [19] and
Yoshimura et al. [21] because these architectures are based
closely on the source-filter model, and use additional post-
nets to enhance the voice, which makes it harder to com-
pare directly with GOLF.

5.3 Training Configurations

We trained separate models for each singer, resulting in
8 models. The loss function is the summation of the
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multi-resolution STFT loss (MSSTFT) and f0 loss from
SawSing with FFT sizes set to {512, 1024, 2048}, plus a
binary cross entropy loss on voiced/unvoiced prediction.
We stopped the gradients from the harmonic source to the
f0s and voiced decisions to stabilise the training. We used
Adam [41] for running all optimisations. For DDSP and
SawSing, the batch size and learning rate were set to 32
and 0.0005; for GOLF and PULF, the numbers were 64
and 0.0001. We used the ground truth f0s (extracted by
WORLD [20]) for the harmonic oscillator of PULF during
training due to stability issues. We trained all the models
for 800k steps to reach sufficient convergence and picked
the checkpoint with the lowest validation loss as the final
model 3 .

6. EVALUATIONS

6.1 Objective Evaluation

The objective metrics we choose are the MSSTFT, the
mean absolute error (MAE) in f0, and the Fréchet audio
distance (FAD) [42] on the predicted singing of the test set.
Table 1 shows that DDSP has the lowest MSSTFT and f0
errors, while SawSing reaches the lowest FAD. GOLF and
PULF show comparable results in f0 errors to other base-
lines. We report the memory usage when training these
models and their real-time factor (RTF), both on GPU and
CPU, in Table 2. The amount of memory required to train
GOLF is around 35% of others, and it runs extremely fast,
especially on the CPU.

Singers Models MSSTFT MAE-f0 (cent) FAD

f1

DDSP 3.09 74.47±1.19 0.50±0.02
SawSing 3.12 78.91±1.18 0.38±0.02

GOLF 3.21 77.06±0.88 0.62±0.02
PULF 3.27 76.90±1.11 0.75±0.04

m1

DDSP 3.12 52.95±1.03 0.57±0.02
SawSing 3.13 56.46±1.04 0.48±0.02

GOLF 3.26 54.09±0.30 0.67±0.01
PULF 3.35 54.60±0.73 1.11±0.04

Table 1. Evaluation results on the test set. We omit the
standard deviation if it is smaller than 0.01.

As an additional metric we use the L2 loss between the
predicted and the ground truth waveform. The intuition
behind this is that GOLF and PULF are the only two mod-
els introducing non-linear phase response because of IIR
filtering. The filters in DDSP and SawSing are all zero-
phase, and the initial phases of the sinusoidal oscillators
are fixed to zeros. We emphasise that this test is not target-
ing human perception but the phase reconstruction ability
of the models. Humans cannot perceive the absolute fre-
quency phase, but accurate reconstruction could be impor-
tant in sound matching and mixing use cases. We evalu-
ate the loss on one of the test samples from m1 we used
in the subjective evaluation. We created a new parameter

3 The trained checkpoints, source codes, and audio samples are avail-
able at https://github.com/yoyololicon/golf.

called phase offset sampled at 20 Hz. We linearly upsam-
pled phase offset and added it to the instantaneous phase
φn, introducing a slowly varying phase shift. We optimised
this parameter by minimising the predicted waveform’s L2
loss to the ground truth using Adam with a learning rate of
0.001 and 1000 steps. We wrapped the differences between
the points of phase offset during optimisation to [-0.5, 0.5].
We ran this optimisation five times for each model. Each
time the phase offset was initialised randomly. We report
the minimum and maximum final losses from these trials.
Table 2 shows the lowest losses GOLF and PULF can reach
are significantly smaller than the others, with GOLF hav-
ing the smallest among all.

Models Memory
RTF Waveform L2

GPU CPU Min Max

DDSP 7.3 0.015 0.237 71.83 88.77
SawSing 7.3 0.015 0.240 75.72 93.16
GOLF 2.6 0.009 0.023 21.98 64.82

PULF 7.5 0.015 0.248 44.08 70.59

Table 2. The required number of VRAM (GB) for train-
ing with a batch size of 32, real-time factor (RTF), and
the minimum/maximum L2 loss on waveform using one
of the test samples. The benchmark was conducted on
an Ubuntu 20.04 LTS machine with an i5-4790k proces-
sor and an NVIDIA GeForce RTX 3070 GPU.

6.2 Subjective Evaluation

We conducted an online listening test using Go Listen [43].
We picked one short clip from each test set recording, re-
sulting in 6 clips with duration ranging from 6 to 11 sec-
onds. The test is thus divided into six examples, each con-
sisting of one ground truth clip and four synthesised results
from different models, and their loudness was normalised
to –16dB LUFS. The order of the examples and the stimu-
lus were randomised for each subject. Each subject was re-
quested to rate the quality of these stimuli on a score from
0 to 100. We collected responses from 33 anonymous par-
ticipants. We dropped one of the participants who did not
indicate using headphones. We normalise scores to fall be-
tween 1 to 5 and report the Mean Opinion Score (MOS)
in Fig. 4. DDSP has the highest opinion scores overall,
and a Wilcoxon signed-rank test shows that it is not statis-
tically significantly different from the f1 ground truth (p
= 0.168). We applied the one-side Wilcoxon test on GOLF
and PULF to compare them with SawSing, and the results
show that GOLF significantly outperforms SawSing (p <
0.0001), and PULF performs better than SawSing on m1

(p < 0.022).

7. DISCUSSIONS

Given the evaluation results and the number of synthe-
sis parameters in GOLF is roughly six times smaller than
DDSP and SawSing, it is clear that GOLF’s synthesis pa-
rameters are a more compact representation. Comparing
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Figure 3. The predicted waveforms of a short segment from one of the m1 test samples. The differences were computed
by subtracting the predicted signal from the reference.

Figure 4. The MOS results of the vocoders trained on dif-
ferent singers with 95% confidence interval.

the differences between GOLF and PULF in Table 2, we
can see that the performance gain is due to the use of
wavetables. Other baselines synthesise band-limited har-
monic sources with many sinusoids oscillating simulta-
neously, thus increasing the computational cost. PULF’s
MOS score is much worse on f1, with noticeable arte-
facts in the unvoiced region and random components of
the voice. After investigation, we found the noise gains βn

predicted by PULF fluctuating at high speed, producing a
modulation effect. This behaviour is also found in PULF
trained on m1 and GOLF, even on the harmonic gains γn.
Still, the amount of fluctuation is small and barely notice-
able in the test samples. Given the available results, we
could only conclude that this effect relates to the type of
harmonic source and the range of f0, i.e., female singers
have higher f0. This amplitude modulation effect cannot
be observed in spectrograms and thus is not captured by
the training loss we used. It could be an intrinsic drawback
of using frame-wise LPC approximation, but more experi-
ments and comparisons with sample-wise LPC are needed.
In addition, SawSing produced low scores for both singers
because of the buzzing artefacts in the unvoiced region.
Although unvoiced gating (Sec. 3.4) reduces this problem
to a large degree, human ears are susceptible to this effect.
This could be an inherent problem in using a sawtooth as
the harmonic source.

The L2 loss shown in Table 2 demonstrates that GOLF
matches phase-related characteristics more accurately than

other models. Fig. 3 shows GOLF produces the most sim-
ilar waveform to the ground truth. Other baselines’ wave-
forms are similar because they use the same additive syn-
thesiser. It is possible to reduce their L2 loss by optimising
the initial phases of the oscillators, but this cannot account
for time-varying source shapes. Low L2 loss is a positive
effect of the deterministic phase responses embedded in
GOLF. This opens up many possibilities, such as decom-
posing and analysing the voice in a differentiable manner
and training the vocoder using the time domain loss func-
tion. The latter could be a possible way to reduce the
fluctuation problem discussed in the previous paragraph.
The waveform matching of GOLF can be improved further
by using a more flexible glottal source model, adding FIR
and all-pass filters to account for the voice’s mixed-phase
components and the recording environment’s acoustic re-
sponse.

Lastly, we note that cascaded IIR filters provide an or-
derless representation (i.e. the cascading order does not af-
fect the outputs). This results in the responsibility prob-

lem [44, 45] for the last layer of the encoder, which might
be one of the reasons why GOLF and PULF are less sta-
ble to train than other baselines. Developing architectures
that can handle orderless representation or switch to other
robust representations are possible ways to address this.

8. CONCLUSIONS

We present a lightweight singing voice vocoder called
GOLF, which uses wavetables with different glottal flows
as entries to model the time-varying harmonic components
and differentiable LPC filters for filtering both the harmon-
ics and random elements. We show that GOLF requires
less memory to train and runs an order of magnitude faster
on the CPU than other DDSP-based vocoders, but still
attains competitive voice quality in subjective and objec-
tive evaluations. Furthermore, we empirically show that
the predicted waveforms from GOLF represent the voice’s
phase response more faithfully, which could allow us to
use GOLF to decompose and analyse human voice.
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ABSTRACT

Automatic harmonic analysis of symbolic music is an im-

portant and useful task for both composers and listeners.

The task consists of two components: recognizing har-

mony labels and finding their time boundaries. Most of the

previous attempts focused on the first component, while

time boundaries were rarely modeled explicitly. Lack of

boundary modeling in the objective function could lead to

segmentation errors. In this paper, we introduce a novel

approach named Harana, to jointly detect the labels and

boundaries of harmonic regions using neural semi-CRF

(conditional random field). In contrast to rule-based scores

used in traditional semi-CRF, a neural score function is

proposed to incorporate features with more representa-

tional power. To improve the robustness of the model to

imperfect harmony profiles, we design an additional score

component to penalize the match between the candidate

harmony label and the absent notes in the music. Quantita-

tive results from our experiments demonstrate that the pro-

posed approach improves segmentation quality as well as

frame-level accuracy compared to previous methods. The

source code used in this paper is available on GitHub 1 .

1. INTRODUCTION

In music, harmony is the sound resulted from two or more

pitches being performed together. It is the vertical aspect of

music [1], and is essential for both music creation and per-

ception. During music analysis, a harmony label is often

assigned to a music segment that is harmonically coher-

ent. Many composers use harmonic progressions to set up

a musical template in which texture could then be filled [2].

For listeners, harmonic structure is a crucial mid-level rep-

resentation of music that can influence the perception of

other music elements such as melody and rhythm [3].

The task of harmonic analysis aims to find the correct

segmentation of a music piece and to identify the corre-

sponding label for each segmented region. These two goals

are closely related. Regions with strong confidence of a

candidate harmony label tend to possess the boundaries of

1 https://github.com/QiaoyuYang/harana

© Q. Yang, F. Cwitkowitz, and Z. Duan. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: Q. Yang, F. Cwitkowitz, and Z. Duan, “Harmonic Analysis

with Neural Semi-CRF”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

a true segmentation [4]. On the other hand, the oracle seg-

mentation could help the prediction of the true underlying

harmony for the notes in each region [4]. Therefore, to

achieve successful analysis of harmony, both of the two

goals as well as their relationship should be considered.

Targeting the two indispensable components of har-

monic analysis simultaneously, we propose an approach

to jointly predict the boundaries and labels of harmonic re-

gions using neural semi-Markov conditional random field

(semi-CRF). It is well-known that the harmonic regions in

music do not always share the same length [5]. Compared

to conventional sequence labeling models, semi-CRF is

more suitable for the task because it allows for various

lengths among the labeled regions [6].

In the original setting of semi-CRF, a score is com-

puted in each segmented region using the weighted sum

of rule-based features [6]. However, rule-based features

are bounded by pre-defined rules and might not exploit

the interaction between notes and other intermediate mu-

sic representations deeply enough. To solve this problem,

we design a neural scoring function that first estimates

the frame-level harmony distributions using a neural net-

work and then adapts them to candidate harmony labels

with an attention mechanism. The attention mechanism

could make the scoring module more efficient by concen-

trating on sub-regions that are more harmonically related

to the candidate label. In addition, an absence score is

added to the scoring function to improve the robustness

of the model to imperfect harmony profiles of the music.

Through experiments we find that the proposed architec-

tural components collectively yield improvement on both

segmentation quality and harmony labels accuracy. We fo-

cus on MIDI-like symbolic music input in our experiments

but the method could be easily adapted to audio.

In summary, our contributions include:

• Proposing the first neural semi-CRF model to jointly

estimate harmony labels and their time boundaries;

• Proposing an attention-based score function to alle-

viate the influence of extra non-chordal notes and

missing chordal notes; and

• Proposing a novel absence score to improve the ro-

bustness to imperfect harmony profiles.

2. RELATED WORKS

Due to the importance of harmony in music, a substantial

amount of automatic systems have been designed for har-

676



monic analysis. Early systems tended to focus on using

music audio as input and apply domain knowledge from

music theory. To encode the audio waveform, a time-

frequency representation, or spectrogram, is usually ex-

tracted using the short-time Fourier Transform. Then, with

the observation that it is the pitch class of notes rather than

the absolute pitch height that affects the harmonic content,

a common practice is to reduce the spectrogram to a chro-

magram with 12 bins corresponding to the 12 pitch classes.

In the decoding stage, the chromagram can be matched to

predefined chord profiles [7, 8] or made to emit explicit

labels using probabilistic models such as hidden Markov

model (HMM) [9–11] or CRF [11].

With the increasing popularity of deep learning in the

past decade, end-to-end models based on deep neural

networks have received extensive attention [12–16]. To

model the temporal evolution of music context, Boulanger-

Lewandowsk et al. extracted audio features using a re-

current neural network (RNN) [17]. To better aggregate

context information and learn intermediate representations

with a temporal hierarchy, Zhou and Lerch used a convo-

lutional neural network (CNN) with low-pass filters [12].

McFee and Bello further combined CNN and RNN in the

feature encoder for chord recognition [13]. As a pow-

erful attention-based architecture designed for long-term

sequence modeling, transformers have also been incor-

porated in some recent approaches to harmonic analysis

[14, 15].

While the harmonic progression or context informa-

tion can be modeled with various techniques, the majority

of existing methods do not directly optimize for region-

level output. Some methods adopt a two-stage approach,

where the first stage outputs frame-level chord labels and

the second stage smooths frame-level labels with post-

processing [9–11, 18–20]. However, different from other

simple sequence labeling tasks such as part-of-speech tag-

ging, a harmonic label could correspond to a region span-

ning multiple frames. Although temporal smoothing by

HMM or CRF regresses some sporadically outliers back

to the harmonic streams, these models could still suffer

from segmentation errors. Masada and Bunescu relaxed

the constraint on fixed-size time-span of the output predic-

tion [21]. They used a generalized variant of CRF, semi-

CRF, to jointly detect chord labels and their boundaries.

However, the features to the semi-CRF are entirely rule-

based, which means they are not necessarily optimal for

the end task. In this work, we build on the semi-CRF

framework and explore neural features and scoring tech-

niques that are jointly optimized for the end task - harmony

labeling and boundary prediction.

3. METHODS

In our proposed model, Harana, we first estimate the har-

mony (including root, quality, and pitch activation in this

work) at the frame-level; then we aggregate the frame-level

estimation into region-level segment scores based on can-

didate segments; finally, we use semi-CRF to find the best

segmentation candidate and its corresponding labels. We

focus on symbolic music input in our experiments. The

following subsections describe the model in detail.

3.1 Data Representation

3.1.1 Symbolic Music Input

Given a symbolic music piece, we slice it into short frames

of one eighth of a beat long. We use beat instead of note

duration in order to represent the basic time unit because

music with different meters may have different distribu-

tions on the note length. The pitch information in each

frame is summarized with a 12-d pitch class distribution

vector, which describes the normalized distribution of the

duration of each pitch class in the frame. To help distin-

guish between harmonies with the same pitch class vector,

we also include the bass note (the lowest note) in the input

to the model; it is represented as a 12-d one-hot vector in-

dicating the bass pitch class in each frame. Combining the

pitch class distribution and the bass note, the input to the

model is a sequence of 24-d vectors.

3.1.2 Harmony

A popular representation of music harmony in symbolic

music is the Roman numeral encoding, where the full har-

monic context of a label, including tonic and degree, is

considered [22]. However, the combination of all the com-

ponents produces 47k different harmony labels, which are

intractable for a classification model with limited training

data. A possible solution is to classify each harmony com-

ponent independently, but this is incompatible with semi-

CRF because the boundary of each component must be the

same. As a compromise, we use a subset of the harmony

components, root and quality, and model them jointly.

The root is represented as a 12-d one-hot vector cor-

responding to the 12 pitch classes. The quality is repre-

sented as a 10-d one-hot vector corresponding to 10 com-

monly used classes. In addition to root and quality, we

use another harmony representation, the pitch class activa-

tion vector, in the neural score function. Previous works

have shown its effectiveness as a label encoding for har-

monic analysis [13]. These vectors are 12-d multi-hot and

are circularly shifted from the pitch-class activation vectors

rooted at C.

3.2 Semi-CRF

Semi-CRF is a probabilistic model for sequence labeling

with a variable label-span. Given a sequence of input

frames X = ⟨X1, X2, ..., XN ⟩, semi-CRF provides the

conditional probability of the sequence of contiguous non-

overlapping labeled segments Y = ⟨Y1, Y2, ..., YK⟩, where

N is the number of frames and K is the number of seg-

ments. Since the labeled segments could span multiple

frames, they are represented as three-dimensional tuples

Yi = (ui, vi, li), where ui, vi and li respectively denote

the onset, offset and label of the segment. In the context

of harmonic analysis, X represents the input music frames

and Y represents the harmonic regions.
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Figure 1: The semi-CRF architecture in the context of harmonic analysis. The total score is computed from music input and

a set of candidate harmony segments. Numbers in the blue squares are the frame indices. Numbers in the green rectangles

are the indices of candidate harmony segments.

The conditional probability given by semi-CRF takes

the form of

P (Y |X) =
eWF (Y,X)

Z(X)
, (1)

where F is a feature vector computed from X and Y , W

is a learnable weight matrix, and Z =
∑

Y eWF (Y,X) is

a normalization factor summarizing all possible segmenta-

tion and labeling of the input sequence. In this work, we

propose to generalize the weighted feature score to a neural

score function S(Y,X) so that

P (Y |X) =
eS(Y,X)

Z(X)
. (2)

With the assumption that the harmony labels are Marko-

vian given the music input, the score function could be de-

composed into the sum of segment-level scores that are de-

pendent only on the current and the previous segments.

S(Y,X) =
K∑

i=1

Si(Yi, X;Yi−1). (3)

To simplify the notation, we treat Yi−1 as a parameter for

the i-th segment’s score function and omit it in the follow-

ing sections. Figure 1 demonstrates the structure of semi-

CRF in the context of music harmonic analysis.

3.3 Frame-Level Estimation

Followng Micci et al. [23], the frame-level estimation of

harmony information is achieved with a DenseNet-GRU

architecture. The DenseNet-GRU module is followed by

fully connected layers and finally the vectors correspond-

ing to different types of harmony information are estimated

using separate linear heads. The softmax function is used

to produce the class distributions of the root and the qual-

ity, whereas sigmoid is used to find the activation of each

pitch class. Mathematically, the computation of frame-

level harmony estimation can be formulated as

E(n) = MLP (GRU(DenseNet(Xn))),

D̂R(n) = Softmax(FCR(E(n))),

D̂Q(n) = Softmax(FCQ(E(n))),

P̂C(n) = Sigmoid(FCPC(E(n))),

(4)

where Xn is the nth frame of the input music. D̂R(n),
D̂Q(n) and P̂C(n) represent the root distribution, quality

distribution and the pitch class activations of the estimated

harmony for a frame.

3.4 Attention-Based Score Function

As described in Eq. (3), the CRF model evaluates possible

sequences of harmony labels and their segmentation. For

each segment, i.e., a candidate harmony region, we need to

aggregate the frame-level harmony information (root, qual-

ity and pitch activation) computed from Eq. (4). A simple

method would be taking the average or the mode, but we

note that a harmonic region is not likely to contain homo-

geneous harmonic content. In order to dynamically weigh

the harmonic importance of each frame within a region, an

attention module is proposed to focus on the frames that

are most similar to the candidate harmony label. In partic-

ular, the scaled dot-product attention [24] is used:

A(Q,K, V ) =

∑N

i=1 Q
TKiVi√
d

, (5)

where Q is the query vector, K is the key sequence, V is

the value sequence and d is the vector size.

In the context of our model, the estimated frame-level

harmony sequence of a candidate harmony region serves

as both the key and value while the candidate region-level

harmony itself is the query. Then, the candidate-informed

(CI) estimation can be computed as

ĤCI(Yi) = A(H(li), Ĥ(ui : vi), Ĥ(ui : vi)), (6)

where li is the i-th candidate harmony label, and H(li) is

its harmony representation, which can be root DR, quality

DQ or pitch class activation PC as defined in Eq. (4).

Variables ui and vi are the first and last frames of the ith

harmonic region Yi, and Ĥ(ui : vi) is the vector sequence

of estimated frame-level harmony representations from the

music input.

Now that we have a single embedding vector to summa-

rize the harmonic content in the i-th candidate region, the

score of assigning the candidate harmony label li to this

region can be described by the similarity between the can-

didate harmony label embedding H(li) and the candidate-

informed music embedding ĤCI(Yi). Dot product is used
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Figure 2: The proposed pipeline of the neural encoder and scoring function.

to calculate the similarity:

SH
i (Yi, X) = H(li)

T ĤCI(Yi). (7)

To further model the transition probability between adja-

cent harmony labels and enforce more inductive bias in de-

coding, a transition score between segments is computed:

ST
i (Yi) = T [li−1, li] + (vi − ui)T [li, li], (8)

where T is the transition matrix containing log-

probabilities of harmony transitions at the frame level. It is

pre-computed from the ground-truth labels in the training

data.

Combining the similarity score and the transition score,

the score function of a candidate harmony region is

Si(Yi, X) =
∑

H

SH
i (Yi, X) + λST

i (Yi), (9)

where λ is a hyperparameter to balance the two score com-

ponents. Figure 2 illustrates the overall structure of the

neural front end and the scoring function.

3.5 Absence Score

In Eq. (7), the comparison between the candidate-informed

music embedding ĤCI with the candidate harmony repre-

sentation H indicates the likelihood of the candidate har-

mony. However, this comparison may not be robust when

there are many non-chordal notes or missing chordal notes

in the estimation. In this case, the estimated class distribu-

tions D̂R and D̂Q in Eq. (4) would be relatively flat and

the pitch class activation vector P̂C would not align well

with a chord template. In other words, the neural front-end

may not sufficiently suppress non-chordal notes and rec-

ognize missing chordal notes to produce class distributions

discriminative enough for the semi-CRF to decode the har-

mony. To improve the robustness of the model to such

issues, we introduce an absence score to allow the model

to filter out pitch activations that are not active within the

input music, the majority of which represent non-chordal

notes that should not intersect with chordal notes of the un-

derlying harmony. To compute the absence score, the com-

plement of the input pitch class vector is sent to the neural

front-end. That means the input to Eq. (4) is transformed

by

Xn[1 : 12] = 1−Xn[1 : 12]. (10)

The harmony information estimated from the inactive mu-

sic Ĥinact are then compared with the candidate harmony

vectors H(li). The similarity between them should be min-

imized. In summary, the absence score of a candidate har-

mony region is

ASH
i (Yi, X) = −H(li)

T Ĥinact
CI (Yi). (11)

When the absense score is used, the complete score func-

tion becomes

Si(Yi, X) =
∑

H

SH
i (Yi, X) +ASH

i (Yi, X) + λST
i (Yi),

(12)

3.6 Optimization

For training, both the input music frames and the ground-

truth harmony label segments are provided. The goal is

to update the model parameters such that the probability

computed in Eq. (2) is maximized. This is equivalent to

minimizing the negative log likelihood (NLL) loss:

NLL(θ) = − logPθ(Y |X)

= log(Zθ(X))− Sθ(Y,X),
(13)

where θ are the model parameters. We then compute the

gradient of the loss with respect to the parameters to train

our model using gradient descent.

During inference, where only the input music frames

are provided, the goal becomes finding the correct seg-

mentation and the corresponding labels that maximize the

probability P (Y |X). Since the normalization factor as a

sum of exponential scores stays positive, maximizing the

score function S(Y,X) suffices to decode the segments

and labels.

In both training and inference, we used the algorithms

based on dynamic programming proposed in the original

semi-CRF paper to expedite the optimization process [6].
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4. EXPERIMENTS

4.1 Data

A collection of datasets from various sources [22, 25–27]

organized by Micchi et al. [28] is used to train and evaluate

the proposed architecture. Table 1 summarizes the statis-

tics of the data included in our experiments. MusPy [29] is

used to read the compressed MusicXML files and a parser

adapted from [28] is employed to handle the proposed data

representations. To increase the size of the dataset and help

alleviate possible data imbalance, each piece is transposed

to 12 different keys. The dataset is split into disjoint sub-

sets for training and testing with a 2:1 split.

4.2 Implementation Details

Following the original paper for faster training [30],

DenseNet is implemented in three separate blocks. 1-D

convolution along the time frame dimension is used in

each convolutional layer. Guided by the observation that

harmony changes usually occur on average at a lower fre-

quency than the frame rate, pooling layers are added be-

tween blocks to reduce the temporal resolution of the har-

mony output.

To ensure continuity and completeness of harmony re-

gions in the training samples, we force the sample bound-

aries to be aligned with measure boundaries. A sample

is chosen as 96 frames because it is divisible by all the

common measure lengths existed in the dataset. Addition-

ally, to avoid over-sampling from music pieces with longer

length, the piece index is sampled uniformly first before a

music sample is selected from the piece.

The entire pipeline is implemented using PyTorch.

Adam optimizer is applied with learning rate of 10−4 and

weight decay of 10−2. Dropout with rate 0.2 is added be-

tween GRU layers and after each hidden fully-connected

layer to avoid over-fitting. The λ in Eq. (12) is chosen

empirically to be 0.001.

4.3 Evaluation Metrics

The task of music harmony analysis is two fold: recogniz-

ing the correct labels and finding the correct segmentation

corresponding to the labels. To obtain a full picture of the

model performance, we used two types of evaluation met-

rics to assess both aspects of the task.

First, the frame-level accuracy is computed for both root

and quality. The accuracy on a reduced dictionary of qual-

ity including only major and minor is also reported due to

Pieces Crotchet Chord Annotations

BPSFH 32 23554 8615

Roman Text 82 18208 7935

Tavern 27 20673 10723

Lopez 180 31367 16666

Table 1: Summary of statistics of the datasets.

its prevalence in the literature and adequacy in many prac-

tical uses. During training, the accuracy is computed at

the sample level. During inference, the result is averaged

across all frames in a song.

The other evaluation metric focuses on the segmenta-

tion quality of the output. We use the standard segmenta-

tion scores from the mir_eval package [31,32]. The scores

are based on directional Hamming distance and consider

the overlap between the estimated harmony intervals and

the ground-truth intervals. The directional Hamming dis-

tance between the set of estimated intervals Î = {Îi} =
{[ûi, v̂i]} and the set of ground-truth intervals I = {Ii} is

computed as the following:

DHD(Î, I) =
∑

Îi∈Î
(|Îi| −maxIj∈I |Îi ∩ Ij |))

∑
Îi∈Î

|Îi|
.

(14)

When a harmony boundary is missing from the estima-

tion, an estimated harmony interval overlaps with mul-

tiple ground-truth intervals, but the maximum overlap is

bounded by the length of the ground-truth intervals, leav-

ing a large portion of the estimated interval not sub-

tracted hence a large distance value. Therefore, a large

DHD(Î, I) often indicates under-segmentation, while a

large DHD(I, Î) often indicates over-segmentation. To

summarize the two directional distances in a single metric,

the overall segmentation quality score is computed as

SQ = 1−max(DHD(I, Î), DHD(Î, I)). (15)

4.4 Baseline Models

Three baseline models are included in our experiments

to demonstrate the performance improvement of our pro-

posed method. The chosen baselines are all relevant to our

model by sharing parts of the architecture. Since the neu-

ral front-end of Harana is CRNN, we first test if a plain

CRNN model [23] could achieve comparable results. A

second baseline model, frog [28], also relies on CRNN to

extract music features. In contrast to our model, it uses a

neural autoregressive distribution estimator (NADE) to de-

code the harmony label. At the decoding stage, it defines

an order of the harmony components and iteratively predict

the next component conditioned on the current component.

The same output harmony categories of root and quality

output are considered in the NADE decoder. A third base-

line worth comparing to is the rule-based semi-CRF pro-

posed by Masada and Bunescu [21]. It uses handcrafted

rules as features to compute the segment scores in semi-

CRF. For simplicity, we implemented the two most impor-

tant features, chord coverage and segment purity, in our

experiment. Chord coverage measures what percentage of

chordal notes are covered by the music segment while seg-

ment purity describes what proportion of notes in the music

segment are indeed chordal notes.
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Model Root Acc Quality Acc Overall Acc Under Seg Over Seg Overall Seg

Harana 0.744 0.743 0.651 0.722 0.747 0.649

Harana - no semi-CRF 0.732 0.715 0.634 0.678 0.740 0.639

Harana - no Attention Fusing 0.741 0.738 0.650 0.716 0.749 0.645

Harana - no Absence Score 0.743 0.746 0.643 0.719 0.748 0.650

Table 2: The result of ablation studies summarizing the effect of removing each proposed component of the model on both

frame-level accuracy and segmentation quality.

Model Root Quality Majmin Overall

CRNN 0.735 0.714 0.865 0.634

frog 0.733 0.542 0.815 0.459

RuleSCRF 0.684 0.645 0.847 0.600

Harana 0.744 0.743 0.886 0.651

Table 3: The frame-level accuracy for different models.

5. RESULTS

5.1 Frame-Level Accuracy

Table 3 shows the result on frame-level accuracy. It can be

seen that Harana outperforms the baseline models on all

the measures. The large gap between Harana and the rule-

based semi-CRF model demonstrates the value of a neural

score function. Without a neural front-end, the rule-based

model even has weaker performance than the plain CRNN.

We also notice that frog has lower accuracy than the plain

CRNN model. While the autoregressive decoding in frog

could help enforce coherence between harmony compo-

nents, it may require the full spectrum of the harmony com-

ponents including key and degree. However, only root and

quality were used in our experiments. Complete harmony

information is difficult to collect so we believe Harana has

a greater potential to leverage larger datasets in the future.

5.2 Segmentation Quality

As shown in Table 4, Harana provides improvement on

segmentation quality compared to other models. Higher

under-segmentation score of Harana means there are fewer

missing boundaries in the estimation. Higher over-

segmentation score shows that most detected boundaries

are indeed true boundaries. An interesting observation is

that the rule-based semi-CRF yields the most severe under-

segmentation even though it is optimized on the segmen-

tation boundaries. The reason for this might be that rule

based-features are unable to clean noises such as the non-

chordal notes and missing chordal notes in the input music

but directly compute features from them. The noise in the

features of short regions may be confused with the intrinsic

noise of longer regions.

5.3 Ablation Studies

To show the effectiveness of each component of the ar-

chitecture, we conduct additional ablation studies by re-

moving each component. Table 2 summarizes the results.

Model Under Seg Over Seg Overall

CRNN 0.681 0.738 0.639

frog 0.681 0.724 0.624

RuleSCRF 0.666 0.741 0.625

Harana 0.722 0.747 0.649

Table 4: The segmentation quality for different models.

We can see that the full architecture achieves the best re-

sult overall. Among the missing components, semi-CRF

leads to the largest performance drop. That confirms semi-

CRF is an indispensable component to capture boundary

information in harmony analysis. The attention module,

although also helpful, produces relatively smaller perfor-

mance gain. It is expected because after the neural front-

end, the frame-level estimations to be aggregated may be

already harmonically coherent; The attention module only

helps to focus on the most representative frames. The

effect of removing the absence score is less significant.

Without it, the quality accuracy and overall segmentation

quality even slightly improved. The phenomenon could

result from the more difficult training objective. Inactive

pitch class activations of the input music are an extreme

scenario of noisy harmonic information. More data and a

larger neural front-end might be needed to fully leverage

the advantage of the absence score [33].

6. CONCLUSIONS

In this paper, we proposed an automated approach for har-

monic analysis based on neural semi-CRF to jointly seg-

ment the harmonic regions and predict the labels. We de-

veloped a neural encoder and an attention mechanism to

replace the conventional rule-based score function. We

further proposed an absense score to improve the model

robustness to imperfect harmony profiles. Experiments

showed that our proposed architecture improves the per-

formance on both frame-level accuracy and segmentation

quality. Although our experiments focused on music in-

put of symbolic format, the architecture could be adapted

to audio input by simple modifications on the neural front-

end. One limitation of the semi-CRF architecture is that

it has quadratic time complexity with respect to sequence

length so it is difficult to train the model on very long se-

quences. To capture the long-term dependency of harmony

progression, more efficient sequence modeling methods

could be explored in the future.
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ABSTRACT

Music Performance Analysis is based on the evaluation of
performance parameters such as pitch, dynamics, timbre,
tempo and timing. While timbre is the least specific param-
eter among these and is often only implicitly understood,
prominent brass pedagogues have reported that the pres-
ence of excessive muscle tension and inefficiency in play-
ing by a musician is reflected in the timbre quality of the
sound produced. In this work, we explore the application
of machine learning to automatically assess timbre qual-
ity in trumpet playing, given both its educational value and
connection to performance quality. An extensive dataset
consisting of more than 19,000 tones played by 110 trum-
pet players of different expertise has been collected. A sub-
set of 1,481 tones from this dataset was labeled by eight
professional graders on a scale of 1 to 4 based on the per-
ceived efficiency of sound production. Statistical analysis
is performed to identify the correlation among the assigned
ratings by the expert graders. A Random Forest classifier
is trained using the mode of the ratings and its accuracy
and variability is assessed with respect to the variability in
human graders as a reference. An analysis of the important
discriminatory features identifies stability of spectral peaks
as a critical factor in trumpet timbre quality.

1. INTRODUCTION

The significance of tone quality in brass musical instru-
ments has attracted considerable attention due to its rele-
vance in areas such as pedagogy and musical performance.
Teaching aural discrimination skills of tone quality is in-
deed a major component of music training [1]. The em-
phasis placed on the development of good tone quality can
be attributed to its close relationship with sound produc-
tion efficiency. In brass instrument pedagogy, there is a

* Equal contribution

© A. Acquilino, N. Puranik, I. Fujinaga, and G. Scavone.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: A. Acquilino, N. Puranik, I. Fujinaga,
and G. Scavone, “A Dataset and Baseline for Automated Assessment of
Timbre Quality in Trumpet Sound”, in Proc. of the 24th Int. Society for

Music Information Retrieval Conf., Milan, Italy, 2023.

widely held belief that the most efficient sounds are per-
ceived as rich and round, while less efficiently produced
tones tend to sound strained and shrill [2–4]. This implies
that a method that can accurately and consistently distin-
guish the perceived tone quality in a brass instrument may
hold significant potential in pedagogical applications, pro-
viding guidance to beginning students on how to achieve
greater efficiency in sound production. However, under-
standing factors that contribute to the timbral quality of
trumpet sound remains an unsolved challenge thus far.

Playing a trumpet tone involves a complex interplay
between the musician’s embouchure, oral cavity, and air-
flow [5]. It is a delicate balance in which even the slightest
alteration in any component contributing to the creation of
a tone can result in changes to the overall timbre [6]. The
multi-variable interaction that contributes to the character-
ization of timbre makes defining its quality a challenging
task [7].

Helmoltz was among the first to attempt providing in-
sight into the audio properties related to the quality of
a musical tone by proposing a direct relationship to the
quantity and to the relative intensity of its constituent par-
tials [8]. In an exploratory study using the trumpet as a case
study, Madsen and Geringer identified the amplitude of the
first overtone as a discriminatory feature between tones of
differing sound quality [9]. Building on this finding, a sub-
sequent perceptual study by Geringer and Worthy analyzed
the tonal quality of the trumpet by altering the content of
partials in the sound [10].

In recent years, the investigation of trumpet tone quality
has emerged as an area of inquiry within the field of Mu-
sic Information Retrieval. A pioneering study conducted
by Knight et al. examined the potential of a model classi-
fier to categorize trumpet tones into two, three, and seven
classes [11]. This research assessed 56 single- and multi-
dimensional audio features, as well as their correlations
with human judgments, utilizing a dataset comprised of
239 individual sounds. Despite the relatively low accuracy
of the resultant model, this foundational work has paved
the way for subsequent advancements in the automatic as-
sessment of brass tone quality, highlighting its potential in
pedagogical applications.

A subsequent collaborative research project between
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the Music Technology Group of Pompeu Fabra University
(MTG-UPF) and KORG Inc. employed machine learning
algorithms to evaluate various musical parameters of trum-
pet sounds, including timbre quality [12, 13]. To the best
of our knowledge, this represents the most recent investi-
gation in this domain. The researchers collected and ana-
lyzed a publicly accessible dataset containing 738 trumpet
sounds. However, the findings revealed a weak correlation
between the scores generated by the trained model and the
rankings assigned by human evaluators, indicating signif-
icant room for improvement in the model’s performance.
Limitations were also identified in relation to the reference
dataset, which lacked diversity by utilizing sounds from
only two graduated trumpet players, and in the proposed
interface for implementation in pedagogical contexts [14].

The current study aims to provide a comprehensive ex-
ploration of this subject, incorporating a complete dataset
of sampled sounds and expert-generated labels. 1 Sec-
tion 2 describes dataset collection and preprocessing, while
Section 3 presents the machine learning training, results
and visualization based on the most important feature.

2. MATERIALS

The dataset employed for training the proposed model
comprises auditory samples gathered by the first author
at various music institutions and master classes through-
out Europe before the start of his academic program at the
host institution. In total, 110 distinct trumpet performers
were recorded under varying acoustic conditions. To en-
compass the complete spectrum of sound production effi-
ciency levels, individuals from diverse backgrounds were
recorded, including students and instructors from amateur
music schools, arts universities, orchestral musicians, and
international jazz and classical soloists.

The same recording system was utilized across all
data acquisition sessions, specifically the IM69D130
Shield2Go evaluation board developed by Infineon Tech-
nologies, which is equipped with two Infineon IM69D130
Micro-Electro-Mechanical Systems microphones. Such a
microphone exhibits an Acoustic Overload Point of 130
dB, allowing it to capture loud audio signals such as those
produced by a trumpet without distortion or saturation.
Moreover, the microphone offers a sufficiently flat and ex-
tensive frequency response ranging from 20 Hz to 20 kHz,
thereby covering the entire audible spectrum.

The selected evaluation board was connected to a Rasp-
berry Pi 4 Model B and a Raspberry Pi Model 3B+ for
recording. A sampling rate of 48 kHz and 32-bit depth
were used for the acquisition of audio data. The subse-
quent section provides a detailed account of the recording
methodology employed for audio data collection.

2.1 Dataset acquisition methodology

The data acquisition process involved inviting each musi-
cian into a room with a fairly low ambient noise level. A

1 The dataset can be accessed at: https://github.com/

PNinad/ISMIR2023

microphone was positioned approximately 50 cm in front
of the trumpet bell and 10 cm from its longitudinal axis.
In most instances, a set of two microphones was employed
concurrently to ensure data redundancy, mitigating the risk
of data loss should a device malfunction occur during the
recording session.

Participants were instructed to play isolated tones of ap-
proximately one-second duration over a chromatic scale
ranging from E3 to BZ5 at three distinct dynamic levels:
piano, mezzoforte, and forte, in their preferred sequence.
Musicians utilized their personal instruments and mouth-
pieces and were not required to adhere to a reference pitch
(e.g., A4 at 440 Hz) as timbral quality concerning sound
production efficiency is anticipated to be independent of a
reference pitch.

The inclusion of various dynamic levels aimed to en-
hance the dataset’s variability, as the timbre of brass instru-
ments is significantly influenced by loudness [15]. A digi-
tal sound level meter was positioned adjacent to the micro-
phone, providing real-time decibel level readings during
the recording. Trumpet players were given indicative ref-
erence levels of 85 dB, 105 dB, and 115 dB, corresponding
to the piano, mezzoforte, and forte dynamic levels, respec-
tively.

Despite the specified guidelines, the dataset exhibits
several inherent variabilities:

• The sustain duration of the tones ranged from 0.7 to
4 seconds.

• The chromatic scale’s range was contingent upon
the performer’s skill level. Generally, less proficient
musicians struggled to produce tones in the high reg-
ister, in which case they were instructed to play up
to their highest achievable note.

• For beginner musicians, playing a chromatic scale in
front of a microphone proved challenging at times.
Some participants opted to perform legato notes
rather than separate tones.

• Less skilled musicians often experience difficulty in
controlling the instrument’s dynamic range, result-
ing in the recommended dynamic levels being pri-
marily adhered to by more proficient players.

During the recording sessions, the first author, who
holds a degree in trumpet performance and has profes-
sional experience as a musician and instructor, assigned
a preliminary grade of the overall sound production effi-
ciency on a scale of 1 to 100 to each player. Figure 1 illus-
trates the distribution of assigned grades divided into four
ranges (i.e., 0–25, 26–50, 51–75, and 75–100), demon-
strating that a substantial number of players are repre-
sented in each category.

The dataset under examination was partitioned into dis-
crete trumpet tones utilizing the pyin vamp plugin devel-
oped by Mauch and Dixon [16], yielding a collection of
over 19,000 tones. Although the segmentation process
demonstrated a degree of inaccuracy, with certain audio
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Figure 1. Distribution of recorded players according to the
level of tone quality noted at the time of recording.

segments containing noise rather than trumpet tones, it
nevertheless provided a satisfactory initial categorization
of the data.

The following section outlines the methodology em-
ployed to prepare the dataset for label assignment by cho-
sen evaluators.

2.2 Dataset preparation

Considering the approximate accuracy of the segmentation
algorithm and the extensive nature of the overall dataset, it
was decided to select a representative subset of the dataset
for the manual examination of audio samples. To ensure
that the whole range of tone quality is sufficiently repre-
sented, the subset was constructed of seventeen trumpet
players such that five individuals had received a prelimi-
nary vote between 0–25 and four individuals with a grade
between the other 3 ranges 26–50, 51–75, and 76–100
respectively. The first category was assigned one player
more as the less experienced participants only partially
cover the required chromatic scale, thus compensating for
the lower representation of tones within this class. The se-
lected subset encompassed 1,712 distinct trumpet tones.

It was decided to classify each tone into four categories
based on their sound production efficiency, resulting in
four classification levels: 1:poor, 2:fair, 3:good, and 4:ex-
cellent. This classification into four levels was employed
with the intention of simplifying the label assignment pro-
cess while retaining sufficient variability, as suggested by
Wesolowski [17] and employed by Köktürk-Güzel et al. in
a related research study [18].

The web interface shown in Figure 2 was subsequently
developed to facilitate blind listening (i.e., without reveal-
ing the player’s identity) and label assignment for each
tone. The first author listened to all 1,712 sounds in the
subset under analysis through the interface and assigned a
label to each tone. The "Not a note" button enabled tag-
ging of erroneously segmented sound samples which were
filtered out to yield a dataset 1,481 clean samples.

The assignment of sound production efficiency class
through anonymous listening to the audio samples in ran-
dom order facilitated the allocation of a grade on a note-

by-note basis, as opposed to providing an overall grade to
the performance. This allowed for different grades to be
assigned depending on the note if the level of sound effi-
ciency varied along the chromatic scale. Additionally, the
reliability of unbiased judgment could be assessed through
a comparison with the preliminary grades assigned dur-
ing the recording. The Spearman correlation coefficient
between the two sets of grades was found to be 0.873
(P value<0.001), indicating the consistency of the author
in assigning grades over time. This further indicates that
players in general exhibit a consistent level of sound pro-
duction efficiency along the chromatic scale.

Figure 2. Interface for blind grading the trumpet tones.

2.3 Assessment labels

The cleaned dataset with 1,481 samples was subsequently
presented to a panel of expert raters for evaluation via the
described interface. A total of seven experts from different
schools across Europe, North America and South Amer-
ica were chosen for the task. Among the raters, six were
trumpet players, and one was a bass trombone player. All
raters have professional experience as performers and/or
teachers. This exploratory perceptual study was conducted
online, with raters instructed to complete the task in a low-
noise environment using professional headphones.

The rating sessions started with an introduction to the
concept expressed by renowned brass instrument peda-
gogues, which asserts that rigidities in a trumpet player’s
body result in inefficiencies in playing, manifesting as a
forced and strained sound. In contrast, a high-quality
sound indicates efficiency of the embouchure and breath-
ing muscles. Audio samples demonstrating extreme cases
of this idea were presented and each rater confirmed their
understanding of the concept and their ability to discern
sound production efficiency in trumpet sounds based solely
on audio information.

The dataset of 1,481 samples was split into two parts
with 100 and 1,381 tones respectively. The raters first
graded each of the 100 samples in approximately 15 min-
utes. After a 5 minute break, additional samples, randomly
selected from the remaining 1,381 samples were presented
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for evaluation. The raters continued to assess the trumpet
tones until they experienced fatigue or until 90 minutes had
elapsed from the beginning of the experiment. Table 1 dis-
plays the number of audio samples rated by each grader.
Grader 1 corresponds to the first author who assigned the
ratings manually by listening to all 1,481 samples in the
subdataset, as described in the previous section. The set
of 100 sounds were chosen such that they were equally
distributed across the four classes, as determined from the
labels by the author, and were used to ascertain the level of
inter-rater reliability.

The next section describes the statistical analysis imple-
mented on the data thus collected.

Grader ID Graded tones

Grader 1 100 + 1381
Grader 2 100 + 401
Grader 3 100 + 206
Grader 4 100 + 312
Grader 5 100 + 383
Grader 6 100 + 366
Grader 7 100 + 564
Grader 8 100 + 491

Table 1. Number of individual tones evaluated by each
grader.

2.4 Data analysis

The inter-rater reliability was assessed using the subdataset
containing 100 tones graded by all the experts. Table 2
presents the Spearman ρ correlation coefficients with the
corresponding P values for each pair of evaluators. As de-
picted in the table, all P values, representing the likelihood
of obtaining the same results by chance, are less than 0.05.

The reported Spearman correlation coefficients range
from 0.237 to 0.701. Notably, pairs including Grader
8 (the sole non-trumpet-playing expert) exhibited signif-
icantly lower correlation coefficients than all other pairs,
potentially suggesting the significance of employing ex-
perts whose primary instrument aligns with the instrument
under analysis for tasks of this nature. Due to the substan-
tial differences in the ratings relative to the other raters,
Grader 8 was deemed an outlier, and their results were
excluded from further consideration. This adjustment in-
creased Spearman ρ coefficients from 0.496 to 0.701, indi-
cating fairly strong agreement among the judges [19].

Subsequently, a confusion matrix was computed for
each evaluator, comparing the ratings assigned by that spe-
cific grader to the most frequently occurring (i.e., statistical
mode) value in the ratings assigned by the seven evaluators
for that specific tone. Cases where the mode was uncertain
on one value were eliminated, resulting in 87 overall tones.
The first seven subplots of Figure 3 display the resulting
confusion matrices for each grader and their respective ac-
curacy values (average f1 scores).

The next section describes the description of a model
trained on the data obtained with reference to the variabil-
ity of human assessment.

3. METHODOLOGY AND RESULTS

3.1 Audio Preprocessing and Model Training

The dataset preparation process described in Section 2.2
yielded a clean dataset with the audio samples of 1,481
tones. As a preprocessing step, the sound samples were
first normalized to have a maximum signal amplitude equal
to one. White noise at -60 dB was then added to the nor-
malized audio to overcome the numerical errors (division
by zero) encountered during feature extraction, without
significantly altering the original signal. The audio fea-
tures for each tone were then extracted using the Extractor
algorithm from the Essentia library [20]. To reduce the
computational complexity, only the statistical aggregates
of the audio features (e.g., mean, variance, and mean of
derivative) were utilized. Rhythm-based features were ex-
cluded since they were not deemed suitable for a timbre
classification task. A total of 1,230 features were thus ex-
tracted to represent each audio sample.

As a first step, a Random Forest (RF) Classifier [21] was
trained using the extracted audio features and labels pro-
vided by Grader 1, since Grader 1 had annotated each of
1,481 samples in the dataset. When the model was trained
using the full set of audio features, a mean accuracy score
of 78% was obtained in the 10-fold cross-validation. Using
the model based feature selection in scikit-learn, the top
256 features were identified from an RF-classifier model
trained using a 75%-25% train-test split of the dataset. Us-
ing just the top 256 features for training, the mean accuracy
for the 10-fold cross-validation improved to 81.37%. The
model thus obtained was implemented in a pedagogical ap-
plication in a concurrent publication by the authors [22].

To eliminate the bias introduced by using a single
grader, it was assumed that the most frequent label given
by the expert graders is the true label. Only samples with
at least two votes were used and samples which had equal
number of votes for two labels by the expert graders were
assumed to be ambiguous and were discarded from the
dataset. With this approach, out of the 1,381 samples, 871
samples were deemed unambiguous. Similarly, 87 out of
the 100 samples were unambiguous. An accuracy score of
59% was obtained on the test set of 87 samples for the RF
model trained using the 871 samples as training set. The
confusion matrices on the test-set for the different graders
and the RF classifier can be seen in the bottom right subplot
of Figure 3. It can be observed that most of the confusion
is between the adjacent classes. Since the audio samples in
the adjacent classes are in fact more similar to each other
than the other classes, the errors seem to be reasonable,
for both the graders and the model. While an accuracy
score of 59% appears low, it is within the range of accu-
racy scores (53%–72%) of the human expert graders and
it demonstrates that the extracted audio features could be
used to classify the audio samples based on timbre quality.

The trained model was tested in real time by trumpet
players and on labeled datasets different from the one in
this study [12] showing promising generalisability.
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Grader Pair
Grader

2 3 4 5 6 7 8
1 0.691* 0.668* 0.654* 0.645* 0.523* 0.638* 0.247***
2 - 0.701* 0.628* 0.650* 0.589* 0.650* 0.279**
3 - 0.599* 0.594* 0.496* 0.667* 0.237***
4 - 0.696* 0.650* 0.567* 0.349*
5 - 0.502* 0.637* 0.275**
6 - 0.524* 0.264**
7 - 0.353*

Table 2. Spearman ρ correlation coefficients between each pair of graders. Legend: * p<.001, ** p<.01, *** p<.05

Figure 3. Confusion matrices with the predicted labels of each grader and of the trained RF classifier (horizontal axis) with
respect to the true label as the mode of the assigned grade (vertical axis) and the corresponding f1 scores.

3.2 Feature importance

Due to a slightly subjective nature of the problem, there
is considerable variability in the labels by human experts.
Hence, very high classification accuracy scores cannot be
achieved even with sophisticated machine learning mod-
els. However, even with a moderately accurate classifier,
analysis of the most important features could help to de-
velop an intuitive understanding of good quality timbre in
trumpet sounds.

One of the main reasons to choose the Random Forest
Classifier algorithm was that it gives access to the impor-
tance of each feature in the classification task. The feature
importance scores for the classification are available as a
model property in the scikit-learn implementation of the
Random Forest algorithm [23]. The top 20 observed fea-
tures are listed in Table 3.

Many of the top features are based on the mean
of the derivative ‘dmean’ and the mean of the double
derivative ‘dmean2’, suggesting that the change in the

spectrum accross time is a crucial factor in the per-
ception of the timbre quality. Notably three of the
top features namely lowLevel.spectral_complexity.dmean,
lowLevel.spectral_complexity.dmean2 and lowLevel.spec-
tral_complexity.dvar are related to the time varying proper-
ties of the same underlying feature of spectral complexity.

A scatter plot of the lowLevel.spectral_complexi-
ty.dmean and lowLevel.spectral_complexity.dmean2 fea-
tures considering only the best and worst class samples is
shown in Figure 4. It is apparent that just this pair of fea-
tures is quite successful in discriminating between the best
and worst samples. Since both features are statistical ag-
gregates of the spectral complexity feature, the raw feature
was explored to develop a visualization of the sound pro-
duction efficiency as described in the following subsection.

3.3 Visualization based on Spectral Complexity

Spectral complexity is based on the number of peaks in the
spectrum of a time window [24]. The Essentia implemen-
tation of this feature considers the spectral peaks only up
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Audio feature Score (%)

lowLevel.spectral_complexity.dmean 1.381
lowLevel.scvalleys.mean_5 1.182
lowLevel.spectral_complexity.dmean2 1.049
lowLevel.spectral_complexity.dvar 0.897
lowLevel.sccoeffs.var_5 0.648
lowLevel.scvalleys.mean_3 0.636
lowLevel.sccoeffs.stdev_5 0.622
lowLevel.scvalleys.median_5 0.594
lowLevel.spectral_spread.dmean 0.570
sfx.tristimulus.dmean2_2 0.561
lowLevel.sccoeffs.median_4 0.531
lowLevel.sccoeffs.dmean2_3 0.496
lowLevel.scvalleys.median_3 0.492
lowLevel.barkbands.dmean_25 0.478
lowLevel.pitch_
instantaneous_confidence.dmean2 0.465
lowLevel.spectral_flux.dmean 0.465
lowLevel.spectral_complexity.dvar2 0.425
lowLevel.sccoeffs.mean_4 0.424
lowLevel.scvalleys.mean_2 0.412
lowLevel.spectral_complexity.stdev 0.402

Table 3. Top 20 features ranked by importance in the Ran-
dom Forest Classifier.

Figure 4. Scatter plot depicting the spectral complexity
based features for best (blue) and worst (orange) class sam-
ples.

to 5 kHz. From the spectra of the collected dataset, the
presence of harmonic peaks at frequencies higher than 5
kHz was evident. It was therefore decided to implement
the spectral complexity considering the entire audible fre-
quency range. To enhance peak detection accuracy, prior
knowledge of the fundamental frequency ‘f0’ of the tone
was utilized to search for spectral peaks exclusively in the
vicinity of the integer multiples of the f0 frequency. For
a normalized audio, peaks with signal energy less than
−40dB were discarded to reduce noise. An FFT-bin mask
was generated by assigning the value of one to the FFT bin
if a peak was detected in it while all other bins were as-
signed a value of zero, thus generating a visualization to
track the peaks across the analysis time windows.

Figure 5 shows the visualization for two representative
sounds. It is evident that for sounds rated as excellent qual-
ity, the spectral peaks consistently lie in the same FFT-bin
across time, leading to flat horizontal lines in the visualiza-

Figure 5. Visualization of the temporal evolution of spec-
tral peaks for trumpet sounds rated as low-quality (top) and
high-quality (bottom) timbre.

tion. Whereas for sounds rated as poor quality, the spec-
tral peaks show unsteadiness, particularly at the higher har-
monics, which leads to broken and wavy lines in the visu-
alization. The total number of peaks could be more or less
depending on the f0 frequency of the note and the loudness.
However, it appears that the perception of timbre quality is
correlated to the steadiness of the peaks rather than their
total number. A real-time implementation of this visual-
ization could offer invaluable feedback on the efficiency of
sound production, greatly benefiting new trumpet students
who are still developing their auditory skills.

4. CONCLUSIONS

In this paper, we introduced the importance of timbre qual-
ity in trumpet performance and pedagogy. With an aim
to develop an automated tool for the assessment and vi-
sualization of trumpet tone quality, an extensive dataset
of trumpet tones was collected and manually graded with
the help of experts. Through the inter-grader analysis pre-
sented, it was shown that while there are some differences
in timbre preferences, most experts generally concur in dif-
ferentiating the different levels of trumpet tone quality.

Random Forest Classifier models trained using ex-
tracted audio features were found to have accuracy scores
comparable to the accuracy scores of human experts. Fea-
tures based on spectral complexity were observed to have
very high importance in the models trained for the task of
trumpet timbre discrimination.

A representation based on the harmonic peaks in the
spectrum was developed to visualize the timbre quality.
The proposed visualization suggests that the stability over
time of spectral partials plays an important role in discrim-
inating the timbre quality of trumpet sounds.

Future research aims to incorporate the developed
model and visualization in a pedagogical application and
assess its efficacy in music classrooms.
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ABSTRACT

We propose different methods for alternative represen-

tation and visual augmentation of sheet music that help

users gain an overview of general structure, repeating pat-

terns, and the similarity of segments. To this end, we ex-

plored mapping the overall similarity between sections or

bars to colors. For these mappings, we use dimensionality

reduction or clustering to assign similar segments to simi-

lar colors and vice versa. To provide a better overview, we

further designed simplified music notation representations,

including hierarchical and compressed encodings. These

overviews allow users to display whole pieces more com-

pactly on a single screen without clutter and to find and

navigate to distant segments more quickly. Our prelimi-

nary evaluation with guitarists and tablature shows that our

design supports users in tasks such as analyzing structure,

finding repetitions, and determining the similarity of spe-

cific segments to others.

1. INTRODUCTION

Common music notation can be considered as a special vi-

sual encoding to convey music, including instructions on

how to perform it. Despite its compactness and detailed

information, a music sheet is hard to analyze for novice

musicians [1]. Moreover, it contains lots of information

that is hard to display at once without visual clutter or get-

ting too small – getting an overview is tricky. When pieces

contain repeating sections such as a chorus, much infor-

mation is redundant. Even with abbreviations that denote

repetitions, such as a double bar with colon, da capo, or al

segno, a complex structure can lead to tedious navigation.

Recent work [1–3] strove to enrich notation to better

convey music-theoretical information and patterns. In this

paper, we instead focus on quickly gaining an overview

of structures such as similarities and repetitions. This

overview is meant to support learning, or teaching a music

piece, as musicians often have to remember which segment

of a piece they have to play when and how often, informa-

tion that can be obscured in classical sheet music notation.

According to the visualization principle “eyes beat mem-

© F. Heyen, Q. Q. Ngo, and M. Sedlmair. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: F. Heyen, Q. Q. Ngo, and M. Sedlmair, “Visual Overviews

for Sheet Music Structure”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

ory” [4], we argue that the current notation leaves room for

further optimization.

Toward this goal, we propose to visually enrich sheet

music by mapping calculated similarities among segments

of the sheet music, such as sections or bars (measures), to

colors. To fit the notes of a whole piece onto a screen while

remaining legible, we propose compact alternative encod-

ings to common music notation that allow for overview

and easier navigation without having to scroll or change

pages. This work focuses on guitar tablature of Western

music, which is easier to represent compactly and often

features more repeating parts than other kinds of sheet mu-

sic. However, we argue that our general method of map-

ping similarities to color can also help with other kinds of

music. We conducted a preliminary qualitative evaluation

through pair analytics with four guitarists. The results in-

dicate that our design supports tasks such as summarizing

structure, finding repetitions, and analyzing similarity.

In summary, we contribute 1) the exploration of novel

representations of sheet music for easier overviews, specif-

ically a method for mapping similarity among components

of a music sheet to color, and 2) a preliminary pair analyt-

ics study with four guitarists. We further provide source

code and a web app where users can try their own sheet

music in MusicXML [5] at visvar.github.io/sheetmusic-

overviews.

2. RELATED WORK

Similarity in music concerns many dimensions such as

cognition, perception, tempo, pitch, and more. There-

fore, existing metrics use different approaches, including a

continuous representation of notes [6], a geometrical met-

ric [7], shapes of curves [8], and a graph-based metric for

harmony [9]. Janssen et al. [10] evaluated melodic sim-

ilarity metrics using human annotators and a survey [11]

defined eight criteria for symbolic melodic similarity. The

overall aim of the above work is to query pieces in a

database. In contrast, our work focuses on supporting the

structural analysis of a single piece, by visualizing simi-

larities within it. While our design allows integrating any

metric, its main purpose is demonstrating how visualiza-

tion can support sheet music analysis. We thus use a sim-

pler symbolic metric to instantiate our design.

There is a broad range of music-related visualiza-

tion [12, 13], including structure [14–22]. However, some

visual encodings, such as one based on Tonnetz [21], re-
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Figure 1: Screenshot of our design with all views (cut): a) data and visualization options, b) view selection, c) player, d)

instrument/track overview, e) structure hierarchy, f) compressed repetitions, g) compact sheet, and h) complete score.

quire knowledge of music theory. Similar to our approach,

MoshViz [17] focuses on visual analysis in an overview-

detail fashion, but without considering perceptual or cog-

nitive aspects. Our design allows encoding any similarity

metric (mathematical or perceptual) with colors, to make

sheet music easier to understand. Closest to our work is

a structure visualization that uses dimensionality reduction

(DR) to map audio features to color [18], which inspired

us to design a similar mapping for sheet music.

Augmented sheet music adds visual components to

common music notation to increase expressiveness. Re-

lated work augments a music piece with radial note his-

tograms, to facilitate analyzing harmonic patterns [2],

or visualizes rhythm through color-coded sunbursts [1].

Miller et al. [3] combined both approaches, but do not ad-

dress supporting performance preparation tasks. Only lit-

tle research supports instrument learning and composition.

Bunks et al. [23] use color for reference keys on a tabular

layout to support jazz improvisation. Others augment sheet

music with lines and ellipses to support error detection in

composition [24] or pianists in identifying mistakes while

practicing [25, 26]. In this work, we also support learning

by aiding music reading before and during practice.

3. DESIGN

We first introduce the tasks we want to support with our

approach. Then, we describe how we compute similarities

and map them to colors and how we represent sheet music

visually (Figure 1).

3.1 User Tasks

Our overall goal is to improve the efficiency of reading

sheet music, by sparing users the need to search for cer-

tain segments or memorize patterns. We want to reveal

potentially interesting patterns that are hard to infer from

the bare sheet music itself but could be helpful for bet-

ter understanding or practicing a piece. More specifically,

we want to support the following tasks: (T1) understand

the overall structure of a piece, (T2) detect repetitions,

which means to spot where something repeats how often,

and detect repetitions nested within repetitions, (T3) com-

pare multiple segments regarding their similarity.

3.2 Color Mappings

Similarity metrics. Our approach works with any metric

that takes notes and returns a scalar similarity score. We

compare non-overlapping segments of the piece, which can

be bars, pre-defined sections read from the MusicXML file,

or the result of an automatic segmentation (the latter is not

implemented).

In our related work section, we discussed existing sim-

ilarity metrics for symbolic music. Some of these metrics

do not support polyphony or require complete scores or

additional annotations (such as chords) or assumptions on

musical meaning. Metrics that are based on western tonal

harmony [27, 28] would also not generalize to various cul-

tures and genres. Therefore, we designed the following

simple but robust algorithm: First, the notes of a segment
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are sorted by their start time and those with equal start time

by pitch ascending. Mapping each note to its pitch then re-

sults in one sequence of integers for each segment. We

then compute a similarity matrix by calculating the Lev-

enshtein distance [29] for all possible pairs of segments,

equals the minimum number of pitches one would have to

insert, delete, or replace, to transform the first sequence

into the second.

We further compute similarities between all sets of

notes that have the same start time, which we refer to as

harmonies. For these sets, we only use the notes’ pitch

class (disregarding octaves) and compute the Jaccard in-

dex [30], which equals the ratio of intersection over union.

Mapping. Once we have a similarity matrix, we can cre-

ate a color mapping that respects these similarities. We

explored three alternative methods that use either a one-

to-many comparison, dimensionality reduction, or hier-

archical clustering. Figure 2 shows an example for our

similarity-based color mapping, Figure 3 summarizes our

different mapping strategies.

The first method colors bars by their similarity to a se-

lected bar. This selection is made by the user or automat-

ically when playing the piece, where the currently played

bar is selected. To obtain colors, we linearly map the simi-

larities to a color scale. Another mode only colors bars that

the metric considers identical to the selected one, allowing

users to quickly spot where and how often it repeats.

Our second method uses dimensionality reduction

(DR), a method commonly used to transform data from a

high-dimensional space to a lower-dimensional one. Usu-

ally, the target space is two- or three-dimensional, such that

data points can be shown on a screen. We instead project

onto a one-dimensional space that we can then linearly

map to a color scale. As we do not have concrete posi-

tions in a space, but only the similarities between them,

we chose multi-dimensional scaling (MDS) [31] that ac-

cepts a similarity matrix as input. Furthermore, MDS op-

timizes the computed projection to preserve these similar-

ities, leading to a coloring optimized for these.

As an alternative to MDS, we designed a method that

clusters similar segments together and then assigns each

cluster one color such that similar clusters have similar

colors. Using our similarity matrix, we compute hierar-

chical agglomerative clustering, which gives us a binary

tree. We then sort the tree’s leaves from left to right, as

leaves that are closer together are more similar, and map

them in this order to a color scale. Compared to the above

method using MDS, the resulting colors are easier to dis-

tinguish but represent similarities less accurately. Using a

similarity threshold, users can steer the number of clusters

and therefore colors, to choose a trade-off between detail

and overview.

Color scales. Research on perception proposed a range of

color scales specifically designed for visualization. Since

there are different irreconcilable goals, no scale is appro-

priate for all tasks. While multi-hue scales such as rain-

bows have been criticized [32], they have been shown to

work well for some circumstances [33–35]. For users

Figure 2: Example of similarity-based color mappings.

Top: rectangles represent all bars of a piece, from left to

right in the order they occur. Bottom: a color scale. Curves

connect each bar to its color. In this figure, the curves of

a single color are highlighted through a stronger opacity to

show how they connect to identical bars.

Figure 3: We compute similarity-based colors for ex-

tracted segments via direct comparison, dimensionality re-

duction, or clustering. A segment can be any sequence of

notes in the piece, such as a bar or a pre-defined section.

The selected segment is chosen by the user to compare it

to all others.

with a color vision deficiency, scales with fewer hues and,

therefore, less discernible colors can be used, such as ci-

vidis [36]. When color is used to compare different val-

ues or intervals, a color scale needs to accurately represent

similarities between values. For this task, single-hue scales

or interpolations between two hues are appropriate but fur-

ther reduce the number of discernible colors. Although the

number of distinguishable colors is small, there are enough

for our use case, as the number of different segments in a

piece is limited. Since colors are distributed by similarity,

indistinguishable colors should only be assigned to very

similar segments. To accommodate different user needs,

we choose a broad multi-hue scale (spectral) as default but

also provide more accessible ones; for direct comparison,

we choose a single hue scale (blues) (Figure 4).

Figure 4: Some of the included color scales, taken from

D3 [37]. The choice depends on the current task and indi-

vidual limitations of the user’s color vision.
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Figure 5: A pattern of repetitions with different endings.

Bar 16 is colored blue, 24 and 40 are the same yellow, and

bar 32 is green.

3.3 Visual Encodings

Layout enrichment for common music notation. We de-

signed several visual encodings to address different tasks

and reveal different kinds of patterns. The most straight-

forward encoding is to display the full sheet music as the

common notation that is familiar to musicians and repre-

sents the complete information. We enrich this display by

adding colored, semi-transparent rectangles on top of the

segments, for example, one for each bar (Figure 5). The

reduced opacity makes colors brighter than in other views

but improves the readability of the notation. This color-

ing helps more quickly see where a bar repeats (T2), as

the user only has to compare bars with similar colors (T3).

Even when two different bars were assigned similar col-

ors, this process allows for ruling out many others. This

encoding suffers from the same limitations as non-colored

sheet music. Due to its highly detailed nature, fitting the

complete piece on the screen at once would lead to small

and illegible visuals. Therefore, we designed simplified,

filtered, and compressed alternatives, which we explain in

the following paragraphs.

Note display. In most views, we represent notes by blocks

that are positioned horizontally by start time and have a

width proportional to the note’s duration, to visually in-

dicate timing and rhythm (Figure 6). The first mode dis-

plays the notes as triangles in a piano roll, allowing it to

represent music for any instrument, but less readable than

other encodings. A second mode displays guitar tablature,

where each row stands for one string, and the third adds

fret numbers for more detail. We focus primarily on gui-

tar tablature in this work, but new encodings resembling

other instruments’ common notations could extend our ap-

proach. Depending on their size, our encodings become

hard to read but still reveal coarse patterns more clearly

than detailed notation. In order to show the whole piece

at once (T1), without filtering or compression, we display

the full score with the above encodings (Figure 1g).

Hierarchy. Most music pieces have a hierarchical struc-

ture in the form of sections such as verse and chorus, span-

ning multiple bars, each with none to a few notes, which

might be grouped in harmonies (notes played at the same

time). We visualize this structure as a tree, where users

can select a node to show only its children in the level be-

low (Figure 1e). This representation supports gaining an

(a) Piano roll. (b) Tab (simple). (c) Tab with frets.

Figure 6: Note display: a) Piano rolls can represent any

music but lack additional information. b, c) Tablature ei-

ther simplified or with fret numbers. Notes are drawn in

black or white depending on the background’s luminosity.

overview (T1) and allows navigating the sheet music more

conveniently. The colors are level-specific, such that they

only represent similarities within, not between, the levels.

Notes have their own color map that is not based on simi-

larity but still allows to spot repetitions or patterns such as

sequences of increasing pitch (T2).

Compressed multi-level repetitions. Music pieces might

have another hierarchical structure regarding repetitions

when a repeating segment contains repeating sub-segments

(T1,2). Similar to data compression, this allows us to cre-

ate a more compact representation, by only displaying a

repeating segment once and annotating it with its number

of repetitions. Doing this recursively results in a tree where

each leaf is a bar of the music piece, and each inner node

contains the following information: A pre-fix child, a re-

peated child with its repetition count, and a post-fix child,

where pre- and post-fix can be empty. The visual encod-

ing we chose for this data structure uses our compact note

encoding (Figure 6) for the leaves and brackets for the in-

ner nodes (Figure 7). Numbers above the bars denote the

index of their first occurrence, allowing to spot recurring

ones that are farther apart.

Figure 7: Our compressed view shows repetitions as

nested blocks (cut). Note, that bar 51 appears two times,

as it equals bar 53.

Workflow and interaction. We envision musicians using

our interface primarily while learning a new piece, where

they first get an overview and then take a closer look at

the detailed sheet music. During navigation, reading, and

playing, they could use overviews as ‘minimaps’ that pro-

vide context for what they are currently focusing on. As all

views are linked, clicking on a bar in any view allows users

to highlight or jump to a certain bar in all other views.

4. EVALUATION

We chose a pair analytics setup over a comparative user

study, as most related work focuses on different tasks or

data, which does not allow fair comparison. Furthermore,
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instead of quantitative usability ratings and time measure-

ments, we were more interested in qualitative feedback on

how guitarists would use our design and what limitations

they encounter. In pair analytics [38], designers and partic-

ipants collaboratively analyze the participants’ data, allow-

ing designers to evaluate a design without needing to teach

participants how to use it, saving them time and ensuring

they use all features appropriately.

Our participants (P1–P4) have experience with reading

guitar tablature. P1 has played guitar for 15 years and reg-

ularly teaches it and P2 has played drums for 5 years and

guitar occasionally. P3 and P4 have played guitar for 16

and 12 years. P1 and P3 have full color vision, P2 and P4

have a slight red-green deficiency. All but P3 were famil-

iar with visualization. We met with each participant for

roughly 1.5 hours. After an introduction to our interface,

we looked at guitar tablature of their choice together, en-

couraging them to use different features and think aloud.

Our participants found the coloring generally helpful:

“I have played classical pieces with 8 or 12 pages ... you

searched, with your teacher, made annotations with a pen

... ‘here it’s that part again’ ... if it’s only black-on-white,

you’re blind at some point” (P3). They were able to detect

various patterns: “the color indicates a new segment” (P1)

(T1), “always two bars one note, two bars the other note,

...” (P1) (Figure 8). One interesting example was a pattern

where the same segment was repeated four times, with a

different ending each time, except for the fourth that equals

the second (Figure 5, T2,3).

Figure 8: A simple alternating pattern with bars that repeat

as AABB multiple times.

In some cases, our current similarity metric did not

work well: “here, I’m sure it’s different, but the color is

not quite different ... if you check the color carefully, I

think you can see it” (P1). We proposed coloring anno-

tated sections of the sheet music by their similarity: “That

is already very useful, because ... when I’m [teaching] and

want to show segments, then I always have to mark them

by hand. This is doing it for me” (P1). While we currently

colorize either by section or bar, P3 suggested alternatively

coloring by sequences of bars that occur together multiple

times, such as riffs or motifs. Interestingly, our coloring

allows users to quickly guess the effort needed to learn a

piece: “The colors show what you already learned” (P3),

“For me it looks like I practice this purple bar ... and then

I practice these yellow and green bars and then I can play

90 percent of the song” (P1) (T1,2). P4 suggested ignor-

ing bars with only a single note or chord when coloring, as

these are less interesting. Instead, they proposed coloring

differently transposed versions of the same pattern more

similarly and allowing users to manually adjust the color

of a set of identical bars.

We also compared coloring via DR versus via cluster-

ing. When trying clustering, P3 first pondered “I think

[coloring via clustering] is easier to understand ... as

you can really see that it’s different” but then concluded

that “it’s difficult, both have pros and cons ... now if

I would search [by color], it would be more difficult to

spot” (T2,3). P4 suggested to additionally vary the color’s

brightness for different segments in the same cluster, to

also reveal similarity within clusters (T3).

Most patterns were visible with all color scales, al-

though less clearly with those using fewer hues, so users

with color vision deficiencies can also benefit from our de-

sign. Even though P4 has a slight red-green deficiency,

they wanted to use the default spectral scale for most of

the study. When trying out other scales, they told us that it

indeed makes a good default, as it has fewer hues than rain-

bow scales. P4 further preferred viridis over cividis: “here

I see better”. When turning of colors, P3 was astonished:

“here you see how white it is! When looking at colors for

so long, you see for the first time how ugly white it is”.

The simplified and full tablature encodings still reveal

characteristics: “These are power chords, right?” (P2),

“This is a power chord on the second fret ... and that

should be A minor” (P3). For our hierarchy view, P4 found

that “the tab encoding doesn’t help much, the simplified

tab and piano roll work much better”. Especially, since

with the piano roll “you can see well which bars have sim-

ilar notes” (P4) (T3).

In our hierarchy view, clicking on different sections al-

lows users to quickly compare them: “Main riff and verse

is almost the same, it’s labeled as ‘main riff’ because it is

... without singing” (P1) (T3). This also shows a draw-

back of sheet music, where repetition signs often apply

for all instruments at once, so if one repeats and another

does not, the first instrument’s notes will show up redun-

dant. During the comparison, we found that P1 labeled the

sections incorrectly, as one had a few more bars that actu-

ally belonged to the following section: “we found that we

labeled it wrong, that’s good!” (P1) (T3). Switching be-

tween different sections allows comparing them: “here’s

again a verse, but a little different ... back there, this bar

is repeated ... this chorus is much longer” (P3) (T2,3).

During our study with P4, we saw that a whole bar con-

sisted of almost only the note E, as indicated by identical

color, except for a single note with different color – “I also

wouldn’t have noticed that [without color]” (P4). As we

only support highlighting sections and bars for now, P3

missed being able to click on single harmonies and notes

to highlight them in other views.

The compressed encoding (Figure 7) was P1’s favorite:

“This is the feature I’m most excited about for showing

people the song structure because this is something I just

can’t do with a [music notation software]” (T1). For

playing a song with students where each plays a differ-

ent instrument of the piece, it “would be great if every-

one would have something like this” to have a compact

summary of the part they should play. Our participants

proposed features we could add to this view, such as re-

ducing or disabling nested repetitions: P1 found “it would
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Figure 9: Our algorithm might not create the same struc-

ture as a musician: The sequence 2, 3, 2, 5 appears twice

in a row, but since the following bars of the second appear-

ance form a longer repetition, the sequence was included

there instead.

be great if you had the option to simplify it” and P2 sug-

gested adding a slider for the compression level. They also

told us that this view could be extended to support anno-

tation: “That would be great, to be able to go here and

annotate some things” (P1). Our compression sometimes

leads to unexpected results as it tries to find the longest

repetitions, which might not be how musicians would com-

press a piece: “I would expect that this is in here two times,

but somehow it’s here – it makes sense, it’s just two differ-

ent ways of describing it” (P1) (Figure 9). P3 and P4 did

not consider the compressed view useful (“I would not use

compressed much, maybe once when first looking at a new

song” (P3)) and P4 proposed merging it with the compact

view by optionally drawing repeated segments only once

with the brackets used in this view.

As our compact sheet music view shows the whole

piece at once, it allows users to spot global patterns, such as

how often a bar appears (T1,2): “The compact view shows

how things repeat” (P4), “If you go here and go for [the

color mode] ‘Identical’, you can see that there is a lot of

this” (P1). P4 wished for an alignment, to have repeating

patterns exactly below each other: “it could auto-align it

for me”. We then asked what they think about manually

inserting line breaks, whereto P4 responded: “this would

be the most important to me – if this should help me learn

or read or play, I have to be able to customize and save it”.

When asked for general feedback, P1 told us they “like

it a lot, because it’s always hard to see what is similar

to something else ... I think it’s very important that you

[know] not just what is played, but also if there is a con-

nection to other segments” (T1,2,3). P1 wished to be able

to directly compare bars or sections (T3): “That would be

great if you could select two and then see the difference

because I always click [back and forth]”.

When asked for use cases, our participants told us they

would use our interface for learning, for example by play-

ing along. Both P3 and P4 further imagined using our com-

pact view as a cheat sheet during a performance: “[For

songs with chords and simpler rhythm] you could print this

and give it to someone ... and they could play the song ...

or you use a tablet"” (P3). P4 hid all views but tracks and

compact, thereby maximizing the latter: “like this, I see

the whole song at once ... convenient as a memory aid. As-

suming I know the song already ... I see how often I have to

play everything” (T1,2). As another use case, P4 wished

to be able to see multiple instruments at once to be able to

compare them visually.

5. LIMITATIONS AND DISCUSSION

We mainly focus on guitar tablature, which is easier to rep-

resent compactly and often features more repeating seg-

ments than other kinds of sheet music. However, we argue

that our general method of mapping similarities to color

can also help with other kinds of music. With new, special-

ized similarity metrics and note encodings, our approach

could support non-western kinds and even music without

discrete notes, as long as a piece can be segmented. Our

example design for guitar tablature and with a simple sim-

ilarity metric allowed us to stay within a reasonable scope

and matched our own musical expertise.

Human color vision is limited, even more with color vi-

sion deficiencies. Our approach can add value compared to

non-colored sheet music for everyone, although accessible

color scales reveal less detail. In our study, some patterns

were clearly visible while some were harder to spot – still,

they were easier to spot than without any color. Coloring

by similarity works well for pieces with a few different

segments that are repeated, as fewer colors are necessary,

but will not work as well for others.

As our current approach depends on dimensionality re-

duction and clustering, it inherits the limitation of these

techniques, such as distortion and artifacts. We chose MDS

and hierarchical agglomerative clustering to preserve sim-

ilarities as well as possible, but other algorithms or ap-

proaches might further reduce these limitations.

In our current interface, the participants missed being

able to directly compare two selections of bars, align bars

automatically or through line breaks, and assign custom

colors and labels. Our evaluation only included four par-

ticipants. While such a number is typical for pair analyt-

ics, real-world acceptance can only be evaluated through

longitudinal field studies, where a larger number of users

regularly use a product in their daily life.

6. CONCLUSION

We designed multiple methods to ease the detection of re-

peating structures in sheet music. Our evaluation provided

a first qualitative indication of the effectiveness of our ap-

proach. Therefore, we are confident that extensions to our

design can turn our work into a helpful tool for musicians.

Future work includes further similarity metrics and vi-

sual encodings better suited for different tasks, sheet music

characteristics, instruments, and music genres. Adding la-

bels and exporting them would allow musicians and teach-

ers to save and share their results. Showing multiple in-

struments of a piece at once would allow comparing them,

for example, to quickly see where two guitars play similar

notes. We plan to let more musicians actively use our de-

sign during learning, playing, and teaching over months to

test real-world usage and acceptance longitudinally.
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ABSTRACT

Many applications of cross-modal music retrieval are re-
lated to connecting sheet music images to audio record-
ings. A typical and recent approach to this is to learn, via
deep neural networks, a joint embedding space that corre-
lates short fixed-size snippets of audio and sheet music by
means of an appropriate similarity structure. However, two
challenges that arise out of this strategy are the requirement
of strongly aligned data to train the networks, and the in-
herent discrepancies of musical content between audio and
sheet music snippets caused by local and global tempo dif-
ferences. In this paper, we address these two shortcomings
by designing a cross-modal recurrent network that learns
joint embeddings that can summarize longer passages of
corresponding audio and sheet music. The benefits of our
method are that it only requires weakly aligned audio –
sheet music pairs, as well as that the recurrent network
handles the non-linearities caused by tempo variations be-
tween audio and sheet music. We conduct a number of
experiments on synthetic and real piano data and scores,
showing that our proposed recurrent method leads to more
accurate retrieval in all possible configurations.

1. INTRODUCTION

The abundance of music-related content in various dig-
ital formats, including studio and live audio recordings,
scanned sheet music, and metadata, among others, calls
for efficient technologies for cross-linking between docu-
ments of different modalities. In this work, we explore a
cross-modal task referred to as audio – sheet music passage
retrieval. We define it as follows: given an audio fragment
as a query, search within an image database and retrieve the
corresponding sheet music passage; or vice versa, find the
appropriate recording fragment given a query in the form
of some snippet of (scanned) sheet music.

A fundamental step in audio–sheet music retrieval con-
cerns defining a suitable shared representation that per-
mits the comparison between items of different modalities

© L. Carvalho and G. Widmer. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-

tion: L. Carvalho and G. Widmer, “Passage summarization with recur-
rent models for Audio – Sheet Music Retrieval”, in Proc. of the 24th Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

Figure 1: Distribution of system durations in around
40,000 examples from the MSMD. More than 25% of the
passages are longer than ten seconds.

in a convenient and effective way. The conventional ap-
proaches for linking audio recordings to their respective
printed scores are based on handcrafted mid-level repre-
sentations [1, 2]. These are usually pitch-class profiles,
like chroma-based features [3,4], symbolic fingerprints [5],
or the bootleg score [6, 7], which is a coarse mid-level
codification of the main note-heads in a sheet music im-
age. However extracting such representations requires a
series of pre-processing stages that are prone to errors,
for example optical music recognition on the sheet mu-
sic side [8–10], and automatic music transcription on the
audio part [11–13].

A promising approach [14, 15] has been proposed to
eliminate these problematic pre-processing steps by learn-
ing a shared low-dimensional embedding space directly
from audio recordings and printed scores. This is achieved
by optimizing a cross-modal convolutional network (CNN)
to project short snippets of audio and sheet music onto a la-
tent space, in which the cosine distances between semanti-
cally related snippets are minimized, whereas non-related
items of either modality are projected far from each other.
Then the retrieval procedure is reduced to simple nearest-
neighbour search in the shared embedding space, which is
a simple and fast algorithm.

A first limitation of this strategy relates to its super-
vised nature: it requires strongly-aligned data in order to
generate matching audio–sheet snippet pairs for training,
which means fine-grained mappings between note onsets
and corresponding note positions in the score. Obtaining
such annotations is tedious and time-consuming, and also
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Figure 2: Diagram of the proposed network. Two independent pathways are trained to encode sheet music (a) and audio
(b) passages by minimizing a contrastive loss function (c).

requires specialized annotators with musical training. As
a result, embedding learning approaches have been trained
with synthetic data, in which recordings, sheet music im-
ages, and their respective alignments are rendered from
symbolic scores. This leads to poor generalization in sce-
narios with real music data, as shown in [16].

Moreover, the snippets in both modalities have to be
fixed in size, meaning that the amount of actual musical
content in the fragments can vary considerably depend-
ing on note durations and the tempo in which the piece
is played. For example, a sheet excerpt with longer notes
played slowly would correspond to a considerably larger
duration in audio than one with short notes and a faster
tempo. This leads to generalization problems caused by
differences between what the model sees during training
and test time; [17] attempted to address this limitation by
introducing a soft-attention mechanism to the network.

In this paper we address the two aforementioned lim-
itations by proposing a recurrent cross-modal network
that learns compact, fixed-size representations from longer
variable-length fragments of audio and sheet music. By
removing the fixed-size fragment constraint, we can ad-
just the lengths of fragments during training so that cross-
modal pairs can span the same music content, leading
to a more robust representation. Moreover, by operating
with longer music passages, it is possible to rely solely on
weakly-annotated data for training, since we now require
only the starting and ending positions of longer-context
music fragments within music documents, in order to ex-
tract audio–sheet passages to prepare a train set. This is a
remarkable advantage compared for example to other ap-
proaches based on [14], where fine-detailed alignments are
indispensable to generate short audio–sheet snippet pairs.

The rest of the paper is structured as follows. In Sec-
tion 2 we describe the model proposed to learn joint repre-

sentations from cross-modal passages. Section 3 presents
a series of experiments on artificial and real data and Sec-
tion 4 summarizes and concludes the work.

2. AUDIO–SHEET PASSAGE RETRIEVAL

For the purposes of this paper, and in order to be able to
use our annotated corpora for the experiments, we define
a "passage" as the musical content corresponding to one
line of sheet music (also known as a "system"). System-
level annotation of scores are much easier to come by than
note-precise score-recording alignments, making it rela-
tively easy to compile large collections of training data for
our approach. Our definition of passages resembles that
of "musical themes", which has been used under a cross-
modal retrieval scenario with symbolic queries in a num-
ber of previous works [18, 19]. To illustrate the temporal
discrepancies between passages, we show in Figure 1 the
distribution of time duration of the systems from all pieces
of the MSMD dataset [14] (later we will elaborate more
on this database). In this dataset, we observe that systems
can cover from less than five to more than 25 seconds of
musical audio.

This important temporal aspect motivates us to propose
the network depicted in Figure 2 to learn a common latent
representation from pairs of audio–sheet passages. The
architecture has two independent recurrent-convolutional
pathways, which are responsible for encoding sheet music
(Figure 2a) and audio (Figure 2b) passages. The key com-
ponent of this approach is the introduction of two recurrent
layers that, inspired by traditional sequence-to-sequence
models [22], are trained to summarize a variable-length se-
quences into context vectors, that we conveniently refer to
as embedding vectors.

Defining a pair of corresponding passages in the
form of image (sheet music) and log-magnitude spectro-
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Audio CNN encoder Sheet-Image CNN encoder

input: 92× 20 input: 160× 180

2x Conv(3, pad-1)-24 - BN 2x Conv(3, pad-1)-24 - BN
MaxPooling(2) MaxPooling(2)

2x Conv(3, pad-1)-48 - BN 2x Conv(3, pad-1)-48 - BN
MaxPooling(2) MaxPooling(2)

2x Conv(3, pad-1)-96 - BN 2x Conv(3, pad-1)-96 - BN
MaxPooling(2) MaxPooling(2)

2x Conv(3, pad-1)-96 - BN 2x Conv(3, pad-1)-96 - BN
MaxPooling(2) MaxPooling(2)

Conv(1, pad-0)-32 - BN Conv(1, pad-0)-32 - BN
FC(32) FC(32)

Table 1: Overview of the two convolutinal encoders. Each
side is responsible for their respective modality. Conv(3,
pad-1)-24: 3×3 convolution, 24 feature maps and zero-
padding of 1. BN: Batch normalization [20]. We use ELU
activation functions [21] after all convolutional and fully-
connected layers.

gram (audio) as X and Y, respectively, two sequences
(x1,x2, . . . ,xN) and (y1,y2, . . . ,yM) are generated by
sequentially cutting out short snippets from X and Y. The
shapes of the short sheet and audio snippets are respec-
tively 160× 180 (pixels) 1 and 92× 20 (frequency bins ×
frames), which corresponds to one second of audio. After
that, each individual snippet is encoded by a VGG-style
CNN [23] into a 32-dimensional vector, as shown in Fig-
ure 2, generating two sequences of encoded snippets, one
for the audio passage, and the other for the sheet passage
(note that each modality has its own dedicated CNN en-
coder). The architecture of the CNN encoders are detailed
in Table 1.

Then each sequence is fed to a recurrent layer in order
to learn the spatial and temporal relations between subse-
quent snippets, which are inherent in music. After exper-
imenting with two typical simple recurrent layers, namely
long short-term memory cells (LSTM) [24] and gated re-
current units (GRU) [25], we observed on average better
results with GRUs, and we decided for the latter for our
architecture. Each of the two GRUs is designed with 128
hidden units, where the hidden state of each GRU after
the last step is the context vector that summarizes the pas-
sages. Finally a fully connected layer (FC) is applied over
each context vector, in order to encode the final passage
embeddings (xemb,yemb) with the desired dimension.

During training, a triplet (contrastive) loss function [26]
is used to minimize the distances between embeddings
from corresponding passages of audio and sheet music and
maximize the distance between non-corresponding ones.
Defining d(·) as the cosine distance, the loss function is
given by:

L =
K
∑

k=1

max
{

0, α+d
(

xemb,yemb

)

−d
(

xemb,y
k

emb

)}

,

(1)
where yk

emb
for k ∈ 1, 2, . . . ,K are contrastive (nega-

tive) examples from K non-matching passages in the same

1 In our approach, all sheet music pages are initially re-scaled to a
1181× 835 resolution

training mini-batch. This contrastive loss is applied to
all (xemb,yemb) pairs within each mini-batch iteration.
The margin parameter α ∈ R+, in combination with the
max {·} function, penalizes matching snippets that were
poorly embedded.

For the sake of simplicity, we leave the remaining de-
tails concerning the design of the networks, such as learn-
ing hyper-parameters, to our repository where our method
will be made publicly available, 2 as well as the trained
models derived in this work.

3. EXPERIMENTS

In this section we conduct experiments on different audio–
sheet music scenarios. We first elaborate on the main
dataset used for training and evaluation and define the steps
of the passage retrieval task. Then we select four experi-
ment setups and present the results.

We train our models with the Multi-Modal Sheet Music
Dataset (MSMD) [14], which is a collection of classical
piano pieces with multifaceted data, including score sheets
(PDF) engraved via Lilypond 3 and corresponding audio
recordings rendered from MIDI with several types of pi-
ano soundfonts. With over 400 pieces from over 50 com-
posers, including Bach, Beethoven and Schubert, and cov-
ering more than 15 hours of audio, the MSMD has audio–
sheet music alignments which allow us to obtain corre-
sponding cross-modal pairs of musical passages. From
the MSMD we were able to derive roughly 5,000 audio–
sheet passages for training, which is scaled up to around
40,000 different pairs after data augmentation: audios are
re-rendered with different soundfonts and have their tempo
changed between 90% and 110%. Then we generate a test
set of 534 pairs from a separate set of music pieces, that
were rendered with a soundfont that was not seen during
training. Later, in 3.2, we will also consider real scanned
scores and real audio recordings.

To perform cross-modal passage retrieval, we first em-
bed all audio–sheet pairs in the shared space using our
trained model depicted in Figure 2. Then the retrieval
is conducted by using the cosine distance and nearest-
neighbor search within the space. For example, in case
of using an audio passage as a query to find the appropri-
ate sheet music fragment, the pairwise cosine distances be-
tween the query embedding and all the sheet music passage
embeddings are computed. Finally, the retrieval results are
obtained by means of a ranked list through sorting the dis-
tances in ascending order.

As for evaluation metrics, we look at the Recall@k

(R@k), Mean Reciprocal Rank (MRR) and the Median

Rank (MR). The R@k measures the ratio of queries which
were correctly retrieved within the top k results. The MRR
is defined as the average value of the reciprocal rank over
all queries. MR is the median position of the correct match
in the ranked list.

2 https://github.com/luisfvc/lcasr
3 http://www.lilypond.org
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Figure 3: Mean Reciprocal Rank (MRR) for different em-
bedding dimensions, evaluated in both search directions.

3.1 Experiment 1: Embedding dimension

In the first round of experiments, we investigate the effect
of the final embedding dimension in the retrieval task. We
consider the values in {16, 32, 64, 128, 256, 512, 1024}
and train the model of Figure 2 with the same hyperparam-
eters. Then we perform the retrieval task in both search
directions: audio-to-sheet music (A2S) and sheet music-
to-audio (S2A).

Figure 3 presents the MRR of the snippet retrieval re-
sults evaluated on the 534 audio–sheet music passage pairs
of the MSMD testset. A first and straightforward observa-
tion is that in all cases the S2A direction indicates better
retrieval quality. We observe the performance increasing
together with the embedding dimensionality until it stag-
nates at 64-D, and the MRR does not improve on aver-
age for higher-dimensional embeddings. For this reason,
we select the model that generates 64-dimensional embed-
dings as the best one, which will be evaluated more thor-
oughly in the next experiments.

3.2 Experiment 2: Real data and improved models

In this section, we conduct an extensive series of ex-
periments comparing our proposed recurrent network and
some improved models thereof with baseline methods, and
extend the evaluation to real-world piano data.

Given that our training data are entirely synthetic, we
wish to investigate the generalization of our models from
synthetic to real data. To this end, we evaluate on three
datasets: on a (1) fully artificial one, and on datasets con-
sisting (2) partially and (3) entirely of real data. For (1) we
use the test split of MSMD and for (2) and (3) we combine
the Zeilinger and Magaloff Corpora [27] with a collection
of commercial recordings and scanned scores that we have
access to. These data account for more than a thousand
pages of sheet music scans with mappings to both MIDI
files and over 20 hours of classical piano recordings. Then,
besides the MSMD (I), we define two additional evalua-
tion sets: (II) RealScores_Synth: a partially real set, with
scanned (real) scores of around 300 pieces aligned to syn-

thesized MIDI recordings. And (III) RealScores_Rec: an
entirely real set, with scanned (real) scores of around 200

pieces and their corresponding real audio recordings.

As a baseline (BL), we implement the method from [14]
and adapt their short-snippet-voting strategy to identify
and retrieve entire music recordings and printed scores so it
can operate with passages. 4 In essence, short snippets are
sequentially cut out from a passage query and embedded,
and are compared to all embedded snippets which were
selected from passages in a search dataset of the counter-
part modality, resulting in a ranked list based on the co-
sine distance for each passage snippet. Then the individual
ranked lists are combined into a single ranking, in which
the passage with most similar snippets is retrieved as the
best match.

Additionally, we investigate whether our models can
benefit from pre-trained cross-modal embeddings. Since
both CNN encoders of our proposed network architecture
(see Figure 2) are the same as in [14], we re-designed the
baseline cross-modal network to accommodate our snip-
pet dimensions (160× 180 and 92× 20, for sheet and au-
dio, respectively) and trained a short-snippet embedding
model also with the MSMD, as a pre-training step, and
then loaded the two CNN encoders of our recurrent net-
work with their respective pre-trained weights before train-
ing. Our hypothesis is that, by initializing the CNN en-
coders with parameters that were optimized to project short
pairs of matching audio–sheet snippets close together onto
a common latent space, models with better embedding ca-
pacity can be obtained. After loading the two CNNs with
pre-trained weights, we can either freeze (FZ) them during
training or just fine-tune (FT) on them. Therefore, in our
experiments, we refer to these modifications of our pro-
posed vanilla recurrent network (RNN) as RNN-FZ and
RNN-FT, respectively.

Moreover, an additional CCA (canonical correlation
analysis) layer [28] is used in [14] to increase the corre-
lation of corresponding pairs in the embedding space. This
CCA layer is refined in a post-training step, and we inves-
tigate whether this refinement process is beneficial to our
network. In our experiments we refer to models that were
initialized with pre-trained parameters from networks that
had their CCA layer refined as RNN-FZ-CCA and RNN-
FT-CCA.

Table 2 presents the results for all data configurations
and models defined previously. To keep our experiments
consistent and the comparison fair, we randomly select 534
passage pairs from sets (II) and (III) to create the retrieval
scenario for their respective experiments.

An evident observation from the table is the consider-
able performance drop as we transition from synthetic to
real music data. For all the models, the MRR drops at least

4 The reasons we did not use the attention-based method from [17] as
a baseline comparison are twofold. First we intend to compare the ex-
act original snippet embedding architecture with and without a recurrent
encoder, and adding the attention mechanism to a baseline model would
introduce a significant number of additional trainable parameters, mak-
ing the comparison unfair. Second, the purpose of the attention model is
to compensate the musical content discrepancy between audio and sheet
snippets, which is not the case for musical passages as defined here: pairs
of audio–sheet music passages comprise the exact musical content (that
is the reason why fragments are not fixed in time).
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Table 2: Results of audio–sheet music passage retrieval, performed in both search directions, and evaluated in three types
of data: (I) fully synthetic, (II) partially real and (III) entirely real. Boldfaced rows represent the best performing model per
dataset.

Audio-to-Score (A2S) Score-to-Audio (S2A)

R@1 R@10 R@25 MRR MR R@1 R@10 R@25 MRR MR

I MSMD (Fully synthetic)

BL 47.56 81.68 90.80 0.592 1 51.37 83.51 92.59 0.628 1
RNN 51.12 84.46 92.88 0.627 1 54.30 85.95 94.94 0.670 1
RNN-FT 55.27 87.98 95.02 0.651 1 56.32 87.12 96.44 0.697 1
RNN-FT-CCA 60.04 89.66 97.73 0.692 1 62.11 91.44 98.41 0.734 1

RNN-FZ 50.76 84.20 92.11 0.619 1 52.90 85.21 94.12 0.658 1
RNN-FZ-CCA 52.67 86.46 92.88 0.635 1 55.67 86.30 95.34 0.682 1

II RealScores_Synth (Sheet music scans and synthetic recordings)

BL 20.19 55.47 74.99 0.343 7 25.15 70.27 83.11 0.391 5
RNN 25.09 61.24 78.27 0.374 5 30.15 72.47 86.89 0.439 3
RNN-FT 28.87 66.41 81.32 0.447 4 33.98 75.47 88.51 0.462 2
RNN-FT-CCA 33.36 69.49 83.88 0.481 3 37.35 79.22 89.95 0.538 1

RNN-FZ 25.83 62.02 79.74 0.376 5 31.45 74.87 87.26 0.442 3
RNN-FZ-CCA 26.82 63.33 80.19 0.391 5 33.55 75.71 88.79 0.467 2

III RealScores_Rec (Sheet music scans and real recordings)

BL 15.67 31.46 48.12 0.226 29 18.30 36.71 54.94 0.266 18
RNN 19.11 35.98 53.65 0.278 21 22.76 39.95 57.47 0.303 15
RNN-FT 22.39 39.53 57.19 0.338 18 26.76 42.77 59.38 0.371 7
RNN-FT-CCA 26.62 44.81 60.01 0.362 7 29.84 46.71 60.88 0.435 4

RNN-FZ 17.65 33.12 52.98 0.252 22 19.13 37.51 55.57 0.277 17
RNN-FZ-CCA 18.38 35.81 54.51 0.279 21 22.30 38.95 58.82 0.285 16

0.2 points to a partially real test set, and drops more than
0.3 points when moving to the entirely real data. More-
over, as mentioned in Subsection 3.1, the passage retrieval
metrics of the S2A direction are better than those of A2S
for all models and scenarios.

Our recurrent model RNN and its variants outperform
the baseline approach in all retrieval scenarios for all eval-
uation metrics. In our findings, we did not see notice-
able improvements when the pre-loaded encoders were
frozen during training. In fact, for some configurations
(scenarios I and III) the evaluation metrics were slightly
worse than those from the vanilla RNN model. When
the CNN encoders are pre-loaded and enabled for fine-
tuning, we observe the largest improvements over RNN
and subsequently over BL. Moreover, the models initial-
ized with pre-trained weights from CCA-refined networks
(RNN-FT-CCA) achieved the best overall results, for all
test datasets and search directions.

In addition to the overall absolute improvements, we
observe that the performance drop between synthetic and
real datasets shrinks with our proposed models, specially
with RNN-FT-CCA. In comparison with the baseline, the
I-to-III MRR gap is reduced by 0.036 and 0.06 points in
the directions A2S and S2A, respectively.

The results we obtained and summarized in Table 2 in-
dicate that introducing a recurrent layer to learn longer
contexts of musical content is beneficial in our cross-modal

retrieval problem. However the real-data generalization
problem is still evident, and in Section 4 we discuss po-
tential solutions to address such issues.

3.3 Experiment 3: Global tempo variations

In this experiment, we investigate the robustness of our
system to global tempo changes. To this end, the pieces
of the MSMD test dataset are re-rendered with different
tempo ratios ρ ∈ {0.5, 0.66, 1, 1.33, 2} (ρ = 0.5 means
the tempo was halved and ρ = 2 stands for doubling the
original tempo). A similar study was conducted in [17] for
retrieval of short audio–sheet snippets.

Table 3 summarizes the MRR values obtained for each
tempo re-rendering, where the baseline method is com-
pared with our proposed recurrent model. We notice the
general trend that the MRR gets worse as the tempo ratio
is farther from ρ = 1 (original tempo). This behavior is
somehow expected because the new tempo renditions are
more extreme than the tempo changes the model has seen
during training.

Besides the better MRR values of the proposed network,
an important improvement concerns the performance drop
when changing from ρ = 1 to ρ = 0.5 (slower rendi-
tions). The MRR gap between these tempo ratios drops
from 0.12 to 0.1 and from 0.09 to 0.07 points for the A2S
and S2A directions, respectively, when comparing our net-
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Model ρ = 0.5 ρ = 0.66 ρ = 1 ρ = 1.33 ρ = 2

BL 0.47 0.54 0.59 0.52 0.40
RNN 0.53 0.59 0.63 0.58 0.43

(a) A2S search direction.

Model ρ = 0.5 ρ = 0.66 ρ = 1 ρ = 1.33 ρ = 2

BL 0.54 0.59 0.63 0.56 0.48
RNN 0.60 0.64 0.67 0.61 0.50

(b) S2A search direction.

Table 3: MRR for different tempo renderings of the test
pieces of MSMD in both (a) audio-to-sheet and (b) sheet-
to-audio retrieval directions. We evaluate both baseline and
RNN models.

Figure 4: Cosine distance in the embedding space in rela-
tion to the respective audio passage duration of 534 pairs
from the MSMD test set. The cosine distances were com-
puted with the RNN model.

work with the baseline. This indicates that the recurrent
model is more robust to global tempo variations and can
operate well with longer audio passages.

3.4 Experiment 4: Qualitative analysis

To get a better understanding of the behavior of our pro-
posed network, in this last experiment we take a closer
look at the shared embedding space properties. Figure 4
shows the distribution of the pairwise cosine distances be-
tween the passage pairs from the MSMD test set, in rela-
tion to the duration (in seconds) of their respective audio
passages. Moreover, we scale the point sizes in the plot
so they are proportional to their individual precision val-
ues (inverse of the rank values), when considering the S2A
experimental setup.

An interesting behavior in this visualization is the size
of the points increasing as the cosine distance decreases.
It is expected that passage pairs with smaller distances be-
tween them, meaning that they are closer together in the
embedding space, would be lead to better retrieval ranks.

Another interesting aspect of this distribution concerns
the proportion of larger cosine distances as the audio dura-
tion of the passages increases. For example, between five
and ten seconds, there are more large points observed than
smaller ones, while between 20 and 25 seconds, the pro-

portion is roughly equal. This indicates that, in our test
set, embeddings from shorter passages of audio are still lo-
cated closer to their sheet counterparts in comparison with
longer audio passages, despite our efforts to design a recur-
rent networks that learns from longer temporal contexts.

4. CONCLUSION AND FUTURE WORK

We have presented a novel cross-modal recurrent network
for learning correspondences between audio and sheet mu-
sic passages. Besides requiring only weakly-aligned music
data for training, this approach overcomes the problems of
intrinsic global and local tempo mismatches of previous
works that operate on short and fixed-size fragments. Our
proposed models were validated in a series of experiments
under different retrieval scenarios and generated better re-
sults when comparing with baseline methods, for all pos-
sible configurations.

On the other hand, a serious generalization gap to real
music data was observed, which points us to the next stages
of our research. A natural step towards making deep-
learning-based cross-modal audio–sheet music retrieval
more robust would be to include real and diverse data that
can be used for training models. However such data with
suitable annotations are scarce, and recent advances in end-
to-end full-page optical music recognition [29] can be a
possible solution to learn correspondences on the score
page level. Moreover, the powerful transformers [30] are
potential architectures to learn correspondences from even
longer audio recordings, accommodating typical structural
differences between audio and sheet music, such as jumps
and repetitions.
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[14] M. Dorfer, J. Hajič jr., A. Arzt, H. Frostel, and G. Wid-
mer, “Learning audio–sheet music correspondences for
cross-modal retrieval and piece identification,” Trans-

actions of the International Society for Music Informa-

tion Retrieval, vol. 1, no. 1, 2018.

[15] M. Dorfer, A. Arzt, and G. Widmer, “Learning audio-
sheet music correspondences for score identification
and offline alignment,” in Proceedings of the Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), Suzhou, China, 2017, pp. 115–122.

[16] L. Carvalho, T. Washüttl, and G. Widmer, “Self-
supervised contrastive learning for robust audio–sheet
music retrieval systems,” in Proceedings of the

ACM International Conference on Multimedia Systems

(ACM-MMSys), Vancouver, Canada, 2023.

[17] S. Balke, M. Dorfer, L. Carvalho, A. Arzt, and G. Wid-
mer, “Learning soft-attention models for tempo-
invariant audio-sheet music retrieval,” in Proceedings

of the International Society for Music Information Re-

trieval Conference (ISMIR), Delft, Netherlands, 2019,
pp. 216–222.

[18] F. Zalkow and M. Müller, “Using weakly aligned
score–audio pairs to train deep chroma models for
cross-modal music retrieval,” in Proceedings of the

International Society for Music Information Retrieval

Conference (ISMIR), Montréal, Canada, 2020, pp.
184–191.

[19] S. Balke, V. Arifi-Müller, L. Lamprecht, and
M. Müller, “Retrieving audio recordings using musi-
cal themes,” in Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Process-

ing (ICASSP), Shanghai, China, 2016, pp. 281–285.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift,” in Proceedings of the 32nd International

Conference on International Conference on Machine

Learning (ICML), Lille, France, 2015, pp. 448–456.

[21] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and
accurate deep network learning by exponential linear
units (ELUs),” in International Conference on Learn-

ing Representations, (ICLR), 2016.

[22] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to se-
quence learning with neural networks,” in Proceedings

of the 27th International Conference on Neural Infor-

mation Processing Systems, 2014, pp. 3104–3112.

[23] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
International Conference on Learning Representations

(ICLR), 2015.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[25] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio,
“Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Pro-

ceedings of the 2014 Conference on Empirical Meth-

ods in Natural Language Processing (EMNLP). Doha,

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

706



Qatar: Association for Computational Linguistics, Oct.
2014, pp. 1724–1734.

[26] R. Kiros, R. Salakhutdinov, and R. S. Zemel,
“Unifying visual-semantic embeddings with mul-
timodal neural language models,” arXiv preprint

(arXiv:1411.2539), 2014. [Online]. Available: http:
//arxiv.org/abs/1411.2539

[27] C. E. Cancino-Chacón, T. Gadermaier, G. Widmer, and
M. Grachten, “An evaluation of linear and non-linear
models of expressive dynamics in classical piano and
symphonic music,” Machine Learning, vol. 106, no. 6,
pp. 887–909, 2017.

[28] M. Dorfer, J. Schlüter, A. Vall, F. Korzeniowski,
and G. Widmer, “End-to-end cross-modality retrieval
with CCA projections and pairwise ranking loss,”
International Journal of Multimedia Information Re-

trieval, vol. 7, no. 2, pp. 117–128, Jun 2018. [Online].
Available: https://doi.org/10.1007/s13735-018-0151-5

[29] A. Ríos-Vila, J. M. Iñesta, and J. Calvo-Zaragoza,
“End-to-end full-page optical music recognition for
mensural notation,” in Proceedings of the International

Society for Music Information Retrieval Conference

(ISMIR), Bengaluru, India, 2022, pp. 226–232.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in Neural In-

formation Processing Systems, vol. 30. Curran Asso-
ciates, Inc., 2017.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

707



PREDICTING PERFORMANCE DIFFICULTY FROM
PIANO SHEET MUSIC IMAGES

Pedro Ramoneda1 Jose J. Valero-Mas1

Dasaem Jeong2 Xavier Serra1

1 Music Technology Group, Universitat Pompeu Fabra, Barcelona

{pedro.ramoneda, josejavier.valero, xavier.serra}@upf.edu

2 MALer Lab, Sogang University, Seoul

dasaemj@sogang.ac.kr

ABSTRACT

Estimating the performance difficulty of a musical score

is crucial in music education for adequately designing the

learning curriculum of the students. Although the Music

Information Retrieval community has recently shown in-

terest in this task, existing approaches mainly use machine-

readable scores, leaving the broader case of sheet music

images unaddressed. Based on previous works involv-

ing sheet music images, we use a mid-level representa-

tion, bootleg score, describing notehead positions relative

to staff lines coupled with a transformer model. This archi-

tecture is adapted to our task by introducing an encoding

scheme that reduces the encoded sequence length to one-

eighth of the original size. In terms of evaluation, we con-

sider five datasets—more than 7500 scores with up to 9 dif-

ficulty levels—, two of them particularly compiled for this

work. The results obtained when pretraining the scheme

on the IMSLP corpus and fine-tuning it on the considered

datasets prove the proposal’s validity, achieving the best-

performing model with a balanced accuracy of 40.34% and

a mean square error of 1.33. Finally, we provide access

to our code, data, and models for transparency and repro-

ducibility.

1. INTRODUCTION

Estimating the difficulty of a piece is crucial for music ed-

ucation, as it enables the effective structuring of music col-

lections to attend to the student’s needs. This has led to a

growing research interest [1–4], as well as the development

of automatic systems for exploring difficulties by major in-

dustry players such as Muse Group [5,6] and Yousician [7].

Previous research on predicting piano difficulty has pri-

marily focused on symbolic machine-readable scores [1,

2, 4, 8–10]. Early studies explored feature engineering de-

scriptors [1,2] and the relationship between piano fingering

© P. Ramoneda, J. J. Valero-Mas, D. Jeong and X. Serra.

Licensed under a Creative Commons Attribution 4.0 International Li-

cense (CC BY 4.0). Attribution: P. Ramoneda, J. J. Valero-Mas, D.

Jeong and X. Serra, “Predicting performance difficulty from piano sheet

music images”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

Figure 1. We consider the bootleg score mid-

representation with a multi-task GPT-based recognition

framework to predict the performance difficulty associated

to a piano score directly from sheet images from multiple

annotated collections with varied difficulty levels.

and difficulty [8–10]. A recent study [4] used stacked re-

current neural networks and context attention for difficulty

classification on machine-readable scores, employing em-

beddings from automatic piano fingering, piano expressive

generation [11], and score information. This study found

that modeling the score difficulty classification task as an

ordinal regression problem [12] was advantageous, and us-

ing entire pieces for training, rather than fragments, was

essential to avoid degraded performance.

Although symbolic machine-readable scores offer more

interpretability [10], with all the music information com-

pletely accessible, their limited availability compared to

sheet music images restricts the practical use of difficulty

prediction tools for librarians, teachers, and students. Fo-

cusing on sheet music image analysis expands the range

of available music, has the potential to preserve the cul-

tural heritage of symbolic-untranscribed scores, and ad-

dresses the lack of diversity in Western classical piano cur-

ricula. By analyzing image-based sheet music, we aim
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to create technology for highlighting historically under-

represented communities like female composers [13, 14]

and promoting diversity in piano education. This pro-

motion is crucial since the piano teaching repertoire has

remained mostly unchanged for decades [15], containing

around 3,300 pieces [16], while projects such as IMSLP

house remarkably larger databases.

One of the main challenges in working with sheet music

is attaining a symbolic music-based representation for di-

rect analysis. Although Optical Music Recognition (OMR)

literature has considerably improved in creating such rep-

resentations over the past 30 years, it remains an unsolved

task [17]. Bootleg score [18] is an alternative to symbolic

scores obtained with OMR. This mid-level symbolic rep-

resentation keeps the most relevant primitives of the mu-

sic content in a music sheet, which has shown remarkable

success in several tasks [19–22], especially in classifica-

tion, such as piano composer classification [19, 23, 24] or

instrument recognition [25].

We build on this literature, employing the GPT

model [26] and bootleg score in our analysis. More pre-

cisely, we consider the approach by Tsai et al. [18], in

which a GPT model pretrained on the IMSLP piano col-

lection is finetuned for specific recognition tasks. With

adequate adaptations, we hypothesize that this framework

may also succeed in estimating performance difficulty on

music sheet images.

As aforementioned, difficulty estimation benefits from

the use of entire music pieces rather than excerpts to ob-

tain adequate success rates. However, processing large

sequence stands as a remarkable challenge in music pro-

cessing, especially when addressing bootleg representa-

tions due its considerable verbosity. While some recent

mechanisms address this issue in general learning frame-

works (e.g., Flash Attention [27]), we extend the original

proposal by Tsai et al. [18] with a multi-hot optimization

target for GPT pretraining, and replace the categorical en-

coding with causal convolutional or feedforward projec-

tion layers to enhance performance and reduce costs.

Moreover, addressing data scarcity is crucial for pro-

moting and establishing this task within the Music Infor-

mation Retrieval community. As of now, the Mikrokosmos-

difficulty (MK) [10] and Can I Play It? (CIPI) [4] sym-

bolic datasets stand for the only available annotated collec-

tions, out of which music sheet images can be obtained by

engraving mechanisms. To enhance data availability and

encourage further research, we have collected additional

datasets from existing collections, namely Pianostreet-

difficulty (PS), Freescore-difficulty (FS), and black female

composers collection Hidden Voices (HV). This results in

more than 7500 music pieces, spanning up to 9 difficulty

levels and each annotated with a difficulty classification

system. Although difficulty prediction contains a subjec-

tive element, global trends may emerge when examining

multiple difficulty classification systems simultaneously.

To our knowledge, no previous research has explored this

aspect. Consequently, we propose a multitask approach to

training simultaneously on CIPI, PS, and FS datasets. Fi-

nally, we also analyze the generalization of our proposed

methodologies with the MK and HV benchmark datasets.

Considering all above, our precise contributions are:

(i) we adopt the previous bootleg-representation litera-

ture [23,24], pretraining a GPT model on IMSLP and fine-

tuning it for our task, adapting the encoding scheme ac-

cordingly, as presented in Figure 1; (ii) we evaluate our

proposal using a novel sheet music image collection of five

datasets with more than 7,500 pieces with difficulty levels

ranging up to 9; (iii) we propose a multi-task strategy for

combining multiple difficulty classification systems from

the datasets; (iv) we conduct extensive experiments to as-

sess the proposed methodologies, including a zero-shot

scenario for testing generalization and comparisons with

previous proposals on the CIPI dataset; and (v) to promote

the task, code, and models 1 , and datasets 2 are publicly

available.

2. MUSIC SHEET IMAGE DATASETS

Due to the relative recentness of the field, the lack of an-

notated corpora has severely constrained the performance

difficulty assessment. The earliest data assortments may

be found in the works by Sebastian et al. [1] and Chiu

et al. [2], which respectively collected 50 and 300 MIDI

scores from different score repositories. However, these

datasets were never publicly released.

To our best knowledge, the Mikrokosmos difficulty

(MK) set by Ramoneda et al. [10], which comprises 147

piano pieces by Béla Bartók in a symbolic format graded

by the actual composer, represents the first publicly avail-

able collection for the task at hand. More recently, the au-

thors introduced the Can I Play It? (CIPI) dataset [4], a

collection of 652 piano works in different symbolic for-

mats annotated after 9 different difficulty levels. Note that,

while sheet music scores can be obtained by resorting to

engraving mechanisms, the insights obtained may not ap-

ply to real-world scenarios.

Dataset Pieces Classes AIR Noteheads Composers

MK [10] 147 147 .78 49.2k 1

CIPI [4] 652 9 .33 1.1M 29

PS 2816 9 .24 7.2M 92

FS 4193 5 .37 5.8M 747

HV 17 4 1 21.5k 10

Table 1. Description of existing collections for perfor-

mance difficulty estimation based on the number of pieces,

classes, average imbalance ratio (AIR), noteheads, and

composers. The dashed line differentiates the datasets

based on symbolic (above) and image (below) sheet mu-

sic.

To address this limitation, we compiled a set of real

sheet music images of piano works together with their per-

formance difficulty annotations from different music edu-

cation and score-sharing platforms on the Internet. More

1 https://github.com/PRamoneda/pdf-difficulty
2 https://zenodo.com/record/8126801
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precisely, we arranged three different collections attend-

ing to the source: (i) the Pianostreet-difficulty (PS) set

retrieved from [28] that depicts 2,816 works with 9 dif-

ficulty levels annotated by the Pianostreet team; (ii) the

Freescores-difficulty (FS) assortment from [29] that con-

tains 4,193 pieces with 5 difficulty levels comprising a

variety of compositions and annotations by the users of

the platform; and (iii) the Hidden Voices (HV) collec-

tion [30,31], a set of 17 pieces by black female composers

annotated with 4-level difficulty labels by musicologists of

the Colorado Boulder Music Department.

Table 1 summarizes the main characteristics of com-

mented publicly-available collections. The average imbal-

ance ratio (AIR), measured as the mean of the individual

ratios between each difficulty class and the majority label

in each collection, is also provided for reference purposes.

3. METHODOLOGY

Based on its success when addressing classification tasks

from sheet music images [23, 25], our proposal considers

the use of the so-called bootleg score representation cou-

pled with a GPT-based recognition model to estimate the

performance difficulty of a piece.

Introduced by [18], bootleg scores stand as a simple—

yet effective—representation to encode the content of a

sheet music image for certain recognition tasks. Formally,

a bootleg score is a binary matrix of length w and h = 62
vertical positions—i.e., X ∈ {0, 1}

w×62
—that respec-

tively denote the temporal and pitch dimensions. Note

that the w value represents the number of note heads de-

tected by the bootleg extraction process. Our work resorts

to this representation, being the use of alternative codifica-

tions posed as a future line to address.

The GPT recognition framework undergoes an unsu-

pervised pretraining step on the IMSLP piano collection,

which was originally used by [18]. Eventually, considering

a set of labeled data T ⊂ X ×C where C =
{

c1, . . . , c|C|
}

denotes the possible difficulty levels, the model is fine-

tuned to retrieve the recognition function f̂ : X → C that

relates a bootleg representation to a particular difficulty

level. Based on previous work addressing this task [4],

we consider an ordinal classification framework [12] as the

difficulty grading scales naturally fit this formulation.

Despite being capable of addressing the task, the frame-

work was noticeably affected by two factors: (i) the ex-

cessive length of the input sequences when pretraining the

model; and (ii) the inconsistent definition of difficulty lev-

els among corpora. Consequently, we introduce two mech-

anisms specifically devised to address these limitations.

3.1 Sequence length in pretraining

One of the main drawbacks related to bootleg representa-

tions is their verbosity, as it depicts h = 62 elements per

frame. To address this issue, Tsai et al. [23] proposed sub-

dividing each column into groups of 8 elements and encod-

ing each according to a vocabulary of |σ| = 28 elements.

In this regard, the initial bootleg score x ∈ {0, 1}
w×62

is

mapped to a novel space defined as Σw×8. This represen-

tation is then flattened to undergo a categorical embedding

process that maps it to a feature-based space denoted as

R
8w×768, which is eventually used for pretraining the GPT

model with 768-dim hidden states. Note that this process

reduces the vocabulary size and remarkably increases the

sequence length.

To address this issue, we propose substituting this to-

kenization process with an embedding layer that directly

maps the bootleg score into a suitable representation,

avoiding the extension of the initial length of the se-

quence. In this sense, the initial bootleg representation

x ∈ {0, 1}
w×62

is mapped to a space defined as R
w×768

that serves as input to the GPT model with a fraction of the

length of the encoding used by Tsai et al. [23]. Besides re-

ducing the length of the sequences to process, we hypoth-

esize that such an embedding may benefit the recognition

model as a suitable representation is inferred for the task.

In this regard, our experiments will compare two types of

embedding approaches—more precisely, a fully-connected

layer and a convolutional one, respectively denoted as FC

and CNN—to quantitatively assess this claim.

Figure 2 graphically describes the approach by Tsai et

al. [23] and the presented proposal. In opposition to the ref-

erence work, the proposal considers multi-hot encoding in-

stead of discrete categorical index as the output of the GPT

recognition framework, by using binary cross-entropy loss

instead of negative log-likelihood loss.

Figure 2. Comparison between the proposal by Tsai et

al. [23]—denoted as (a)—and the presented proposal—

highlighted as (b)—for a case of toy example with a du-

ration of w = 4.

3.2 Multi-task learning of multiple difficulty

classification systems

The pretrained GPT model can be simply finetuned for a

performance difficulty classification task by adding a pro-

jection layer and a learnable classification token, as de-
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picted in Figure 3. However, the actual definition of the

performance difficulty of a piece is a highly subjective

problem that may bias—and, hence, remarkably hinder—

the goodness of a recognition model. In this regard, we hy-

pothesize that using a multi-task approach that attends dif-

ferent definitions of difficulty—i.e., a labeled assortment

of data from multiple annotators—may benefit the gener-

alization capabilities of the approach.

In this regard, we modify the reference architecture for

the downstream task to include an additional classifica-

tion layer for each training collection. While simple, such

a proposal is expected to improve the overall recognition

performance given the wider variety of data provided dur-

ing the training process. Figure 3 graphically describes this

proposal.

Finally, no pre-processing is done in relation to the label

distribution of the corpora to avoid inducing any type of

bias. In this regard, the sampling protocol of the model has

been forced to maintain its original distributions.

Figure 3. Graphical description of the downstream archi-

tecture depicting the classification heads for the multi-task

proposals as well as the single-head case of the reference

work.

4. EXPERIMENTAL SETUP

4.1 Data collections and assessment metrics

To validate the proposal, we have considered the five

publicly-available data collections presented in Section 2,

i.e., Mikrokosmos difficulty (MK) [10], Can I Play It?

(CIPI) [4], Pianostreet-difficulty (PS) [28], Freescores-

difficulty (FS) [29], and Hidden Voices (HV) [30, 31].

While MK and CIPI exclusively comprise symbolic scores,

we engraved them into music sheets and included them due

to the commented scarcity of annotated data.

We considered a 5-fold cross-validation scheme with a

data partitioning of 60% for the finetuning phase after the

pretraining stage with IMSLP together with two equal-size

splits of the remaining data for validation and testing. Note

that, since MK and HV are exclusively used for benchmark

purposes, no partitioning is applied to them.

In terms of performance evaluation, we resort to

two assessment criteria typically used in ordinal clas-

sification [32]: accuracy within n (Accn) and mean

squared error (MSE). To adequately described them, let

S ⊂ X × C denote a set of test data and let Sc =
{(xi, yi) ∈ S : yi = c} with 1 ≤ i ≤ |S| be the subset

of elements in S with class c.

Based on this, Accn is defined as:

Accn =
1

|C|

∑

∀c∈C

∣

∣

∣

{

y ∈ Sc :
∣

∣

∣
f̂(x)− c

∣

∣

∣
≤ n

}
∣

∣

∣

|Sc|
(1)

where f̂(·) represents the trained recognition model and

n ∈ N0 denotes the tolerance or class-boundary relaxation

that allows for errors in adjacent labels. In our experiments

we consider the values of n = 0 (no tolerance) and n =
1 (smallest adjacency tolerance), respectively denoted as

Acc0 and Acc1 in the rest of the work.

Regarding MSE, this figure of merit is defined as:

MSE =
1

|C|

∑

∀c∈C

∑

∀x∈Sc

(

f̂(x)− c
)2

|Sc|
(2)

Finally, note that all these metrics are macro-averaged

to account for the unbalanced nature of the data collections

used in the work.

4.2 Training procedure

As commented, the recognition model undergoes an ini-

tial pretraining stage considering the IMSLP corpus. Dur-

ing this stage, the model considers sequences of 256 to-

kens, each with a binary cross-entropy as a loss function.

To speed up this process, the Flash Attention framework

by [27] is also considered. For comparative purposes,

all other parameters remain unaltered from the reference

works [23].

After that, the model is finetuned on the downstream

difficulty estimation task, considering an Adam opti-

mizer [33] with a learning rate of 10−5 and early stopping

based on the Acc0 and MSE metrics on the validation set.

Moreover, a balanced sampler is considered to tackle the

issue of unbalanced data collections. Ordinal Loss [12]

is applied to train the difficulty prediction as an ordinal

classification problem, while no loss weighting considered

in the multi-task framework. For regularization and stable

training, gradient clipping is set to 10−4, with a batch size

of 64 and L2 regularization. This optimization process is

carried out exclusively on the last layer of the model, re-

sorting the remaining parts to the weights obtained during

the pretraining phase of the procedure.
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Note that while these processes may be further studied

to account for the optimal solution that retrieves the best-

performing results, such a study is out of the scope of the

work and is left as future work to address.

5. EXPERIMENTS AND RESULTS

This section presents the results obtained with the intro-

duced experimental scheme. To adequately provide in-

sights about the task, the section provides a series of in-

dividual experiments devoted to analyzing one aspect of

the proposal: Section 5.1 analyzes the influence of the en-

coding scheme; Section 5.2 evaluates the influence of the

multitask architecture; Section 5.3 delves on the ranking

generalization in a zero-shot scenario; finally, Section 5.4

compares the attainable results when addressing the task

from the symbolic versus the sheet-image domains.

5.1 Encoding schemes experiment

This first experiment compares the performance of the two

encoding schemes presented in Section 3.1, i.e., GPTFC

and GPTCNN. Table 2 presents the results obtained for the

CIPI, FS, and PS collections for the three figures of merit

considered.

Encoding Acc0 (%) Acc1 (%) MSE

Can I Play it?

GPTFC 34.3(6.1) 78.1(4.6) 1.6(0.3)

GPTCNN 36.2(8.2) 81.7(1.5) 1.4(0.1)

PianoStreet

GPTFC 30.9(3.8) 71.1(9.6) 2.1(0.4)

GPTCNN 31.8(1.6) 78.8(1.8) 1.9(0.1)

FreeScores

GPTFC 46.6(1.9) 92.5(1.0) 0.8(0.1)

GPTCNN 47.3(3.4) 92.4(0.6) 0.8(0.1)

Table 2. Results of comparing the encoding schemes

GPTFC and GPTCNN. Bold values highlight the best results

per collection and metric.

As it may be observed, the GPTCNN experiment outper-

formed the GPTFC experiment in most evaluation metrics

across the three datasets. More precisely, the GPTCNN con-

sistently achieved the best performance in the Acc0 metric

for all data collections, showing an average improvement

of 1% concerning the GPTCNN case. This trend remains for

the rest of the figures of merit except for the case in the

FS assortment, in which the results of the FC-based model

outperform those of the CNN case.

Nevertheless, attending to the high standard deviations,

the performance results of the two models show a remark-

able overlap in performance, hence suggesting that both

schemes are equally capable of performing the posed task

of score difficulty analysis from sheet music images. In

this regard, further work should explore other encoding al-

ternatives to assess whether this performance stagnation is

due to the representation capabilities of the considered em-

bedding layers or due to the recognition framework.

5.2 Multi-task learning experiment

In this second study, we assess the capabilities of the multi-

task framework proposed in Section 3.2 trained simul-

taneously on the CIPI, PS, and FS datasets for the two

GPTmulti
FC and GPTmulti

CNN encoding schemes. Table 3 pro-

vides the results obtained.

Encoding Acc0 (%) Acc1 (%) MSE

GPTmulti
FC

CIPI 40.3(4.3) 82.0(1.4) 1.3(0.1)

PS 35.9(3.1) 78.2(3.4) 1.9(0.2)

FS 45.8(2.5) 92.0(1.4) 0.8(0.1)

GPTmulti
CNN

CIPI 34.9(5.0) 81.4(1.3) 1.4(0.1)

PS 35.9(2.8) 74.5(3.4) 2.7(0.2)

FS 45.9(1.2) 92.4(2.1) 0.8(0.1)

Table 3. Results of multi-task learning experiment when

evaluated on different test collections for the two encoding

schemes. Bold values highlight the best results per collec-

tion and metric.

Overall, the GPTmulti
FC method had higher results than

the GPTmulti
CNN method on the CIPI and PS datasets, es-

pecially on Acc0 and Acc1. For CIPI, GPTmulti
FC sur-

passed GPTmulti
CNN with gains of 5.4% in Acc0, 0.6% in

Acc1, and 0.1 in MSE. For PS, GPTmulti
FC slightly exceeded

GPTmulti
CNN with a 3.7% improvement in Acc1 and a 0.6-

point reduction in MSE, while Acc0 was nearly equal for

both methods, although GPTmulti
CNN had a smaller standard

deviation. Both methods displayed similar performance on

the FS dataset, with less than a 1% difference across all

metrics. As a result, subsequent experiments will reference

the GPTmulti
FC model.

The comparison between Tables 2 and 3 shows a trend

change with better results performed with the FC version

of the models. The other major difference is the relative

improvement between the GPTmulti
FC method and the best

previous model GPTCNN in the CIPI and slightly in the PS

dataset. In contrast, the FS dataset results remain compa-

rable. In CIPI, Acc0 is 11.3% higher in GPTmulti
FC , and in

PS, there is a relative improvement of 12.8%. For CIPI,

Acc1 sees a minor increase of 0.4%. MSE exhibits a small

improvement of 3.6% for CIPI and 0.5% for PS. Possible

reasons include label quality differences—CIPI annotated

by a musicology team, PS labels provided by the platform,

and FS crowdsourced by users—or the impact of dataset

sizes—CIPI being the smallest and FS the largest.

5.3 Ranking generalization experiment

In this experiment, we assess the ranking capabilities of

the proposal in a zero-shot setting by utilizing the embed-

dings of the projection layer of the model (check Figure 3).

We reduce the 768-dimensional embeddings to a single di-

mension using Principal Component Analysis (PCA) and

employ the resulting values to rank the target pieces.

Table 4 shows the results obtained resorting to the
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Kendall rank correlation coefficient, τc, for all data col-

lections discussed in the experiment, considering both the

single-task and multi-task frameworks posed. Note that

MK and HV are only used for benchmarking purposes.

Train
Evaluation

CIPI PS FS MK HV

CIPI .67 (.01) .56 (.02) .56 (.01) .67 (.05) .50 (.05)

PS .67 (.01) .58 (.02) .56 (.01) .68 (.01) .43 (.04)

FS .64 (.04) .55 (.01) .56 (.02) .71 (.02) .56 (.07)

MULTI .68 (.02) .59 (.02) .56 (.01) .63 (.02) .51 (.07)

Table 4. Zero-shot ranking results. Bold values denote the

best-performing result on each evaluation dataset.

In the three training datasets, the multi-task architec-

ture GPTmulti
FC achieves the best performance with CIPI

(τc = 0.68), PS (τc = 0.59), and FS (τc = 0.56). Unex-

pectedly, the FS method outperforms others in the datasets

of the MK (τc = 0.61) and HV (τc = 0.56). This outcome

may suggest that simultaneous training on all three datasets

could limit generalizability. Alternatively, the presence of

license-free pieces composed after 1900 in the FS dataset,

which users have uploaded, might explain the difference.

The HV dataset displays notably lower generalizabil-

ity, possibly due to the smaller number of pieces, result-

ing in higher standard deviations. Potential bias similar to

MK could also arise from the predominance of pre-20th-

century data in CIPI and PS. These factors might affect the

zero-shot experiment’s performance. However, we must

also acknowledge that most composers used for training

are white males, and the HV results are significantly worse

than the rest of the datasets. Therefore, future research

should investigate and minimize the potential gender gap

in difficulty prediction tasks.

5.4 Comparison with previous approaches

This last experiment compares the goodness of the pro-

posed methodology in sheet music scores against other

image-based approaches and with the symbolic-oriented

methods domain. Regarding sheet image methods, we

consider the reference method by Tsai et al. [23] based

on bootleg mid-representation, denoted as GPTEMB. Con-

cerning the symbolic baseline, we reproduce the approach

in [4] that proposes to describe the symbolic score in

terms of piano fingering information, expressive annota-

tions, and pitch descriptors to feed a recurrent model based

on Gated Recurrent Units with attention layers (referred to

as GRU+Att). Table 5 provides the results obtained. For

comparative purposes, we only consider the CIPI dataset as

the reference symbolic work accounted for that collection.

Examining the experiments, the GPTmulti
FC model may

be observed to outperform the other cases in the Acc0 fig-

ure of merit. However, for the rest of the metrics, the refer-

ence symbolic case—denoted as GRU+Att—outperforms

all image-oriented recognition models. Such a fact sug-

gests that, while a bootleg score somehow suits this dif-

ficulty estimation task, a performance gap between this

representation and pure symbolic notation needs to be ad-

dressed.

Case Acc0 (%) Acc1 (%) MSE

Symbolic [4]

GRU+Att 39.5(3.4) 87.3(2.2) 1.1(0.2)

Tsat et al. [23]

GPTEMB 19.7(4.0) 58.1(7.2) 3.3(0.8)

Proposal

GPTFC 34.3(6.1) 78.1(4.6) 1.6(0.3)

GPTCNN 36.2(8.2) 81.7(1.5) 1.4(0.1)

GPTmulti
FC 40.3(4.3) 82.0(1.4) 1.3(0.1)

Table 5. Performance results for the symbolic [4] and Tsai

et al. [23] methods as well as the proposed approach for

the CIPI dataset. Bold values highlight the best result per

figure of merit.

Finally, the GPTEMB model achieves the lowest perfor-

mance of all alternatives, with remarkably lower accuracy

rates than our proposal. Note that such a fact emphasizes

the relevance of our work as a more suitable approach for

performing difficulty estimation in sheet music images.

6. CONCLUSIONS

Estimating the performance difficulty of a music piece is

a crucial need in music education to structure the learn-

ing curriculum of the students adequately. This task has

recently gathered attention in the Music Information Re-

trieval field, given the scarce existing research works de-

voted to symbolic machine-readable scores. However, due

to the limited availability of this type of data, there is a

need to devise methods capable of addressing this task with

image-based sheet music.

Attending to its success in related classification tasks,

this work considers the use of a mid-level representation—

namely, bootleg score—that encodes the content of a

sheet music image with a GPT-based recognition frame-

work for predicting the difficulty of the piece. Instead

of directly applying this methodology, we propose using

specific embedding mechanisms and multi-task learning

to reduce the task complexity and improve its recogni-

tion capabilities. The results obtained with five different

data collections—three of them specifically compiled for

this work—prove the validity of the proposal as it yields

recognition rates comparable to those attained in symbolic

machine-readable scores.

Further work comprises assessing and proposing alter-

native representations to the bootleg scores (e.g., solutions

based on Optical Music Recognition). Also, we consider

that using smaller training sequences using hierarchical

attention models or weak labels for varying-length piece

fragments may report benefits in the process. Finally, the

practical deployment of this proposal in real-world sce-

narios involving real users may report some additional in-

sights about the validity of the proposal.
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ABSTRACT

Music source separation (MSS) faces challenges due to

the limited availability of correctly-labeled individual in-

strument tracks. With the push to acquire larger datasets

to improve MSS performance, the inevitability of encoun-

tering mislabeled individual instrument tracks becomes a

significant challenge to address. This paper introduces an

automated technique for refining the labels in a partially

mislabeled dataset. Our proposed self-refining technique,

employed with a noisy-labeled dataset, results in only a 1%

accuracy degradation in multi-label instrument recognition

compared to a classifier trained on a clean-labeled dataset.

The study demonstrates the importance of refining noisy-

labeled data in MSS model training and shows that utiliz-

ing the refined dataset leads to comparable results derived

from a clean-labeled dataset. Notably, upon only access

to a noisy dataset, MSS models trained on a self-refined

dataset even outperform those trained on a dataset refined

with a classifier trained on clean labels.

1. INTRODUCTION

Music source separation (MSS) is a critical task in the

field of music information retrieval (MIR), with applica-

tions ranging from remixing [1–3] to transcription [4–6]

and music education [7, 8]. To train high-performing MSS

models, it is essential to have clean single-stem music

recordings for guidance, which serve as the ground truth

for model training. However, obtaining clean, large-scale

datasets of single instrument tracks remains a challenging

task.

With the increasing availability of music data on the in-

ternet, platforms such as YouTube provide a vast pool of

potential single-instrument tracks. Although these sources

offer an opportunity for performance gains through larger

training datasets, collecting single instrument tracks from

such platforms inevitably leads to encountering tracks with

*Equal contribution

© J. Koo, Y. Chae, C.-B. Jeon, and K. Lee. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: J. Koo, Y. Chae, C.-B. Jeon, and K. Lee, “Self-refining of
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in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

Figure 1. Overview of self-refining procedure on a noisy-

labeled dataset for music source separation.

incorrect labels. For example, a query aimed at obtain-

ing drum recordings might yield results that contain other

types of instruments or noise, causing discrepancies be-

tween the expected and actual content of the collected

recordings.

Label noise in datasets can arise from various factors,

such as bleeding between instrument tracks, mislabeling

due to human error, or the ambiguous timbre of instru-

ments that resemble other instrument categories [9]. These

factors make it challenging to assign a single definitive in-

strument label to a given recording. Such label noise is

detrimental to the performance of MSS models, and there

is a pressing need for an approach that can effectively train

MSS models using partially corrupted datasets.

In response to this challenge, we propose an automated

approach for refining mislabeled instrument tracks in a par-

tially noisy-labeled dataset. Our self-refining technique,

which leverages noisy-labeled data, results in only a 1%

accuracy degradation for multi-label instrument recogni-

tion compared to a classifier trained with a clean-labeled

dataset. The study highlights the importance of refining

noisy-labeled data for training MSS models and demon-

strates that utilizing the refined dataset for MSS yields re-

sults comparable to those obtained using a clean-labeled

dataset. Notably, when only a noisy dataset is available,

MSS models trained on self-refined datasets even outper-

form those trained on datasets refined with a classifier

trained on clean labels. This paper presents a comprehen-

sive analysis of our proposed method and its impact on the

performance of MSS models.
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Figure 2. Overall training procedure of the Instrument Classifier Ψ. The classifier is trained to perform instrument recogni-

tion with mixtures that are synthesized by randomly selecting each stem from the noisy labeled dataset. After this training

procedure, we refine the original noisy dataset and then use this new dataset to train the final Ψ.

2. RELATED WORKS

Self-training of machine learning models has been stud-

ied in various literatures, where a teacher model is first

trained with clean labeled data and is used as a label predic-

tor of unlabeled data, then a student model is trained with

clean and pseudo-labeled data [10, 11]. Recently, Xie et

al. proposed a noisy student method for self-training [12],

which uses an iterative training of teacher-student mod-

els and noise injection methods for training student mod-

els. Thanks to their usefulness, these self-training methods

have been used in diverse MIR tasks, such as singing voice

detection [13, 14] and vocal melody extraction [15].

Instrument recognition or classification has been re-

searched in various literatures, both in single-instrument

[16–19] or multi-source settings [20–27]. Although such

research has been focused on single or predominant-label

prediction, Zhong, et al. [28] recently proposed the hierar-

chical approach for multi-label music instrument classifi-

cation.

Our self-refining method for training of instrument clas-

sifier shares similar attributes with noisy student train-

ing [12] and the previous multi-label instrument classifi-

cation [28] but differs from some perspectives. i) We train

all our models only with partially noisy-labeled data, with-

out access to clean-labeled data. ii) We train the classi-

fiers for direct prediction of labels used in standard music

source separation, e.g., vocals, bass, drums, and others, in-

stead of the hierarchical approach. iii) We train multi-label

classifiers with mixtures of randomly selected instruments,

which are based on the characteristic of musical audio. If

there exist two different instruments in one audio signal,

that can be classified into two instruments. This random

mixing of different instrumental tracks has been used in

music source separation as well [29]. Note that the mixup

method [30], which is also a mixing method of two differ-

ent images, also shares a similar attribute with our method

but is used for regularization of training single-label clas-

sifiers, not like our multi-label classifiers.

3. METHODOLOGY

Given a real-world scenario where the available multi-

track dataset for MSS is partially incorrect with its instru-

ment labels, a possible naive approach is first to rectify

mislabeled tracks and then train an MSS model using stems

with the revised labels. In this section, we introduce an

effective training technique that first performs instrument

recognition by only utilizing data with noisy labels and

then leverages the refined dataset inferred with the trained

multi-label instrument classifier to train the MSS model.

With this two-stage approach, we explore the impact of the

refined noisy datasets on the performance of MSS models.

3.1 Multi-label Instrument Recognition

Figure 2 summarizes the proposed training procedure of

the Instrument Classifier Ψ. Similar yet different from

self-training, our approach learns directly from noisy la-

beled data and re-labels the training data to train the final

Ψ using this refined dataset. We call this training proce-

dure self-refining, and this is possible by random mixing,

a method to synthesize a mixture of multiple instruments

with pseudo labels. The random mixing technique takes

advantage of the acoustic music domain in that mixing

sources of different instrument tracks still leads to natural

output mixture, whereas naively combining different im-

ages in the image domain is likely to produce unrealistic

results. We further discuss about the benefits and the de-

tailed process of random mixing at 3.1.1.

The network architecture of Ψ is that of the ConvNeXt

model [31], where it has shown great performance on a

multi-instrument retrieval in [27]. The input of the net-

work is a stereo-channeled magnitude linear spectrogram.

Followed by a sigmoid layer, the model outputs four labels

indicating the presence of each stem. The objective func-

tion for instrument recognition LΨ is a mean absolute loss

between the estimated and synthesized pseudo labels. Pre-

liminary experiments showed no significant difference in

performance when employing mean absolute loss as com-

pared to binary cross-entropy loss. This is likely due to
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Figure 3. Music source separation training. Similar to the training procedure of the instrument classifier, we randomly mix

each stem from the refined dataset to synthesize a mixture and use it as a network input. When a multi-labeled segment is

selected for synthesis, the corresponding estimated stems are summed for loss computation.

the random mixing sampling that ensures similar occur-

rences of positive and negative labels of each instrument

class during the training procedure.

3.1.1 Random Mixing

Randomly mixing stems with label noise not only creates

various combinations of multi-labeled mixtures for train-

ing the instrument classifier but also brings the chance to

generate a correct pseudo label from mislabeled stems. For

instance, if we randomly select one correctly labeled drum

track and a track that contains both sources of drums and

vocals but is mislabeled as vocals, the mixing process syn-

thesizes a correctly labeled mixture. Thanks to these for-

tunate chances, the random mixing technique assists the

instrument classifier’s accuracy in refining the label noise

dataset by utilizing mislabeled stems.

To synthesize a random mixture and its pseudo label,

each stem is first selected with a chance rate from the noisy

dataset. The audio effects manipulation is then applied to

each chosen track by simulating the music mixing process

for data augmentation [3]. The order of applying audio

effects with random parameters is 1. dynamic range com-

pression, 2. algorithmic reverberation, 3. stereo imaging,

and 4. loudness manipulation. Labels corresponding to

randomly selected stems are used as a multi-label objec-

tive for the instrument classifier.

3.2 Music Source Separation

In this section, we describe the training procedure of MSS

model employing a multi-labeled refined dataset curated

by the classifier trained in Section 3.1. The majority

of MSS research has focused on estimating each of the

four instrument groups (vocals, bass, drums, and other)

[32–35]. However, our refined dataset contains sources la-

beled with multiple stems, which are unsuitable for use

as distinct target instruments. To utilize multi-labeled

sources, we propose an appropriate MSS training frame-

work tailored to our refined dataset.

First, we determine whether to include the multi-stem

source for each input mixture sample by considering the

probability p. If we decide not to include the multi-labeled

source, we can train the MSS model in a conventional man-

ner, computing the losses for each stem. Otherwise, we se-

lect a multi-labeled source from the refined dataset. Sub-

sequently, we choose the remaining stems that do not cor-

respond to the selected multi-labeled source from a pool

of single-labeled sources and combine them to simulate

a mixture. For example, when selecting a multi-labeled

source bass+drums, we opt for single sources labeled as

vocals and others to synthesize the mixture. After conduct-

ing inference with the MSS model, we add the estimated

stems corresponding to the multi-stem source of the input

mixture and assess the loss between them. Figure 3 illus-

trates our training procedure when a multi-labeled source

is selected. We compute the losses for each stem, treating

the multi-labeled source as an individual stem, and subse-

quently sum these losses to derive the final loss value.

4. EXPERIMENTS

4.1 Dataset

We use the label noise dataset provided by the Music

Demixing Challenge 2023 (MDX2023) [36], which con-

sists of 203 songs, licensed by Moises.AI 1 . Similar to

MUSDB18 [37], the provided dataset contains mixtures of

music recordings segregated into four different instrumen-

tal stems: vocals, bass, drums, and other. Each stem and

its corresponding label are intentionally altered to produce

a corrupted dataset to simulate mislabeling such as bleed-

ing or human mistakes. That is, for instance, drums.wav

may contain drum sounds and singing voices simultane-

ously, which is likely to be caused by bleeding. For an-

other example, a kick-drum sound might be mislabeled as

bass.wav when the pitch of the kick drum is melodic

enough to trick a human labeler. Due to the nature of the

MDX2023 challenge, the dataset does not contain the ac-

tual ground truth labels. Hence, we use all 203 songs of

the MDX2023 dataset only as training data.

To validate our system trained with noisy labeled data,

we employed the MUSDB18 [37] as the clean dataset for

comparison and evaluation. MUSDB18 comprises 150

songs, with 100 songs for the training and 50 songs for

the test set. We adopt the test subset for evaluating all sys-

tems, while the training subset is used to train the upper

bound system for observation.

Data preprocessing. To prevent models from mislabels

caused by silence, we remove all silent sections through-

1 https://moises.ai/
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Label Type Training Data

Accuracy / F1 Score

Precision / Recall

vocals bass drums other avg

Single-Label

clean
97.8% / 0.947

0.91 / 0.98

94.4% / 0.891

0.84 / 0.94

95.1% / 0.914

0.85 / 0.98

93.2% / 0.880

0.90 / 0.85

95.1% / 0.906

0.87 / 0.93

noisy
93.6% / 0.860

0.76 / 0.97

90.0% / 0.821

0.73 / 0.93

93.7% / 0.893

0.81 / 0.98

92.6% / 0.865

0.92 / 0.81

92.5% / 0.860

0.80 / 0.92

refined
96.1% / 0.911

0.84 / 0.98

89.6% / 0.818

0.71 / 0.96

93.1% / 0.884

0.79 / 0.98

92.3% / 0.862

0.90 / 0.82

92.8% / 0.866

0.80 / 0.93

Multi-Label

clean
92.4% / 0.929

0.92 / 0.93

89.6% / 0.905

0.89 / 0.92

90.5% / 0.913

0.87 / 0.95

88.1% / 0.878

0.90 / 0.85

90.2% / 0.907

0.90 / 0.91

noisy
87.9% / 0.895

0.83 / 0.96

87.5% / 0.888

0.86 / 0.93

87.7% / 0.891

0.82 / 0.96

87.3% / 0.872

0.88 / 0.87

87.6% / 0.887

0.85 / 0.93

refined
91.9% / 0.928

0.88 / 0.97

87.8% / 0.894

0.84 / 0.95

89.6% / 0.906

0.85 / 0.96

87.4% / 0.874

0.88 / 0.87

89.2% / 0.901

0.86 / 0.94

Table 1. Instrument recognition performance on single and multi-label instrument classifiers trained with different datasets.

The training data of clean, noisy, and refined each represents the training subset of MUSDB18, MDX2023, and MDX2023

refined with the instrument classifier trained with MDX2023 Ψnoisy, respectively.

out both datasets. The preprocessing procedure for silence

removal is as follows:

1. For each song, detect silent areas that are below 30

dB relative to the maximum peak amplitude.

2. Remove all detected areas then merge them into one

single long audio track.

3. Repeat 1. (with the threshold of 60 dB) and 2. based

on the merged audio track, in case of stems that are

almost silent.

After trimming silent regions, the total durations for each

stem in the respective order of vocals, bass, drums, and

other are [7.2, 7.8, 9.2, 10.3] hours for the MDX2023

dataset, and [2.2, 2.7, 2.9, 3.3] hours for the test subset of

MUSDB18. Note that for evaluating MSS performance,

we instead follow the original convention of processing

entire songs from the test subset without any silence re-

moval. We use the original audio specifications of both

datasets where all audio tracks are stereo-channeled and

have a sampling rate of 44.1 KHz.

4.2 Experimental Setups

For multi-label instrument recognition, the network archi-

tecture of Ψ is ConvNeXt’s tiny version [31], which con-

sists of 27.8M parameters. We feed the network with

stereo-channeled mixtures of instruments that are of 2.97

seconds, which are transformed into a time-frequency do-

main linear magnitude spectrogram with an FFT size of

2048 and a hop size of 512. We train all Ψ for 100 epochs.

During inference, Ψ performs classification by processing

the entire input audio in windows of a size equivalent to

the network input size, with a hop size of one-fourth of

this window size. The output labels from these windows

are then averaged to yield the final decision, based on a

threshold value of 0.9. We utilized this inference proce-

dure to refine the noisy dataset, which was then used to

train our MSS models. Our final version of the instrument

classifier trained on the refined dataset Ψrefined only uses

stems inferred as a single-labeled for better performance

based on our preliminary experiments.

We employed two MSS models, Hybrid Demucs (De-

mucs v3) [38] and CrossNet-Open-Unmix (X-UMX) [39],

to evaluate their performance when trained on the pro-

cessed datasets. Multi-labeled sources were selected with

a probability of 0.4, and input loudness normalization (-

14 LUFS) was applied for both training and inference in

accordance with [40]. pyloudnorm [41] was used for

loudness calculation [42].

For Demucs, the input duration was set to 3 seconds,

and optimization was performed using Adam optimizer

[43] and L1 loss on the time domain. The model was

trained for 21,000 iterations with a batch size of 160.

For X-UMX, the input duration was set to 6 seconds,

and optimization was performed using AdamW optimizer

[44] and mean squared error loss on the time-frequency do-

main. For the sake of simplicity, we omit the multi-domain

and combination loss proposed in [39]. The model was

trained for 56,400 iterations with a batch size of 32. For

the + finetune w/ multi-labeled model in Table 3, we first

train the model with only single-labeled data for 20,680

iterations, then finetune it with multi-labeled data for an-

other 35,720 iterations.

5. RESULTS

5.1 Instrument Recognition

Table 1 presents the instrument recognition performance of

the multi-instrument classifier on single-labeled and multi-

labeled data. As ground-truth labels are not available for

the MDX2023 dataset, we validate the classification per-

formance according to single and multi-labeled data with

the MUSDB18 test set for evaluation. For the multi-label

evaluation, we synthesized 3,941 mixtures from the test

set with the random mixing technique described in 3.1.1.

We observe the performance of Ψ trained with MUSDB18

(clean), MDX2023 (noisy), and MDX2023 once refined
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Network
Training

Data

SDR [dB]

vocals bass drums other avg

Demucs

[38]

clean 5.92 6.16 5.58 4.43 5.52

noisy 3.37 1.92 0.70 0.86 1.71

w/ Ψclean 5.31 5.12 1.32 2.16 3.48

w/ Ψnoisy 4.15 4.58 1.62 2.85 3.30

w/ Ψrefined 5.36 5.04 3.09 3.13 4.16

X-UMX

[39]

clean 5.76 4.44 5.47 3.65 4.83

noisy 3.39 1.78 1.52 0.96 1.91

w/ Ψclean 4.50 3.22 3.66 2.73 3.53

w/ Ψnoisy 4.72 4.11 3.22 2.89 3.74

w/ Ψrefined 4.99 3.93 5.00 3.18 4.28

Table 2. Source separation performance of Demucs v3

[38] and CrossNet-Open-Unmix [39] trained on different

training datasets. Sub-items below noisy dataset indicate

data refined with the respective instrument classifiers, de-

noted as Ψ•.

with Ψnoisy (refined). The evaluation metrics used are ac-

curacy, F1 score, precision, and recall for each instrument

class and the overall averaged result.

For single-labeled data, the classifier achieves the high-

est average performance on the clean dataset, with an ac-

curacy of 95.1% and an F1 score of 0.906. As clean

dataset does not contain any noisy labels, the obtained

results can be considered an upper bound for the perfor-

mances of the classifiers. The Ψ trained on refined dataset

results in slightly lower performance, with an accuracy

of 92.8% and F1 score of 0.866, while the noisy dataset

shows an accuracy of 92.5% and F1 score of 0.860. Al-

though the accuracy, F1 score, and precision are higher for

the noisy dataset in the bass, drums, and other stems, the

performance metrics for vocals and recall values across all

stems exhibit superior results when trained with the refined

dataset.

For instrument recognition on multi-labeled data, Ψ

trained on clean dataset yields an average accuracy of

90.2% and F1 score of 0.907. The noisy dataset results in

an accuracy of 87.6% and an F1 score of 0.887. The refined

dataset achieves superior performance, with an accuracy of

89.2% and an F1 score of 0.901, which is comparable to

the results obtained from the clean dataset. Contrary to the

evaluation with single-labeled data, the refined dataset gen-

erally demonstrates superior performance across all met-

rics in comparison to the noisy dataset. Notably, the re-

call values are observed to be even higher than those of the

clean dataset. An in-depth analysis of the multi-instrument

classifier results, alongside the performance outcomes of

the MSS models, is discussed in Section 5.2.

5.2 Source Separation

The results of MSS models trained on different training

datasets are presented in Table 2. In our evaluation, we

used Signal-to-Distortion Ratio (SDR) [45], which is cal-

culated using the museval toolkit [46]. For all MSS ex-

periments, we report the SDR median of frames and the

median of tracks. The Demucs and X-UMX models are

Method
SDR [dB]

vocals bass drums other avg

proposed 4.99 3.93 5.00 3.18 4.28

threshold = 0.5 5.06 4.13 4.77 3.06 4.25

adaptive thresholds 4.70 3.72 3.70 2.62 3.68

train only w/ single-labeled 4.90 3.73 4.54 3.18 4.09

+ finetune w/ multi-labeled 4.33 4.33 4.19 3.14 4.00

self-refining ×5 4.65 3.87 5.07 2.89 4.12

Table 3. Ablation studies on MSS performances with

CrossNet-Open-Unmix.

trained on clean, noisy, and data processed with multi-

instrument classifiers, denoted by Ψ•. In this context, Ψ•

represents the classifier trained on each respective dataset,

as described in Section 5.1.

The baseline for this experiment is established using

MSS models trained on the noisy dataset. It is noteworthy

that all the results presented in the table exceed the base-

line performance. For the dataset processed with the multi-

instrument classifier Ψrefined, average SDR improvements

of 2.45 and 2.31 are observed for Demucs and X-UMX

models, respectively, in comparison to the noisy dataset.

Specifically, in Ψrefined case, both Demucs and X-UMX

models demonstrate substantial improvements in SDR val-

ues across all stems compared to those of Ψnoisy, with the

exception of bass in the X-UMX model.

5.2.1 Analysis in relation to instrument recognition

In Table 2, it is noteworthy that the performance of Ψrefined

exceeds the performance of Ψclean, even though Ψclean is

trained with a noise-free labeled dataset. This implies the

classification performance of Ψclean is inferior to the classi-

fication performance of Ψrefined. This discrepancy could be

attributed to differences in the data distribution between

the MUSDB18 and MDX2023 datasets. Moreover, the

number of training samples varies, with 100 samples in

the MUSDB18 dataset and 203 samples in the MDX2023

dataset. When refining a partially noisy dataset, employ-

ing the same partially noisy dataset can yield advantageous

outcomes than using the smaller clean dataset. This obser-

vation might be aligned with the findings in [12], which

report an improvement in performance when a larger quan-

tity of unlabeled data is present.

An additional factor to consider is the distinctive nature

of the MSS model training framework in our approach.

MSS models utilize the output of the classifier as input.

The performance of the MSS model can be affected dif-

ferently depending on the type of error in the classifier’s

output. For example, assume that the MSS model receives

a sample misclassified as a vocal stem when no vocals are

actually present (i.e. a false-positive sample for vocals). In

this case, the MSS model simply needs to predict silence

for the vocals stem and produce it as output, resulting in

no significant confusion. Conversely, consider a scenario

in which the MSS model receives a sample misclassified as

a non-vocal stem (e.g. drums + bass), despite the presence

of vocals, resulting in a false-negative sample for vocals. In

such a case, the model will attempt to allocate the vocals
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Figure 4. Precision and recall curves of the proposed classifier across different thresholds (x-axis) on each instrument. The

curves are generated using the MUSDB18 test set (clean).

present in the input data to the drum and bass stems. Fur-

thermore, our model differs from traditional MSS training

methods as it also accepts multi-stem data as input. In this

context, the vocals are present as the correct answer for

multiple mislabeled non-vocal stems, which confuses the

model. This not only negatively affects the performance of

the mislabeled stems but also the vocal stem itself.

As a consequence of the unique characteristics of our

training process, false-negative samples have a more sig-

nificant impact on MSS compared to false-positive sam-

ples, highlighting the increased significance of the recall

metric. Considering this perspective, the results presented

in Table 1 imply the possibility of the sub-optimal perfor-

mance of MSS trained on outputs of Ψclean, where the re-

call values are lower for all stems compared to Ψrefined.

5.2.2 Ablation studies

As shown in Table 3, we evaluate the performance of X-

UMX under various conditions to better understand the

significance of distinct aspects of our proposed method.

Threshold. We conduct experiments to examine the im-

pact of threshold determination for the classifier during the

training of MSS models using a classified dataset. The

evaluation is performed on the MUSDB18 test set. We

observe that reducing the threshold to 0.5 only exhibits an

SDR of 0.03 degradation compared to the original thresh-

old value of 0.9. This outcome can be attributed to the fact

that only 8% of Ψrefined outputs fall within the range of [0.1,

0.9] upon inference on the MUSDB18 test set. In Figure 4,

we present the precision and recall curves for each thresh-

old on individual instruments. It is evident from the curves

that the variations within that range for both precision and

recall are not substantial. Consequently, the choice be-

tween thresholds of 0.9 or 0.5 does not yield any notice-

able disparity. Furthermore, we conduct an experiment in-

volving adaptive thresholds for each instrument, where the

threshold for each instrument was set to maximize the F1

score of the classification performance. However, we ob-

serve a significant degradation in performance across all

instruments when employing adaptive thresholds. Maxi-

mizing the F1 score necessitates a trade-off between re-

call and precision, often leading to a decline in recall to

enhance precision. Consequently, the performance of the

MSS model experience degradation, aligning with the dis-

cussion presented in Section 5.2.1.

Training with multi-labeled data. When training solely

with the data estimated as single-labeled, the performance

is not as good as that of the proposed method. Incorporat-

ing both single- and multi-labeled data for fine-tuning after

the initial training on single-labeled data leads to a slightly

diminished performance, despite utilizing both types of la-

beled data during the training process.

Iterative self-refining. Finally, we examine the influ-

ence of the iterative self-refining technique on MSS per-

formance. The results indicate that an MSS model trained

with a noisy-labeled dataset refined five times through our

method does not yield superior performance compared to

the proposed model, trained on a dataset refined twice, and

the performance difference is insignificant. This observa-

tion suggests that excessive refinement iterations do not

necessarily lead to improved performance and that refin-

ing the dataset twice may be sufficient for optimal results.

6. CONCLUSION

In conclusion, this paper presented a self-refining approach

to address the challenges of noisy-labeled data in train-

ing music source separation (MSS) models. Our proposed

method refines mislabeled instrument tracks in partially

noisy-labeled datasets, resulting in only a 1% accuracy

degradation for multi-label instrument recognition com-

pared to a classifier trained on a clean-labeled dataset. This

study highlights the importance of refining noisy-labeled

data for training MSS models effectively and demonstrates

that utilizing the refined dataset for MSS yields results

comparable to those obtained using a clean-labeled dataset.

Considering the real-world scenario of accessibility only

to a noisy dataset, MSS models trained on self-refined

datasets outperformed those trained on datasets refined

with a classifier trained on clean labels. The self-refining

approach we introduced offers a promising direction for

future research in the field of music information retrieval

and has the potential to be extended to other applications

requiring robust training on noisy-labeled datasets.
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ABSTRACT

Quantifying the difficulty of playing songs has recently

gained traction in the MIR community. While previous

work has mostly focused on piano, this paper concentrates

on rhythm guitar, which is especially popular with ama-

teur musicians and has a broad skill spectrum. This paper

proposes a rubric-based ‘playability’ metric to formalise

this spectrum. The rubric comprises seven criteria that

contribute to a single playability score, representing the

overall difficulty of a song. The rubric was created through

interviewing and incorporating feedback from guitar teach-

ers and experts. Additionally, we introduce the playability

prediction task by adding annotations to a subset of 200

songs from the McGill Billboard dataset, labelled by a gui-

tar expert using the proposed rubric. We use this dataset

to weight each rubric criterion for maximal reliability. Fi-

nally, we create a rule-based baseline to score each rubric

criterion automatically from chord annotations and timings,

and compare this baseline against simple deep learning

models trained on chord symbols and textual representa-

tions of guitar tablature. The rubric, dataset, and baselines

lay a foundation for understanding what makes songs easy

or difficult for guitar players and how we can use MIR tools

to match amateurs with songs closer to their skill level.

1. INTRODUCTION

Guitars have seen a 1.25-million-instrument sales rebound

since the coronavirus pandemic, and the public’s fascin-

ation with fretted instruments has never been higher [1].

While traditional methods of transferring musical playab-

ility knowledge via music schools or private teachers still

exist, online resources have made learning to play the guitar

more accessible [2]. Indeed, online tools have led to a sig-

nificant increase in the accessibility of learning any musical

instrument, with a growing number of children and adults

learning to play [3]. In addition, research suggests that

informal self-practice can enhance motivation compared

to formal teaching [4]. Ultimate Guitar and Chordify are

© M.A. Vélez Vásquez, M.C.E. Baelemans, J. Driedger,

W.H. Zuidema, and J.A. Burgoyne. Licensed under a Creative Commons

Attribution 4.0 International License (CC BY 4.0). Attribution: M.A.

Vélez Vásquez, M.C.E. Baelemans, J. Driedger, W.H. Zuidema, and J.A.

Burgoyne, “Quantifying the Ease of Playing Song Chords on the Guitar”,

in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

Figure 1. Physical and cognitive criteria for evaluating the

playability of songs on the guitar position during guitar per-

formance. Note that repetitiveness reflects both cognitive

and physical factors, and that attentive listening to auditory

feedback, while not a criterion itself, is necessary for devel-

oping and refining performative gestures.

examples of web-based music services that facilitate the

automatic extraction of chord progressions from audio re-

cordings of songs or community-proposed chord transcrip-

tions and present them in a simple and accessible format for

the growing group of amateur guitar players to use for prac-

tice and pleasure. Currently, Ultimate Guitar and Chordify

have 39.7 million and 8 million users, respectively [5, 6].

Navigating the abundance of online chord data on plat-

forms such as Ultimate Guitar or Chordify can be over-

whelming, however, particularly for amateur learners seek-

ing suitable pieces to enhance their expertise. While

Chordify offers only a chord simplification option, Ulti-

mate Guitar offers four categories of playability: absolute

beginner, beginner, intermediate, and expert. Still, these

categories may be too broad to suit all individuals. There is

a need to establish a method that can predict a song’s diffi-

culty level in a more fine-grained, automated, and preferably

interpretable manner to assist learners in selecting appro-

priate pieces based on their skill level and personal taste.
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The Ultimate Guitar community has proposed a difficulty

measurement system, which relied until recently on the in-

put of multiple users, but like any system relying on human

annotation, it is difficult to scale and can suffer from low

reliability unless annotators are well-qualified and familiar

with the annotation scheme.

This paper argues that a robust, reliable, and publicly

documented difficulty prediction system could significantly

benefit music learners in selecting challenging and reward-

ing pieces. Our main contributions are: (1) an interpretable

guitar playability metric; (2) an extension of the Billboard

dataset of 200 playability annotated songs, tested for re-

liability; and (3) a rule-based baseline for our playability

metric. Furthermore, we investigated how well a previously

well-performing model of piano playability compares to

our rule-based baseline when trained on our dataset. The

rule-based baseline and source code for all experiments are

available to download. 1 We also include dataset statistics

and other information to aid future research on playability.

2. RELATED WORK

We define playability as the level of musical proficiency

required to perform a musical song on a specific instru-

ment. While it is a crucial aspect of musical analysis and

performance, it is a complex and challenging concept to

measure or quantify. The playability of musical songs can

be influenced by various factors, such as the complexity of

the musical structure [7], the instrument of choice [8], and

the musical context in which it is played [9]. In addition, in-

dividual musical competence for a particular song requires

developing physical and cognitive skills and is influenced

by personality [10]. Physical skills for the guitar include

refining gestural mechanics, both left (fret fingering) and

right (strumming) hand positioning [11]; cognitive skills

include a comprehensive understanding of music theory,

the ability to read musical scores, and attentive listening to

the auditory feedback of the instrument for monitoring and

planning of the performative gestures [12, 13].

Several studies have attempted to develop methods for

automating the estimation of the difficulty level of piano

sheet music. In 2012, researchers proposed a method that

used MusicXML and seven high-level, instrument-agnostic

criteria to determine the difficulty level of a song [14]. They

evaluated the accuracy of their criteria by testing them on

50 piano pieces and validated their performance using prin-

cipal component analysis and human judgement. Although

their criteria were not instrument-specific, some of their

categories aligned with or were similar to those used in

other studies. Another study focused on predicting the diffi-

culty level of piano sheet music using regression [15]. The

authors proposed using RReliefF, a method for selecting

relevant symbolic music features, to improve their perform-

ance, yielding R2 values of up to .40.

In a recent study, researchers developed a piano score

difficulty classification task and a novel difficulty score

dataset [16]. They used a gated recurrent unit (GRU) neural

1 https://github.com/Marcel-Velez/playability-

billboard

network with an attention mechanism and gradient-boosted

trees to train their model on segments of musical scores

with various piano-fingering representations. They derived

the skill levels for each song from a musical practice-book

series, where the editions were ordered based on difficulty.

Books 1 and 2 were easier, classified as beginner by the

authors; Books 3 and 4 as intermediate; and Books 5 and 6

as professional. They showed that novel piano fingering fea-

tures were indicative of difficulty. Both machine-learning

models performed better than their simple baseline, with

the GRU with attention mechanisms performing best.

There has been limited research devoted to the investiga-

tion of guitar playability. Some studies have incorporated

algorithmic proxies as a means of evaluating guitar play-

ability [17]. Meanwhile, others have primarily focused on

left-hand fingering aspects [18]. However, a conspicuous

gap in the existing literature is the lack of manual annota-

tion of difficulty by human experts. Like the practice-book

dataset, any automatic system for assessing playability re-

quires good human-generated ground truth. To address this

challenge and move the scope from piano to guitar playab-

ility, we introduce a rubric-based metric to formalise the

broad spectrum of playability levels.

3. A RUBRIC FOR GUITAR PLAYABILITY

In order to develop a rubric for guitar-playing difficulty, we

interviewed local guitar experts, including guitar teachers,

to investigate what they believed makes a song challenging

to play, and what they consider when developing teaching

material for a student (e.g., why it would or would not be

suitable for their students, and how they simplify the chord

progressions to make songs more accessible). Based on

these interviews, we created a list of categories appropriate

for evaluating playability and formulated four difficulty

levels within each criterion, with a textual description for

each level. We revised this initial draft by considering

whether categories had too much overlap, and rephrased the

names and level descriptions for each criterion accordingly.

We requested and incorporated feedback on the updated

rubric from two musical experts, and finally had a guitar

expert annotate five songs with the rubric and give feedback

as to whether it allowed annotating the data efficiently.

The final version of the rubric is in Table 1. It includes

seven criteria: (1) ‘uncommonness of chord’, capturing

the possibility of the player having played the chords in

the specific song before, where unknown chords increase

difficulty; (2) ‘chord finger positioning’, capturing how

comfortably spaced the fingers on the guitar fretboard are

positioned, wherein chords are more difficult to play if

they contain very stretched out or cramped finger positions

than when the fingers are close together and in a relaxed

position; (3) ‘chord fingering difficulty’, capturing how

many fingers a chord requires and the ratio of barre chords

played in a song, based on guitar teaching books’ build-up

of number of fingers used, and later on to barre chords;

(4) ‘repetitiveness’, capturing that a song is easier to play if

it has more repetition since it requires less task switching

than a less repetitive song; (5) ‘right hand complexity’,
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Criterion Weight Very difficult (3 points) Difficult (2 points) Easy (1 point) Very Easy (0 points)

Uncommonness
of chord

3 A lot of uncommon
chords

Some uncommon chords Few uncommon chords No uncommon chords

Chord finger
positioning

3 Very cramped or very
wide fingerspread

Uncomfortable or spread
out fingers

Slightly uncomfortable or
spread out fingers

Comfortable hand and
finger position

Chord fingering
difficulty

2 Mostly chords that
require four fingers or
barre chords

Some chords require four
fingers to be played or are
barre chords (not A or E)

Most chords require three
fingers or are A or E barre
chords

Most chords can be
played with two or three
fingers

Repetitiveness 2 No repeated chord
progressions

A few repeated chord
progressions

Quite a bit of repetition of
chord progressions

A lot of repetition of
chord progressions

Right-hand
complexity

2 For some chords multiple
inner strings are not
strummed

For some chords one
inner string is not
strummed

For some of the chords
one or more outer strings
are not strummed

For the chords all strings
are strummed

Chord
progression time

1 Very quick chord
transitions

Quick chord transitions Slow chord transitions Very slow chord
transitions

Beat difficulty
(syncopes/ghostnotes)

0 A lot of syncopes or
ghostnotes

Some syncopes or
ghostnotes

A few syncopes or
ghostnotes

No syncopes or
ghostnotes

Table 1. Proposed rubric for human annotators evaluating the difficulty of playing the chords of a song on the guitar.

Although the rubric functions acceptably using the raw scores from the table header, it has even better predictive power

when weighting the criteria according to the factor in the weight column. Note that the beat difficulty criterion provides so

little extra information that we recommend omitting it (i.e., setting its weight to zero).

capturing how difficult the strumming is, where dampening

or skipping inner strings is thought to be more difficult for

strumming than skipping outer strings or just strumming

all strings; (6) ‘chord progression tempo’, covering the

tempo at which the individual has to switch between chords,

wherein matching the correct finger positions is linked to

the playability proficiency of the individual; and (7) ‘beat

difficulty’, which models the regularity of the beat within

a song, a more regular strum being easier to play than

irregular strumming, and mixed regularity like that typical

of the reggaeton genre being easier than fully irregular beat

patterns. Figure 1 visualises these criteria in the context of

actual guitar playing and organises them into physical and

cognitive factors. The purpose of the rubric is to generate

a single, overall playability score as the sum of scores for

each rubric category. As will be discussed in more detail

below, while a simple unweighted sum of points for each

criterion already provides a reliable measure of playability,

the reliability is improved even further by using a weighted

sum, with uncommonness and finger positioning receiving

the most weight and beat difficulty the least.

Our playability rubric focuses on rhythm guitar playab-

ility over solo guitar playability: in other words, we are

not interested in melodies but rather in how difficult it is

for guitar players to reproduce the chord progressions and

rhythms of Western-style pop music. For MIR research

surrounding chords and timing in Western-style pop music,

one of the most frequently-used datasets is the McGill Bill-

board dataset [19]. The original Billboard dataset consists

of 740 songs that were part of the Billboard Hot 100 chart

between 1958 and 1991 and have been part of the MIREX

challenges. Each song has time-aligned chord transcriptions

and higher-level structural information, including meter and

phrase. Since its release, other researchers have enriched

the Billboard dataset with further information (e.g., the Bill-

board sub-corpus of the CoCoPops project [20] and the

Chord Annotator Subjectivity Dataset [21]). We decided to

do the same as a testing ground for our playability rubric,

creating the Billboard Playability Dataset.

4. THE BILLBOARD PLAYABILITY DATASET

As a basis for our dataset, we started with the 50 songs that

are included in the Chord Annotator Subjectivity Dataset.

Of the remaining 690 songs that appear in the original

dataset and CoCoPops, we chose a random sample of 150,

bringing the total number of songs in Billboard Playability

Dataset to 200. In total, these 200 songs comprise 31 205

chords, 27 190 bars, and 5852 phrases.

For each song, we acquired the audio and made an on-

line annotation dashboard with an audio player on the top,

the Billboard chord transcriptions (including timing and

phrasing information) on the left, and the rubric to the right.

To create the dataset, we enlisted the assistance of a guitar

expert who has previously demonstrated exceptional guitar

skills and experience with other music annotation tasks. We

instructed the annotator to perform the songs as written

(i.e., without using a capo or making other simplifications,

and also not adding extensions beyond those notated in the

Billboard dataset), but they were free to choose any appro-

priate fingering. After using our dashboard to listen and

play along with the song, the annotator filled in the rubric.

Six of the songs appeared twice, unbeknownst to the an-

notator, and were scored similarly each time (maximally 5

points different on the weighted scale, whereas the standard

deviation across all scores in the dataset was 6.6 points).

Histograms of the overall distributions per rubric cri-

terion are in Figure 2. For one criterion, repetitiveness, the

most difficult category was never used, which is somewhat

to be expected given that all of the songs in the dataset

are mainstream Western pop music. Most pop music tends

to have some form of repetition, and not to consist of the

unique chords and phrases that are characteristic of more
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Commonness Finger Positioning Fingering Difficulty Repetitiveness RH Compexity Progression Speed Beat Difficulty

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0

50

100

150

Figure 2. Histograms of playability scores per rubric criterion.

Bin Chords Bars Phrases

All songs 156.03 (87.92) 135.95 (55.34) 29.26 (12.41)

Easy 25% 139.21 (85.66) 133.17 (44.64) 27.87 (10.87)
Moderate 25% 152.25 (73.79) 132.69 (42.13) 28.63 (9.48)
Hard 25% 158.29 (96.40) 135.59 (65.01) 28.27 (14.10)
Expert 25% 175.20 (89.84) 142.47 (64.69) 31.35 (14.19)

Table 2. Mean, and standard deviation (in brackets) of the

number of chords, bars, and phrases for the entire dataset

and per playability bins. The playability bins are based on

quartiles of the weighted total score of the songs, the easiest

having a score lower than 8, moderate lower than 12.5, hard

lower than 18, and expert higher than 18.

experimental genres [22].

5. CAN PLAYABILITY BE MEASURED?

Given the inherent subjectivity in the concept of playability,

one could be forgiven for wondering whether predicting

playability is a well-posed question at all. Is there any com-

mon underlying measure of playability for the guitar, or is it

merely a more-or-less arbitrary combination of criteria such

as those we collected from guitar teachers for our rubric?

To address this concern, we checked our annotator’s scores

for reliability: if one tries to predict our annotator’s rubric

scores from a single parameter per song, what proportion

of variance in that parameter is ‘true’ variance as opposed

to measurement error? Reliability can also be seen as the

extent to which the rubric criteria co-vary, with high reliab-

ility indicating high covariance (and thus that all criteria are

measuring a common underlying phenomenon), or altern-

atively, as the proportion of variance explained by the first

principal component. Values of 0.7 or higher are desirable

for this type of assessment [23].

Formally, we used a family of models known as partial

credit models to assess reliability [24, 25]:

P [xni] =
e
∑xni

k=1
αik(θn−δik)

∑K

k′=0 e
∑xni

k=1
α

ik′ (θn−δ
ik′ )

, (1)

where xni denotes the rubric score given to song n for cri-

terion i, xni ∈ {0, 1, . . . ,K}, θn represents the underlying

difficulty of song n, the δik are threshold parameters for

each level of rubric criterion i, and the αik > 0 represent the

increase in difficulty score when moving from level k − 1
to level k on rubric criterion i. We considered three variants

Song Artist Score

Stand By Me David and Jimmy Ruffin 1
Miss You The Rolling Stones 2
No Charge Melba Montgomery 2
Jungle Boogie Kool and the Gang 2
Sunshine of Your Love Cream 2

I Don’t Need You Kenny Rogers 28
Man In The Mirror Michael Jackson 28
One Less Bell To Answer The 5th Dimension 30
That Girl Stevie Wonder 31
Do I Do Stevie Wonder 34

Table 3. Easiest and most difficult songs in the dataset with

their weighted playability scores.

of the model: (1) the simple partial credit model, for which

all αik are fixed to one (corresponding to a simple tally of

rubric scores); (2) the generalised partial credit model, for

which αik is allowed to vary in i but not in k (correspond-

ing to the weighted rubric scores in Table 1); and (3) the

extended partial credit model, for which the αik vary freely.

We fit all three models to the Billboard Playability Data-

set using a hierarchical Bayesian implementation in Stan.

The model included two hyperparameters µ and σ with

priors µ ∼ N(0, 1) and σ ∼ Exp(1). Given these hy-

perparameters, the remaining priors were αik ∼ Exp(1),
θn ∼ N(0, 1), δik ∼ N(µ, σ). We computed reliability

according to the customary partial-credit formula [26]: the

variance of the estimated song difficulties θn divided by

the true difficulty variance. Because the true variance in

our model is fixed to unity, we could estimate reliability

directly as the variance of the set of posterior means θ̂n.

We compared the three models using approximate leave-

one-out cross-validation [27]. The extended partial credit

model performed best, but the generalised partial credit

model was statistically indistinguishable from it (expected

log probability difference = 8.7, SE = 5.2). The simple

partial credit model was somewhat worse (elpd = 105.5, SE

= 14.2). All models, however, showed good reliability: 0.74

for the simple partial credit model, 0.84 for the generalised,

and 0.86 for the extended.

Given these results, we recommend the generalised par-

tial credit model, which is statistically indistinguishable

from the extended model and more parsimonious. The

simple 3–3–2–2–2–1–0 weighting scheme accompanying

the rubric in Table 1 falls within 90% credible intervals

for all αik values from this model fit. Table 2 provides
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some descriptive statistics for the dataset and quartile-based

‘playability bins’ under this weighting, and Table 3 lists the

easiest and most difficult songs in the dataset. We can see

an apparent increase in the mean number of chords, bars

and phrases, which as described later in this paper, inspired

us to try classifying difficulty based on length alone.

6. CAN PLAYABILITY BE PREDICTED?

In short, the rubric we developed can be used by expert

guitarists to measure playability reliably, especially when

weighting the criterion scores according to the generalised

partial credit model. Expert annotation is expensive, how-

ever, and MIR can add value by automating this process.

6.1 Rule-Based Model

First, we developed a heuristic model as a baseline for

comparison against more sophisticated learning methods.

For those rubric criteria involving potentially different per-

chord difficulties (e.g., fingering difficulty), we used a TF-

IDF weighted average of the difficulty heuristic over all

chords in the song:

∑

c

TF(c)× IDF(c)× difficulty(c) (2)

where difficulty(c) represents the difficulty score associated

with a specific chord, considering factors such as chord fin-

ger positioning (CFP), chord fingering difficulty (CFD), or

Right-hand complexity (RHC). In our case, TF is how often

a chord appears in a song divided by the number of chords

in the said song, and IDF is the log of the total number

of songs divided by the number of songs that contain that

chord. For the criteria that depend on fingering, we assumed

one possible fingering per chord based on an extensive list

of set finger positions on the Chordify website. We also

had to simplify certain chords for which standard fingerings

proved difficult to find, for example, chord with extensions

like ]11; we added a simplification penalty to compensate.

Uncommonness of chord (UC) uses a difficulty of one

for all chords (i.e., it is the average TF-IDF weight).

Chord finger positioning (CFP) requires the guitar dia-

gram and is based on a naïve approach of counting

the distance between the lowest and highest played

fret, not considering which strings they are played.

CFP = (1 + simplified × fsimple)× finger distance

Chord fingering difficulty (CFD) is based on how many

fingers are used, and if a finger is used for more than

one string, it is counted as a barre chord. For this

criterion, we had three learnable parameters, one for

the importance of how many fingers were used, one

the importance of barre chords, and one for simplific-

ation.

CFD = (1 + simplified × fsimple)

× (fingers ∗ ffinger + bar ∗ fbar)

Repetitiveness (R) is the number of unique phrases in a

song according to the Billboard annotations.

Right-hand complexity (RHC) is based on apply the rub-

ric level descriptions to fingering diagrams.

RHC =



















0 if no un-strummed strings

1 if outer strings not strummed

2 if one inner string not strummed

3 if multiple inner strings not strummed

Chord progression time (CPT) is the average chord dur-

ation (in s) according to the Billboard annotations.

Beat difficulty (BD) is the ratio of chords that were longer

or shorter than the most common chord duration in

the Billboard annotations.

Given these preliminary scores per criterion, averaged ac-

cording to TF-IDF weights as necessary, we iterated over

all annotations in Billboard Playability Dataset and grid-

searched for the three optimal thresholds, one between each

pair of adjacent difficulty levels. For categories with learn-

able parameters, we extended the grid search accordingly.

6.2 Classification Experiments

In addition to the rule-based model we also trained neural

networks on the playability prediction task using two archi-

tectures: LSTMs and DeepGRU with attention, which have

been applied recently to piano playability [16, 28]. We rep-

licated the same parameter settings as used in these papers.

Inspired by our findings on length and difficulty above, we

also included models using only representation length, with

thresholds trained in the same way as the rule-based model.

For each architecture, we tested three distinct types of in-

put: (1) processing each song character by character, which

does not explicitly imply chord information (e.g. A:maj

→ ‘A’, ‘:’, ‘m’, ‘a’, ‘j’); (2) splitting each chord into root

and quality and treating those as unique input symbols, sim-

ilar to music-theoretical understanding (e.g. A:maj → ‘A’,

‘maj’); and (3) converting each chord into the corresponding

guitar tablature, guitar-neck-like encodings displaying each

of the six guitar strings with an ‘x’ label if it is skipped, ‘o’

if it is open, or which finger goes on which fret otherwise

(e.g., A:maj → [‘x’, ‘o’, ‘2:1’, ‘2:2’, ‘2:3’, ‘o’], where ‘2:1’

represents the 2nd fret being played by the first finger).

Given the characteristics of our rubric, we defined a

custom loss function OL, which enforces an ordinal-like

structure in the class prediction:

OL =

3
∑

i=0

ρi × (target − i) , (3)

where ρi is the predicted probability of level i for the cri-

terion in question. We trained the models in two settings:

first to predict the total weighted playability score, and then

to predict each individual criterion in turn. For all training

configurations, we subdivided our dataset into 10 sections

for our experiments and conducted 10-fold cross-validation.
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Model Input CFP ↓ CFD ↓ UC ↓ RHC ↓ CPT ↓ BD ↓ R ↓ Aggregate ↓

Rule-based - 1.04 (0.05) 0.85 (0.04) 0.95 (0.05) 0.78 (0.05) 0.90 (0.05) 1.20 (0.06) 0.93 (0.06) 12.38 (0.52)

Length-based char 1.09 (0.03) 0.88 (0.03) 1.01 (0.03) 0.80 (0.01) 0.87 (0.03) 1.20 (0.04) 0.94 (0.06) 12.46 (0.36)
Length-based split 1.09 (0.02) 0.88 (0.03) 1.02 (0.03) 0.80 (0.01) 0.86 (0.03) 1.19 (0.04) 0.95 (0.05) 12.46 (0.35)
Length-based diagram 1.09 (0.02) 0.88 (0.02) 1.02 (0.04) 0.80 (0.01) 0.86 (0.03) 1.19 (0.04) 0.95 (0.05) 12.46 (0.36)

LSTM char 0.75 (0.18) 0.50 (0.08) 0.68 (0.11) 0.34 (0.13) 1.25 (0.14) 0.74 (0.24) 0.70 (0.15) 5.27 (0.77)
LSTM split 0.77 (0.14) 0.52 (0.11) 0.65 (0.08) 0.33 (0.13) 1.25 (0.12) 0.77 (0.24) 0.72 (0.14) 5.96 (1.40)
LSTM diagram 0.78 (0.14) 0.51 (0.08) 0.65 (0.10) 0.35 (0.13) 1.27 (0.15) 0.79 (0.23) 0.72 (0.13) 6.20 (1.02)

DeepGRU char 0.67 (0.18) 0.60 (0.24) 0.77 (0.21) 0.47 (0.39) 0.92 (0.42) 1.10 (0.54) 0.70 (0.15) 5.61 (1.17)
DeepGRU split 0.69 (0.15) 0.50 (0.10) 0.66 (0.22) 0.30 (0.14) 1.22 (0.30) 1.00 (0.28) 0.80 (0.29) 5.88 (0.93)
DeepGRU diagram 0.68 (0.17) 0.55 (0.18) 0.80 (0.27) 0.80 (0.53) 0.90 (0.48) 0.84 (0.20) 0.96 (0.58) 5.99 (1.12)

Table 4. Playability prediction performances after training on the Billboard Playability Dataset. The columns are the

performance when trained on and predicting each of the seven categories independently, followed by the error between all

individual categories added together for the baselines and the error when trained to directly predict the aggregated score for

the LSTM and DeepGRU models. Performances are reported in mean ordinal loss over 10 fold cross-validation with their

standard deviation. The overall best performing model is the LSTM with chords split into root and quality, except for the

two time-dependant categories: chord progression time (CPT) and beat difficulty (BD).

7. RESULTS

Our rule-based model performs better than the length-based

difficulty predictions except for the chord progression time

and beat difficulty category, as seen in Table 4. Since we

use three different chords representations, each of which

yield different lengths, we show length-based classification

results for each representation, but in practice, these differ-

ences seem to play a negligible role in playability prediction

based on length. All three length baselines-based achieve

very similar losses for all categories.

When looking at the machine-learning models, we see

that they are more variable, but on average substantially

better, than all baseline models, both in classifying each

criterion separately and predicting the weighted total diffi-

culty. The only criterion where machine-learning models

perform worse is the chord progression time. This criterion

expresses the speed difficulty, which is characterised by

chord duration. The lack in performance can be explained

by the fact that the chord transcriptions which form the

input to our model do not contain this duration information.

Oddly, both machine learning models do outperform the

baseline in predicting beat difficulty, which is also depend-

ent on chord duration. When taking the histogram for this

criterion into account, however, this performance can be

explained by class imbalance: trying to set thresholds is

worse than simply settling on the largest class. The same

class imbalance is likely responsible for the partial-credit

models assigning such a low weight.

Although there is no obvious best model when looking

across performance on the individual criteria, the LSTM

does show less variability than DeepGRU, and the LSTM

trained on character input performs significantly better on

predicting the weighted total score. We expected a bigger

difference in input type, with the guitar chord diagram per-

forming the best because this chord representation encodes

the most guitar playing information, but this turned out to

be the worst performing input type of the three. We hypo-

thesise this is caused by the sequential models not picking

up on the guitar or hand-related physics.

8. CONCLUSION

In this paper, we introduced a novel rubric that captures

the playability of guitar songs. This rubric comprises seven

criteria that can be combined into a single playability score.

Next to this rubric, we also introduced the Billboard Play-

ability Dataset, 200 playability annotations for songs from

the Billboard dataset, which we used to validate the rubric’s

reliability and confirm that indeed, guitar playability can be

measured. Following these results, we developed several

models for playability prediction. As a baseline, we started

with a rule-based model that follows the rubric as mechan-

ically as possible. We then trained and evaluated an LSTM

and DeepGRU on three different types of chord representa-

tions. The representation encoding the least guitar – only

using textual characters – surprisingly performed best, and

the representation encoding the most guitar chord informa-

tion – guitar tablature – performed the worst. Nevertheless

both LSTM and DeepGRU outperformed the rule-based

model with the LSTM performing the best at predicting the

overall playability. In future work, we aim to extend both

the dataset and the models to capture more nuances of play-

ability, and we hope this work will encourage and enable

more MIR researchers to explore the field of playability and

improve online instrument learning environments. Addi-

tionally, we envision the potential extension of our research

to incorporate MusicXML or GuitarPro formats, enabling

the integration of our playability scores and models into

widely used music notation software.
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ABSTRACT

Alignment algorithms like DTW and subsequence DTW

assume specific boundary conditions on where an align-

ment path can begin and end in the cost matrix. In prac-

tice, the boundary conditions may not be known a priori

or may not satisfy such strict assumptions. This paper in-

troduces an alignment algorithm called FlexDTW that is

designed to handle a wide range of boundary conditions.

FlexDTW allows alignment paths to start anywhere on the

bottom or left edge of the cost matrix (adjacent to the ori-

gin) and to end anywhere on the top or right edge. In or-

der to properly compare paths of very different lengths,

we use a normalized path cost measure that normalizes the

cumulative path cost by the path length. The key insight

of FlexDTW is that the Manhattan length of a path can

be computed by simply knowing the starting point of the

path, which can be computed recursively during dynamic

programming. We artificially generate a suite of 16 bench-

marks based on the Chopin Mazurka dataset in order to

characterize audio alignment performance under a variety

of boundary conditions. We show that FlexDTW has con-

sistently strong performance that is comparable or better

than commonly used alignment algorithms, and it is the

only system with strong performance in some boundary

conditions.

1. INTRODUCTION

Dynamic Time Warping (DTW) is a dynamic program-

ming algorithm for computing the optimal alignment be-

tween two sequences under certain assumptions. In the

MIR literature, it is the most widely used method for align-

ing two audio recordings of the same piece of music. One

of its assumptions is the boundary condition of the align-

ment path: it assumes that the alignment path begins at the

origin of the pairwise cost matrix and ends in the opposite

corner of the cost matrix. When working with real data

like (say) Youtube recordings of a piece of classical mu-

sic, the boundary conditions are usually unknown a priori

and may not satisfy the restrictive assumptions of standard

© I. Bükey, J. Zhang, and T. Tsai. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: I. Bükey, J. Zhang, and T. Tsai, “FlexDTW: Dynamic Time

Warping With Flexible Boundary Conditions”, in Proc. of the 24th Int.

Society for Music Information Retrieval Conf., Milan, Italy, 2023.

DTW. This may be due to silence or applause at the begin-

ning or end of videos, or perhaps due to some videos con-

taining only one movement of a piece. This paper seeks to

develop a more flexible variant of DTW that can handle a

wider range of boundary conditions.

Previous work. There is a very large body of work

on variations or extensions of DTW. These works gener-

ally fall into one of two categories. The first category fo-

cuses on mitigating the quadratic computation and mem-

ory costs of DTW. Some works approach this by speed-

ing up an exact DTW computation through the use of

lower bounds [1, 2], early abandoning [3, 4], using mul-

tiple cores [5, 6], or specialized hardware [7, 8]. Tralie

and Dempsey [9] introduce a method for computing ex-

act DTW with linear memory by processing diagonals

rather than rows/columns. Other works propose approx-

imations to DTW that require less computation, runtime,

or memory. Some approaches include approximate lower

bounds [10,11], approximations of DTW distance [12,13],

imposing bands in the cost matrix to limit extreme time

warping [14,15], computing alignments at multiple resolu-

tions [16,17], parallelizable approximations of DTW [18],

or working with a fixed amount of memory [19]. The sec-

ond category focuses on extending the behavior of DTW

in some way. Some examples in the MIR literature include

handling structural differences like repeats and jumps in

music [20–22], performing alignment in an online setting

[23–25], handling partial alignments [26, 27], using multi-

ple performances to improve alignment accuracy [28], ac-

counting for pitch drift in a capella music [29], and align-

ing sets of source recordings and mixtures [30].

Shortcomings. Our work aims to make DTW more flex-

ible by focusing on an often overlooked aspect: bound-

ary conditions. The vast majority of previous works on

DTW or its variants focus on handling one specific type of

boundary condition. For example, DTW (and any of its ap-

proximations or efficient implementations) assumes that an

alignment path begins at the origin of the cost matrix and

ends in the opposite corner. Similarly, subsequence DTW

assumes that an alignment path begins somewhere on the

longer edge of the cost matrix and ends on the opposite

edge. As mentioned above, in many situations the bound-

ary conditions are unknown a priori or may be incompati-

ble with the assumptions of standard alignment methods.

Our approach. FlexDTW is designed to be flexible in

handling a wide range of boundary conditions. Assuming

that the origin of the cost matrix is in the lower left corner,
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Figure 1. Different boundary conditions for the align-

ment path between two sequences. The full match and

subsequence conditions are well handled by standard al-

gorithms, but the other conditions are not.

FlexDTW allows an alignment path to begin anywhere on

the left or bottom edge, and it allows the alignment path to

end anywhere on the top or right edge. Figure 1 shows

several examples of boundary conditions that FlexDTW

can handle. To properly compare alignment paths of very

different length, it is necessary to use a normalized path

cost measure that normalizes the cumulative path cost by

the path length. While it is possible to determine the op-

timal alignment path ending at any position by following

the backpointers in the backtrace matrix, this would result

in an impractically high computation overhead. The key

insight with FlexDTW is that the Manhattan length of an

alignment path can be computed by simply knowing the

starting and ending location of the alignment path (without

knowing the actual path itself). The starting location infor-

mation can be computed in a recursive manner and stored

during the dynamic programming stage, making it possible

to compute normalized path costs in an efficient manner.

Contributions. This paper has three main contribu-

tions. First, we introduce an alignment algorithm called

FlexDTW that handles a wide range of boundary condi-

tions. FlexDTW allows an alignment path to start any-

where on the two edges of the cost matrix adjacent to the

origin (e.g. bottom and left edge), and it allows alignment

paths to end anywhere on the other two edges (top and right

edge). Second, we design a suite of 16 benchmarks based

on the Chopin Mazurka dataset [31] in order to character-

ize audio alignment performance under a variety of spe-

cific boundary conditions. Third, we present experimental

results showing that FlexDTW has consistently strong per-

formance across all 16 benchmarks that is comparable to or

better than the best-performing system from a set of widely

used audio alignment algorithms. We provide source code

for our implementation of FlexDTW, along with code for

running all experiments in this paper. 1

2. SYSTEM DESIGN

In this section we describe the FlexDTW algorithm in de-

tail. To make it clear how FlexDTW relates to previous

1 Code can be found at https://github.com/anonymized/.

work, we begin with a brief overview of DTW and subse-

quence DTW.

2.1 DTW and Subsequence DTW

Standard DTW estimates the alignment between two fea-

ture sequences x0, x1, . . . , xN−1 and y0, y1, . . . , yM−1.

It accomplishes this by using dynamic programming to

find the optimal path through a pairwise cost matrix C ∈
R

N×M under a set of allowable transitions. DTW assumes

that the alignment path begins at (0,0) and ends at (N − 1,

M − 1) in the cost matrix. Subsequence DTW is a variant

of DTW that finds the optimal alignment between a query

sequence x0, x1, . . . , xN−1 and any subsequence within a

(typically longer) reference sequence y0, y1, . . . , yM−1.

Subsequence DTW assumes that the alignment path in-

cludes the entire query sequence but can begin and end

anywhere in the reference sequence.

2.2 FlexDTW: Algorithm

FlexDTW is a variant of DTW that seeks to handle a much

wider range of boundary conditions. It is designed to

handle the boundary conditions of standard DTW, subse-

quence DTW, as well as many other conditions that are not

handled by DTW or subsequence DTW. We first give an

overview of the boundary conditions that FlexDTW is de-

signed to handle, describe the main challenge in allowing

flexible boundary conditions, introduce a key insight, and

then explain the algorithm in detail.

Boundary conditions. Figure 1 shows an overview of

the boundary conditions that FlexDTW is designed to han-

dle. In the given figure, the alignment path may begin any-

where along the left edge or bottom edge of the cost ma-

trix, and the alignment path can end anywhere along the

top edge or right edge. 2 Note that the resulting set of al-

lowable alignment paths is a superset that contains all al-

lowable DTW paths and all allowable subsequence DTW

paths, in addition to many other types of alignment paths.

Challenge. The main challenge in allowing such flex-

ible boundary conditions is normalization. Because the

set of allowable paths has such an enormous variation in

path length, one must use a normalized path cost to fairly

compare one alignment path with another. (Otherwise, the

path with minimum cumulative path cost will simply be the

alignment path with fewest elements.) This means that our

metric for comparing different alignment paths must nor-

malize the cumulative path cost by some measure of align-

ment path length. To determine the length of an alignment

path ending at position (i,j), we could simply follow the

backpointers in the backtrace matrix, but this introduces

an impractically high computational overhead to the algo-

rithm.

Key insight. The key insight with FlexDTW is that the

Manhattan length of an alignment path does not require

knowing what the actual alignment path is. Assuming that

the alignment path is monotonically non-decreasing (as is

the case with DTW), computing the Manhattan length of

2 We exclude a buffer region near the top left and bottom right corners
to avoid short, degenerate paths, as will be explained later.
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an alignment path only requires knowing the starting point

and ending point of the path. The starting location of any

optimal alignment path can be computed recursively with

minimal computational overhead and simply stored as an

additional piece of information (similar to the backtrace

information). Having the starting location of all optimal

alignment paths allows us to efficiently calculate normal-

ized path costs without having to perform any backtrack-

ing. We can then compare the goodness of alignment paths

by comparing their path cost per Manhattan block.

Algorithm. We now describe the FlexDTW algorithm

for aligning two feature sequences x0, x1,. . . , xN−1 and

y0, y1, . . . , yM−1. Similar to DTW, one must specify a

set of allowable transitions and corresponding transition

weights. In addition, there is one hyperparameter buffer

that specifies a minimum allowable path length, which

helps to avoid short, degenerate alignment paths. The al-

gorithm consists of five steps, which are described below.

The first step is to compute a pairwise cost matrix C ∈
R

N×M , where each element C[i, j] indicates the distance

between xi and yj under some distance metric.

The second step is to initialize three matrices: a cu-

mulative cost matrix D ∈ R
N×M , a backtrace matrix

B ∈ Z
N×M , and a starting point matrix S ∈ Z

N×M . In

order to allow alignment paths to begin anywhere in either

sequence without penalty, we initialize D[0, j] = C[0, j],
j = 0, 1,. . . , M − 1 and D[i, 0] = C[i, 0], i = 0, 1,. . . ,

N − 1. We also initialize S for all valid starting points for

alignment paths. Since the starting locations are all of the

form (0, j) or (i, 0), we can efficiently encode the starting

locations as a single integer, where positive integers indi-

cate a starting location (0, j) and negative integers indicate

a starting location (i, 0). This reduces the memory over-

head of matrix S. Accordingly, we initialize S[0, j] = j,

j = 0, 1,. . . , M − 1 and S[i, 0] = −i, i = 0, 1,. . . , N − 1.

The third step is to compute the elements in D, B, and S

using dynamic programming. For a given set of allowable

transitions {t1, t2, t3} (assumed to be {(1, 1), (1, 2), (2, 1)

} in the equation below) and corresponding multiplicative

weights w1, w2, w3, the optimal transition B[i, j] can be

computed with the following recursive formula:

B[i, j] = argmin
k=1,2,3































D[i−1,j−1]+w1·C[i,j]
i+j−|S[i−1,j−1]| if k = 1

D[i−1,j−2]+w2·C[i,j]
i+j−|S[i−1,j−2]| if k = 2

D[i−2,j−1]+w3·C[i,j]
i+j−|S[i−2,j−1]| if k = 3

(1)

The numerator elements in the equation above are cumula-

tive path costs, and the denominator elements are the Man-

hattan lengths of each candidate path. Once the best tran-

sition has been determined, the value of D[i, j] can be up-

dated as:

D[i, j] =











D[i− 1, j − 1] + w1 · C[i, j] if B[i, j] = 1

D[i− 1, j − 2] + w2 · C[i, j] if B[i, j] = 2

D[i− 2, j − 1] + w3 · C[i, j] if B[i, j] = 3

(2)

Similarly, the value of S[i, j] can be updated as:

S[i, j] =











S[i− 1, j − 1] if B[i, j] = 1

S[i− 1, j − 2] if B[i, j] = 2

S[i− 2, j − 1] if B[i, j] = 3

(3)

Note that the elements in D still indicate unnormalized

path costs (as in DTW), but the decision of which tran-

sition is the best is made based on the normalized path cost

(i.e. path cost per Manhattan block).

The fourth step is to identify the endpoint of the optimal

alignment path. The candidate set of valid ending points is

given by Ecand = {(N − 1, j) | j = buffer, . . . ,M −
1} ∪ {(i,M−1) | i = buffer, . . . , N−1}, which corre-

sponds to any location in the top or right edge in Figure 1.

We exclude a user-specified buffer region from the top left

and bottom right corners, which ensures that the alignment

path is of a certain minimum length. This buffer region

helps to prevent the algorithm from selecting short, de-

generate alignments paths with low normalized path cost.

Given this set of candidate locations, we select the end-

point Ebest to be

Ebest = argmin
(i,j)∈Ecand

D[i, j]

i+ j − |S[i, j]|
(4)

where the objective function is the path cost per Manhattan

block.

The fifth step is to backtrace from the selected endpoint

using the backpointers in B until we reach an element (0,

j), j = 0, 1,. . . , M −1 (on the bottom edge in Figure 1) or

(i, 0), i = 0, 1,. . . , N − 1 (on the left edge). The resulting

alignment path is the final estimated alignment.

2.3 FlexDTW: Hyperparameters

In this subsection we discuss the hyperparameters in

FlexDTW and our method for setting them. As mentioned

previously, FlexDTW has three kinds of user-defined pa-

rameters: a set of allowable transitions, a corresponding

set of transition weights, and a buffer hyperparameter that

specifies a minimum path length for allowable alignment

paths. Note that DTW also requires specifying a set of

transitions and transition weights, so FlexDTW has one ad-

ditional hyperparameter compared to DTW.

Transitions & weights. A typical set of transitions for

audio alignment tasks is {(1, 1), (1, 2), (2, 1)}, which im-

poses a maximum warping factor of 2. This set is usually

preferred to sets that include (0, 1) and (1, 0) transitions,

since these transitions can lead to degenerate alignments.

We will use this set of allowable transitions throughout this

paper, unless otherwise noted. The associated transition

weights can be set in many different ways. In FlexDTW,

there is one particular setting of transition weights that is

of theoretical interest: w1 = 2, w2 = 3, w3 = 3. This

setting weights each transition according to its Manhattan

distance. Note that in standard DTW (where the alignment

path is assumed to start at (0, 0) and end at (N−1, M−1)),

every allowable alignment path has the same Manhattan
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Piece Files mean std min max

Opus 17, No 4 64 259.7 32.5 194.4 409.6

Opus 24, No 2 64 137.5 13.9 109.6 180.0

Opus 30, No 2 34 85.0 9.2 68.0 99.0

Opus 63, No 3 88 129.0 13.4 96.2 162.9

Opus 68, No 3 51 101.1 19.4 71.8 164.8

Table 1. Overview of the original Chopin Mazurka dataset.

This is used as the source data to generate the benchmark

suite. All durations are in seconds.

distance, so this setting effectively treats every path as be-

ing equally likely. It is analogous to a maximum likelihood

formulation in which all possibilities are treated as equally

likely a priori, and selection is made entirely based on the

observations. For this reason, we recommend setting the

transition weights in FlexDTW as w1 = W , w2 = 3,

w3 = 3, where W can be tuned on a validation dataset.

W = 2 corresponds to a maximum likelihood formula-

tion, and smaller values of W correspond to a bias to-

wards diagonal alignment paths. In our experiments, we

use W = 1.25, which provided optimal performance on

the training set.

Buffer. The purpose of the buffer is to prevent the al-

gorithm from selecting short, degenerate alignment paths

that may have low normalized path cost. For example, si-

lence at the end of one sequence may match silence at the

beginning of the other sequence, resulting in a very short

alignment path with low normalized path cost. The buffer

should be interpreted as the minimum length along one se-

quence that an alignment path must match in order to be

considered a valid path. This could simply be set manually

based on knowledge of the task or data. In our case, how-

ever, our suite of benchmarks spans such a wide range of

sequence lengths and alignment path lengths that a single

setting is not ideal. Therefore, we determined the buffer

hyperparameter in a data-dependent way for every individ-

ual query based on two considerations. First, when one se-

quence is much longer than the other sequence, the desired

behavior is probably a subsequence alignment. In this case,

we want the entire shorter (query) sequence to be matched.

Second, when the two sequences are approximately the

same length, much more flexibility can be afforded and

an intuitive parameter is to define the minimum percent-

age of either sequence that must be matched. Putting

these two considerations together, we recommend setting

the buffer hyperparameter in the following way: for align-

ing two sequences of length L1 and L2, set buffer =

min(L1, L2) · (1 − (1 − β) ∗ min(L1,L2)
max(L1,L2)

). This sets the

buffer to a fraction of the shorter sequence length, where

the fraction is close to 1 when L1 and L2 are very differ-

ent (i.e. the subsequence case) and close to β when L1 and

L2 are approximately the same. β can thus be interpreted

as the minimum fraction of either sequence that must be

matched when both sequences are equal in length. We

tuned β on the training set and found β = 0.1 to work

well.

3. EXPERIMENTAL SETUP

In this section we describe the suite of 16 benchmarks that

we use to characterize the performance of alignment algo-

rithms under a variety of boundary conditions.

Original data. The raw source material for our bench-

marks comes from the Chopin Mazurka dataset [31]. This

dataset consists of numerous historic recordings of five

different Chopin Mazurkas, along with beat-level annota-

tions of each recording. All of the recordings for two of

the Mazurkas (Opus 17 No. 4 and Opus 63 No. 3) were

set apart for training and development, and the recordings

from the other three Mazurkas were set apart for testing.

Table 1 provides an overview of the dataset.

Evaluation. To evaluate alignment performance, we

consider every pair of recordings of the same Mazurka.

This results in
(

64
2

)

+
(

88
2

)

= 5844 training pairs and
(

64
2

)

+
(

34
2

)

+
(

51
2

)

= 3852 testing pairs. For each pair

of recordings A and B, we compare the estimated align-

ment path against the ground truth beat timestamps in the

following manner. At each ground truth beat timestamp in

recording A, we compute the alignment error between the

estimated corresponding timestamp in recording B (based

on the predicted alignment path) and the ground truth cor-

responding timestamp in recording B (based on the beat

annotations). We report aggregate alignment performance

as an error rate indicating the percentage of alignments that

have an alignment error greater than a fixed error tolerance.

Modifications: Overview. We generated synthetically

modified versions of the Mazurka dataset in order to sim-

ulate a variety of boundary conditions. Each modified ver-

sion of the Mazurka dataset contains the exact same num-

ber of recordings, but each recording has been modified to

study a particular boundary condition. Thus, the number of

training pairs and testing pairs is the same as in the original

benchmark, but the audio data and corresponding annota-

tions have been modified appropriately. Each benchmark

is evaluated as described above. Below, we describe how

we constructed each of the 16 benchmarks.

Full Match. The full match benchmark is the Mazurka

dataset in its original unmodified form. This boundary con-

dition assumes that both recordings start and end at the be-

ginning and end of the piece. In Figure 1, this corresponds

to an alignment path that starts in the lower left corner and

ends in the upper right corner.

Subsequence. The subsequence benchmark assumes

that one recording matches a subsequence in the other

recording. For every pair of recordings A and B, a ran-

domly sampled L-second interval within recording A is

selected and aligned against the entirety of recording B.

We construct three separate subsequence benchmarks with

L = 20, 30, 40.

Partial Start. The partial start benchmark assumes that

both recordings start together but that one recording ends

early (e.g. only contains one movement). For every pair

of recordings A and B, we randomly sample a number in

the interval [0.55, 0.75], select that percentage of recording

A (starting from the beginning), and align the fragment of

recording A against the entirety of recording B.
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Partial End. The partial end benchmark assumes that

both recordings end together but that one recording starts

part way through the piece. For every pair of recordings

A and B, we randomly sample a number in the interval

[0.55, 0.75], select that percentage of recording A at the

end (i.e. starting in the middle of the recording and extend-

ing until the end), and then align the fragment of recording

A against the entirety of recording B.

Partial Overlap. The partial overlap benchmark as-

sumes that both recordings have some temporal overlap,

but that one recording contains extra content before the re-

gion of overlap and the other recording contains extra con-

tent after the region of overlap. For every pair of recordings

A and B, we (a) randomly sample a number in [0.55, 0.75]
and select that percentage of recording A starting from

the beginning, (b) randomly sample a different number in

[0.55, 0.75] and select that percentage of recording B at

the end, and then (c) align the fragment of A against the

fragment of B.

Pre. The pre benchmark assumes that both recordings

contain the entire piece but that one recording has a period

of silence at the beginning. For every pair of recordings

A and B, we prepend L seconds of silence to recording A

and align it to the entirety of recording B. We construct

three separate pre benchmarks with L = 5, 10, 20.

Post. The post benchmark assumes that both recordings

contain the entire piece but that one recording has a period

of silence after the piece ends. For every pair of recordings

A and B, we append L seconds of silence to recording A

and align it against the entirety of recording B. We con-

struct three separate post benchmarks with L = 5, 10, 20.

Pre-Post. The pre-post benchmark assumes that both

recordings contain the entire piece, but that one record-

ing contains extra silence at the beginning and the other

recording contains extra silence at the end. For every pair

of recordings A and B, we prepend L seconds of silence to

recording A, append L seconds to recording B, and then

align the two recordings. We construct three separate pre-

post benchmarks with L = 5, 10, 20.

4. RESULTS

We report experimental results with FlexDTW and several

standard alignment algorithms:

• DTW1: Standard DTW with transitions of (1, 1), (1,

2), (2, 1) and corresponding weights 2, 3, 3.

• DTW2: Standard DTW with transitions of (1, 1), (1,

2), (2, 1) and corresponding weights 1, 1, 1.

• DTW3: Standard DTW with transitions of (1, 1), (1,

2), (2, 1) and corresponding weights 1, 2, 2.

• SubseqDTW1: Subsequence DTW with (query, ref-

erence) transitions of (1, 1), (1, 2), (2, 1) and corre-

sponding weights 1, 1, 2.

• SubseqDTW2: Subsequence DTW with (query, ref-

erence) transitions of (1, 1), (1, 2), (2, 1) and corre-

sponding weights 2, 3, 3.

• SubseqDTW3: Subsequence DTW with (query, ref-

erence) transitions of (1, 1), (1, 2), (2, 1) and corre-

sponding weights 1, 2, 2.

• NWTW: A variant of DTW proposed in [21] that

allows skip transitions (0, 1) and (1, 0), in addition

to the usual (1, 1), (1, 2), (2, 1) transitions. The skip

transitions incur a fixed penalty cost γ, which is a

hyperparameter that we tuned on the training data.

We assessed the performance of a larger set of DTW ver-

sions (with different sets of allowable transitions and cor-

responding transition weights), but we only include the 3

versions with best performance to avoid overcluttering Fig-

ure 2. Of particular note, we did experiment with DTW

versions that had (0, 1) and (1, 0) transitions, but always

found those versions to perform much worse. Likewise, we

considered other versions of subsequence DTW but only

include the top 3 versions in Figure 2. The subsequence

DTW systems are unique in that they are not symmetric.

For these systems, we always assume that the alignment is

trying to match the shorter recording against a subsequence

in the longer recording. Note that all of the systems above

can be used with any feature representation and distance

metric. For simplicity, we use standard chroma features

(as computed with default parameters in librosa) and a co-

sine distance metric for all systems.

Figure 2 compares the performance of FlexDTW and

the above algorithms on our benchmark suite. For each

system, we fixed the hyperparameter settings and evalu-

ated its performance across all 16 benchmarks. Each panel

in Figure 2 corresponds to one of the 16 benchmarks, and

the different colored bars show the error rate at 200ms tol-

erance for different systems. On top of each colored bar,

we have also overlaid two black horizontal bars indicating

the error rate at 100ms tolerance (above) and at 500ms tol-

erance (below).

There are two things to notice about the results in Figure

2. First, the seven baseline systems only handle a subset

of boundary conditions. In other words, each of the base-

line systems performs well on certain benchmarks and very

poorly on other benchmarks. For example, the DTW sys-

tems perform well on the fully matching benchmark (for

which they are designed), but they perform terribly on the

subsequence benchmarks and perform worse and worse as

more silence is prepended or appended to either record-

ing. Likewise, the subsequence DTW systems perform

well on the subsequence benchmarks, but they fail on the

partial overlap benchmark and have only moderate perfor-

mance on the pre, post, and pre-post benchmarks. NWTW

has strong performance across most benchmarks but fails

completely on the subsequence and partial overlap bench-

marks. All of the baseline systems completely fail on the

partial overlap benchmark, since none are designed to han-

dle that boundary condition. Second, FlexDTW has con-

sistently strong performance across all 16 benchmarks. On

all benchmarks, it has a performance that is comparable

to or better than the best-performing baseline system. On

the partial overlap benchmark, it is the only system that

has strong performance, with an error rate that is compa-

rable to its performance on the other benchmarks. These

results demonstrate its flexibility in handling a wide range

of boundary conditions.
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Figure 2. Performance of alignment algorithms on the 16 boundary conditions in our benchmark suite. Colored bars

indicate error rate at 200ms error tolerance, and the horizontal bars indicate error rates at 100ms (above) and 500ms

(below). Error rates greater than 50% are not shown.

System 1k 2k 5k 10k 20k 50k

DTW .033 0.14 0.87 3.5 13.8 87.3

SubseqDTW 0.04 0.15 0.96 3.82 15.3 96.8

NWTW .037 0.16 0.97 3.93 15.8 101.1

FlexDTW .038 0.16 1.05 4.21 16.9 111.1

Table 2. Average runtime to process a cost matrix of size

N×N . Columns indicate different sizes N , and rows indi-

cate different systems. Each reported number is an average

over 10 trials, and times are expressed in seconds.

5. ANALYSIS

In this section we conduct several analyses to provide

deeper insight into FlexDTW.

Table 2 compares the runtime of FlexDTW and the

baseline alignment systems. We measured how long each

alignment algorithm took to process a cost matrix of size

N × N , where N ranges from 1k to 50k. Each number

in the table is an average over 10 trials. FlexDTW and

NWTW were implemented in python with numba accel-

eration, and we used the librosa implementation for DTW

and subsequence DTW (also using numba acceleration).

All experiments were run on an Intel Xeon 2.40 GHz CPU.

For longer sequence lengths, we can see that FlexDTW

incurs a 20-25% runtime overhead compared DTW and a

10-15% runtime overhead compared to subsequence DTW.

This overhead comes primarily from needing to perform a

floating-point division to evaluate every candidate path.

Another drawback of FlexDTW is the additional mem-

ory overhead of storing S. We can estimate the memory

overhead in the following manner. DTW requires allocat-

ing three matrices: the pairwise cost matrix C ∈ R
N×M ,

the cumulative cost matrix D ∈ R
N×M , and the back-

trace matrix B ∈ Z
N×M . Assuming that C and D are

matrices of 64-bit floating point numbers and B is a ma-

trix of 8-bit unsigned integers, the total memory cost is

8NM + 8NM + 1NM = 17NM bytes. FlexDTW

requires allocating an additional matrix S for storing the

starting point locations. If the two sequence lengths are

less than 215 = 32768, then S can be stored as a matrix of

16-bit integers, resulting in an extra memory overhead of

2NM . If either sequence length is greater than 32768, then

S must be stored as a matrix of 64-bit integers, resulting

in an extra memory overhead of 4NM . In summary, the

memory overhead is 2NM
17NM

≈ 12% for sequence lengths

less than 32768 and 4NM
17NM

≈ 24% for longer sequences.

We also investigated and identified two main failure

modes of FlexDTW. The first failure mode occurs when

there is extreme time warping between the two recordings.

Because the (1, 1) transition is penalized proportionally

less than the (2, 1) or (1, 2) transitions, the algorithm will

sometimes take a “shortcut" of (1, 1) transitions to/from

an edge of the cost matrix at the beginning or end of the

alignment path. The second failure mode occurs when al-

ternate matching paths are selected. For example, in the

Mazurka Opus 17 No. 4, the first four measures and the last

four measures match, which creates an additional match-

ing alignment path under the flexible boundary conditions

of FlexDTW.

6. CONCLUSION

We have introduced a time warping algorithm called

FlexDTW that is designed to handle a wide range of

boundary conditions. We artificially generate a suite of 16

benchmarks based on the Chopin Mazurka dataset, which

characterizes alignment performance in a variety of bound-

ary conditions. In all 16 boundary conditions, FlexDTW

has strong performance that is as good or better than a set

of widely used alignment algorithms. Compared to the

librosa implementation of DTW and subsequence DTW,

FlexDTW incurs a runtime overhead of 10-25% and a

memory overhead of 12% for sequences less than length

215 and 24% for longer sequences.
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ABSTRACT

Tablature notation is widely used in popular music to tran-

scribe and share guitar musical content. As a comple-

ment to standard score notation, tablatures transcribe per-

formance gesture information including finger positions

and a variety of guitar-specific playing techniques such as

slides, hammer-on/pull-off or bends. This paper focuses

on bends, which enable to progressively shift the pitch of

a note, therefore circumventing physical limitations of the

discrete fretted fingerboard. In this paper, we propose a

set of 25 high-level features, computed for each note of the

tablature, to study how bend occurrences can be predicted

from their past and future short-term context. Experiments

are performed on a corpus of 932 lead guitar tablatures

of popular music and show that a decision tree success-

fully predicts bend occurrences with an F1 score of 0.71

and a limited amount of false positive predictions, demon-

strating promising applications to assist the arrangement of

non-guitar music into guitar tablatures.

1. INTRODUCTION

The guitar, whether acoustic or electric, is (in most cases)

a fretted instrument which enforces the playing of discrete

pitch values on a chromatic scale. This constraint can be

beneficial, as it limits the risk of playing out-of-tune. How-

ever, it also prevents microtonal experiments or continuous

pitch shifts, which can be a powerful means of musical ex-

pressiveness. To overcome this limitation, guitarists can

alter the string tension with their fretting hand [1] to reach

a completely new pitch, up to several semitones higher.

This technique is called string bending, or just bends, and

is an important part of guitar playing in blues, rock or pop

music. Even though bending a string can only increase

the pitch of a note, a variety of bend types are used. While

guitar players mostly agree over the existing variations, the

names used can differ. In this paper, we consider the five

bend types described in Gomez’s work [2]: Basic upward,

Held, Reverse, Up & Down, and Complex bends for bends

that do not belong to any of the previous categories.

Guitar tablatures, compared to standard staff notation,

include fingering information on where to play a note with

© A. D’Hooge, L. Bigo and K. Déguernel. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: A. D’Hooge, L. Bigo and K. Déguernel, “Modeling bends

in popular music guitar tablatures”, in Proc. of the 24th Int. Society for
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a given pitch on the fretboard. Tablatures are therefore an

effective notation to display playing techniques, the posi-

tion of the fretting hand being critical to know how to per-

form a bend. Examples of bends are shown in a tablature

in Figure 1, different bend types are represented with dif-

ferently shaped arrows. Knowing where and when to use

bends is part of the idioms of guitar pop music and an im-

portant part of learning this style. However, the variety of

bend types can make it difficult to choose how to use them.

For instance, a guitarist playing a score that was composed

for another instrument may want to add expressiveness us-

ing bends, and could need help on deciding which notes to

bend and which bend to use. Moreover, a tool suggesting

bends could also improve the quality of online tablatures

that sometimes do not have guitar techniques annotations.

Could bends be inferred from musical context? Are

they correlated to other elements of a score or a tablature

such as pitch, rhythm, or hand position? In this paper, we

propose to model bent notes and their context through tem-

poral, pitch and tablature related information. Such a rep-

resentation could be used to predict which notes are bent

from a score or a tablature. Our contribution is three-fold:

(1) we define a set of high-level features to model bent

notes and their context, (2) we conduct a statistical study

on bends based on those features, and (3) we propose a

method for predicting bends from tablatures.

The rest of this paper is organized as follows: after dis-

cussing related works in Section 2, we introduce our mod-

eling choices in Section 3. The dataset and its statistical

study are presented in Section 4. We introduce our pre-

diction algorithm in Section 5 and reflect on this work in

Section 6.

2. RELATED WORKS

Guitar tablatures are often studied in the audio realm for

guitar music transcription [3, 4]. In particular, automatic

transcription of playing techniques from audio has also

been studied, for instance with hexaphonic microphones

[5] or deep learning techniques [6]. Of course, this task

is not restricted to guitar and has been applied to other in-

struments such as the Chinese guqin, which also features

several string bending techniques [7].

Another related task is the generation of tablatures,

which has been studied increasingly in the last decade.

Playing techniques can be included in generation frame-

works to obtain results closer to actual human perfor-

mance. The Transformer-XL model presented in [8, 9]

can for instance generate tokens representing playing tech-
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Figure 1: Excerpt from Lynyrd Skynyrd’s Free Bird solo. In the first measure, the first two bends are basic upward bends,

the remaining ones are held bends. In the second measure, the first bend is a reverse bend, and the other ones are up and

down bends. While all bends of this example are whole tones (denoted by full), the amplitude of a bend can vary. String

movements are labeled above, according to the representation presented in Section 3. An audio rendering of this excerpt is

available on the accompanying repository.

niques. Chen et al. [10] also consider Technique events, but

only for picking-hand techniques, since the generation fo-

cuses on fingerstyle guitar. McVicar et al. present in [11] a

method to generate tablatures of guitar solo phrases, and

fretting-hand techniques are added in a post-processing

step. Beyond the case of guitar, playing techniques model-

ing includes symbolic piano music generation with sustain

pedal information [12].

Another large part of guitar tablature MIR research fo-

cuses on fingering prediction, where a model is designed to

predict the pitch/fret combination for each note of a musi-

cal score. This problem has been studied with path-finding

algorithms [13] and minimax techniques [14]. More re-

cently, Cheung et al. [15] used a deep learning model to

generate fingering annotations, though not for guitar but vi-

olin. Those instruments nonetheless share some properties,

and a study of fingering prediction on string instruments

like the violin or the guitar, compared to other instruments,

can be found in [16]. However, the task of using symbolic

music to study occurrences of playing techniques is rarely

studied. Xie and Li [17] propose to predict playing tech-

niques as a tagging task on symbolic bamboo flute music

but, to the best of our knowledge, no such work has been

proposed for guitar music.

3. MODELING BENDS IN TABLATURE

To formulate bend prediction as a machine learning task,

we adopt a representation for bent notes consisting of four

different labels. We also need to pre-process our data to

obtain bend-less scores, and musical features that could be

used to train a machine learning model. Those considera-

tions are presented hereafter.

3.1 Labeling

In the introduction, we presented the different types of

bends that can be encountered in guitar tablatures. Based

on this taxonomy, we define 4 labels that represent the mo-

tion and current state of the played string:

• ∅ — the string is not bent;

• ↑ — the string is bent, causing the pitch to go up;

• → — the string was bent previously and is plucked

again in that state. The pitch is constant, but is not

the one expected from the note’s string/fret position;

• ↓ — the string was bent and is released, making the

pitch go down accordingly.

We define those labels to circumvent the issue with up

& down and complex bends that are not transcribed con-

sistently. Labeling notes with the associated string move-

ments therefore permits representing bends accurately,

without loss of generality. Using these labels, all non-bent

notes will be labeled ∅, basic upward bends are labeled ↑,

held bends correspond to →, and reverse bends are ↓. To

fit with this representation, up & down bends are split into

two notes of equal duration, the first one being labeled with

↑, and the second one with ↓. An example of such labeling

on an actual guitar track is shown on top of Figure 1.

While bends can be of different amplitude, we do not

include that information in our labeling, as we do not aim

at predicting it in this work but only focus on predicting

when bends occur. Similarly, we do not distinguish single

notes from chords when predicting bends. This means that

when the system predicts the presence of a bend in a chord,

it does not specify on which string it occurs. The impact of

this simplification is however limited, as bends rarely occur

inside chords (12% of bend events are found in chords in

our corpus).

3.2 Deriving a bend-less score simplification

Since our goal is to predict whether a note is played with

a bend, we must start from a simplified tablature that does

not have any bend information. Removing bend annota-

tions from a tablature is however not a straightforward task

since this technique affects the pitch of the performed note.

We design the following procedure when translating bent

notes from the fret/string space to the pitch space:

• If a note is labeled by ∅, its pitch is directly obtained

from the string/fret combination;
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Figure 2: Excerpt of Watermelon in Easter Hay, Frank

Zappa, as transcribed [18] by Steve Vai in standard nota-

tion (top). Below are two possible tablature representations

of this excerpt with (middle), or without (bottom) bends.

• Otherwise, the pitch is the one of the bend arrival

note. In particular:

– if the label is ↑ or → , the arrival pitch is the

pitch of the string/fret combination, to which

the bend amplitude is added;

– if the label is ↓ , the arrival pitch is the one cor-

responding to the string/fret position, because

the string is released to its default state.

This approach is the one chosen by Steve Vai when tran-

scribing Frank Zappa’s melodies to standard notation, as

we illustrate in Figure 2. The middle tablature shows

how this excerpt is actually played (based on a live perfor-

mance) and the bottom tablature illustrates how the same

excerpt might be played without bends. While it is not

an issue in this example, there is an uncertainty regard-

ing where a bent note would be played on the fretboard,

without a bend (keeping its destination pitch but losing the

technique). A guitar player might indeed choose to play

a note on a higher string, if remaining on the same string

called for an uncomfortably large hand span. Because de-

ciding arbitrarily of a hand position could introduce bias

into our model, we choose not to include any string/fret

information concerning the current note in the proposed

features for our classification task, as explained hereafter.

3.3 Selected Features

To predict whether a note is bent, we propose an intermedi-

ate representation as a set of high-level features, presented

in Table 1. Some descriptors focus on the event under

scrutiny, while others provide short-term context informa-

tion, both from the past and the future. Part of the fea-

tures are derived from standard staff notation and convey

temporal and pitch information, while others are related to

position and the tablature space. If the studied event is a

chord, the pitch, fret, and string values are averaged over

all its constituting notes. While the average might seem an

overly simple statistic, experiments with other functionals

Temporal

Duration
Beat Strength

Longer than previous

Shorter than previous

Same duration as previous

Pitch

Number of notes

Pitch(j)

Pitch jump(n±k)

Accidentals
Pitch-class w.r.t scale root

Position

Fret(n±k)

String(n±k)

Fret jump (n±2)

String jump (n±2)

Table 1: List of high-level features extracted from the

note events. Let n denote the current note index, an expo-

nent on a feature tells on which neighbors it is computed.

k ∈ {1, 2} because we discard any positional information

related to the current note, and j ∈ Jn − 2, n + 2K. Other

features are only computed on n.

such as min, max or standard deviation did not improve the

results. We have discarded any open strings for the fret-

board features so that the average fret and string represents

the actual position of the fretting hand. Apart from abso-

lute/relative duration values, temporal features include the

beat strength, which is a value between 0 and 1 suggesting

how strong the beat of a note is. We obtain this value from

the default implementation of the music21 library [19].

These beat strength values have been designed for Western

classical music, and therefore may be debatable for pop

and rock music. However, they are mostly used here to

represent onset times independently of the time signature,

while grouping notes that share rhythmic properties.

In addition to the features on the current note, we extract

a context of two past and two future note events, as pre-

liminary experiments did not show any benefits of longer

contexts. Additional boolean features are provided to re-

call if a neighboring note event is missing, when a note is

preceded or followed by a whole rest for instance. When

a note is missing, all corresponding features are set to 0.

From this context, we compute the pitch jump between

neighboring notes as well as the string and fret jumps when

they are defined, i.e., not with respect to the current note –

because we do not know where the guitarist would play

the note if they were to bend it. We expect these features

to help our algorithm derive the hand position on the fret-

board, which would be useful since bends are more likely

to occur on certain spots of the fretboard, as will be shown

subsection 4.2. Furthermore, we add information about the

key signature through the number of accidentals (positive

for sharps, negative for flats). From those accidentals, we

derive the root note of the corresponding pentatonic minor

scale (that scale encompassing much of guitar popular mu-

sic [20]) and store the position of each note on this scale.

For example, one sharp would make the root E, and an A

would be numbered 5 since it is 5 semitones above E.
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∅ ↑ → ↓ Total

123 231 9627 1270 3314 137 442

Table 2: Number of notes per label in our dataset.
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Figure 3: Normalized Heatmaps of all notes (Top) and

bent notes (Bottom). The letters refer to the open string

pitch in standard tuning with e being the high E string.

4. DATASET

4.1 Guitar Tablature Corpus

Our experiments are performed on the proprietary corpus

MySongBook composed of 2247 guitar tablatures accu-

rately transcribed by professional musicians in the .gp

GuitarPro format. A subset of 932 tracks estimated as lead

guitar – totaling more than 130 000 notes – was extracted

by applying the classification technique from [21]. Our

experiments focus on lead guitar parts, as they were felt to

feature heavier use of playing techniques. In contrast with

the whole corpus, which includes 2.5% of bent notes, our

lead guitar sub-corpus indeed contains 10% of bent notes,

slightly mitigating the observed class imbalance.

Our work is implemented in Python and uses music21

[19] and scikit-learn [22] libraries. To foster repro-

ducibility, all our code is made publicly available (parsing

of .gp files, extraction of features, training, and evalua-

tion of bend classification models). We also release the

complete set of features extracted on each note of our cor-

pus, plus corresponding labels at:

http://algomus.fr/code/.

4.2 Statistical study

Table 2 reports the distributions of bend labels in our cor-

pus. The distribution of bent notes on the fretboard, com-

pared to all notes, is shown in Figure 3. We observe that

most bends occur on the top 3 strings in the middle area

of the fretboard. This observation differs from notes in

general that are played on all strings, and especially on

the two middle ones and around the 7th fret. While it is

possible that the obtained heatmaps are biased by an over-

representation of certain key signatures in the dataset –

43% of the tracks are in G major/E minor or C major/A mi-

nor – this bias should affect both heatmaps equally, so their

mutual comparison is still possible. Because bent notes are

found on both higher strings and higher frets than all notes,

their pitch is similarly higher on average, as it can be ob-

served in Figure 4a.

The distribution of beat strength values is shown in Fig-

ure 4b. Because most beats and sub-beats in a measure

have a beat strength of 0.25 or below, no label is mostly

played on strong beats.An interesting result is that ↑ and

↓ labels appear more often on stronger beats than ∅ and

→. This apparent correlation of ↑ and ↓ labels with the

meter might suggest a link between note expressiveness

and accentuation in performance, which would need to be

investigated further. In contrast, the → label is most of-

ten encountered on weaker beats. This observation can be

linked to the fact that this technique is often used as a quick

repetition of the previous note and will thus be played on

the next offbeat, like in Figure 1.

The comparison of the duration of notes with or with-

out bends (Figure 4c) confirms that ↑ and ↓ labels share

some essential properties. Both labels have a proportion-

ally higher tendency to be found on notes with longer du-

ration, even though eighth note is the most common dura-

tion for all classes. This figure also confirms that ∅ and

→ classes share some context properties. Figure 4d shows

a strong tendency of ↑ labels to appear on notes with longer

duration than their predecessor. This further supports the

hypothesis that bends could be used to emphasize signifi-

cant notes in a lead guitar part. That result could also be

related to the substantial physical effort required to bend

a string on short duration notes. The accompanying code

provides interactive computation of the distribution of the

other features.

5. CLASSIFICATION RESULTS

A decision tree [23] was trained to predict the bend label of

a note from its feature representation. We choose this high-

level approach to facilitate the interpretation of the results

as well as the analysis of the contribution of the features.

In addition to the elaboration of a predictive model, con-

ducting our experiments in an explainable AI framework

allows us to improve our understanding of the use of bends

in this repertoire. We hope that the use of light models

enabled by highly expressive musical representations will

also contribute to promoting low energy consumption ap-

proaches in machine learning for MIR.

5.1 Model performance

Our classifier is trained on 75% of the dataset, and evalu-

ated on the remaining 25%. To avoid some leakage from

the training set to the test set, we ensure the split does not

separate notes from a same track. We also ensure that the

class imbalance is similar in both sets. Duplicate feature

vectors are removed track-wise to avoid overfitting due to

repeated riffs/patterns. But, we acknowledge the fact that

identical feature vectors can be found in different tracks

and thus keep duplicates when found in different files.

The confusion matrix of Figure 5 shows the results

of the multi-class classification on the joint prediction of

all labels. Because the dataset is highly unbalanced, our

model is naturally biased towards the ∅ label. However,

it successfully identifies more than half of the ↑ and ↓ la-
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Figure 5: Confusion matrix obtained for classifying each

note event to one of the bend class. This matrix was ob-

tained on a split with average performance.

bels. Samples labeled as → are often misidentified as ↑ but

this result still shows, presumably, that the model captures

the difference between ∅ and → labels. We tried apply-

ing SMOTE oversampling [24] to the training data and ob-

served that it doubles the number of correctly identified

→ notes and increases the ratio of well-classified ↓ notes

by approximately 10%. Nevertheless, ↑ notes True Pos-

itives (TP) ratio is about the same while the quantity of

↑ notes misidentified as → or ↓ increases. Similarly, TP

ratio of ∅ notes drops by 5 p.p., so 2000 more notes are

wrongly predicted as bent. Because we observed that bent

notes are sparse in guitar tracks, we consider that precision

is more important than recall and do not use any oversam-

pling for the rest of our analysis.

5.2 Feature importance

To assess the contribution of each feature, we conduct an

all bend binary classification experiment where ↑,→, ↓
are merged into a single class, versus the ∅ class. Ta-

ble 3 shows the importance of the eight most contributing

features, computed using the random feature permutation

technique introduced in [25] and monitoring its impact on

the F1 score of our model. Temporal and pitch features ap-

pear to have a higher impact on classification than position-

related features, an observation confirmed by training the

binary classifier on selected subsets of features. The re-

sults in Figure 6 confirm the dominant influence of pitch

features. However, adding gesture and temporal informa-

tion noticeably improve the results. This result suggests
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Figure 6: Average F1-scores from 4 different train/test

splits for the binary classification task. The leftmost part

shows the performance of the decision tree trained on all

features, with (Full+) or without (Full) SMOTE oversam-

pling. The rightmost part corresponds to decision trees

trained with a reduced set of features. T stands for tem-

poral , Pi for pitch and Pos for position features.

that, while fret context contributes to induce bent notes,

a large part of the prediction can be done from the strict

musical content as notated in musical scores.

6. PREDICTION ANALYSIS

In addition to the quantitative results presented in the last

section, we present a qualitative analysis of selected pre-

dictions. Figure 7a shows one bent note wrongly identified

as ∅ and, conversely, one non-bent note identified as ↑ .

Following the decision path provided by the decision tree,

we can gain some insight on what feature differences have

Feature Importance

Pitch 0.20

Pitch jump(n+1) 0.17

Pitch jump(n−1) 0.16

Duration 0.14

Same dur. as previous 0.07

Fret jump(n−2) 0.07

String(n+1) 0.05

Pitch(n+1) 0.05

Table 3: Feature importance of the 8 most significant fea-

tures for the decision tree. Standard deviation of any fea-

ture importance is never above 0.005.
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(a) Excerpt from Highway Star, Deep Purple.

(b) Excerpt from Jailbreak, AC/DC.

Figure 7: Examples of predictions obtained with our Full Tree model on two different excerpts. Labels shown represent

the predicted label for the current note. Only wrong predictions are shown for clarity. All other notes are labeled correctly.

caused those wrong predictions. Both notes actually have

more than half their decision path in common and split

on their Pitch jump(n+2) value, suggesting that the first

discrepancy was due to future context. In particular, the

second false prediction did not use any features related to

past context. This might also explain this error because the

pitch could be obtained by bending on the 10th fret by one

semitone – an information that could be derived from fu-

ture context – but continuity with the previous notes called

for playing the note without bend on the 11th fret – an in-

formation that should have been derived from past context.

Another observation is that, in spite of similar context, the

second bent note was misidentified whereas the fourth bent

note was not. While those two notes look very similar at

first glance, the latter has a longer duration because it is

tied to the following eighth note, which illustrates the im-

portance of the duration featureAn analysis of the decision

paths indeed shows a divergence from the second decision

rule, based on that feature. This highlights the presumably

strong influence of rhythm in the classification of the first

four bent notes, which bypasses pitch features.

Figure 7b also shows a regular note wrongly tagged

with a ↑ label. The decision path for this prediction does

not consider any feature related to the next note. It does

however use many features concerning the second next

note, which was correctly classified as ∅ , most likely be-

cause of its lower duration. The lack of information about

the current note’s position was probably critical in that

case. The second error on that tablature is an up & down

bend that was not identified, probably because of the low

duration of the involved notes. Nevertheless, this example

suggests that our method to obtain a bend-less transcrip-

tion from an up & down bend might be detrimental to the

algorithm performance. Indeed, our procedure has an im-

pact on duration and pitch jump(n±1) which are among the

most useful features to our algorithm. We observe however

that our algorithm predicted correctly six bend labels in the

selected examples with a limited amount of false positives.

These encouraging results suggest that our method could

be used as a suggestion tool for the idiomatic use of bends.

7. CONCLUSION

In this paper, we proposed a model of guitar bends and

discussed how these expressive playing techniques relate

to both tablature and score content. Introducing a set of

high-level features, we showed that a decision tree can suc-

cessfully predict bend occurrences with satisfactory preci-

sion, in spite of the difficulty of the task due to the low

proportion of bent notes in guitar music. In particular, the

low performance on predicting → labels suggests that our

modeling choices could be improved and that held bends

might not be considered as an expressiveness technique

but rather another way of playing regular notes. An ad-

vantage of our approach is the use of a lightweight and

explainable algorithm, facilitating its use in an assisted-

composition context. In future work, this approach could

be extended to other guitar playing techniques, and might

benefit from adding more context information like the

chord being played over a bar, using rhythm guitar parts

aligned with lead guitar. Because bends are arguably more

easily performed with the ring finger and little finger than

other fingers of the fretting-hand, combining our work with

finger prediction technique [16] might also improve pre-

diction performance. Finally, our modeling strategy could

also be used to study the playing style of specific guitarists,

and evaluate the potential of bends for automatic guitarist

identification. Indeed, our approach supposes that bends

can be explained by general musical features regardless

of the artist. This is debatable since famous players can

be identified by their solos (without considering audio nor

any playing technique) [26]. It would be interesting to see

if bends are artist-dependent and, if so, to develop a model

that predicts bends in the style of a specific guitarist.
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ABSTRACT

Music Structure Analysis (MSA) is the task aiming at

identifying musical segments that compose a music track

and possibly label them based on their similarity. In this

paper we propose a supervised approach for the task of

music boundary detection. In our approach we simulta-

neously learn features and convolution kernels. For this

we jointly optimize - a loss based on the Self-Similarity-

Matrix (SSM) obtained with the learned features, denoted

by SSM-loss, and - a loss based on the novelty score ob-

tained applying the learned kernels to the estimated SSM,

denoted by novelty-loss. We also demonstrate that relative

feature learning, through self-attention, is beneficial for the

task of MSA. Finally, we compare the performances of our

approach to previously proposed approaches on the stan-

dard RWC-Pop, and various subsets of SALAMI.

1 Introduction

Music Structure Analysis (MSA) is the task aiming at

identifying musical segments that compose a music track

(a.k.a. segment boundary estimation) and possibly label

them based on their similarity (a.k.a. segment labeling).

We deal here with MSA from audio. MSA is one of the

oldest task in Music Information Retrieval 1 but still one

of the most challenging. This is due to the difficulty to

exactly define what music structure is and hence be able

to create annotated datasets to measure progress or train

systems. People agree that the structure can be considered

from multiple viewpoints 2 [2] [3], is hierarchical [4] and

is partly subjective [5]. Probably because of this complex-

ity, the number of contributions in MSA has remained low

despite its large number of applications: audio summariza-

tion [6], interactive browsing [7–9], musical analysis [10],

tools for researcher (to help chord recognition [11], source

separation [12] or downbeat estimation [13]).

To solve the two MSA tasks (boundary detection and

segment labeling), three assumptions [14] are commonly

used: (1) novelty (we assume that segments are defined

1 Foote’s paper [1] on SSM was published in 1999.
2 musical role, acoustic similarity, instrument role, perceptual tests

c© G. Peeters. Licensed under a Creative Commons Attri-

bution 4.0 International License (CC BY 4.0). Attribution: G. Peeters,

“Self-Similarity-Based and Novelty-based loss for music structure anal-

ysis”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

by large —novel— changes of the musical content over

time), (2) homogeneity (the musical content is homoge-

neous within a given segment) and (3) repetition (the musi-

cal content —homogeneous or not— can be repeated over

time). This has been extended by [15] to a fourth regu-

larity assumption (the segment’s durations are regular over

time). Combining those allows to construct MSA systems.

1.1 Related works

Over time, a large palette of approaches has been proposed

for MSA. We only review the ones related to our work and

refer the reader to Nieto et al. [16] for a good overview. We

consider three periods according to the nature of the audio

features –hand-crafted (HC) or learned by deep learning

(DL) –, and the nature of the detection system which uses

the audio features – HC or trained by DL –.

First period: HC detection system applied to HC au-

dio features. In these systems HC audio features (such

as MFCC or Chroma) were given as input to HC detec-

tion system (such as the checkerboard kernel, novelty-

score [17]), unsupervised training (such as HMM [6],

NMF [18]), supervised (such as OLDA [19]) or pattern

matching algorithms (such as DTW [20] or variants [21]) .

Second period: DL detection system applied to HC

audio features. Over time, more and larger annotated

datasets for MSA have been developed; which concomi-

tantly with the development of DL has allowed to re-

formulate the MSA task in terms of supervised learning.

The detection system developed here mainly target the task

of boundary detection. For example, [22] [23] [24] pro-

pose to train in a supervised way a Convolutional Net-

works (ConvNet) ŷ = fθ(X) to estimate if the center

of a patch of HC audio features X is a boundary (y=1).

Various HC audio features (or combinations of) are used

here: Log-Mel-Spectrogram, Pich-Class-Profile through

SSM expressed in (time,time) or (time,lag).

Third period: HC detection system applied to DL

audio features. To deal with the endless debate about the

choice of HC audio features, McCallum et al. [25] pro-

pose to learn them. For this, they train an encoder fθ

by minimizing a Triplet Loss (TL) [26] between patches

of beat-synchronous Constant-Q-Transform (CQT). For

the TL, they propose a Self-Supervised-Learning (SSL)

paradigm 3 to define the anchor A patch, positive P patch

and negative N patch. Using the homogeneity assumption,

neighboring times are supposed to be more similar to each

3 which does not require any annotated segments and labels
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other (therefore used to define A and P ) than to distant

ones (used to define N ). For training they use a very large

unlabeled dataset of 28345 songs. This method however

does not consider the repetition assumption 4 .

Wang et al. [27] revised McCallum approach in a su-

pervised setting. In this, the patches P (resp. N ) are now

explicitly chosen so as to have the same (resp. different)

annotated segment label than the patches A. This super-

vised method now consider both the homogeneity and rep-

etition assumption. In another work [28], they propose

a spectral-temporal Transformer-based model (SpecTNT)

trained with a connectionist temporal localization (CTL)

loss to jointly estimate music segments ad their labels.

McCallum approach has also been extended by Buisson

et al. [29] to take benefit from the hierarchy of structure in

music. They show that the obtained deep embeddings can

improve segmentation at various levels of granularity.

Rather than learning features for MSA, Salamon et

al. [30] proposed to re-use pretrained ones. Those are ob-

tained using encoders previously trained on different tasks

(Few-Shot Learning sound event and music auto-tagging).

Those are then used as input to a Laplacian Structural De-

compositon algorithm for MSA.

1.2 Proposal and paper organization

Following the previous taxonomy, our proposal would be-

long to the category “DL detection system applied to DL

audio features” . Unlike previous feature learning ap-

proaches (that rely on a Triplet Loss paradigm), we utilize

a more straightforward paradigm (illustrated in Figure 1)

which is a succession of two steps, each with its own ob-

jective. The two objectives are jointly optimized.

In the first step, we learn the parameters θ of an en-

coder fθ such that when applied to the sequence of inputs

{Xi}i∈{1...T} that represent a given track (where T is the

length of temporal sequence), the encoded features allows

the estimation of a SSM, Ŝθ
ij , which attempts to reproduce

a ground-truth SSM, Sij . For training fθ we use an ap-

proach similar to the SSM-Net approach proposed in [31],

i.e. defining a loss which directly compare the obtained

SSM Ŝ
θ
ij to a ground-truth SSM Sij .

In the second step, we learn a set of kernels K
θ such

that when convolved over the main diagonal of the esti-

mated SSM Ŝ
θ
ij it allows the estimation of a novelty score

n̂
θ
i , which attempts to reproduce a ground-truth novelty

score, ni. This novelty score is usually obtained using a

fixed checkerboard kernel [32]. The resulting function is

named novelty score since high values in it indicate times

where the content change (it is homogeneous before and

after). It has been shown that better kernels can be used

(for example using multi-scale kernels [33]) and that it is

possible to train such kernels Kθ considered as the kernels

of a ConvNet (for example [22] and [23] in the case of a

(time,lag) SSM or [24] in the case of a (time,time) SSM,

which is our case). This is the approach we follow here.

4 N could potentially be in a segment which is a repetition of the seg-
ment containing A

Another proposal we make in this paper, is to consider

the learning of relative features, i.e. features which are

relative to the given track.

Paper organization. We provide an overview of

our system in part 2, describe the inputs to our system

(part 2.1), detail the two losses (parts 2.2 and 2.3), moti-

vate relative feature learning (part 2.4), detail the architec-

ture of our encoder fθ (part 2.5) and the training process

(part 2.6). In part 3, we provide a large-scale evaluation

of our proposal. It should be noted that although we only

evaluate our method for the task of segment boundary de-

tection, it can also be used for segment labeling given the

clearness of the obtained SSM.

2 Proposal

2.1 Input data {Xi}

The inputs {Xi} to our system are simple patches 5

of Log-Mel-Spectrogram. We didn’t consider beat-

synchronous features as in [25] given the non-reliability

of beat estimation outside popular music. Using

librosa [34], we first computed Mel-spectrogram with

80 mel-bands, using a 92ms window length and 23ms hop

size. Those are then converted to log-amplitude using

log(1+100 · mel). We then aggregate them (mean op-

erator) over time to lead to a 0.1s hop size. The final {Xi}
are then patches of 40 successive frames (corresponding to

4s.) with a hop size of 5 frames (corresponding to 0.5s.).

2.2 SSM-loss

Given a sequence of inputs {Xi}i∈{1...T} , we apply the

same encoder fθ individually to each Xi to obtain the cor-

responding sequence of embeddings {eθi }i∈{1...T}. Those

are then L2-normalized. We can then easily construct an

estimated SSM, Ŝθ
ij , using a distance/similarity/divergence

g between all pairs of projections:

Ŝ
θ
ij = g(eθi = fθ(Xi), e

θ
j = fθ(Xj)), ∀i, j (1)

We use here a “scaled” cosine-similarity for g which, be-

cause the embeddings are L2-normalized, reduces to

Ŝ
θ
ij = 1−

1

4
‖eθi − e

θ
j‖

2

2
∈ [0, 1] (2)

It is then possible to compare Ŝ
θ
ij to a ground-truth bi-

nary SSM, Sij , derived from annotations. We consider

this as a multi-class (a set of T 2 binary classifications)

problem and hence minimize the sum of Binary-Cross-

Entropy (BCE) losses. However, given the unbalancing

between the two classes in Sij (which contains much more

0 than 1), we used a weighting factor λ computed as the

percentage of positive values in Sij . The lower λ is, the

more we put emphasis on positive (Sij=1) examples:

Lθ
SSM =−

1

T 2

T
∑

i,j=1

(1−λ)
[

Sij log(̂S
θ
ij)
]

+λ
[

(1−Sij)log(1−Ŝ
θ
ij)
]

(3)

Since the computation of the SSM Ŝ
θ
ij is differentiable

w.r.t. to the embeddings {eθi }, we can compute
∂Lθ

SSM

∂θ
:

5 We utilized patches as input (rather than frames) because we believe
that homogeneity exists at the pattern level rather than the frame level.
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We can then use standard gradient-descent algorithms to

optimize θ which will jointly optimize fθ for all the Xi.

Optimizing directly Ŝ
θ
ij has relationship with Metric

Learning / Contrastive Learning in which the A,P ,N are

chosen based on their similarity (such as in Wang et al.

[27]). In comparison, we consider here simultaneously all

possible pairs of time as A,P ,N . This is actually in line

with the fact that we aim at learning features relative to a

track (see part 2.4) and we therefore need to consider si-

multaneously the interaction between all projections feθi g.

2.3 Novelty-loss

We propose to learn the kernels K
θ such that when con-

volved with the estimated SSM Ŝ
θ
ij (see eq.(2)) along its

main diagonal the resulting estimated novelty score n̂θ
i ap-

proximate a ground-truth novelty score ni. This kernel

convolution can be simply implemented as an extra con-

volution layer (without bias) on top of the estimated SSM

Ŝ
θ
ij with a sigmoid output activation. We then define the

novelty-loss as

L
θ
nov =

1

T

T∑

i=1

BCE(n̂θ
i ;ni) (5)

2.4 Relative feature learning

In previous works dealing with feature learning for MSA

it is assumed that, once trained, the network fθ always

projects a given segment Xi in the same way whatever its

surrounding context.

We advocate here that for the task of MSA the projec-

tion of Xi should depend on its context. The motivation

for doing so is that the features that highlight the tempo-

ral structure of a music track usually depend on the track

itself. For example, if the instrumentation or the timbre re-

mains constant over the track, the structure may arise from

variation of the harmonic content; in other cases, it will be

the opposite. Therefore, feature learning for MSA should

be made relative-to-a-track.

To let each feature Xi “know” about surrounding times

features fX1 :::Xi−1;Xi+1 :::XT g we introduce layers

of Self-Attention (SA) [35] in our encoder 6 .

2.5 Network architecture fθ

The architecture of the encoder fθ is given in Figure 1. It is

made of a succession of 5 consecutive convolution blocks

followed by N blocks of Transformer-Encoder.

Each convolution block is made of a 2D convolution

followed by a PReLU [36] activation and a 2D max-

pooling. The kernel size (kf;kt), the number of channels

nc and pooling size (pf;pt)) of each layer are the follow-

ing: layer-1: (kf;kt)=(5,5) nc=32 (pf;pt)=(2,2), layer-

2: (5,5) 32 (2,2), layer-3: (5,5) 64 (2,2), layer-4: (5,5) 64

(2,2), layer-5: (5,2) 128 (5,2). The output of the last convo-

lutional blocks has dimension (1,1) with nc=128 channels

and is flattened to a 128-dim vector.

Each input Xi is independently projected using the

convolutional blocks. These outputs are then considered

as a temporal sequence which is fed to N blocks of

Transformer Encoder (each made up of a SA layer with

8 heads, skip-connection, a normalization layer and two

fully-connected layers with an internal dimension of 128).

The outputs are then passed to a tanh and L2-normalized.

They form a sequence of embeddings feθi gi2 f1:::T g with

e
θ
i 2 R128 which are used to compute Ŝ

θ
ij .

The size of the kernels K
θ is fixed to (41,41) which

roughly corresponds to 20s. The kernels K
θ are either

initialized randomly or initialized with checkerboard ker-

nels similar to the ones of [32]. In this case, checkerboard

kernels have the same size (41,41) but are damped with

Gaussian function with different σ (randomly chosen in the

range [3s;5s]). We used 3 different kernels Kθ which are

6 Note that the use of the SSM-loss alone does not allows fθ to encode
relative features; this is the task of the SA.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

751



then combined using (1x1) convolution. The diagonal of

the resulting feature-map then goes to a sigmoid activation

and is considered as the estimated novelty n̂
θ
i .

Our architecture remains lightweight with a number of

parameters ranging from 268K to 567K depending on the

number of Transformer Encoder blocks (from N=0 to 3).

2.6 Training.

We train our network by minimizing jointly the two losses

defined by eq. (3) and eq. (5):

L
θ = αLθ

SSM + (1− α)Lθ
nov (6)

We used the ADAM optimizer with a learning rate of

0.001, used early-stopping monitoring Lθ on the validation

data with a patience of 50 and a maximum of 500 epochs.

Considering that we need the whole sequence of embed-

dings feθi g of a track to compute Ŝ
θ
ij and get the gradients

@Lθ

@ θ
, the mini-batch-size m is here defined as the number

of tracks. We used a value of m=10 tracks.

2.6.1 Generating ground-truth for training

Ground-truth SSM Sij . The ground-truth SSM, Sij , is

constructed using annotated segments (start and end time)

and their associated labels. We rely on the homogene-

ity assumption, i.e. we suppose that all times ti that fall

within a segment are identical since they share the same la-

bel. If we denote by seg(ti) the segment ti belongs to and

by label(seg(ti)) its label, we assign the value Sij = 1 if

label(seg(ti)) = label(seg(tj)) and 0 otherwise. Note that

we could relax this identity constraint to allow represent-

ing similarity between labels (for example using an edit

distance between labels). This is for example important

for RWC-POP dataset, where labels denotes some proxim-

ities (verse A and verse B) but are here considered as

different. Also, it could be important to consider the case

of non-homogeneity of the repetitions and create a ground-

truth Sij made of “sub-diagonals” rather than “blocks”.

Ground-truth novelty score ni. The ground-truth

novelty score, ni, is also constructed using the anno-

tated segments (start and end time). We set ni to 1

when segment changes at time i, 0 otherwise. As pro-

posed by [37] we smooth over time the boundary annota-

tions by applying a low-pass filter with a triangular-shape

f0:25;0:5;1;0:5;0:25g.

3 Evaluation

We assess here the performance of our proposal using var-

ious test sets, compare it to previously published results,

conduct an ablation study, and illustrate its results.

3.1 Datasets

For training we used a subset of 693 tracks from the Har-

monix dataset [38] 7 and the 298 tracks of the Isophonics

dataset [39]. For testing we used

7 Given the non-accessibility of Harmonix audio, those have been
downloaded from YouTube and re-annotation has been necessary be-
cause of non-synchronicity of the original annotations.

Datasets T S L S L

Harmonix 693 13 17.15
Isophonics 298 11 15.98

RWC-Pop-AIST 100 17 14.31

Upper Lower
SA-Pop (An1) 276 12 15.49 30 5.73
SA-Pop (An2) 175 12 14.64 31 5.67

SA-IA (An1) 444 14 18.32 50 4.43
SA-IA (An2) 244 12.5 18.67 37 7.00

SA-Two (An1) 882 11 18.25 30 6.89
SA-Two (An2) 882 11 17.76 31 6.39

Table 1. Description of the datasets used in our evalua-

tion: number of tracks T , median value of the number of

segments per track S , median value of segment duration L

in seconds (note that [29] indicate L in number of beats).

• RWC-Pop-AIST the 100 tracks of the RWC-Pop [40]

with AIST annotations [41] and the following three

subsets of the SALAMI [3] dataset:

• SA-Pop is the subset of SALAMI tracks with CLASS

equal to Popular,

• SA-IA is the subset of SALAMI tracks with SOURCE

equal to IA (Internet Archive),

• SA-Two is the subset of SALAMI tracks with at least

two annotations.

For each SALAMI subset we considered the two an-

notations (An1, An2) and the two levels of flat anno-

tations (Upper, Lower); those correspond to the files

textfile{1,2}_{upper,lowercase}.txt.

In Table 1 we describe these datasets. According to the

values of L our training-sets better match the Upper anno-

tations than the Lower ones of SALAMI. Also, the size of

our kernels Kθ (roughly 20s., see part 2.5) assumes homo-

geneous segments of roughly 10s. and are therefore closest

to the L of Upper annotations.

3.2 Segment detection from novelty score

To get the estimated segment boundaries from the esti-

mated novelty score n̂
θ
i we used a simple peak-to-mean

ratio algorithm similar to [25]. Using the same notations

as [25] eq. (5), we compute the mean with a window of du-

ration 2T=20s, and then detect local peaks with a threshold

τ=1.35 and a minimum inter-distance of 7s.

3.3 Performance metrics

We evaluate the performance of segment boundary

detection using the common Hit-Rate metrics us-

ing precision-windows of 3s and 0.5s. We only

display here the Hit-Rate F-measures denoted by

HR3F and HR0.5F. We used mir_eval [43] with

mir_eval.segment.detection ignoring track start

and end annotations (Trim=True). We point out that

without “trimming” (the start and end time) we would gain

+3% on average (from .713 to .743 for RWC-Pop).
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RWC-Pop-AIST SA-Pop SA-IA SA-Two
HR.5F HR3F HR.5F HR3F HR.5F HR3F HR.5F HR3F Annotation

Grill [23, 42] GS1 .506 .715 - - - - .541 .623 Up./An-*
McCallum [25] Unsynch. - - - - - .497 - -

Beat-synch. - - - - - .535 - -
Salamon [30] DEF0.5,0.5/∗

µH,γH
- - - - - - .337 .563 Up./An-*

Wang [27] scluster/D/eu/mul .438 .653 .447 .623 - - .356 .553 Up./An-*
Buisson [29] HE0/HE1 - .681 - - - - - .597 / .595 Up./An-1/2

- - - - - .611 / .600 Low./An-1/2

Ours (best conf.) .399 .713 .298 / .295 .631/ .624 .250 / .261 .520 / .511 .231 / .237 .521 / .530 Up./An-1/2
.296 / .318 .570 / .610 .302 / .336 .547 / .612 .287 / .287 .589 / .589 Low./An-1/2

Ablation study N
N=3/α=0.5/K:train-Init:chck .713 .532 .472 .448 Up./An-1
N=2/α=0.5/K:train-Init:chck .701 .535 .474 .449 Up./An-1
N=1/α=0.5/K:train-Init:chck .677 .631 .520 .521 Up./An1
N=0/α=0.5/K:train-Init:chck .696 .535 .459 .443 Up./An-1

Ablation study α
N=3/α=1/K:train-Init:chck .154 .121 .102 .111 Up./An-1
N=3/α=0/K:train-Init:chck .007 .120 .026 .095 Up./An-1

Ablation study K
θ

N=3/α=0.5/K:train-Init:randn .713 .543 .470 .457 Up./An-1
N=1/α=0.5/K:train-Init:randn .709 .547 .470 .457 Up./An-1
N=3/α=0.5/K:fix-Init:chck .330 .250 .199 .196 Up./An-1

Table 2. Results of segment boundary detection using various test-sets and configurations

3.4 Comparison with previous works

In the following we will compare our results with the ones

previously published by Grill and Schlüter in [23,42], Mc-

Callum et al. in [25], Salamon et al. in [30], Wang et al.

in [27] and Buisson et al. in [29]. We first check if their

test-sets match ours.

For SA-Pop, Wang [27] used “a subset with 445 an-

notated songs (from 274 unique songs) in the “popular”

genre”. This roughly matches our SA-Pop (An1)+(An2)

which provides 276+175=451 annotations. They used the

Upper-case annotations (personal communication).

For SA-IA, McCallum [25] used “the internet archive

portion of the SALAMI dataset (SALAMI-IA) consisting of

375 hand annotated recordings”. This is much lower than

our SA-IA (An1)+(An2) which provides 444+244=688 an-

notations. Moreover, it is not clear whether they used the

Upper, Lower or Functional annotations.

Finally, for SA-Two, Salamon [30] Table 3 used the

Upper-case annotations of tracks with at least 2 annota-

tions (884 tracks); Wang et al. [27] “we treat each an-

notation of a song separately, yielding 2243 annotated

songs in total” and Buisson et al. [29] used the Upper and

Lower-case annotations of tracks with at least 2 annota-

tions (884 tracks). This roughly corresponds to our SA-

Pop (An1)+(An2) which has 882 tracks.

3.5 Results and discussions

Results are given in Table 2. The upper part shows pre-

viously published results, although not all systems were

evaluated on all test sets. The middle part shows the re-

sults achieved with the best configuration of our system.

For RWC-Pop-AIST, we obtained a HR3F= .713 8

which is comparable to those of Grill and Schlüter (.715).

However, for HR.5F our results are below (.399 < .506).

This can be explained by the fact that the hop-size of our

8 The Precision and Recall at 3seconds are P3F=.735, R3F=0.715

featuresfXig was chosen large (0.5s) and does not allow

to have a precise boundary estimation. We have chosen a

large hop size to reduce the size of Ŝθ
ij (hence the compu-

tation time and memory footprints); it also allows to keep

the size of the K
θ manageable. Because of this, all our

results with HR.5F are actually low. Therefore, we only

discuss the results for HR3F in the following.

For SA-Pop, we obtained a HR3F of .631/.624 9 for

the two Upper annotations (Up./An-1/2) which is slightly

above those of Wang et al. (.623). For the two lower an-

notations (Low./An-1/2) we get a HR3F of .570/.610 10 .

Wang et al. does not provide these results.

For SA-IA, we obtained a HR3F of .520/.511 11 for the

two Upper annotations and .547/.612 12 for the two Lower

annotations. This has to be compared to the .497 (unsyn-

chronized) and .535 (beat-synchronized) obtained by Mc-

Callum et al., but as explained, it is not clear whether they

used Upper, Lower or Functional annotations.

For SA-Two, we obtained a HR3F of .521/.530 13 for

the two Upper annotations. This is slightly lower than the

results of Wang et al. (.553), Salamon et al. (.563), Buis-

son et al. (.597) and largely below the ones of Grill and

Schlüter (.623). For the Lower annotations, we obtained a

HR3F of .589/.589 14 which is slightly below the ones of

Buisson et al. (.611). It should be noted however that in

our work we didn’t used any data from SALAMI, neither

for training or validation (such as early stopping).

For SA-IA and SA-two, our results are higher for the

Lower annotations than the Upper ones. This is surprising

since according to Table 1 the characteristics (L value) of

our training sets are closer to the Upper case. Also (see

footnotes 8–14), our algorithm tends to over-segment when

9 P3F=.581, R3F=0.760/ P3F=.566, R3F=0.771 → over-segmentation
10 P3F=.860, R3F=0.468/ P3F=.877, R3F=0.497 → under-segment.
11 P3F=.435, R3F=0.718/ P3F=.411, R3F=0.751 → over-segment.
12 P3F=.811, R3F=0.451/ P3F=.756, R3F=0.546 → under-segment.
13 P3F=.433, R3F=0.749/ P3F=.442, R3F=0.754→ over-segment.
14 P3F=.768, R3F=0.523/ P3F=.768, R3F=0.523→ under-segment.
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considering the Upper annotation and under-segment when

considering the Lower ones. Our kernel size is actually

between the L values of the Upper and Lower annotations.

3.6 Ablation study

In the lower part of Table 2 we perform an ablation study

of our system. For the SA-{Pop,IA,Two} test-sets, we only

perform the study using the Upper/An1 annotations

We first check the optimal number N 2 f0;1;2;3g of

layers of Transformer Encoder. We see that for all test-sets

the use of Transformer Encoder (N > 0) is beneficial. For

RWC-Pop-AIST, the optimal number is N=3 while for all

three SA-{Pop,IA,Two} test-sets it is always N=1.

We then check whether jointly optimizing the two

losses Lθ
SSM and Lθ

nov of eq. (6) is necessary. We consid-

ered three cases: α=1 (only optimizing Lθ
SSM ), α=0.5 (op-

timizing both), α=0 (only optimizing Lθ
nov). For all test-

sets, we see that optimizing jointly the two losses is highly

beneficial: for example, for RWC-Pop-AIST, HR3F=.713

with α=0.5, .154 with α=1 and .007 for α=0.

Finally, we check various configurations of the ker-

nels K
θ. K

θ is either [K:train-Init:chck]: trained start-

ing from checkerboard kernels initialisation, [K:train-

Init:randn]: trained starting from random initialisations,

[K:fix-Init:chck]: fixed (not trained) to checkerboard ker-

nels (we still train the 1x1 convolution). We see that for all

test-sets it is beneficial to train K
θ (the worst results are ob-

tained with [K:fix-Init:chck]). For RWC-Pop-AIST, the re-

sults are the same whether kernels are initialized randomly

or with checkerboard kernels. For SA-{Pop,IA,Two} the

checkerboard kernels initialization is beneficial.

3.7 Examples

Figure 2 illustrates the three kernels K
θ learned using

the [N=3/α=0.5/K:train-Init:chck] configuration. As one

can see, while the middle one looks close to the classical

checkerboard kernel of Foote [32] (but with an emphasis

on the diagonal), the first seems to highlight the transition

from a non-homogeneous to an homogeneous part; while

the third seems a re-scaled version of the second (homo-

geneity at a larger scale). Figure 3 illustrates the Ŝ
θ
ij and

n̂
θ
i obtained by our system on track-01 from RWC-Pop-

AIST (chosen as the first item of our test-set). We com-

pare the results when trained in the [N=3 / α=0.5 / K:train-

Init:chck] configuration and with the untrained system us-

ing [K:fix-Init:chck] for the kernels. For comparison we

indicate the ground-truth Sij and ni. In this figure, the

benefits of training both Lθ
SSM andLθ

nov appears clearly.

Reproducibility. The code and the

datasets used in this work are available at:

https://github.com/geoffroypeeters/ssmnet_ISMIR2023

4 Conclusion

In this work, we proposed a simple approach for deep

learning-based Music Structure Analysis algorithm: we
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Figure 2. The three kernels K
θ learned using the [N=3 /

α=0.5 / K:train-Init:chck] configuration.

Figure 3. [Top] Ŝθ
ij and n̂

θ
i obtained with untrained system

using [K:fix-Init:chck] for the kernels, [Middle] same with

[N=3 / α=0.5 / K:train-Init:chck], [Bottom] ground-truth

Sij and ni.

learn an encoder fθ such that the resulting learned fea-

tures allow to best approximate a ground-truth SSM; we

jointly learn segmentation kernels that when applied to the

estimated SSM we best approximate a ground-truth nov-

elty score. We also propose to learn relative features, i.e.

features relative to a track, by introducing Self-Attention

layers in our encoder. According to HR3F, our results are

either better than previous state-of-the-art (SA-Pop, SA-IA

unsynchronous), similar (RWC-Pop-AIST) or worst (SA-

Two). Our approach has the advantage to be lightweight

(around 500K parameters) and based on criteria which are

semantically linked to the task of MSA. Future works

will concentrate on making our approach applicable to

finer temporal resolutions, therefore allowing improving

our performances at HR.5F.
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ABSTRACT

In jazz, measuring harmonic similarity is complicated by

the common practice of reharmonization – the altering or

substitution of chords without fundamentally changing the

piece’s harmonic identity. This is analogous to natural

language processing tasks where synonymous terms can

be used interchangeably without significantly modifying

the meaning of a text. Our approach to modeling har-

monic similarity borrows from NLP techniques, such as

distributional semantics, by embedding chords into a vec-

tor space using a co-occurrence matrix. We show that the

method can robustly detect harmonic similarity between

songs, even when reharmonized. The co-occurrence ma-

trix is computed from a corpus of symbolic jazz-chord pro-

gressions, and the result is a map from chords into vectors.

A song’s harmony can then be represented as a piecewise-

linear path constructed from the cumulative sum of its

chord vectors. For any two songs, their harmonic simi-

larity can be measured as the minimal surface membrane

area between their vector paths. Using a dataset of jazz

contrafacts, we show that our approach reduces the median

rank of matches from 318 to 18 compared to a baseline ap-

proach using pitch class vectors.

1. INTRODUCTION

Measuring similarity between songs is important for many

music information retrieval tasks, for example, recom-

mendation systems, copyright infringement detection, and

genre classification systems. Many different types of fea-

tures can be used to compare songs, but the specific focus

of this paper is on jazz harmony as represented by the sym-

bolic chord progressions found on leadsheets.

The analysis of harmonic similarity has been studied us-

ing N-grams [1], parse trees [2, 3], and NLP methods such

as TF-IDF, Latent Semantic Analysis (LSA), and Doc2Vec

[4]. The approach taken in this paper is based on embed-

ding chord symbols into a vector space through the compu-

tation of a co-occurrence matrix [5]. As will be seen when
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we describe the data in Section 2, many chord symbols oc-

cur only rarely. To reduce computational problems due to

sparsity, the dimensionality of chord space should be re-

duced [6]. A typical machine learning approach for this

might use an algorithm such as truncated singular value

decomposition after vectorization [7]. In this work, how-

ever, we use music theory to reduce the number of effective

chord symbols prior to vectorization, which in turn reduces

the chord space dimensionality. In the ensuing sections

we describe the data, explain our approach to dimension-

ality reduction, and give computational details of how we

compute the co-occurrence matrix. We then explain how

the chord vectors generated from the co-occurrence matrix

are used to represent chord progressions, and we present a

novel harmonic-similarity metric, the membrane area.

The experimental part of our paper is based on analyz-

ing contrafacts. In jazz, a contrafact is a song whose har-

mony is similar to that of another song, but which has a

different melody [8]. The tune I Got Rhythm, by George

Gershwin (1930), is a well-known source of many con-

trafacts, 1 and there are numerous other examples [9–11].

In addition to the difference in melody, contrafact chord

progressions often feature reharmonization, a common

practice in jazz that makes chord substitutions in a song

while maintaining its harmonic identity [12]. Reharmo-

nization is a core characteristic of jazz – so much so that

there are typically reharmonizations from chorus to chorus

even in a single performance of a jazz song.

2. THE DATA

The data used in this paper is a corpus of symbolic chord

progressions similar to those found in jazz fake books,

such as the Real Book [13]. The progressions are mainly

from jazz standards, but also include some blues, jazz-

blues, modal jazz, and jazz versions of pop tunes. The

corpus is derived from a collection distributed with Impro-

Visor, an open-source music notation program. 2 Our

modifications remove control information used by the

Impro-Visor application, retaining the musical content and

song-specific metadata. We have performed numerous

quality checks on the data, have made corrections where

required, and have enriched some of the metadata. The re-

1 https://en.wikipedia.org/wiki/Rhythm_changes
2 https://www.cs.hmc.edu/~keller/jazz/

improvisor/
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sulting corpus and the code we used to generate our ex-

amples is available on GitHub. 3 The Impro-Visor cor-

pus provides chord progressions for 2,612 songs, and is

the largest digital collection of jazz chord progressions we

know of. For comparison, the applications iRealPro 4 and

Band-in-a-Box 5 contain chord progressions for roughly

1400 and 226 jazz standards, respectively. The Weimar

Jazz Database contains chords for 456 jazz songs. 6

Of the 134,182 chord symbol instances in the corpus,

there are 1,542 unique symbols, of which many are rare,

with 20% occurring just once, and 50% fewer than six

times. As the corpus consists mainly of jazz standards,

there is a preponderance of 7th chords, comprising at least

the root, 3rd, 5th, and 7th notes. These types of chords of-

ten have additional extensions (9th, 11th, 13th) and chro-

matic alterations (♭9, ♯9, ♭5, ♯5). A common variation of

jazz chords replaces the 7th with a 6th for major7 and mi-

nor7 chords. As 7th chords are the basic harmonic unit

in jazz [14], and make up 77% of our corpus, they are

the focus of our approach to dimensionality reduction de-

scribed in the next section. Of the remaining chords, 16%

are three-note chords (triads), and 7% are drawn from a va-

riety of special types, as shown in Table 1, which provides

a list of all the types and their frequencies.

Type Percentage

7th chords (and extensions) 76.939%

major triads 11.484%

slash chords 4.781%

minor triads 4.320%

sus chords 1.364%

no chord 0.458%

augmented triads 0.392%

major triads add9 0.127%

diminished triads 0.095%

power chords 0.031%

polychords 0.009%

Table 1. Corpus chord types and their frequencies

3. DIMENSIONALITY REDUCTION

Our approach to reducing dimensionality is based on map-

ping chords to a reduced vocabulary of functionally equiv-

alent symbols (similar to [15]). This is important because

20% of the chords in the corpus occur only a single time

(known as hapax legomena), and without additional pro-

cessing, these types of terms would provide no predic-

tive value [16]. Many techniques are used in NLP to bet-

ter leverage hapax legomena. For example, stemming,

lemmatization, and thesauri are all useful. This paper

3 https://github.com/carey-bunks/

Jazz-Chord-Progressions-Corpus
4 https://www.irealb.com/forums/showthread.php?

12753-Jazz-1350-Standards
5 https://members.learnjazzstandards.com/sp/

biab-jazzstandards/
6 https://jazzomat.hfm-weimar.de/dbformat/

dbcontent.html

takes a similar approach for harmony, making use of mu-

sic theory to reduce the dimensionality of chord space. Our

method is akin to lemmatization, applying concepts from

functional harmony to group similar chords into classes

(for example, see [17]). Based on standard practices in

jazz [12,18,19], we reduce the set of 1,542 chord symbols

to 61 chord classes, as detailed in the following sections.

3.1 7th Chord Types

Our choice of base chord types is built on the four-note

7th chords diatonically generated from the major scale, and

making up 77% of our corpus. These are the major7 (M),

minor7 (m), dominant7 (7), and minor7♭5 (h), where the

symbols shown in parentheses are abbreviations we use in

this paper. To these we add a fifth base chord type, the

diminished7 (o). Combining the five types with the root

notes from the 12 pitch classes yields 60 chord classes.

Instances of these classes can occur with extensions or al-

terations, and we map these to the base class without ex-

tension/alteration. For example, we map the symbols Cm9

and Cm11 to the Cm7 class; C7♭9, C7♯5, and C13 to the

C7 class; and CM7♯11 to the CM7 class. In addition, in ac-

cordance with reharmonization practices, we assign chords

such as CmM7 to the Cm7 class and C6 to the CM7 class.

We also include the symbol NC (no chord) to account for

the absence of harmony (0.5% of the corpus).

3.2 Other Chord Type Mappings

In the following discussion, we describe a rationale for

mapping the remaining 22.5% of the symbols into classes

of the five base types defined above. The mapping choices

described in the following discussion are imperfect, but

they are simple to implement, and we show they are ad-

equate for our application.

3.2.1 Triads

Triads represent 16% of the corpus. As they do not con-

tain a 7th note, mapping them to the base chord types can

be ambiguous. For example, a C major triad shares all of

its notes with both the CM7 and C7 chords. We attempt to

resolve triad ambiguities using principles from tonal har-

mony and the local harmonic context. Based on the chord

following a triad, we decide whether it has a subdominant,

dominant, or tonic function [19]. For example, for a ma-

jor triad, if the root of the following chord is a fifth down

and a member of the major7 or minor7 classes we assign

the triad to the dominant7 class with the same root. Other-

wise, we assign it to its corresponding major7 class. Major

triads with an added 9th are handled in the same way. Aug-

mented triads share their notes with dominant7♯5 chords,

an alteration of the dominant, and so we map these to the

dominant7 class with the same root. Finally, we map all the

minor and diminished triads to their corresponding minor7

and diminished7 classes, respectively.

3.2.2 Sus Chords and Slash Chords

Sus chords also have a harmonic function that depends on

context [18]. When followed by a dominant7 chord with
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the same root, they act like a subdominant and we opt to

map them to a minor7 class with a root a fifth above. For

example, a G7sus4 would map to a Dm7. Otherwise, they

act like a dominant and we map them to the dominant7

class with the same root. Slash chords are chords played

over a specific bass note, for example C/G or Dm7/G,

where the symbol above (to the left of) the slash is the

chord and below is the bass note. If the bass note belongs

to the chord above the slash (for example, C/G), it is an in-

version. For such cases, we map it to the class of the chord

above the slash. Slash chords are also commonly used to

represent sus chords. For example, Dm7/G is harmonically

equivalent to G9sus4. We map these according to the pro-

cess for sus chords. For all other slash chords, we map the

chord as if the bass note were an extension or alteration of

the chord above the slash.

3.2.3 Power Chords and Polychords

Power chords consist of just two notes, a root and a fifth.

As they have no 3rd or 7th, they are harmonically ambigu-

ous. With only 42 instances in our corpus, we have opted

to map these chords to the no-chord class. With only 12

instances, polychords are also rare. These chords, used

mainly by pianists, consist of a lower triad and an upper

triad or 7th chord. We map polychords according to their

lower structure, interpreting the upper structure as a col-

lection of extensions or alterations.

4. KEY SIGNATURE BASED REPRESENTATION

To make distributional semantics more effective, we trans-

pose all songs to a common key, and represent them in

Roman numeral notation. However, transposition requires

knowing the correct key of each song, and from extensive

manual checking, we know that our database contains a

fair number of songs for which the stated key signature is

in error. For this reason, we introduce a key signature esti-

mation algorithm, as described in the following section.

4.1 Key Signature Estimation Algorithm

Several authors have proposed key estimation algorithms

for music information retrieval tasks [20–24]. However,

our objective is not to estimate the key that is cognitively

perceived by a listener, but rather a simpler problem, the

key signature that minimizes the number of accidentals

needed when writing out the song’s chords. Some prior

work exists for this [25], however, it is based on machine

learning models applied to MIDI data for classical music.

Our algorithm selects the key signature most consistent

with the chord progression. For each chord in a progres-

sion, we map it to one of the described 61 classes, and

identify all the major scales it could belong to (excluding

diminished7 and no chord classes). The major scale that

accumulates the most beats is the resulting estimate of the

key signature for that song.

Figure 1 provides a concrete illustration of how the key

estimation algorithm works for the case of a short chord

progression: A7-Dm7-G7-CM7-CM7. Each column of the

table represents one measure, and in this example, there is

one chord per measure. The column labels correspond to

the chords, and each row label is a key signature whose

major scale diatonically contains one or more of the chords

in the progression. As shown, the A7 chord belongs to D

major; the Dm7 chord belongs to B♭, C, and F major; G7

belongs to C major; and CM7 belongs to both C and G ma-

jor. Presuming four beats per measure, C accumulates the

most beats (16), and is the resulting key signature estimate.

Figure 1. Illustration of key signature estimation

4.2 Algorithm Evaluation

As already mentioned, there are quite a few songs in our

corpus where the key signature is incorrect or in doubt.

Nevertheless, it is worthwhile comparing the outputs of

our key estimation algorithm with the keys recorded in the

corpus. Of the 2,612 songs, the algorithm concurs with

the database for 1,763 (67.5%) of them. For the 849 songs

with database key signatures that do not agree with our

estimates, we use the Circle of Fifths as a distance met-

ric to evaluate the magnitude of differences between the

two. Adjacent key signatures on the circle of fifths cor-

respond to major scales that differ in a single pitch class.

Table 2 shows the distribution of circle-of-fifths distances

between estimated and database key signatures for all of

the songs in the corpus. The first row is the distance in

number of sharps or flats from the estimated to the database

key, where 0 corresponds to agreement. The last column

of Table 2 is labelled “Amb.” for ambiguous. There are

123 songs in the database for which the key estimation al-

gorithm returns a non-unique result, finding two or more

equally good major scales. This occurs for 4.7% of the

songs in the corpus, and when it does our estimation algo-

rithm defaults to the database key.

Dx 6♭ 5♭ 4♭ 3♭ 2♭ 1♭ 0 1♯ 2♯ 3♯ 4♯ 5♯ Amb.

Frq 10 22 33 55 99 304 1763 183 22 25 12 1 123

Table 2. Key signature estimation statistics with the circle

of fifths distance Dx by the frequency of occurrence Frq

4.3 Mapping to Roman Numeral Notation

Once a song’s key has been estimated, all the chords in

its progression can be mapped to Roman numeral notation.

Table 3 shows the Roman numerals corresponding to chord

roots for C major. As an example, the sequence of chords

A7-Dm-G7-CM maps to vi7-iim-v7-iM. In our system, we
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represent minor keys by their relative major, so the relative

minor cadence, Bm7b5-E7-Am7, maps to viih-iii7-vim.

Root C D♭ D E♭ E F G♭ G A♭ A B♭ B

RN i ♭ii ii ♭iii iii iv ♭v v ♭vi vi ♭vii vii

Table 3. Roman numeral notation: chord roots in C major

5. VECTOR REPRESENTATION

Sections 3 and 4 described our approach for reducing the

dimensionality of chord space, distilling the 1,542 chord

symbols in our corpus to 61 classes. In this section we de-

scribe our method for embedding the chord classes into a

vector space. Our design objective is that common rehar-

monizations be close to each other in cosine similarity, and

it is known that the co-occurrence matrix can capture this

type of characteristic [5, 26–28].

Given a corpus of D chord progressions, with progres-

sion d ∈ {1, 2, . . . , D} containing Nd chords with in-

dices 1, 2 . . . , Nd, we can represent the corresponding se-

quence of chord symbols as sd,1, sd,2, . . . , sd,Nd
. We de-

fine the symmetric, sliding context window, Wk,d, of nom-

inal width Nw with the indices Wk,d = [wl, . . . , (k −
1), (k+1), . . . , wr], where the left and right endpoints are

wl = max(k − Nw, 1) and wr = min(k + Nw, Nd), re-

spectively. With these definitions, the (i, j)th element of

the co-occurrence matrix, Ci,j is computed by

Ci,j =
D
∑

d=1

Nd
∑

k=1

∑

w∈Wk,d

{

1, if sd,k = ci and sd,w = cj

0, otherwise

(1)

This produces a square, symmetric matrix whose row Ci

(or alternatively, column) is a vector representations of the

ith chord class ci. As it will be useful in the following,

we normalize each row to have unit length. Because co-

occurrence matrices capture contextual information, the

vectors of chord classes that have similar harmonic func-

tion are expected to be close to each other with respect to

the cosine similarity measure, and this seems to be borne

out by an inspection of certain chord vectors. For exam-

ple, of 60 chord classes, the closest vector to the v7 is its

tritone substitute, the ♭ii7, and the closest to the iim is the

iih, a common substitute from the parallel minor scale (see

modal interchange in [19]).

6. MEMBRANE-AREA DISTANCE METRIC

We use the co-occurrence vectors to represent chord pro-

gressions in a way that represents each chord type, du-

ration, and metric position, while being robust to rehar-

monizations. The normalized chord vectors derived from

the co-occurrence matrix can be used to plot the path of

a song’s progression through 61-dimensional space. Start-

ing from the origin, the sequence of chord vectors can be

concatenated from head to tail, beginning with the first,

and terminating with the last vector (see Figure 2). Each

unit vector is scaled by the number of beats of the chord

it represents, and the result is a piecewise linear function

through R
61. The comparison of two songs in this space

can be formulated as a trajectory comparison problem, for

which there are many existing techniques [29]. The most

popular ones, however, are not well adapted to our prob-

lem. The Fréchet distance, dynamic time warping, longest

common subsequence, and the edit distance are all based

on matching and comparing points, and would not directly

factor in information about reharmonized chords embodied

in the co-occurrence vectors. For this reason, we introduce

a new metric that accounts for reharmonizations by com-

puting the membrane area between the paths of two songs.

Expressed formally, we represent song vector paths by

piecewise linear functions of the form f(t) ∈ R
61, where

t ∈ [0, 1] is a parametric variable representing the number

of normalized beats traversed in the song. We can move

along the entire length of f in discrete, equal increments,

dt, where the starting point of the function, f(0) at t = 0
is the origin, and the end point of the function is at t = 1.

Given two songs and their corresponding piecewise linear

functions, f(t) and g(t), and letting K = 1/dt, we can

define a distance metric between them as the area of a 2D

membrane, M , stretched between the two paths. M is cal-

culated as the integral obtained in the limit of

M(f , g) = lim
dt→0

K
∑

k=0

∥f(kdt)− g(kdt)∥dt, (2)

where ∥ · ∥ is the Euclidean norm. The piecewise linear

functions for two identical chord progressions would, natu-

rally, overlay each other, yielding a membrane area of zero.

Two harmonically similar songs should trace out similar

paths keeping the membrane area small. For example,

two chord progressions that differ in just a tritone substitu-

tion will only slightly perturb the path and the membrane

area between songs. Figure 2 is a notional illustration of

how the measure in Equation 2 is evaluated. The red and

blue paths represent two different songs, each having three

chords. Each song begins at the origin, and the chord vec-

tors are added head-to-tail to trace out a piecewise linear

path. The membrane area metric is approximated by sum-

ming the lengths of the N equally spaced black line seg-

ments drawn between the two songs. Note that this way of

representing the harmony of a song accounts for positions

and durations of each chord in the progression, as well as

capturing harmonic similarities of chord transitions.

7. EXPERIMENTS

We have designed some experiments based on a set of jazz

contrafacts listed in a Wikipedia article. 7 The list has 252

jazz songs whose harmonies are known to be based on

other songs (see also [30]). A subset of 91 contrafacts are

available in our corpus, but for 11 of them, only a section

of the harmony is borrowed, and we remove these from the

list. The basic structure of all of our experiments is the

same: for each contrafact, we compute the membrane area

7 https://en.wikipedia.org/wiki/List_of_jazz_

contrafacts
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Figure 2. Conceptual illustration of the membrane-area

distance metric for two, 3-chord sequences

distance between it and each of the other 2,611 songs in

our corpus. We then sort the songs from smallest mem-

brane area to largest, and note the original song’s rank in

that list. Because of reharmonizations, we don’t expect the

membrane area to be zero for all contrafact-original pairs,

but matches should rank high in the list. Original songs

often inspire multiple contrafacts, and some may be closer

to each other than to the original. For these reasons, we

use the histogram of original song rankings to present the

overall performance of our method, and we use the median

rank as a method of comparison between approaches.

7.1 Using Co-Occurrence Vectors

We evaluated six variants of our approach using co-

occurrence chord vectors. The first three were based on

the context window widths Nw = [1, 2, 3]. The second

three variants used the same context window values, but

applied to a filtered version of the chord progressions. For

each chord progression, the filter collapses adjacent iden-

tical chords to a single instance. For Nw = 1, this has

the effect of eliminating the co-occurrence of chords with

themselves, making the diagonal of the co-occurrence ma-

trix zero. Of the six versions, the best result was obtained

for the filtered chord progressions with the context window

width Nw = 1. Figure 3 shows the histogram of original

song rankings for this case. The median rank is 18, mean-

ing that half of the original songs rank in the top 0.7% in

harmonic similarity to their contrafacts. As there is some

histogram mass out to rank 1,382, the histogram makes

use of a log-scale on the x-axis. It is likely that some of the

songs ranking better than the original are also contrafacts,

as the Wikipedia list is far from exhaustive, but it would

require substantial effort and expertise to evaluate this.

As noted, some original songs have inspired many con-

trafacts. As an example of this in our corpus, there are four

known contrafacts of the song All the Things You Are. The

ranks and membrane areas of the original song for each

contrafact are shown in Table 4. The original ranks highly

for three of the four contrafacts in the table. As the chord

progressions for Prince Albert and All the Things You are

are identical, their membrane area is zero. The contrafacts

Figure 3. Histogram of original song ranks for 80 con-

trafacts (median rank = 18)

Ablution and Boston Bernie have some chord substitutions,

and the original song ranks highly for both of them. The

song I Want More, however, does quite poorly, with a rank

of 758th out of the 2,611 songs in our corpus.

Contrafact Rank Membrane Area

Prince Albert 1 0.00

Ablution 1 6.72

Boston Bernie 2 7.72

I Want More 758 26.89

Table 4. Rank and membrane area for All the Things You

Are against its four contrafacts

To investigate, we use the jazz harmony visualization

tool described in [31] to display the chord progressions for

these two songs. The visualization shows a tabular format

with each rectangle representing a measure. Figures 4 and

5 show All the Things You Are and I Want More, respec-

tively. The background colors indicate the key the chords

belong to. Red is for the main key, which is A♭ for both

songs. Other colors indicate modulations. Some chords are

embedded in a geometric shape to indicate they are toni-

cizations: diamonds are secondary dominants, pentagons

are borrowed chords. As the figures illustrate, the two

songs have some similar chords, however, the sequences

of modulations are completely different. Whereas All the

Things You Are modulates through the tonal centers of C

major, E♭ major, G major, and E major, I Want More mod-

ulates to D♭ major and C minor. After verifying the latter’s

chord progression, 8 we conclude that, harmonically, these

two songs have very little in common, and we question the

annotation of this song as a contrafact.

7.2 Using Pitch-Class Vectors

To evaluate the effect of using co-occurrence vectors, we

compare with a baseline vector embedding scheme based

8 Jamey Aebersold play-along book, volume 82, Dexter Gordon
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Figure 4. Chord Progression for All the Things You Are

Figure 5. Chord progression for I Want More

on converting chord symbols to their pitch-class vectors.

This is similar to the starting point of the approach used

in [32]. We begin by applying the key estimation algorithm

described in Section 4.1 to transpose all chords in our cor-

pus to the key of C. Subsequently, each chord in the corpus

is converted to a 12-dimensional binary pitch-class vector,

with ones in positions corresponding to pitch classes be-

longing to the chord, and zeroes elsewhere. Thus, for a C7

chord with the notes C, E, G, and B♭, the corresponding

pitch-class vector is [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0].

Following a similar schema as for the previous exper-

iment, the pitch-class vectors can be used to construct

piecewise linear paths, however, now they are constructed

in a 12-dimensional space. We use the membrane area as

previously to rank songs by harmonic similarity. Table 5

compares the performance of co-occurrence vectors for the

best case (chord progression filtering with a window size

of Nw = 1) versus pitch-class vectors using three metrics:

median rank, mean rank, and mean reciprocal rank. Co-

occurrence vectors outperform the pitch-class vectors by a

large margin for each of these criteria.

Vector Type Median Mean MRR

Co-occurrence 18 222 0.305

Pitch-class 318 457 0.200

Table 5. Comparison of median rank, mean rank, and

mean reciprocal rank (MRR) for the filtered-progression,

co-occurrence vectors (Nw = 1) and pitch-class vectors

8. DISCUSSION AND CONCLUSIONS

We showed how co-occurrence vectors can be used to

model harmonic similarity, and introduced the membrane

area as a evaluation metric that is well-adapted for handling

reharmonizations. We use music theory to reduce the di-

mensionality of chord space, and provide a comprehensive

map of all 1,542 chord symbols in our corpus to 61 classes.

The results are used to compute a dense co-occurrence ma-

trix without needing to resort to non-parametric approxi-

mations such as truncated SVD or gradient descent. Using

the cosine similarity measure, we show that the rows of

the co-occurrence matrix embody some characteristics of

common reharmonizations. Using the normalized rows of

the matrix as vector embeddings of chord classes, we mod-

eled songs as piecewise linear paths in R
61. A novel dis-

tance metric, the membrane area, was introduced and used

as a measure of harmonic similarity between songs. We

showed that the similarity metric can be used to retrieve

contrafacts from a database of jazz standards, and that it

performs significantly better than a baseline system using

binary pitch-class vectors as chord embeddings.

Although our approach is successful for contrafact de-

tection, there are several weaknesses that require future

work. Our key detection algorithm is simple and static,

despite the fact that jazz harmony exhibits many local key

changes (e.g. see Figures 4 and 5). We also treat minor

keys as equivalent to their relative major, which is not

strictly correct. The chord mapping scheme is limited in its

ability to distinguish common progressions such as triad

progressions i-iv and v-i. A richer chord vocabulary or

local key estimation could disambiguate such situations.

Our song-level similarity assumes only minor structural

differences between pieces. Modifying it to perform sub-

sequence matching would overcome this limitation.

We believe that the methods discussed in this paper

have many additional applications, such as those in eval-

uating harmonic complexity [33] and in musicology [34].

We intend to investigate whether our harmonic similarity

measure can be used to cluster jazz songs by composer or

decade of publication. Although our focus has been on

jazz, chords have similar functions across much of West-

ern tonal harmony. For this reason, we believe that this

work can be adapted to other genres such as classical, rock,

and pop. Furthermore, as our methods are based on captur-

ing the distributional semantics of harmony, the approach

may also be useful in discovering harmonic relationships

in non-Western music genres.
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ABSTRACT

There has been a persistent lack of publicly accessible

data in singing voice research, particularly concerning

the diversity of languages and performance styles. In

this paper, we introduce SingStyle111, a large studio-

quality singing dataset with multiple languages and differ-

ent singing styles, and present singing style transfer exam-

ples. The dataset features 111 songs performed by eight

professional singers, spanning 12.8 hours and covering En-

glish, Chinese, and Italian. SingStyle111 incorporates dif-

ferent singing styles, such as bel canto opera, Chinese folk

singing, pop, jazz, and children. Specifically, 80 songs

include at least two distinct singing styles performed by

the same singer. All recordings were conducted in profes-

sional studios, yielding clean, dry vocal tracks in mono for-

mat with a 44.1 kHz sample rate. We have segmented the

singing voices into phrases, providing lyrics, performance

MIDI, and scores with phoneme-level alignment. We also

extracted acoustic features such as Mel-Spectrogram, F0

contour, and loudness curves. This dataset applies to vari-

ous MIR tasks such as Singing Voice Synthesis, Singing

Voice Conversion, Singing Transcription, Score Follow-

ing, and Lyrics Detection. It is also designed for Singing

Style Transfer, including both performance and voice tim-

bre style. We make the dataset freely available for research

purposes. Examples and download information can be

found at https://shuqid.net/singstyle111.

1. INTRODUCTION

In recent years, deep learning technologies have signifi-

cantly advanced the field of Artificial Intelligence Genera-

tive Content (AIGC) [1], leading to breakthroughs in Com-

puter Vision for image synthesis and manipulation [2–5],

Natural Language Processing (NLP) for text generation

and summarization [6–8], and audio signal processing for

Text-to-Speech (TTS) generation [9–11]. In particular,

advanced generative models such as Variational Autoen-

© S. Dai, Y. Wu, S. Chen, R. Huang and R. B. Dannen-

berg. Licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0). Attribution: S. Dai, Y. Wu, S. Chen, R. Huang

and R. B. Dannenberg, “SingStyle111: A Multilingual Singing Dataset

With Style Transfer”, in Proc. of the 24th Int. Society for Music Informa-

tion Retrieval Conf., Milan, Italy, 2023.

coders (VAEs) [12–14], Generative Adversarial Networks

(GANs) [15, 16], Transformer-based models [17, 18], and

Diffusion Models [19, 20] resulted in a series of excep-

tional TTS models that achieve not only realistic results

[9–11, 21] but also explore stylistic and emotional speech

synthesis [22, 23] in a more controllable way. However,

the development of singing tasks such as Singing Voice

Synthesis (SVS) [24–28] and Singing Voice Conversion

(SVC) [29] have yet to progress as fast as TTS. One pri-

mary reason is the lack of data on several key aspects:

• Lack of high-quality data. Tasks such as SVS and SVC

require monophonic, clean, and dry sound singing data

with studio quality. Unfortunately, due to the limi-

tations of Source Separation and Denoising technolo-

gies [30–33], as well as copyright issues, most available

cover songs online cannot meet these quality require-

ments. Datasets recorded with studio quality are pre-

dominantly composed of amateur performances, which

often exhibit off-key and cracking issues that could mis-

lead the generative models and diminish their quality.

• Lack of diversity. Most available singing datasets cover

only one language, resulting in a severely imbalanced

language distribution. For example, there is a fair

amount of Chinese singing data, while clean English

data is very scarce. In addition, most datasets only focus

on one pop singing style, and the distributions of differ-

ent singing styles and vocal ranges are too narrow.

• Lack of annotations. Many datasets lack proper phrase-

level segmentation, lyrics, and scores, and are not

aligned at the phoneme level, making it impossible

to conduct score-based SVS and more detailed perfor-

mance control.

• Lack of large-scale data. The current data volume of

high-quality singing is still insufficient for deep genera-

tive models.

Furthermore, current SVS results are primarily confined

to modeling the timbre of singing voices. While there

are several good vocoders [11, 21, 34] and acoustic mod-

els [10, 35] for SVS based on Ground-Truth control sig-

nals (e.g., inputting F0 control signals to the model), the

truly creative and artistic aspects of singing, such as ex-

pressive performance control, singing styles, vocal tech-

niques, and creative improvisation, have yet to be explored.

Again, data limitations play a significant role in this, as

most datasets consist of amateur performances or have not
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Dataset Language Style #Hour #Singer Quality Musicality Score
Align-

ment

Style

Transfer

Opencpop [41] Chinese Pop 5.25 1 Studio Ama.
Perform.

MIDI
✓ ✗

M4Singer [42] Chinese Pop 29.77 20 Studio
50% Ama.

50% Prof.

Perform.

MIDI
✓ ✗

Children

Song [43]

Korean

English
Children 4.86 1 Studio

Prof.

but plain

Perform.

MIDI
word ✗

Tohoku

Kiritan [44]
Japanese Pop 0.95 1 Studio Prof. Score ✓ ✗

PopCS [28] Chinese Pop 5.89 6
Not

Clean
Ama. ✗ ✗ ✗

Open-

Singer [35]
Chinese Pop 50 66 Studio Ama. ✗ ✗ ✗

VocalSet [45]

Annotated [46]

Five

Vowels
Opera 10.1 20 Studio Prof. Score ✓

technique

transfer

NHSS [47] English Pop 3.5 10 Studio Ama. ✗ ✓ ✗

NUS-48E [48] English
Pop

Children
1.41 12 Studio Ama. ✗ ✓ ✗

RWC [49]
Japanese

English
Pop 4 27

Not

Solo
Prof. Both ✗ ✗

TONAS [50] Spanish Flamenco 0.34 > 40
Not

Clean
Prof. ✗ ✗ ✗

Vocadito [51]
Seven

Languages

Pop

Children
0.23 29

Not

Clean
Ama. ✗ ✗ ✗

MIR-1K [52] Chinese Pop 2.22 19
Not

Solo
Ama. ✗ ✗ ✗

StyleSing111

(Ours)

English

Chinese

Italian

Opera

Pop

Folk

Jazz etc.

12.8 8 Studio Prof. Both ✓ ✓

Table 1. A comparison of existing singing datasets. Score means if there is score or performance MIDI file provided.

“Perform. MIDI” stands for “Performance MIDI”. “Both” means both performance MIDI files synchronized with the

singing audio and sheet music scores are provided. Alignment means whether or not there is duration annotation at the

phoneme level for lyrics. “Ama.” stands for “Amateur,” and “Prof.” stands for “Professional.”

yet begun to address the issue of artistic expression.

For example, Style Transfer [36, 37] is a popular tech-

nique in deep learning that combines the content of one im-

age or sound with the style of another. For audio process-

ing, some researchers [38,39] have recently transferred the

timbre from one audio source to another while preserving

the speech content (similar to SVC). However, the transfer

of expressive performance styles embedded below the tim-

bre level remains elusive, mainly because (1) disentangling

performance style is much more challenging than timbre

features [40] and (2) the scarcity of relevant datasets pro-

viding examples of performance styles.

To help address these issues, we introduce a new

singing corpus, SingStyle111. We summarize the main

contributions as follows:

(1) SingStyle111 is a large and high-quality singing

dataset. It contains 111 songs performed by eight pro-

fessional singers, spanning 12.8 hours of clean mono-

phonic vocal recordings in studio quality.

(2) It is a diverse dataset with creative singing. It covers En-

glish, Chinese, and Italian songs and incorporates var-

ious singing styles, such as bel canto opera, Chinese

folk, pop, jazz, and children. Some performances are

creative improvisations based on the original score.

(3) It demonstrates style transfer in both performance and

timbre levels. 80 songs contain at least two distinct

singing styles performed by the same singer.

(4) It includes proper annotations and extracted features.

We manually segmented voices into phrases, labeled

Performance MIDI files and music score notes and

aligned them with the phonemes of lyrics, extracted

acoustic features such as Mel-Spectrogram, F0 contour,

and loudness curves.

(5) It applies to different MIR tasks such as SVS, SVC,

Singing Transcription, Score Following, Expressive

Performance, Lyrics Detection, Singing Style Transfer.

(6) It is publicly available for research purposes for free.

The rest of this paper is organized as follows: after a

brief review of related works, we describe how we collect

and process the dataset (Section 3) and show the annota-

tions and analysis (Section 4). Finally, we discuss potential

applications in Section 5 followed by conclusions.
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2. RELATED WORK

Existing singing voice datasets still have many limitations

in fulfilling the requirements for singing research tasks

such as Singing Voice Synthesis (SVS) [24, 26–28] and

Singing Voice Conversion (SVC) [29]. Table 1 provides

an overview of the available public datasets. Datasets such

as MIR-1K [52], TONAS [50], and Vocadito [51] are re-

stricted by the absence of separated solo vocal tracks or

suffer from subpar recording environments with noise, re-

verberation, and other interferences. These issues hinder

their usability in SVS-related tasks. While NHSS [47] and

OpenSinger [35] contain clean and dry human vocals, they

lack essential musical scores or phoneme-level duration

alignment. Consequently, these datasets are unsuitable for

training end-to-end synthesis models that convert scores

to vocals. Moreover, datasets such as Opencpop [41] and

M4singer [42] offer good annotations and recording qual-

ity but primarily focus on Mandarin songs and a limited

range of pop styles. Additionally, the singing proficiency

of performers is inconsistent, with many being amateurs,

which affects the overall quality of the dataset.

Another issue that has long been overlooked and misun-

derstood in singing voice datasets is the difference between

Performance MIDI and the actual sheet music score. In

Table 1, only Tohoku Kiritan [44], Vocalset [45, 46] and

RWC [49] have music scores, while other datasets claimed

to have scores that are indeed performance MIDI files. Per-

formance MIDI features expressive performance timings

rather than score timings with regular note durations in

beats. The melodic pitches in performance MIDI can also

differ from those in score melody. Utilizing performance

MIDI for singing voice synthesis and claiming it as score-

based is, in reality, a deceptive approach that takes advan-

tage of real singing data.

As for the Style Transfer task, Vocalset [45, 46] pro-

vides relevant examples, but its scope is limited to singing

technique transfer within the bel canto singing style. Fur-

thermore, the dataset predominantly consists of scale exer-

cises using only five vowels and includes only three short

songs, which restricts its applicability. Given the limi-

tations of existing datasets, there is a need for a large-

scale, high-quality, professional, multilingual, and diverse

singing dataset that caters to various styles and includes

style transfer examples. In this paper, we introduce a novel

dataset designed to address these requirements and facili-

tate research in SVS-related tasks and style transfer.

3. DATASET DESCRIPTION

3.1 Overview

SingStyle111 is a multilingual singing dataset with style

transfer demonstrations. Figure 1 illustrates the data col-

lection pipeline. Following the completion of the recording

process, we post-process all recordings and retain all high-

quality segments. Thus, our dataset offers two versions:

the first version consists of edited full-length songs, and

the second version comprises all usable, high-quality vocal

segments, incorporating redos from the recording process.

Figure 1. Data collection pipeline.

Figure 2. Distribution of songs according to languages and

the number of style demonstrations. For example, English

songs have 18 songs with only one style version, 25 songs

with two different styles, six songs with three styles, and

three songs with four styles.

We preserve these redos for two primary reasons. First,

during recording, singers often need to restart due to minor

errors, resulting in many redos that far exceed the quantity

required for a single song. The high-quality vocals in these

redo segments are perfect for segmented training in deep

learning and effectively augmenting the dataset. Second,

even when the same singer performs the same song using

the same style, each rendition exhibits subtle differences.

Capturing these variations provides valuable training data

for learning multi-modes in singing performance and dis-

entangling a singer’s style with music content. This paper

focuses on describing the second version of the dataset.

Upon obtaining the clean and dry vocal segments in au-

dio, we manually annotate them into phrases (music sen-

tences), provide lyrics and score alignment with audio at

the phoneme level. We then extract acoustic attributes such

as F0 contour, loudness curve, and Mel-spectrogram. Fi-

nally, we partition and package the data, incorporating rel-

evant attributes. Section 4 describes this process in detail.

In the following subsections, we delve into the dataset’s

repertoire and styles, singer profiles, recording environ-

ments, and post-production methods, accompanied by per-

tinent statistics.

3.2 Repertoire and Style

SingStyle111 comprises 111 songs, of which 80 have at

least two different versions performed in distinct styles by

the same singer, resulting in a total of 224 song versions.

The dataset encompasses three languages: English (372

minutes), Chinese Mandarin (307 minutes), and Italian (88

minutes). Figure 2 illustrates the number of song versions

for each language. During song selection, we sought to di-

versely represent various styles, singing techniques, tem-

pos, and eras.

Figure 3 presents the styles of the original songs and all
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Figure 3. Distribution of song styles. Chart(a) describes

the original style of the 111 songs, while chart(b) indicates

the 224 different style interpretations in the dataset.

style demonstrations. We consolidated several sub-genres

into seven broader styles to streamline the pie chart. For

instance, Country, Western folk, Chinese pop, and other

pop styles were combined into a single pop genre. Like-

wise, the Rock category contains Soft Rock, Hard Rock,

Alternative Rock, etc.

Throughout the data collection process, we instructed

singers to exhibit significant differences in style transfer.

Sometimes they made appropriate adaptations or improvi-

sations to the original song for better style transfer while

preserving the original lyrics, melody, and structure. For

example, it is easier for singers to transfer vocal timbres

when the key changes. Also, tempo changes and rhythmic

variations can dramatically help alter styles, such as trans-

ferring a fast and happy song into a slow and melancholic

one. Converting singing techniques or adding ornamen-

tations are also prevalent in our style transfer examples.

For instance, the dataset includes many demonstrations in-

terchanged among pop, bel canto, and Chinese traditional

folk singing; or singing the same song in the distinct pop

styles of Adele Adkins and Teresa Teng. In addition, some

styles include deliberate emotional changes, for example,

contrasting a "plain and lyrical style" with an "exaggerated

and highly emotional style."

3.3 Singers

We paid eight professional singers (Table 2) to sing the

songs. They have diverse vocal ranges, singing styles, and

vocal techniques. They are aged 20 to 63, and all have re-

ceived formal musical training for more than six years. Six

of them are graduates or current students in the voice ma-

jor at music conservatories. “Male1” is a native American

English speaker, and all the others are Chinese. “Female1”

has lived in the US for more than five years and received

formal English singing training at a music academy. We

also removed the English song phrases that have strong for-

eign accents. All singers have signed agreements to release

the dataset for research purposes.

3.4 Recording

We recorded the songs in a professional recording studio

with little reverberation or noise. We use a Shure Model

Singer Language Style #Hour Range

Female1 en, cn
P. C. O. R.

F. M. J.
3.73 F#3-A5

Female2 it, en, cn O. F. M. 1.24 E4-C6

Female3 cn, en
P. C. O. R.

F. M. J.
1.58 F#3-F5

Female4 cn, en P. 1.63 D3-C5

Male1 en P. R. M. 0.59 D2-G4

Male2 cn, en P. M. J. 1.35 A2-C5

Male3 it, cn O. M. 1.16 C4-G5

Male4 cn P. O. F. 1.51 D#3-A4

Table 2. Singer Information. Here the vocal range is the

used range in the dataset. en: English, cn: Chinese, it:

Italian, P: Pop, C: Children, R: Rock, O: Opera, F: Chinese

Traditional Folk, M: Musical, J: Jazz.

SM81-LC microphone, an Apollo X8 Thunderbolt 3 audio

interface, Heritage Audio 73jr as the pre-amplifier, and Pro

Tools Studio as DAW software. All singings are pure vocal

only and recorded at 44,100 Hz sampling rate with 24 bits

per sample in wav format.

In most recording sessions, singers wear headphones

to listen to the accompaniment. However, in some style

transfer demonstrations, accompaniments and headphones

may not always be used. Despite this, singers must ensure

they maintain the correct key and consistently stay within

it throughout the performance.

3.5 Production

We employed several essential post-production techniques

to refine and clean the recorded data. First, we edited

the raw recordings to retain only high-quality clips, filter-

ing out noisy sections, mistakes, and mispronunciations.

A small portion of singer Male3’s singing clips were fur-

ther edited with pitch-tuning. To achieve a consistent vol-

ume balance, we applied different gain levels in each clip.

Moreover, we incorporated a compressor for all recording

clips to prevent extreme dynamic fluctuations. Lastly, we

maximized the output volume using a limiter, setting the

output ceiling at -0.6 dB. After production, we obtained

clean and dry vocal tracks with similar output volumes.

4. ANNOTATION AND ANALYSIS

This section presents the annotation process, including

both manual annotation and automatic analysis. We first

segment the audio clips into music phrases, for which

we then manually identify corresponding lyrics and music

scores. By combining automatic algorithms and manual

efforts, we align lyrics phonemes and score notes to their

corresponding audio. Next, we utilize algorithms to extract

acoustic attributes such as F0 contour, loudness curve, and

Mel-spectrogram. Finally, we highlight the key attributes

and explain dataset partitioning and packaging.
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Figure 4. An example of phoneme-level annotation using Audacity. The lyrics word, IPA phoneme, and pitch label tracks

are aligned with the corresponding audio. “AP” here stands for “aspirate”.

4.1 Phrase-level Segmentation

We further divide the audio segments into smaller musical

phrases for two reasons. First, this additional segmentation

accelerates model training. Second, from a music perspec-

tive, phrases serve as one of the basic music structure units,

with emotional expressions and performance controls be-

ing highly related to phrase-level structure. Inappropriate

segmentation might compromise musical expression due

to insufficient phrase structure information. Given the low

accuracy of automatic algorithms for phrase segmentation,

we manually label them. The result shows that most seg-

mented phrases have lengths between 3 and 12 seconds

with one to three breaths. We obtain 6588 phrases in to-

tal. No silence is included at the beginning or end of the

phrases, except for breath events.

4.2 Lyrics and Score Alignment at Phoneme Level

In this subsection, we describe the lyrics and score annota-

tion process.

Lyrics annotation We first manually find lyrics for

each song online and then segment and align the lyrics

with each phrase. We manually correct the lyrics to match

the actual singing in the data. Secondly, we employ al-

gorithms to translate the lyrics into phonemes. For En-

glish 1 and Italian 2 , we utilize tools to translate them into

International Phonetic Alphabet (IPA) phonemes [53]. For

Mandarin, we use Pinyin 3 for phoneme-level alignment

and provide a mapping of Pinyin to IPA phonemes for later

phoneme-set processing for model training. We did not di-

rectly convert Chinese to IPA due to annotation complex-

ity. Thirdly, we obtain an approximate phoneme alignment

with audio using the Montreal Forced Aligner [54] and out-

put it into TextGrid files. Finally, we (1) use Praat soft-

ware [55], or (2) convert the TextGrid into txt files and in-

put them to Audacity [56] for further manual adjustment of

phoneme text and boundaries, as well as breath and silence

event annotation (Figure 4).

Performance MIDI and Score annotation We anno-

tated the performance MIDI file and music score for each

1 https://github.com/mphilli/English-to-IPA
2 https://espeak.sourceforge.net/
3 https://github.com/mozillazg/python-pinyin

singing phrase in the dataset as follows:

(1) We manually input performance MIDI files that strictly

align to singing audio using MIDI piano, including mul-

tiple rounds of correction.

(2) We automatically align MIDI notes with phonemes

based on their corresponding time stamps in the audio.

(3) We search online for music score MIDI files; if no reli-

able sources are found, we quantize and derive the score

from annotated performance MIDI file.

(4) For online score files, we develop an algorithm that

automatically matches each singing phrase’s perfor-

mance MIDI data to the corresponding phrase in the

score MIDI file. Manual matching is required for non-

original-style style transfer versions.

(5) We use the Dynamic Time Warping algorithm to match

the performance MIDI data with the score MIDI file

within each phrase. We manually verify the mapping

results for non-original-style style transfer versions.

All these above steps allow us to annotate the lyrics,

performance MIDI, and music score at the phoneme level

for our singing voice dataset, ensuring accurate and com-

prehensive representations of the musical content.

4.3 Acoustic Feature Extraction

F0, or fundamental frequency, is the lowest frequency of a

periodic waveform. F0 contour is critical in singing syn-

thesis as it determines the pitch variations of singing per-

formance and largely influences singing quality. It can cap-

ture pitch modulations in various singing techniques, such

as vibrato, ornaments, and glissando. Many current SVS

systems still require the input of ground-truth F0 as a con-

dition to guide the synthesis process. To ensure accurate F0

extraction, we employ a combination of two widely-used

models, pYIN [57] and PENN [58]. First, we use pYIN

algorithm to identify unvoiced parts, including breaths, si-

lence, and consonants. Then, the PENN algorithm is ap-

plied to extract F0 for the voiced parts.

Loudness represents the energy of a sound. It is crucial

in singing performance since it largely reflects the dynamic

and emotional changes that contribute to the expressive-

ness of the singing voice. To extract loudness, we first cal-

culate the root-mean-square (RMS) amplitude values from

audio and then convert them to decibels. We further ap-
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ply a moving average window of frame size 30 to obtain a

smoother loudness curve.

Finally, we use the Short-Time Fourier Transform

(STFT) with a window size of 1024, FFT size of 1024,

and hop size of 256 to extract the mel-spectrogram, which

shares the same settings with loudness extraction.

5. POTENTIAL APPLICATIONS

This dataset is intended to promote research into a number

of different MIR tasks. We consider a variety of interesting

relevant problems in this section.

5.1 Singing Style Transfer

Style transfer has to do with music interpretation. Here,

“style” refers to performance details that are not con-

strained by symbolic representations such as traditional no-

tation. If notation gives a song its “identity,” styles are

performance characteristics that are shared across perfor-

mances of different songs. Styles are often associated with

genre, e.g., a song can be interpreted in rock, pop, or jazz

styles. Styles can be more or less specific than genre, e.g.,

the style of Louis Armstrong (more specific) or symphonic

(less specific). Style transfer is a process of identifying the

style of one or more performances and applying it to a new

song to create a stylistic performance. SingStyle111 con-

tains many performances where a single singer performs

in multiple styles, offering the potential to abstract styles

from other information (singer identity, melodies) which is

held constant. In the multi-style recordings, singers were

asked to exaggerate differences, which should help to learn

features that characterize different styles.

5.2 Singing Voice Synthesis

A large motivation for SingStyle111 is the difficulty of

finding high-quality musical examples of singing. In par-

ticular, the presence of accompaniment and reverberation

complicate the process of learning to create the sound of

singing voices. Furthermore, lower recording and singing

quality are a barrier to learning high-fidelity sounds of pro-

fessional singing. In addition, SingStyle111 also provides

necessary phoneme-level annotations for score-based SVS.

5.3 Singing Voice Conversion

In SVC, we hope to substitute the sound of one voice with

the sound of another while maintaining the same melody

and style. To promote progress in this area, SingStyle111

has performances of the same song by multiple singers,

including male and female voices. Since we have perfor-

mances of the same song in the same style, SVC can be

cast as a sequence-to-sequence problem analogous to many

other machine learning tasks such as language translation.

5.4 Expressive Performance

Expressive performance is the general problem of creating

a musical performance given a symbolic description such

as a melody in common music notation. Notation omits

many details, including loudness, vibrato, pitch variations,

changes in vocal timbre, the details of pronouncing lyrics

within pitch and rhythmic constraints, and breathiness. Of-

ten, connections and transitions from one note to the next

are as important as how notes are performed. To learn ex-

pressive performance, it helps to have symbolic notation,

which can be considered as input constraints, context, or

conditioning. In addition, it helps if the notated events

are aligned with corresponding time points in the audio.

SingStyle111 includes symbolic representations (perfor-

mance MIDI files and music scores) aligned with audio.

The data is especially designed to support machine learn-

ing using sequence-to-sequence models from notation to

control signals such as pitch contours, loudness, spectro-

grams, or directly to audio.

5.5 Automatic Singing Transcription

Singing transcription can be regarded as the inverse of ex-

pressive performance control: Rather than converting no-

tation to sound, we wish to convert sound into music no-

tation. With transcriptions for all of the singing examples,

SingStyle111 provides a wealth of transcription examples

for training and evaluating transcription models.

5.6 Score Alignment and Following

Score following [59] is the problem of aligning an au-

dio performance to symbolic notation. Vocal score fol-

lowing is particularly difficult because, unlike most other

instruments, voices do not have keys, valves, or frets, so

singing cannot be easily reduced to a sequence of distinct

discrete states corresponding to musical notes [60]. Real-

time score following is the first step in the task of com-

puter accompaniment, in which a computer synchronizes

a pre-composed accompaniment to a live performance by

a soloist. Score following has also been used for auto-

matic page turning, delivering synchronized comments via

mobile phones to symphony orchestra audiences, and as

a data collection method for learning music segmentation

and other tasks. SingStyle111 contains accurate align-

ments for learning and evaluation of automatic alignment

and real-time score following.

5.7 Lyrics Detection

The common task of understanding lyrics is one that even

humans struggle with. SingStyle111 includes the lyrics

used by the singers, and lyrics are aligned to the audio

down to the phoneme level, facilitating learning and eval-

uation of various lyrics transcription and alignment tasks.

6. CONCLUSION

In conclusion, we introduce SingStyle111, a large-scale,

high-quality, multilingual singing voice dataset that caters

to various styles and includes style transfer examples. We

provided detailed annotations of lyrics and scores at the

phoneme level, together with extracted acoustic features.

We will make the dataset freely available for research pur-

poses to facilitate relevant MIR tasks.
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ABSTRACT

Lyric translation plays a pivotal role in amplifying the
global resonance of music, bridging cultural divides, and
fostering universal connections. Translating lyrics, unlike
conventional translation tasks, requires a delicate balance
between singability and semantics. In this paper, we present
a computational framework for the quantitative evaluation
of singable lyric translation, which seamlessly integrates
musical, linguistic, and cultural dimensions of lyrics. Our
comprehensive framework consists of four metrics that mea-
sure syllable count distance, phoneme repetition similarity,
musical structure distance, and semantic similarity. To
substantiate the efficacy of our framework, we collected
a singable lyrics dataset, which precisely aligns English,
Japanese, and Korean lyrics on a line-by-line and section-
by-section basis, and conducted a comparative analysis
between singable and non-singable lyrics. Our multidisci-
plinary approach provides insights into the key components
that underlie the art of lyric translation and establishes a
solid groundwork for the future of computational lyric trans-
lation assessment.

1. INTRODUCTION

Translating lyrics is a prevailing method of enhancing the
global appeal and allure of music across a multitude of
genres, such as theatre music, animation music, pop music,
etc [1]. Furthermore, recent advancements in media technol-
ogy have facilitated the exchange of intercultural products
and globalized fandom culture, resulting in an increase in
the popularity of user-translated lyrics across diverse social
media platforms [2].

Despite its popularity, lyric translation is acknowledged
as a challenging field, requiring an interdisciplinary ap-
proach [2]. As early as 1915, it was suggested that an ideal
lyric translator should possess expertise in both linguis-
tics and music, highlighting the need for a comprehensive
understanding of the principles and techniques used in trans-
lation studies, coupled with a background in musicology [3].

© H. Kim, K. Watanabe, M. Goto, and J. Nam. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: H. Kim, K. Watanabe, M. Goto, and J. Nam, “A
Computational Evaluation Framework for Singable Lyric Translation”,
in Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

Moreover, it is crucial to understand the cultural context
of each language, such as different strategies employed for
forming rhymes [4]. Because of these challenges, the sys-
tematic analysis and evaluation of lyric translation remain
an under-researched topic of study. Thus far, only a few
have proposed guidelines for scoring the quality of trans-
lated lyrics [4, 5]. While these principled approaches have
proven successful, they lack automation. Consequently,
despite the growing interest in the development of neural
lyric translation, its evaluation has predominantly relied
on human evaluation, making the evaluation process time-
consuming, unreliable, and subjective [6–8].

Our study aims to computationally analyze and evaluate
lyric translation based on a comprehensive understanding of
lyrics that accounts for their musical, linguistic, and cultural
elements. Unlike prior research that only proposed rhyme-
scoring guidelines applicable to English [4], our framework
is extendable to Japanese and Korean. Though our frame-
work may be limited in its application to specific languages,
we strive to provide valuable insights into establishing dis-
tinct evaluation rules for phoneme repetition in diverse
languages. Our comprehensive framework employs a multi-
faceted evaluation approach that examines lyric translation
from four distinct perspectives: syllable counts, phoneme
repetition, musical structure, and semantics. In the remain-
der of this paper, we explicate the rationale behind our
selection of these perspectives by delving into the unique
characteristics of lyric translation that differentiate it from
general language translation tasks. In addition, we intro-
duce the singable lyrics dataset we collected, which features
line-by-line and section-by-section alignment of English,
Japanese, and Korean lyrics. Moving forward, we propose
robust evaluation metrics for lyric translation and analyze
the results of our experiments based on the perspectives
mentioned above. Finally, we conclude our paper by reflect-
ing on the profound insights gleaned from our experiment
and highlighting possible directions for future research.

2. BACKGROUND

Previous research indicates that linguistic analysis meth-
ods designed for standard text may not achieve desired
outcomes when used to examine lyrics [9]. Although auto-
mated evaluation metrics, such as n-gram-based [10–12] or
neural approaches [13], have proven valuable and effective
in assessing conventional machine translation tasks, they
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fall short in evaluating lyric translation. This is due to the
unique characteristics of lyrics that render the translation
process subject to many constraints and less direct [14].

One of the most significant constraints is the syllable
count. This is because the original and translated lyrics must
match the same melody lines, while it is a common practice
to tweak the melody to accommodate minor changes in syl-
lable count [4, 15]. In fact, conveying the same message in
different languages requires vastly different syllable counts.
For example, “Happy New Year” in English consists of
4 syllables, whereas 15 and 9 are required for Japanese
(あけましておめでとうございます) and Korean (새
해 복 많이 받으세요), respectively. For the numerical
comparison, we examined PAWS-X, a dataset that contains
23,659 English sentences paired with human-translated sen-
tences in various languages [16]. The average number of
syllables per sentence in the dataset is 50.89 for Japanese,
whereas 36.18 per English and 40.40 per Korean. With
these statistics, it can be deduced that Japanese necessi-
tates approximately 41% more syllables than English and
26% more syllables than Korean to express an equivalent
message. This limitation forces translators to often mod-
ify the meaning of original lyrics by adding, omitting, or
even tweaking the message. However, translated lyrics still
aim to capture the theme, mood, and spirit of the original
lyrics [17]. Therefore, while original and translated lyrics
need not be semantically identical, they still need to be
semantically relevant [4, 18].

It is also crucial to preserve the frequency of phoneme
repetition (e.g., rhyme) in translated lyrics, particularly
when the music demands it [17]. For instance, some
sections, such as choruses, require a substantial degree
of phoneme repetition, while others do not. Moreover,
due to the inherent connection between lyrics and music,
lyrics must be arranged in a way that complements the mu-
sic [19]. As a result, musically similar sections should main-
tain resembling linguistic features, including the choice of
phonemes and the frequency of phoneme repetition [20].

3. DATASET

Although some websites provide user-translated multilin-
gual lyrics, we found that most of them lack singabil-
ity, as these translations were focused on delivering the
meaning of the original lyrics rather than making them
performable. While there are a few singable translations
available, they are often not aligned on a line-by-line nor
section-by-section basis due to the subjective nature of the
lyric structure that there is no universal agreement on what
to call a line and what to call a section. The absence of
alignment makes it difficult to compare the original lyrics
with their translated versions. To address this issue, we
collected a set of singable lyrics, sourced from either of-
ficial lyrics of commercial songs or user-translated ones
found on YouTube, meticulously aligned on a line-by-line
basis in English, Japanese, and Korean. This approach en-
sures that lyrics on the same line share the same melodies.
Moreover, the dataset divides the lyrics into sections, allow-
ing for section-by-section analysis. Alongside the lyrics, it

Section

#

Line

#
English (EN) Japanese (JP) Korean (KR)

1

1 Twinkle, twinkle, little star きらきらひかる 반짝반짝작은별

2 How I wonder what you are おそらのほしよ 아름답게비치네

3 Up above the world so high まばたきしては 서쪽하늘에서도

4 Like a diamond in the sky みんなをみてる 동쪽하늘에서도

5 Twinkle, twinkle, little star きらきらひかる 반짝반짝작은별

6 How I wonder what you are おそらのほしよ 아름답게비치네

2

7 Twinkle, twinkle, little star きらきらひかる 반짝반짝작은별

8 How I wonder what you are おそらのほしよ 아름답게비치네

9 When the blazing sun is gone みんなのうたが 서쪽하늘에서도

10 When he nothing shines upon とどくといいな 동쪽하늘에서도

11 Then you show your little light きらきらひかる 반짝반짝작은별

12 Twinkle, twinkle, all the night おそらのほしよ 아름답게비치네

Table 1. Sample data illustrating the original English lyrics
of “Twinkle, Twinkle, Little Star” and their corresponding
singable translations in Japanese and Korean, aligned on a
line-by-line and section-by-section basis.

provides essential metadata such as genre, artist, original
language, and the official status of lyrics. The dataset con-
sists of 162 songs, each having lyrics in the three languages.
It covers a diverse range of genres, including 109 K-pop, 23
animation music (e.g., Disney), 13 J-pop, 10 theatre music,
and more. Table 1 shows sample data.

4. EVALUATING SINGABILITY

Our primary goal is to develop an evaluation framework
that automatically assesses the quality of translated lyrics.
One of the most important factors determining the quality is
singability, defined as not only the ability of being sung, but
also the suitability (easiness) of being sung [18]. To ensure
such singability, we aim to provide metrics from three dis-
tinct perspectives by making sure that they i) maintain the
song’s melodic integrity, ii) preserve the degree of phoneme
repetition, and iii) consider the underlying musical struc-
ture.

To substantiate the reliability of our evaluation metrics,
we conducted a comparative analysis of singable lyrics ver-
sus non-singable lyrics based on each proposed evaluation
metric. In all our comparative analyses, we utilized our
dataset for singable lyrics, where official lyrics served as
both source and target lyrics, and unofficial functioned as
only target lyrics. For non-singable lyrics, we obtained
pairs of original singable (source) and human-translated
non-singable (target) lyrics, aligned line-wise and section-
wise, for 3,642 songs from https://lyricstranslate.com/.

Source Target Singable Non-singable

English
Japanese 0.17 (80 songs) 0.74 (1401 songs)
Korean 0.11 (80 songs) 0.48 (620 songs)

Japanese
English 0.16 (162 songs) 0.39 (589 songs)
Korean 0.11 (162 songs) 0.31 (73 songs)

Korean
English 0.09 (161 songs) 0.20 (702 songs)
Japanese 0.12 (161 songs) 0.52 (257 songs)

Table 2. The average line syllable count distance (Dissyl)
between source and target languages for singable and non-
singable lyrics.
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Section English Japanese (English translation) Korean (English translation) pho

E(A1),
J(A1),
K(A1)

Do you wanna build a snowman?
Come on, let’s go and play!
I never see you anymore
Come out the door
It’s like you’ve gone away

雪だるま作ろう (Let’s build a snowman)
ドアを開けて (Please open the door)
一緒に遊ぼう (Let’s play together)
どうして (Why)
出てこないの? (don’t you come out?)

같이눈사람만들래? (Do you wanna build a snowman?)
제발좀나와봐 (Please come out)
언니를만날수없어 (I can’t meet you)
같이놀자 (Let’s play together)
나혼자심심해 (I’m lonely alone)

0.85,
0.73,
0.77

E(B1),
J(B1),
K(B1)

We used to be best buddies
And now we’re not
I wish you would tell me why!

前は仲良く(We were close before)
してたのに (We used to be)
なぜ会えないの (Why can’t we meet each other?)

그렇게친했는데 (We were close before)
이젠아냐 (and we’re not)
그이유를알고파 (I want to know the reason why)

0.92,
0.80,
0.91

E(A2),
J(A2),
K(A2)

Do you wanna build a snowman?
Or ride our bike around the halls?
I think some company is overdue
I’ve started talking to the pictures on the walls!

雪だるま作ろう (Let’s build a snowman)
自転車に乗ろう(Let’s ride a bike)
ずっと一人でいると (When I’m alone all the time)
壁の絵とおしゃべりしちゃう

(I’m almost talking to the pictures on the walls)

같이눈사람만들래? (Do you wanna build a snowman?)
아니면자전거탈래? (or do you wanna ride a bike?)
이제는나도지쳐가나봐 (Seems I’m getting tired)
벽에다말을하며놀고있잖아

(because I’ve started talking to the walls)

0.79,
0.73,
0.82

E(B2),
J(B2),
K(B2)

It gets a little lonely
All these empty rooms
Just watching the hours tick by

さびしい部屋で (In a lonely room)
柱時計 (the wall clock)
見てたりするの (I look at or something)

사실은조금외로워 (In fact, I’m a little lonely)
텅빈방에선 (In empty rooms)
시계소리만들려 (All I can hear is the clock’s ticking)

0.90,
0.88,
0.96

Table 3. Lyric excerpt from “Do You Want to Build a Snowman” from the animation “Frozen,” singable in all languages.
Sections A1 and A2 form a musically similar pair, while B1 and B2 are also musically similar to each other. Each section is
denoted as E(A1), . . . , E(B2) in English, J(A1), . . . , J(B2) in Japanese, and K(A1), . . . ,K(B2) in Korean.

4.1 Line Syllable Count Distance

It is crucial to preserve the syllable counts between the
original and translated lyrics for each line as similar as
possible in order to maintain the integrity of a song’s
melody [21]. Therefore, it is unsurprising that our eval-
uation framework incorporates a metric to assess the dif-
ferences in syllable counts. Let the line syllable counts for
a pair of lyrics that consist of n lines, X = {x1, ..., xn}
and X̃ = {x̃1, ..., x̃n} be denoted as {syl(x1), ..., syl(xn)}
and {syl(x̃1), ..., syl(x̃n)} where each element refers to
the syllable count of each line. For instance, if the first
line of the English lyrics X is “Silent night holy night”
and the corresponding line in the Korean lyrics X̃ is
“Goyohanbam-georukhanbam (고요한밤거룩한밤)”, the
value of syl(x1) is 6 and syl(x̃1) is 8. We define the line

syllable count distance between a pair of lyrics X and
X̃ (Dissyl(X, X̃)) in order to evaluate the disparities in
syllable counts, as follows.
Dissyl(X, X̃) = 1

2n

∑n

i=1(
|syl(xi)−syl(x̃i)|

syl(xi)
+ |syl(xi)−syl(x̃i)|

syl(x̃i)
)

(1)
We compare the line syllable count distance of singable
and non-singable lyrics. As shown in Table 2, non-singable
lyrics display a considerably greater Dissyl(X, X̃) com-
pared to singable lyrics due to the varying syllable count
requirements across languages.

4.2 Phoneme Repetition Similarity

Rhyme, defined as the repetition of a vowel sound and any
subsequent sounds [22], has historically been a fundamen-
tal element in the realm of poetry, including in Western
languages like English. However, the concept of rhyme has
not been as prevalent in Japanese or Korean poetry [23].
In fact, traditional Korean poetry did not incorporate this
concept [24]. Despite the increasing tendency to adopt the
concept of rhyme in Japanese and Korean lyrics due to
intercultural exchanges, we observed that lyrics in these
languages often rely more on repeating grammatical ele-
ments. For example, in section A1 of Table 3, the Japanese
pair “tsukurou (作ろう, Let’s build)” and “asobou (遊ぼう,
Let’s play)” generates a sense of rhyme because both end

with the same conjugation “ou” meaning “let’s”. Similarly,
in Section A2, the Korean pair “mandeullae (만들래, Do
you wanna build)” and “tallae (탈래, Do you wanna ride)”
creates a sense of repetition because both end with “llae”
meaning “Do you wanna”. Another example is the repeti-
tion of particles at the end of sentences, such as “yo (よ)”
and “no (の)” in Japanese and “yo (요)” and “da (다)” in
Korean, which convey cultural nuances related to formality.
We therefore propose that English, Japanese, and Korean
share common ground in adopting phoneme repetition for
poetic expression. However, as such repetition is not neces-
sarily called rhyme in Japanese and Korean, we will refrain
from using the term “rhyme” and instead employ the term
“phoneme repetition.”

We noticed that each section’s degree of phoneme repe-
tition remains consistent across different languages when
the lyrics are singable. For example, in Table 3, the first
section of the original English lyrics (E(A1)) displays a
strong degree of phoneme repetition, with three rhyming
pairs: “come-come”, “play-away”, and “anymore-door” (In
this paper, we denote a section as an uppercase with a
number and a line as a lower case with a number). Sim-
ilarly, both the Japanese and Korean translations (J(A1),
K(A1)) also exhibit a substantial degree of phoneme repe-
tition, featuring three pairs of repeated phonemes in each:
“doa (ドア)”-“dou (どう)”, “tsukurou (作ろう)”-“asobou
(遊ぼう)”, “akete (開けて)”-“shite (して)” in Japanese,
and “gachi (같이)”-“gachi (같이)”, “mandeul (만들)”-
“eonnireul (언니를)”, “mandeullae (만들래)”-“simsimhae
(심심해)” in Korean. However, we realized that it is not
fair to directly compare the number of phoneme repetitions
when attempting to quantify the degree of phoneme repe-
tition as each language has a different number of vowels
and consonants: English has 15 vowels and 24 consonants,
whereas Japanese has 5 and 15 and Korean has 21 and
19. Hence, in an attempt to minimize the differences in
the number of phonemes, we treated acoustically similar
vowels as the same vowel in English, such as ‘IH’-‘IY’,
‘UH’-‘UW’, or ‘EH’-‘AE’(e.g., ’mass’ and ’mess’) [25]
because they can still form slant rhymes [26]. Conversely,
we considered ‘A’-‘YA’, ‘O’-‘YO’, and ‘U’-‘YU’ as sep-
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Source Target Singable Non-singable

English
Japanese 0.69 0.56
Korean 0.97 0.72

Japanese
English 0.79 0.61
Korean 0.80 0.48

Korean
English 0.97 0.78
Japanese 0.80 0.50

Table 4. The average phoneme repetition similarity
(Simpho) of singable lyrics and non-singable lyrics.

arate vowels in Japanese, as they are unlikely to function
as the same grammatical components. In Korean, we re-
garded the perceptually similar vowels (e.g., ‘AE’-‘E’or
‘OE’-‘OI’-‘OAE’) as the same vowels [27, 28].

To quantitatively represent the degree of phoneme rep-
etition, we utilized the concept of distinct-2, the ratio of
the number of distinct bi-grams to the total number of bi-
grams [29]. While the original concept formed bi-grams
using two consecutive words, we used two consecutive
phonemes to assess the degree of repetition because lower
distinct-2 values indicate higher repetition and vice versa.
The phoneme distinct-2 (pho) of a section Xi, is defined as
follows:

pho(Xi) =
unique bi-gram # in Xi

total bi-gram # in Xi

. (2)

For example, consider a section with a single line “twinkle
twinkle little star”, denoted as X1. First, we decomposed
the section into phonemes and added the ‘<eos>’to each
line: ‘T’, ‘W’, ‘IH’, ‘NG’, ‘K’, ‘AH’, . . . , ‘S’, ‘T’, ‘AA’,
‘R’, and ‘<eos>’. Next, we grouped each component into
bi-grams: ‘TW’, ‘WIH’, ‘IHNG’, ‘NGK’, ‘KAH’, ‘AHL’,
. . . , ‘ST’, ‘TAA’, ‘AAR’, ‘R<eos>’. Finally, we calcu-
lated the phoneme distinct-2 of the section (pho(X1)) by
dividing the number of unique bi-grams by the total num-
ber of bi-grams (17/23 = 0.74). To measure the similarity
between two sections in terms of the degree of phoneme
repetition, we introduce the phoneme repetition similar-

ity (Simpho). Given two sets of lyrics with m sections,
X = {X1, ..., Xm} and X̃ = {X̃1, ..., X̃m}, the phoneme
repetition similarity between X and X̃ is defined as the
Spearman correlation between {pho(X1), ..., pho(Xm)}

and {pho(X̃1), ..., pho( ˜Xm)}, as shown below.

Simpho(X, X̃) = corr({pho(X1), ..., pho(Xm)}, {pho(X̃1), ..., pho(X̃m)})

(3)
We present the statistical results for the average phoneme
repetition similarity of singable and non-singable lyrics in
Table 4. The table clearly exhibits a higher correlation
between the original lyrics and singable translated lyrics in
terms of the phoneme distinct-2 than non-singable lyrics.
This result suggests that singable lyric translation takes
into account the degree of phoneme repetition within each
section to convey a sense of repetition for that section.

4.3 Musical Structure Distance

Upon examining our section-divided singable lyrics data,
we identified two tendencies in lyrics when musical sections

Figure 1. Musical self-dissimilarity matrices for English,
Japanese, and Korean versions of the K-pop song “Icy” by
ITZY. Dissimilarity between the i-th and the j-th section
was computed using diss(Xi, Xj).

are repeated (e.g., the repetition of the chorus). First, we
observed that musically similar sections tend to share the
same phonemes and, as expected, the same phrases. For
instance, in Table 3, musically similar sections share the
same vowels (e.g., “why” in E(B1) and “by” in E(B2)) or
identical phrases (e.g., “Do you wanna build a snowman” in
E(A1) and E(A2)) in order to create a sense of consistency.
As a result, when calculating the phoneme distinct-2 (pho)
for two concatenated sections, musically similar sections
are likely to have smaller values than musically different
sections. For example, pho(E(A1 ++A2)) is 0.70 (‘++’ de-
notes the concatenation of text), whereas pho(E(A1++B1))
is 0.82, where A1 is musically similar to A2 but not to B1.
However, a low value of pho does not always imply musical
similarity, as a meager pho value in one section could result
in a low pho of two concatenated sections despite the musi-
cal dissimilarity (e.g., “lalalalalalalalalalalalalala” ++ “do
you wanna build a snowman?”). From this case, we derived
our second observation that a significant difference in pho

for each section could imply musical differences. Accord-
ingly, we also realized that musically similar sections tend
to have a similar degree of pho. For instance, in Table 3,
both A1 and A2, a set of musically similar sections, exhibit
relatively low pho, indicating a strong degree of phoneme
repetition (rhyme), with similar values to each other across
all languages. Likewise, both B1 and B2, another pair of
musically similar sections, demonstrate a higher pho, with
similar values to each, in all languages.

Therefore, to quantify the musical similarity between
sections, we examined whether they have 1) a tendency to
share the same phoneme by obtaining pho(Xi++Xj), and
2) similar pho values by calculating |pho(Xi)− pho(Xj)|.
Given that higher values represent dissimilarity in both
cases, we define the musical dissimilarity between two
sections, diss(Xi, Xj), as the sum of these two values, as
follows.

diss(Xi, Xj) = pho(Xi++Xj) + |pho(Xi)− pho(Xj)| (4)

As shown in Figure 1, self-dissimilarity matrices employ-
ing our definition of musical dissimilarity look highly sim-
ilar across English, Japanese, and Korean, where all are
singable, visually representing musical structure.

Finally, we quantitatively evaluated the distance between
matrices. We refer to this distance between matrices as the
musical structure distance, as it represents the structural ele-
ment of lyrics. In summary, the musical structure distance
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Source Target Singable
Non-singable

(Human)

Non-singable

(Machine)

English
Japanese 0.14 0.26 0.30
Korean 0.10 0.15 0.15

Japanese
English 0.13 0.20 0.18
Korean 0.11 0.13 0.14

Korean
English 0.10 0.10 0.10
Japanese 0.11 0.10 0.17

Table 5. The average musical structure distance (Dismus)
of singable lyrics and non-singable lyrics.

between lyrics in different languages X and X̃, each con-
sisting of m sections, Dismus(X, X̃), is defined as follows:

Dismus(X, X̃) = 1
m2

√

∑m

i,j=1 (diss(Xi, Xj)− diss(X̃i, X̃j))2

(5)
In Table 5, we provide a summary of the average musical
structure distance for singable lyrics, human-translated non-
singable lyrics, and machine-translated non-singable lyrics
generated by automatically translating official singable
lyrics from 80 English, 162 Japanese, and 161 Korean
songs using Google Translator. Our findings show that
singable lyrics exhibit the lowest Dismus values, while
machine-translated non-singable lyrics display the high-
est, suggesting that machine-translated ones lack structural
coherence the most. As human-translated non-singable
lyrics maintain structural coherence in aspects such as word
choice and nuances, they demonstrate lower distances than
machine-translated counterparts.

5. EVALUATING SEMANTICS

Semantic relatedness to the original lyrics is by no means
less fundamental than syllable counts, phoneme repetition,
and structural factors [18]. We therefore introduce a fourth
metric, semantic similarity, to ensure the semantic relevance
of translated lyrics to the original.

5.1 Semantic Similarity

To numerically assess the semantic textual similarity (sts)
between a pair of lyrics, we first obtained the contextual
embeddings of each text from lyrics using a pre-trained
Sentence BERT model 1 [31] and then calculated the cosine
similarity between the embeddings. As this model was
trained for English, the Japanese and Korean lyrics were
automatically translated using Google Translator before
obtaining the embeddings.

We started by examining hierarchical semantic similarity
using cross-scape plots [32], as shown in Figure 2. Given
a pair of lyrics X = {x1, . . . , xn} and X̃ = {x̃1, . . . , x̃n}
with n lines each, the first (leftmost) block of the lowest
line represents the semantic textual similarity between x1

and x̃1 (denoted as sts(x1, x̃1)) while the last (rightmost)
block signifies sts(xn, x̃n). The first (leftmost) block of the
second-lowest line denotes sts(x1++x2, x̃1++x̃2), and the
second block corresponds to sts(x2++x3, x̃2++x̃3). Lastly,

1 We used all-MiniLM-L6-v2 [30].

Figure 2. Semantic similarity cross-scape plot for the J-pop
song “A Thousand Winds” between English and Japanese
(Left), English and Korean (Middle), and Japanese and
Korean (Right). Any value less than 0 was regarded as 0.

Line

#
English

Japanese

(English translation)
sts

1
please do not stand at
my grave and weep.

私のお墓の前で

(in front of my grave)
0.56

2 I am not there, I do not sleep
泣かないでください

(please stop crying)
0.27

1,
2

please do not stand at
my grave and weep. I am
not there, I do not sleep

私のお墓の前で

泣かないでください

(in front of my grave.
please stop crying.)

0.76

Table 6. Semantic textual similarity (sts) between English
and Japanese versions of “A Thousand Winds”.

the highest block (line) represents the similarity between
the entire lyrics, sts(x1 ++ · · ·++ xn, x̃1 ++ · · ·++ x̃n).

In each plot of Figure 2, there are semantic disparities
at lower levels, but similarities increase at higher (broader)
levels. We have two explanations for this. First, the number
of musical notes within a single lyric line may be adequate
to deliver a specific message in one language but insufficient
in another language. Therefore, it is common for a mes-
sage conveyed in one line in one language to span two lines
in another language. As an example, we provide Table 6,
which presents the semantic textual similarity (sts) between
Japanese and English lyrics of the J-pop song “A Thousand
Winds (千の風になって)”. As demonstrated in the table,
the similarity between Japanese and English at a broader
level (sts(x1++x2, x̃1++x̃2)) can be higher than at the line
level (sts(x1, x̃1), sts(x2, x̃2)) because Japanese generally
requires more syllables than English and it often takes two
lines in Japanese to express a single-line message in En-
glish. Second, the semantic similarities at broader levels
can be higher because of grammatical/linguistic differences.
Each language has its own natural word order patterns. For
example, in the phrase “I’m going to travel to find the gold,”
it is natural in English to mention “I’m going to travel” be-
fore “to find the gold.” However, in Japanese and Korean,
expressing “to find the gold (金を探しに,금을찾으러)”
before “I’m going to travel (旅に出る,떠난다)” is a more
typical and natural construction. Table 7 shows that these
differences between languages make line-level semantic as-
sessments insufficient. Since lines 1, 2, and 3 in the English
version correspond to lines 3, 1, and 2 respectively in the
Japanese version, these pairs exhibit low semantic similari-
ties at the line level (sts(x1, x̃1), sts(x2, x̃2), sts(x3, x̃3)),
while demonstrating higher similarity when considered as a
whole (sts(x1++x2++x3, x̃1++x̃2++x3)).

Considering these factors, it becomes evident that
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Line

#
English

Japanese

(English translation)
sts

1
Dare to try and reach out
for hеaven

望むように生きるなら (If you want
to become what you’re meant to be)

0.22

2
You must become
what you’rе meant to be

星からの金を求め

(to find the gold from stars)
0.27

3
And bring the gold of
heaven to the world

一人旅に出るのよ

(Dare to embark on a solo journey)
0.13

1-3

Dare to try and reach out
for hеaven You must become
what you’rе meant to be
And bring the gold of
heaven to the world

望むように生きるなら星からの

金を求め一人旅に出るのよ

(Dare to embark on a solo journey
if you want to become what you’re
meant to be to find the gold from stars)

0.53

Table 7. Semantic textual similarity (sts) between English
and Japanese versions of “Gold von den Sternen”.

Figure 3. The line-wise (Left) and section-wise (Right)
semantic similarity matrices between Japanese and Korean
versions of “Wie wird man seinen Schatten los?”

singable lyric translations do not prioritize line-wise seman-
tic similarity. Rather, we observed that singable translations
aim to preserve semantic connections at the section level
since the organization of the lyric storyline follows a section-
wise approach. To illustrate this, we present Figure 3, which
displays both line-wise and section-wise semantic similarity
matrices for the Japanese and Korean versions of “How do
you get rid of your shadow? (Wie wird man seinen Schatten
los?)” from the German musical “Mozart!”. As shown in
the Figure, the section-wise matrix represents the semantic
relatedness more clearly than the line-wise matrix.

Therefore, we propose assessing section-wise semantic
relatedness for evaluating singable lyric translation. To
achieve this, we define the semantic similarity between a
pair of lyrics X = {X1, ..., Xm} and X̃ = {X̃1, ..., X̃m},
consisting of m sections and n = n(X1) + · · · + n(Xm)
lines, where n(Xi) denotes the number of lines in the i-th
section, as follows:

Simsem(X, X̃) =
∑m

i=1(
n(Xi)

n
sts(Xi, X̃i)). (6)

Table 8 compares singable and non-singable lyrics in terms
of line-wise semantic similarities ( 1

n

∑n

i=1 sts(xi, x̃i))
and section-wise similarities, using our proposed metric
(Simsem). The table reveals that non-singable transla-
tions exhibit high semantic similarity for both line-wise
and section-wise measures, with similar values for each. In
contrast, singable translations show low line-wise similarity,
as expected, since they do not prioritize line-wise semantic
similarity. However, when evaluated using section-wise
similarity, they display a level of similarity comparable to
that between “Machine learning is so easy” and “Deep learn-
ing is so straightforward”, which is 0.623 when measured
with the same pre-trained model [30].

Source Target
Singable Non-singable

line section line section

English
Japanese 0.40 0.54 0.64 0.74
Korean 0.42 0.55 0.70 0.76

Japanese
English 0.47 0.59 0.66 0.72
Korean 0.52 0.61 0.77 0.79

Korean
English 0.53 0.63 0.78 0.81
Japanese 0.52 0.61 0.73 0.75

Table 8. The average line-wise semantic similarity and
section-wise semantic similarity (Simsem) of singable and
non-singable lyrics.

6. DISCUSSIONS AND CONCLUSIONS

In this paper, we introduced a computational evaluation
framework for singable lyric translation, grounded in the
musical, linguistic, and cultural understanding of lyrics,
comprised of four evaluation metrics, line syllable count
distance (Dissyl), phoneme repetition similarity (Simpho),
musical structure distance (Dismus), and semantic similar-
ity (Simsem). These metrics are designed to ensure that the
translated lyrics maintain the integrity of melodies, degree
of phoneme repetition, structural coherence, and seman-
tics of the original lyrics. Our framework is automated,
guaranteeing objectivity and efficiency in terms of time and
cost. We showed the efficacy of our evaluation metrics by
offering comparative statistics between singable and non-
singable lyrics. In addition, our analysis revealed that the
degree of phoneme repetition in the original lyrics is fre-
quently mirrored in the translated lyrics, musically similar
sections tend to share the same phonemes and display com-
parable degrees of phoneme repetition, and section-wise
analysis is better suited for evaluating semantic similarity
for lyric translation than line-wise analysis.

Nonetheless, there remains room for improvement. Al-
though we have assembled a singable lyrics dataset, aligned
across English, Japanese, and Korean, our dataset has some
limitations; it lacks musical information and its volume is
limited. As a result, we have not been able to incorporate
musical notes into our experiment or conduct comparative
studies across various genres. We recognize that an ideal
lyric translation evaluation system should take into account
the relationship between musical notes and phonemes, as
well as adapt to different genres. Moreover, although we
have endeavored to incorporate cultural understandings of
poetry in different languages, we acknowledge the need for
deeper cultural considerations. For example, we noticed
that cultural similarities might have an impact on the extent
of semantic similarities. This is demonstrated in an English
translation of “MIC Drop”, a K-pop song by BTS originally
written in Korean, made by YouTuber Iris Phuong. The
translated singable lyrics do not include a translation of the
term “hyodo (효도, taking care of parents)” as there is no di-
rect equivalent in English, while the Japanese version of the
song effortlessly conveys the concept as “koukou (孝行)”.
In the future, we aim to expand our dataset to contribute
more to lyric translation studies and to further explore the
impact of genre and cultural influences on lyric translation.
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ABSTRACT

When people listen to playlists on a music streaming ser-

vice, they typically listen to each song from start to end in

order. However, what if it were possible to use a function

to listen to only the choruses of each song in a playlist one

after another? In this paper, we call this music listening

concept “chorus-playlist,” and we investigate its potential

impact from various perspectives such as the demand and

the objectives for listening to music with chorus-playlist.

To this end, we conducted a questionnaire-based online

user survey involving 214 participants. Our analysis results

suggest reusable insights, including the following: (1) We

show a high demand for listening to existing playlists with

the chorus-playlist approach. We also reveal preferred op-

tions for chorus playback, such as adding crossfade transi-

tions between choruses. (2) People listen to playlists with

chorus-playlist for various objectives. For example, when

they listen to their own self-made playlists, they want to

boost a mood or listen to music in a specific context such

as work or driving. (3) There is also a high demand for

playlist creation on the premise of continuous listening to

only the choruses of the songs in a playlist. The diversi-

ties of artists, genres, and moods are more important when

creating such a playlist than when creating a usual playlist.

1. INTRODUCTION

The chorus of a song is one of the most distinctive parts in

the song. In terms of acoustic aspects, it has been reported

that the chorus tends to have louder sound, contain heav-

ier instrumentation and additional vocals, and include the

highest-pitch vocal note in a song [1–3]. In terms of cog-

nitive aspects, the chorus tends to be the catchiest, most

memorable, and most salient part of a song for emotional

expression [4–7]. Moreover, the chorus is often character-

ized by the property of being a song’s most repeated sec-

tion [8, 9]. Because of these characteristics, the chorus has

attracted academic attention. For example, research has

been conducted on music structure analysis including cho-

rus detection [8–35] and its use for music summary gener-

ation [36, 37]. In addition, music datasets specializing in

choruses have been made publicly available [38].

© K. Tsukuda, M. Hamasaki, and M. Goto. Licensed under

a Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: K. Tsukuda, M. Hamasaki, and M. Goto, “Chorus-Playlist:
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As for general music listening habits beyond cho-

ruses, the amount of time spent listening to music through

playlists on music streaming services has increased [39–

42]. It has also been reported that this listening time is

longer than the time of listening to music via albums [43].

On the services, both playlists that are created by general

users and those that are created by professional curators or

automatically generated are widely available [42, 44–46].

As a result, Spotify has over 4 billion playlists, for exam-

ple [42]. With the popularity of playlists, many studies

have been conducted on playlist recommendation, genera-

tion, and analysis [40, 42, 44, 47–76].

Given the importance of choruses and playlists, we fo-

cus on a listening approach in which only the choruses of

the songs in a playlist are played one after another. Cer-

tain smartphone music player applications such as Voca-

colle App by DWANGO Co., Ltd., MIXTRAX App by Pi-

oneer Corporation, and KENWOOD Music Control have

provided a function to continuously play the choruses of

songs or parts including the choruses. However, there has

been no academic discussion on the impact of this listening

approach. In this paper, we refer to the concept of contin-

uous listening to only the choruses of songs in a playlist

as “chorus-playlist.” This concept can be applied not only

when a user listens to playlists that she created but also

when she listens to playlists created by other users. Under

this concept, a user could create a playlist on the premise of

continuous listening to only the choruses of the playlist’s

songs. Hence, the goal of this paper is to reveal the useful-

ness of chorus-playlist and provide reusable insights.

To achieve this goal, we conducted a questionnaire-

based online user survey involving 214 participants. Our

contributions can be summarized as follows.

• To our knowledge, this is the first study investigating

the impact of continuous listening to only the choruses

of songs in a playlist.

• We reveal user preferences for chorus playback in a

playlist (e.g., users prefer to add crossfade transitions

between choruses). We also show a high demand and

certain user objectives for listening to playlists with

chorus-playlist. For example, people often want to lis-

ten to their own self-made playlists to boost a mood or

in a specific context such as work or driving.

• We show that people tend to be willing to create a

playlist for continuously listening to only the choruses

of the songs in the playlist. We also reveal important

properties in creating such playlists (e.g., the diversity

of moods, genres, and artists).
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• According to the survey results, we suggest new re-

search topics for the music information retrieval (MIR)

community (e.g., song recommendation for users who

listen to music with chorus-playlist). We also make sev-

eral proposals for music streaming platforms to attract

users (e.g., when using the chorus-playlist approach,

people would be willing to listen to playlists contain-

ing hit songs to efficiently check them out).

• We have made a portion of the survey results publicly

available on the web to support future studies 1 .

2. RELATED WORK

2.1 Chorus Analysis and Detection

The chorus is distinctive compared to other sections of a

song in terms of acoustic, structural, and cognitive aspects.

In terms of acoustic aspects, it has been known that cho-

ruses tend to be louder, to contain heavier instrumenta-

tion and more vocals, and to have the highest-pitch vocal

note in a song [1–3]. More recently, Balen et al. [77] re-

vealed that choruses have a smaller dynamic range and a

greater variety of MFCC-measurable timbres, as compared

to other sections. Regarding structural aspects, choruses

are usually repeated more than other sections such as in-

tros and verses [8, 9]. As for cognitive aspects, choruses

are the catchiest and most memorable sections for listen-

ers [4, 5, 7]. For artists, too, choruses are distinctive in

that they are the most salient sections for emotional ex-

pression [6]. Given these characteristics, we focus here on

choruses as song excerpts, rather than other sections. As

we will show in section 7, the chorus is more preferred

than other sections for continuous listening in a playlist.

Because of the importance of choruses, many studies

have addressed musical structure analysis, including cho-

rus detection, based on music audio signals [8–15, 17–24,

26,27,29–32,34,35] or lyrics [16,25,28,33]. The accuracy

of identifying the chorus section is approximately 80-90%

in terms of the F-measure [12,22,29,33]. Accordingly, the

feasibility of implementing the chorus-playlist concept on

music streaming services is sufficiently high. For songs in

which the correct chorus cannot be detected, it is also pos-

sible to have users on a service manually correct choruses

through a collective intelligence approach [78].

2.2 Playlist Analysis and Recommendation

On today’s music streaming services, playlists have be-

come a central way to listen to music [40–42]. The ma-

jority of playlists on services are created by general users

rather than professional music enthusiasts [44]. Users cre-

ate playlists not only for their own listening but also to

share their musical preferences with other users such as

friends and followers [44, 53, 70]. It has also been re-

ported that playlists can be characterized by certain proper-

ties [40, 62, 68, 69, 74, 76] such as song order [42] and low

diversity in terms of both artists and genres [70]. In this

paper, too, we report objectives for listening to music with

1 The data can be downloaded from https://github.com/

ktsukuda/chorus_playlist.

chorus-playlist (section 5) and important properties for cre-

ating a playlist to continuously listen to only the choruses

of songs in the playlist (section 6).

Although playlists are actively created by users, it is

time consuming to manually create a playlist [44]. To ease

the process, two approaches have been studied: assisted

playlist creation [49–52, 54, 55, 71] and automatic playlist

generation [47, 48, 56, 58–61, 63–67, 72, 73, 75]. In song

recommendation for a playlist or generation of a playlist,

it is typical to consider the song order and/or the audio

similarity between songs. Furthermore, there are several

studies that automatically extract prominent sections (not

only limited to choruses) from individual songs and gen-

erate DJ mixes [79] or medleys [80] by connecting them.

Music streaming services such as Spotify and Deezer pro-

vide functions for automatic playlist generation to promote

song discovery by users [45, 46]. In this paper, according

to our survey results, we discuss not only new approaches

for these research topics but also how to encourage users

on music streaming services to more actively interact with

playlists and discover novel songs.

3. PARTICIPANTS

We recruited participants for our survey via an online re-

search company in Japan. We limited the participants to

those who are Japanese, listened to music an average of at

least one day per week via any music streaming service,

and had created at least 10 playlists on the service. We

paid 51.6 USD (7,000 JPY) to each participant. Although

222 participants answered the questionnaire in sections 4,

5, 6, and 7 through a web browser, to make the analysis

results more reliable, we removed the answers from eight

participants who submitted improper responses to a free-

response question. The remaining 214 participants were

diverse in both gender and age range: 89 males (10s: 1;

20s: 29; 30s: 35; 40s: 17; 50s: 7), and 125 females (10s:

1; 20s: 45; 30s: 38; 40s: 25; 50s: 16).

4. PREFERENCE FOR CHORUS PLAYBACK

4.1 Chorus Playback Choices

As explained in section 1, the concept of chorus-playlist

enables a user to continuously listen to only the choruses of

songs in a playlist. However, some users may prefer to add

crossfade transitions between choruses. In this section, we

investigate the preferences for chorus playback in chorus-

playlist in terms of the following three choices.

• TimePreChorus: the playback time before the chorus.

The options are “no playback,” “5 seconds,” and “10

seconds.” “No playback” means that only the choruses

are continuously played, without any part of the song

before the chorus.

• Crossfade: whether 1-second crossfade transitions are

added between songs. The options are “on” and “off.”

• TimeChorus: the playback time for the chorus. The

options are “15 seconds,” “30 seconds,” and “adaptive.”

In the case of “15 (resp. 30) seconds,” 15 (resp. 30)

seconds on a song is played from the beginning of the
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first chorus 2 . In the case of “adaptive,” the first chorus

is played from beginning to end regardless of its length.

Hereafter, we refer to a combination of these three choices

in the form of a triplet such as (TimePreChorus, Crossfade,

TimeChorus) = (5 seconds, off, adaptive).

4.2 Dataset

In this survey, the participants listened to playlists that we

provided. To reduce bias due to the played songs, we used

120 songs created by professional musicians that we com-

missioned. That is, we guaranteed that the participants had

never listened to any of the 120 songs. Instead of using

chorus detection methods introduced in section 2.1, a mu-

sic expert manually labeled the start and end times of each

song’s first chorus to prevent detection errors. For 26 songs

that started with the chorus, the expert labeled the start and

end times of the second chorus, because the mood and/or

beat of such leading choruses are sometimes different from

those of the second and subsequent choruses. The average

and standard deviation of chorus lengths for the 120 songs

were 29.0 and 7.66 seconds, respectively, and 52 songs had

choruses longer than 30 seconds.

As the participants had various music preferences, we

created diverse playlists by sampling the songs to be in-

cluded in playlists as follows. First, the 120 songs were

plotted in the valence-arousal (VA) space according to their

audio features. Next, we applied the k-means algorithm

and classified the 120 songs in the VA space into three clus-

ters. We created three playlists by sampling five songs at

random for each playlist from one cluster. Similarly, we

created three more playlists from another cluster. Finally,

we created three playlists containing diverse songs in terms

of their moods by randomly selecting one song from each

of the two previous clusters and three songs from the re-

maining cluster. Each playlist’s song order was also de-

termined randomly. In total, we created nine playlists that

each comprised five songs. Note that there were no song

overlaps between any pairs of playlists.

For each playlist, there were 18 total option combina-

tions (3 options for TimePreChorus × 2 options for Cross-

fade × 3 options for TimeChorus). For example, for (5

seconds, on, adaptive), we first created an MP3 file by cut-

ting each song in a playlist from five seconds before the

first chorus to the end of the chorus and then connecting

the songs with crossfade transitions. We then created an

MP4 file to simulate the participants’ experience of listen-

ing to the playlist on a smartphone application. Specifi-

cally, given an MP3 file, we created an MP4 file in which

the MP3’s playlist was played and images changed at the

same time the song changed in the playlist. Each image

contained a song’s title and artist name like in the music

playback screen of a music player application (Figure 1) 3 .

4.3 Procedure

First, we investigated the participants’ preferred option

combinations. To this end, three dropdown lists with the

2 Thus, if the first chorus is less than 15 (resp. 30) seconds long, the
song continues play after the chorus until the total playback time reaches
15 (resp. 30) seconds.

3 The images also include icons of pause, next, and previous buttons.

Playback time before the chorus.

No playback

Crossfade transition between tracks.

On

Playback time of the chorus.

30 seconds

Playlist 1

MISTAKE

Aury

Playlist 2

Jelly fish

JD Walker

Playlist 3

Cinderella Girl

Katy S

Figure 1. Interface example from our user survey. In this

example, when a participant selects the options (no play-

back, on, 30 seconds), three playlists satisfying this com-

bination are displayed.

options for each choice were presented to the participants.

For each participant, three playlists were selected at ran-

dom from the set of playlists described in section 4.2. Once

the participant had selected an option for each choice, the

three playlists (MP4 files) satisfying that option combi-

nation were displayed (Figure 1). When the participant

changed the combination, the displayed playlists were also

changed to those satisfying the new option combination 4 .

After listening to playlists for any option combination,

the participants reported their most preferred combination

such as (10 seconds, on, 30 seconds), by selecting those

options from the dropdown lists 5 .

Even if a participant chose “adaptive” as the preferred

option for TimeChorus, she may have liked “30 seconds”

almost as much. Accordingly, after the above investiga-

tion, we investigated the option preferences including such

subtle differences. To this end, we displayed each of the

18 options with a six-point Likert scale ranging from “not

preferred at all” to “very preferred,” and we asked the par-

ticipants to rate their preferences for each option.

4.4 Results

Table 1 and Figure 2 indicate the results for the first and

second investigations, respectively. In Table 1, we can

see that the most popular combination was (5 seconds, on,

adaptive). Even participants who chose other combinations

also tended to prefer each of these options. In fact, for the

results shown in Figure 2, paired Wilcoxon signed-rank

tests with Bonferroni correction revealed that the median

of “5 seconds” was statistically higher than the other two

options for TimePreChorus at p < 0.01 6 . Similarly, “on”

for Crossfade and “adaptive” for TimeChorus were statis-

tically higher than the other options at p < 0.01. In par-

ticular, it was not obvious that “5 seconds” was the most

preferred option for TimePreChorus, making this a useful,

reusable insight for realizing chorus-playlist.

A music streaming service could offer the concept of

chorus-playlist by implementing a function that enables

users to listen to only choruses for all existing playlists on

the service. If a service provided this function, it would be

ideal to enable users to play playlists with arbitrary option

combinations, as we did, to reflect users’ preferences. If it

4 Note that the songs contained in the three playlists did not change;
only the options for playing them were changed.

5 It was not mandatory to listen to the playlists for all 18 option com-
binations. In fact, most participants reported their most preferred combi-
nation by narrowing down their preferences while switching options and
listening to the corresponding playlists.

6 Throughout this paper, ** (*) in a figure denotes a statistical differ-
ence at p < 0.01 (p < 0.05).
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Table 1. Preference distribution for option combinations.
TimePreChorus Crossfade TimeChorus # participnats

No playback

On

15 seconds 10 (4.67%)

30 seconds 3 (1.40%)

adaptive 38 (17.76%)

Off

15 seconds 8 (3.74%)

30 seconds 0

adaptive 8 (3.74%)

5 seconds

On

15 seconds 26 (12.15%)

30 seconds 14 (6.54%)

adaptive 49 (22.90%)

Off

15 seconds 1 (0.47%)

30 seconds 1 (0.47%)

adaptive 16 (7.48%)

10 seconds

On

15 seconds 3 (1.40%)

30 seconds 6 (2.80%)

adaptive 22 (10.28%)

Off

15 seconds 1 (0.47%)

30 seconds 1 (0.47%)

adaptive 7 (3.27%)

**
**

**

** **

Figure 2. Preference distributions for each option.

is difficult to implement such a flexible function, chorus-

playlist should be provided with the option combination (5

seconds, on, adaptive), which should maximize the aver-

age user satisfaction according to this section’s results.

5. DEMAND FOR CHORUS-PLAYLIST

We described above how to implement a chorus-playlist

function. In this section, we investigate the demand for

listening to existing playlists with such a function.

5.1 Procedure

First, we showed the following description: “Suppose that

a function to play only the choruses of the songs in a

playlist has become available on the music streaming ser-

vice that you usually use. Please rate on a scale from 1

(unwilling) to 6 (very willing) how much you would like to

use this function to listen to existing playlists that you cre-

ated.” When the answer was “unwilling,” they were asked

to respond freely on why he/she did not want to use it.

Otherwise, when the answer was one of the remaining five

items, they were asked to respond freely with at least one

objective for listening to playlists with the function. We

did not set a cap on the number of responses.

Next, in a similar way, we asked the participants to indi-

cate their willingness on a 6-point scale to use the function

to listen to existing playlists created by other users. Ac-

cording to their willingness, they were asked to provide

free responses as they did for the first question.

5.2 Results

Figure 3 shows the answer distribution. We refer to

playlists created by the participant and by other users “self-

made playlists” and “others’ playlists.” Only 11 and 3 par-

ticipants answered “unwilling” for self-made playlists and

0 25 50 75 100 125 150 175 200
Number of participants

Others' playlists

Self-made playlists

1: unwilling
2: not very willing

3: somewhat unwilling
4: somewhat willing

5: willing
6: very willing

Figure 3. Distribution of the willingness to listen to

playlists with the chorus-playlist function.

others’ playlists, respectively. The most popular reason for

unwillingness was “I believe that there is value in listening

to the entire song, including parts other than the chorus.”

On the other hand, because 75.2 % (161) and 82.7 % (177)

participants for the two respective types of playlists an-

swered “very willing,” “willing,” or “somewhat willing,”

we conclude that there is a sufficiently high demand for

chorus-playlist.

We manually grouped the free responses on their objec-

tives. When a response included multiple objectives cor-

responding to different groups, it was assigned to multiple

groups. Table 2 lists the top 10 objectives in terms of the

group sizes for each of the two kinds of playlists. Each

number in parentheses indicates the number of participants

who gave that objective. Below, we discuss the results.

In the case of self-made playlists, the top three objec-

tives could be achieved just by continuously listening to

the choruses of songs in a playlist. For example, the first

objective was “boost a mood.” As self-made playlists usu-

ally contain songs that match the user’s own music pref-

erences, the user’s mood would be boosted even when lis-

tening to playlists in the usual way [68]. Nevertheless, it is

interesting that the participants answered that they wanted

to further boost their mood by listening to only choruses.

It would be beneficial to recommend songs for a playlist

that are suitable for boosting a user’s mood when the user

listens to only the choruses in the playlist. For the sec-

ond objective, the participants answered with various con-

texts such as “work” and “driving.” When listening to a

playlist with the chorus-playlist function in a specific con-

text, there could be various reasons such as “increasing

concentration” and “relaxing.” It would be an interesting

future work to conduct a more detailed analysis of the con-

texts in which the conventional playlist listening approach

or the chorus-playlist approach are preferred. As for the

fourth objective, it is known that people consider it valu-

able to listen to music with others and let others listen to

their favorite songs [81–84]. However, because it takes

much time for others to listen to all the songs in a playlist,

people may hesitate to introduce their favorite songs. Thus,

the participants answered that they wanted to efficiently in-

troduce others such as friends or family to their favorite

songs when they listen to music together in person. That

is, chorus-playlist could encourage people to interact with

others through music in the real world.

On the other hand, regarding the top six objectives

for others’ playlists, although those objectives could be

achieved by conventional playlist listening, the participants

wanted to use the chorus-playlist function to achieve the

objectives more efficiently in a shorter time. In particular,

as seen from the first, second, fourth, and fifth objectives,

there is a strong demand for efficiently discovering and lis-
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Table 2. Top 10 free-response objectives for listening to playlists with the chorus-playlist function.
Rank Self-made playlist Others’ playlist

1 Boost a mood (79) Find unfamiliar songs that suit my preference (109)

2 Listen to a playlist in a specific context (68) Listen to hit songs (48)

3 Listen to a playlist within a limited time (46) Learn other people’s music preferences (44)

4 Recommend my favorite songs to others (36) Listen to songs by unfamiliar artists (37)

5 Explore desired songs (35) Listen to songs in unfamiliar genres (26)

6 Listen to many songs (23) Preview a playlist (18)

7 Listen to various songs (20) Listen to a playlist in a specific context (13)

8 Recall songs listened to in the past (18) Refer to a playlist for creating my playlists (12)

9 Listen to only the choruses of my favorite songs (19) Listen to a playlist for a change of pace (9)

10 Sing songs in a playlist (12) Boost a mood (6)

tening to unfamiliar songs. Accordingly, if a music stream-

ing service provides playlists consisting of hit songs of the

past week, songs by a specific artist, or songs in a specific

genre with the chorus-playlist function, many users would

likely listen to those playlists by using the function. This

would enable users to find more new favorite songs and

help increase their music listening activity.

In summary, we have revealed that chorus-playlist can

generate new interactions between people and music espe-

cially when they listen to self-made playlists. Moreover, as

discussed above, the results in Table 2 can provide useful

insights for both researchers and music streaming services.

6. IMPORTANT PROPERTIES FOR CREATING

PLAYLISTS IN CHORUS-PLAYLIST CONCEPT

6.1 Procedure

In section 5, we assumed application of the chorus-playlist

concept to existing playlists. However, by taking the con-

cept a step further, a user could create a playlist on the

premise of continuous listening to only the choruses in the

playlist’s songs (for simplicity, we refer to creating such

a playlist as “creating a chorus-playlist”). Therefore, we

asked the participants how much they would like to create

chorus-playlists on the music streaming service that they

used regularly. They answered with their willingness on a

6-point scale from “unwilling” to “very willing.” We also

told the participants that they could also listen to each song

from beginning to end through, not just the chorus.

When users create playlists, they consider certain prop-

erties such as the diversity of artists and the song order.

Hence, we wondered whether there are any differences re-

garding the importance of these properties when creating a

chorus-playlist as compared to creating a usual playlist. To

answer this question, we considered the following 11 prop-

erties derived from past studies [42, 70]. (1) SongHit: in-

cluding songs with high popularity. (2) SongNew: includ-

ing new songs in terms of the release dates. (3) ArtistSame:

including as many songs by the same artist as possible. (4)

ArtistDiv: including songs by as many different artists as

possible. (5) GenreSame: including as many songs in the

same genre as possible. (6) GenreDiv: including songs

in as many different genres as possible. (7) MoodSame:

including as many songs with the same musical mood as

possible. (8) MoodDiv: including songs with as many dif-

ferent moods as possible. (9) SongOrder: the song order

in the playlist. (10) SongTop: the first song in the playlist.

(11) SongLast: the last song in the playlist.

0 25 50 75 100 125 150 175 200
Number of participants

1: unwilling
2: not very willing

3: somewhat unwilling
4: somewhat willing

5: willing
6: very willing

Figure 4. Willingness to create a chorus-playlist.

The participants who answered the first question with

anything other than “unwilling” rated the importance of

each property in creating a chorus-playlist and in creating a

usual playlist on a 6-point scale from “not at all important”

to “very important.” The 11 properties were displayed in a

random order to each participant.

6.2 Results

Figure 4 shows that chorus-playlist creation has the poten-

tial to be a new way of enjoying music, because 75.7%

(162) participants answered “very willing,” “willing,” or

“somewhat willing,” while only 6.07% (13) participants

answered “unwilling.” Next, as shown in Figure 5, paired

Wilcoxon signed-rank tests indicated that statistical differ-

ences between the two playlist types were observed for

nine properties 7 . Hence, we can say that people tended

to emphasize different properties when creating a chorus-

playlist as compared to creating a usual playlist. Ex-

isting studies on song recommendation for playlists or

playlist generation have proposed various methods focus-

ing on the song order in a playlist [54, 61, 64, 73]. How-

ever, for chorus-playlist, the SongOrder, FirstSong, and

LastSong properties were relatively less important. In

contrast, hit songs and new songs were more important

for chorus-playlist. Furthermore, the results revealed the

importance of diversity in terms of artists, genres, and

moods for chorus-playlist. It has been reported that the

diversities of artists and genres tend to be low in usual

playlists [70]; however, to support users creating chorus-

playlists, it would be important to recommend songs to di-

versify such properties. These results thus open up new

recommendation approaches in the MIR community.

7. PLAYBACK METHOD COMPARISON

We have revealed a high demand to try chorus-playlist.

In this section, we investigate whether the chorus-playlist

playback method is preferred to other playback methods.

7.1 Procedure

For comparison, we used the following two types of

playlists. (1) Head-playlist: a user continuously listens to

7 Figure 5 shows the results for the 201 participants besides the 13
participants who answered “unwilling.” The same statistical differences
were obtained even with only the aforementioned 162 participants.
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Figure 5. Property importance for playlist creation.

only the head sections of each song in a playlist. (2) 30sec-

playlist: a user continuously listens to only the parts after

the first 30 seconds of each song in a playlist. We adopted

30 seconds according to the preview samples on a music

streaming service (Deezer) [85].

Similarly to the investigation described in section 4, we

had the participants listen to each type of playlist by select-

ing options for two choices. In the head-playlist case, the

two choices were 1-second crossfade (options: “on” and

“off”) and the playing time from the head of each song

(options: “15 seconds” and “30 seconds”). In the case

of 30sec-playlist, the two choices were 1-second cross-

fade (options: “on” and “off”) and the playing time after

the first 30 seconds of each song (options: “15 seconds”

and “30 seconds”). The participants listened to playlists

with each playback method by using their favorite option

combinations. Here, each participant was assigned three

playlists containing the same songs as those in section 4.

Then, they were asked to rate their willingness to listen to

self-made playlists with each method on a 6-point scale.

7.2 Results

Figure 6 shows the results. Note that the chorus-playlist

results are repeated from “self-made playlists” in Figure 3.

Paired Wilcoxon signed-rank tests with Bonferroni correc-

tion revealed that the median for chorus-playlist was statis-

tically higher than the medians for head-playlist and 30sec-

playlist. It thus became clear that it was not enough to sim-

ply play any part of the songs in a playlist continuously, but

that it was important for users to be able to play choruses

continuously.

8. DISCUSSION AND CONCLUSION

In this paper, we have studied the concept of chorus-

playlist. The reusable insights obtained from our user sur-

vey can be summarized as follows.

• We showed that there is a high demand for chorus-

playlist. When the participants listened to songs in a

playlist with chorus-playlist, they tended to prefer to

listen to 5 seconds before the chorus, add crossfade

transitions between songs, and listen to the chorus from

**
**

Figure 6. Willingness for three playlist types.

beginning to end. As discussed in section 7.2, it is more

important to play choruses continuously than to play

other sections continuously.

• As seen in Table 2, the objectives for listening to mu-

sic with chorus-playlist were largely different between

self-made playlists and others’ playlists. In particular,

certain objectives for self-made playlists were unex-

pected, in that people wanted to enjoy music in a new

way with chorus-playlist for objectives such as boost-

ing their mood. These results could provide guidelines

for researchers and services to consider new research

topics and activate user interaction, respectively.

• We revealed a high demand for creating a chorus-

playlist. As in Figure 5, hit songs, new songs, and the

diversities of artists, genres, and moods are more im-

portant when creating a chorus-playlist than when cre-

ating a usual playlist. These results also provide new

viewpoints for studies on assisted playlist creation.

We acknowledge a limitation of this paper in that all

the participants in our user survey were Japanese. Because

peoples’ music preferences, listening behaviors, and mu-

sic itself vary widely from country to country [86–90], not

all of the findings reported here can be generalized. Nev-

ertheless, we believe that this study provides a worthwhile

contribution as a first step toward understanding the impact

of the chorus-playlist concept. At the same time, this lim-

itation indicates further possibilities such as investigating

the differences among countries and cultures. The publicly

available dataset of results from our user survey will enable

researchers to perform such comparisons.

Another limitation is that the participants did not expe-

rience chorus-playlist on the music streaming services they

usually used. However, because they answered the survey

after experiencing the chorus-playlist concept by listening

to the playlists that we provided, we think that they could

sufficiently imagine the situation of listening to self-made

playlists and others’ playlists with the chorus-playlist ap-

proach. We currently provide the chorus-playlist function

in a music-related smartphone application (Vocacolle App)

and web service (Kiite 8 ). In the future, we will investigate

the function’s usage in those more realistic environments.

Finally, although we considered only the first chorus of

a song (except when a song started with the chorus), the

final chorus tends to be longer and contain heavier instru-

mentation than other choruses [1]. Therefore, it would also

be an interesting future work to investigate the impact of

differences between choruses in chorus-playlist listening.

Moreover, the concept of listening to only choruses can

be applied not only to playlists but also to other song lists

such as album track lists, which could further enrich and

diversify people’s music listening experience.

8 https://kiite.jp
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ABSTRACT

Digital musicology research often proceeds by extending

and enriching its evidence base as it progresses, rather than

starting with a complete corpus of data and metadata, as a

consequence of an emergent research need.

In this paper, we consider a research workflow which

assumes an incremental approach to data gathering and

annotation. We describe tooling which implements parts

of this workflow, developed to support the study of

nineteenth-century music arrangements, and evaluate the

applicability of our approach through interviews with mu-

sicologists and music editors who have used the tools. We

conclude by considering extensions of this approach and

the wider implications for digital musicology and music

information retrieval.

1. INTRODUCTION

Digital humanities research often extends and enriches an

evidence base – in the form of digital, machine-accessible

corpora – as it progresses, mirroring a methodological pro-

cess of evidence gathering and preparation that is common

and accepted in analogue research. Rather than assum-

ing complete corpus encoding as a prerequisite for digital

scholarship, we anticipate that research subjects will more

usually be found in un-transcribed and only minimally-

catalogued documents. A researcher or team can thereby

more effectively support their work by digitising, tran-

scribing, and annotating a corpus incrementally. Resource

limitations will generally mean that this is most efficiently

carried out in an incomplete way, producing partial edi-

tions of short extracts or individual instrumental parts, in-

stead of a complete corpus as an outcome of the investi-

gation. To support this mode of digital scholarship, we

propose that incremental workflows, which manipulate and

© D. Lewis, E. Shibata, A. Hankinson, J. Kepper, K. Page,

L. Rosendahl, M. Saccomano, and C. Siegert. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). At-

tribution: D. Lewis, E. Shibata, A. Hankinson, J. Kepper, K. Page, L.

Rosendahl, M. Saccomano, and C. Siegert, “Supporting musicological

investigations with information retrieval tools: an iterative approach to

data collection”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

analyse incomplete sources, should be an explicit consid-

eration for applied MIR assemblies.

We present an example of this approach, from the

Beethoven in the House project, where musical arrange-

ments and miscellaneous music publications aimed at a

domestic market are the subject of the scholarship. In this

case, little of the music has been published in modern edi-

tions, and no digital editions existed at the start of the re-

search process. Some sources had been photographed and

published online before the project began, and the remain-

der were digitised at the request of the project. Our data

model abstracts the musical structures from the surface

presented by digital representations themselves, so that our

tools can switch transparently between working with dig-

ital scores and facsimile images, with measure detection

supporting the transition. We also use Linked Data and

user-authored, web-based storage, which supports the en-

richment of institutional data resources, such as library im-

ages, without requiring that scholars have write access to

those servers. We focus on chained components and data

compatibility rather than trying to build end-to-end tools.

Our ambition is that, at the end of the process, the digital

tools support our own research, as well as supporting re-

usability and transparency, since the ‘working materials’

can be published along with the finished results.

In this paper, we consider a research workflow which

assumes an incomplete and incremental approach to data

gathering and annotation. We describe tooling implement-

ing this workflow, and evaluate the applicability of the ap-

proach through interviews with musicologists and music

editors who have used the tools. We conclude by consider-

ing extensions of this approach and the wider implications

for digital musicology and MIR.

2. MUSICOLOGISTS AS DIGITAL

RESEARCHERS

Most Information Retrieval implementations are optimised

from the perspective of a ‘whole’ or ‘complete’ corpus,

produced by some prior acts of digitisation, being interro-

gated by a user motivated by a single, explicit information

need. This approach facilitates the optimisation of retrieval

tool engineering, since the elements of the system are

well known, and the quality of tools can be transparently
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quantified, assessed, evaluated, and compared. Meanwhile

Bates’s model of berry picking [1] is based on the observa-

tion that information needs often develop during the user’s

interactions with a system, as a part of a research process

that takes new findings into account in the search. Dif-

ferent information-seeking strategies and their modes of

search and scope of application (whether based on con-

tent, features or metadata) are further teased out by Weigl

et al [2]. While this does not replace or reject the engineer-

ing of MIR tools based on concrete requirements, design,

and evaluation, it does suggest we should consider such

tools being recomposed as components within a multitude

of individualised workflows – where the overall object of

the composite workflow cannot be determined a priori. We

reflect that this is especially true when MIR tools are used

as a means to undertake curiosity-driven research, as they

often are in support of digital musicology.

A similar pattern is identified for data as well as tools.

Fenlon et al. [3] note the role of selecting and gathering

data in the research process so that, as the investigation

evolves, so may the subset of the corpus being studied.

More recently, Oberbichler et al. [4] have observed that the

separation between the management of digital materials

and their analysis is less clear for humanities scholarship.

They note that the clarity and separation of workflows and

responsibilities in digitising, organising, and interrogating

collections that make for efficient, maintainable solutions

may be problematic in these domains.

For notated music, where data entry remains expensive

in terms of time and effort, separating between digitisa-

tion, digital editing, metadata organisation, and research

can mean that much musical heritage is ruled out from

digital research, as digital editors become unwitting gate-

keepers of our history. This can have the effect of chan-

nelling research into canonical composers and works, and

diverting it from less-well-represented areas and niche and

regional music [5]. The lack of encoded corpora appropri-

ate to their research has long been identified as an impor-

tant problem for musicologists [6, 7]. Although it is true

that these issues could be addressed by comprehensive and

complete mass digitisation and encoding, in the absence of

this, an alternative strategy may be required.

We have seen that berry picking can be extended to ac-

cept that the research process involves partial and chang-

ing research questions, and even that during the investi-

gation, the researcher may add to, correct or enrich the

metadata [2]. An alternative interaction model might ex-

tend berry picking to acknowledge that this is true for the

data itself. Clearly, this may pose problems for statisti-

cal evaluation of IR tools, and necessitates consideration

of alternative approaches to system and workflow design.

Nonetheless we can demonstrate that it is a mode of use

aligned with the needs – and limited resources – of digital

musicologists.

Given limited resources, we cannot assume that a sin-

gle scholar, or even a funded research project, can tran-

scribe the complete corpus of music that might be relevant

to their investigations – including any comparison or con-

trol groups – prior to research commencing, and even pro-

ducing a complete digitisation by the end of their investi-

gations may prove impractical. Creating an expectation of

the prior existence of these primary objects of study may

feed the sense of “disconnect between this research strand

and musicological users’ needs and requirements” identi-

fied by Inskip and Wiering [8]. A better approach would

accommodate images or partial editions – transcriptions of

only a few bars or one instrumental part – created incre-

mentally as the research progresses.

Many of the basic tools that already exist could be

made to accommodate this approach well, indeed the ex-

tra information that may be available in a digital envi-

ronment at a later research stage may help them, sup-

porting a bootstrapping approach to training or parame-

ter tuning. Without musicologist-facing, high-level tools

built on these, researchers are more likely to resort to less

machine-accessible approaches, such as pen and paper or

local spreadsheets.

In this paper we explore this interaction model through

a set of prototypes. In the next section, we describe a

workflow and tooling designed to support musicological

research in previously digitally unavailable music, and dis-

cuss how an incremental approach can be supported, be-

fore evaluating the approach in subsequent sections.

3. SUPPORTING RESEARCH WITH

INCREMENTAL AND INCOMPLETE CORPORA

Musicology, and indeed research more broadly, may in-

volve many activities and strategies, whose selection will

be informed both by research topic (see [2]) and the stage

at which the research stands. For example, a researcher

may start with a literature exploration, then start reviewing

music scores through a catalogue, selecting a set of poten-

tial subjects to look at more closely and then focus down

later. The researcher may scan through the scores, select-

ing works or passages for further consideration, and reject-

ing others. This might be followed by closer engagement

with the chosen texts, often relating them to extra-musical

information. Finally, their investigations will be written up

formally.

Teasing apart the steps of this example, and when they

are most likely to happen in a research life cycle, we can

see the following:

1. Literature exploration (early phase)

2. Catalogue exploration (early phase)

3. Workset selection (early phase)

4. Content exploration (mid phase)

5. Content analysis (mid phase)

6. Connecting music with extra-musical material (mid

phase)

7. Visualisation and reporting (end phase)

This is not intended as a complete catalogue of re-

search steps, but illustrates common components, and

helps ground our observations. Each of these steps will

decompose into tasks that may or may not be carried out
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Phase Step Example activity Example tools and media

Early

1. Literature exploration Makes up-to-date literature survey RILM, JSTOR
Google Scholar
Physical browsing

2. Catalogue exploration Explores the repertory; identifies a superset for more attention Library catalogues
RISM
IMSLP, CPDL
Physical browsing

3. Workset selection Looks at the music, scans through scores to identify works or
passages for detailed consideration

RISM
IMSLP, CPDL
Specialised corpora
Physical sources
Image digitisation

Mid

4. Content exploration Close reading of scores, identifying distinctive parameters that
support an emerging thesis

OMR
Measure detection
Sonic visualiser
Piano

5. Content analysis Lists spacing and instrumentation of chords at cadences Humdrum toolkit
Music21
Sonic visualiser
Spreadsheet
Paper

6. Making Connections Associates particular orchestration approaches with review and
theory texts

Spreadsheet
Paper

End 7. Visualisation & reporting Writes and publishes a journal article Journal, Published edition
Recording, Dataset

Table 1. A typical set of steps in a research lifecycle, with example activities and tools. Although this appears as a list,

scholars may jump between these, or pursue several at the same time. The Beethoven in the House Annotator supports

stages 4 and 5, producing data suitable for stage 7.

in a digital environment, and although broadly sequential,

a musicologist may jump backwards at any point to sup-

plement the data they already have. To support such flex-

ible research patterns, we believe it is important to create

an ecosystem of tools that read or write compatible data,

facilitating researcher-directed methodologies for tool se-

lection and task ordering.

4. THE BEETHOVEN IN THE HOUSE

ANNOTATOR: A TOOL SUPPORTING MID PHASE

RESEARCH

To investigate the feasibility of an ‘incremental’ interaction

model with MIR tools, we have developed a tool to sup-

port an active musicological investigation which also em-

bodies the ‘mid phase’ of the research life cycle described

above, focussing particularly on steps 4 and 5. The tool’s

main purpose is to bring together digitised resources in the

form of images and digital scores, and allow a musicolo-

gist to view them in a browser, selecting specific extracts

for study and then annotating those with scholarly com-

mentary. The resulting annotations are stored, and can be

shared and published, including references to the pertinent

selections from the digital music resources.

A user entering the Beethoven in the House Anno-

tator first selects items to explore in a ‘library’ view –

a listing which displays metadata about available musical

works, their arrangements and digital resources available.

Because the annotator is designed to handle comparisons

of the same passage of music as it is realised in different

versions, the selected resources are displayed one above

another to aid analysis.

Once works are selected and loaded into the display

pane, a musicologist can point and click on individual

notes and measures, or click and drag to select larger re-

gions, whether the resource is a facsimile image or a ren-

dered score encoding. Individual selections can be anno-

tated, but also parallel passages in different versions of a

work (‘Musical Material’) can be identified (figure 1, left),

and these structures themselves annotated (figure 1, right).

Previous annotations can also be viewed and themselves

annotated. Thus, the tool can be used for quick browsing

or juxtaposition of music and metadata and for detailed la-

belling of the content.

The Beethoven in the House Annotator is built as a

web application, and implemented as a MELD (Music En-

coding and Linked Data) application [9] 1 . As a baseline

provision we assume the materials underpinning the mu-

sicologist’s investigation are available in image form via

IIIF 2 as welll as digital MEI scores when these are avail-

able. We further assume that the musicologist has the tools

and skills to optionally transcribe whole pieces or extracts

and save or convert them as MEI (this can be carried out

using music typesetting packages such as Sibelius or Mus-

1 More precisely, we use data models and the graph traversal library
from MELD, with Vue-based application code.

2 The International Image Interoperability Framework provides for
standardised image delivery through APIs for content and presentation.
Although increasingly widespread in use by research collections in par-
ticular, it is not yet comprehensively adopted. For the purposes of our
research project, required digitized images were provisioned via a local
(private) IIIF server where they were not already available over IIIF from
the holding collection.
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Figure 1. Two screenshots from the Beethoven in the House Annotator. Left: ‘Musical material’ – Parallel passages

recorded as occurring in two different arrangements of Beethoven’s Wellington’s Sieg (Op. 91). Selections need not

be contiguous or limited to a single part. The upper version here has been retrieved from an MEI file and is displayed

using Verovio. The lower version is from a IIIF file for which measure locations have been separately detected using the

Cartographer tool and stored, along with links to the image, in an otherwise minimal MEI file. Right: The annotation

view, showing an observation recorded about the musical material shown left. In both cases, structures are saved to the

musicologists personal Solid pod, with their login shown upper right.

eScore with the help of plugins).

We also assume the prior existence of well-formed and

self-describing catalogue metadata, and we base our pro-

totype on the Linked Open Data published by the Gemein-

same Normdatei (GND) of the Deutsche Nationalbiblio-

thek. We do this with the intention that these could in fu-

ture be loaded directly where records exist. 3

Direct image annotation is possible within our tool.

The musicologist may prefer to use a labour-saving mea-

sure detection tool, such as Cartographer 4 or MEI Friend

[10], both of which can output MEI with empty measures

and image co-ordinates, and which have been successfully

tested with our tool. When provided with MEI and IIIF

resources such as these, our annotation tool allows the re-

searcher to annotate the image measure by measure – giv-

ing a semantically-richer anchor for the annotation with

relatively low input of manual intervention (see the lower

pane in figure 1, left). If the researcher needs a finer level

of annotation, then they may fill in additional music nota-

tion in the MEI, and can indicate the selective nature of the

encoding in the MEI header, a process supported by tools

such as MEI Friend.

Our application supports textual Web Annotations [11]

made onto conceptually abstracted musical extracts rather

than directly onto elements or regions of the image or en-

coding, allowing parallel material occurring in different ar-

rangements of a work to be annotated together and, at a

more basic level, allowing the model to remain agnostic

to the different types of media used as evidence (figure 1,

right, illustrates an example of an annotation on a passage

that has been identified in two arrangements, in one case

using the MEI transcript, and in the other a IIIF image af-

ter a process of measure detection). This uses the Music

3 In practice, the GND is not currently usable for client-side applica-
tions due to access control headers. This would still allow the use of a
server-cached version of the data. Where other metadata is needed, we
draw on the WikiData model.

4 https://cartographer-app.zenmem.de

Annotation Ontology described by Lewis et al [12].

In order to promote data sharing between tools rather

than a single monolithic application, user data is stored

as Linked Data in Solid Pods [13], distributed online data

storage with fine-grained access control, and for which the

user can choose provider. This provides a simple mecha-

nism for data portability between applications, given com-

patible data structures. The structures written can refer to

resources anywhere on the web, and traversal carried out

by the MELD library will draw them into the application.

In summary, the Beethoven in the House Annotator

described above supports our proposed workflow in sev-

eral ways. Firstly, it is conceived as part of a pipeline of

tools publishing compatible Linked Data and MEI, and is

already interoperable with existing tools. Secondly, it is

intended to provide a low barrier for including evidence

materials, allowing the use of any web-published IIIF im-

ages, complete or partial MEI files, and GND metadata

rather than requiring extensive data entry and local servers.

Thirdly, it supports the sharing of source data and meta-

data, along with intermediate observations, within a re-

search team. Finally, as currently implemented, annota-

tions are minimally structured. This supports an evolving

research agenda, trading expressiveness against semantic

structures.

5. EVALUATING THE BEETHOVEN IN THE

HOUSE ANNOTATOR AND ITS WIDER

APPLICATION

Whilst the tool’s internal development was aimed at satis-

fying researcher needs within our own project, two rounds

of wider evaluation were carried out, timed to coincide

with two phases of application development. These eval-

uation rounds were carried out as semi-structured inter-

views following shortly after a combination of a presen-

tation about the Annotator and period of time freely ex-
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ploring its functionality over a pre-loaded musical library.

In the first round interviews were conducted with musicol-

ogists recruited via a Studienkolleg (summer school) lo-

cated at Beethoven Haus, Bonn, in September 2022. In

the second round in March 2023, volunteers from staff at

the Beethoven Haus were interviewed. In the first round,

we interviewed 9 scholars, and 7 in the second round, of

whom 2 had previously been interviewed. This allowed us

to assess progress with new and returning users.

5.1 Workflow as data pipeline, low barriers for

evidence gathering

The application was regarded by all interviewees as use-

ful in the context of larger musicological research projects

and editorial work. Since our interviewees were musicol-

ogists and editors rather than engineers and, since we did

not demonstrate or present any tools for other steps in the

process, this support is based primarily on the interviewer’s

description of the intended wider context for the app rather

than concrete experience. Interviewees did raise important

concerns regarding the workflow itself, and these are dis-

cussed in 5.5 below, and as further work.

5.2 Sharing of evidence and findings

Users that we spoke to were strongly attracted both by

the idea of sharing data and annotations and the option of

keeping these private or controlling access – either dur-

ing the research process or separating draft and publish-

able work. They immediately identified the equivalence

of this approach to paper based methods of publication

and regarded using publicly shared annotations as “similar

to quoting published books”, although there are concerns

about how to verify and attest its quality. It is clear that

these features would be easier to realise given user inter-

faces optimised for these tasks, since the default manage-

ment interfaces of Solid providers, our principle medium

for publication, generally present usability barriers to new-

comers. Nonetheless, one user evaluates that the applica-

tion has the potential to “bring everything together in a

way I haven’t experienced before” in terms of gathering

and sharing knowledge about musical works. This would

support the “Nachprüfbarkeit”, or verifiability (literally re-

viewability) of a conclusion by collecting the evidence in

a single place.

Although musicology can appear – at least from its out-

puts – as the activity of lone scholars, sharing between

scholars in an informal way is common, as is the use of stu-

dent assistance, both of which can benefit from controlled

data sharing. Certainly, several participants were explic-

itly open to a wider set of contributors, one noting that,

depending on the quality of the community, “more knowl-

edge can be obtained”. Beyond this, other musicological

use cases identified by participants are more commonly

team or group activities, such as scholarly music editing

or pedagogical uses, with sharing either between teacher

and student or between students within a class.

This sharing approach is well supported for our own

Linked Data structures, but there are concerns with the

boundaries of that sharing. For example, a Linked Data

structure that is publicly shared could annotate a part of an

image or score that is not itself publicly available (perhaps

for copyright reasons). This would not render the informa-

tion in the Linked Data unusable, and the URI itself would

remain uniquely identifiable, but for some uses would be-

come unavailable. There is no clear way to deduce that one

identified element in an MEI file occurs earlier in the piece

than another purely from the URI since these semantics are

located in the MEI score. Our use of the Music Annotation

Ontology brings more aspects of musical selection into the

Linked Data domain, but we do not attempt to export mu-

sical meaning encoded in MEI into RDF.

5.3 Minimally-structured annotations

The open nature of the annotations and the Beethoven in

the House Annotator more generally was very clearly im-

portant in allowing the musicologists to identify a wide

range of contexts in which it would be useful to them.

These covered the full range from studying stages in

the development of a particular music edition (“Platten-

stadien”), systematic musicology, historical approaches,

philology and pedagogy. Participants also identified the

ease of linking material, both music and annotation ma-

terial, which is evidence that our low structure approach

may have reduced barriers to use. Beyond this (sometimes

implicit) validation of our approach, participants identified

some structures in annotations to support navigation and

discovery.

In the Beethoven in the House Annotator, annota-

tions are edited and viewed separately from the score view.

In our first version, this view was purely textual, mak-

ing them harder to navigate, and placing a strong reliance

on user-provided labels. Adding musical previews for the

second version enhanced findability, but multiple partic-

ipants noted that an informal taxonomic labelling, such

as tags, would enhance this – especially where annota-

tions are shared between users. Data currently available

to the application includes metadata and musical locations

(where annotations are made on transcribed sources or im-

ages on which measure detection has been run). These are

not currently used in the annotation listings, but could be,

allowing the navigation by measure and source requested

by several participants.

5.4 Application-specific responses

The Beethoven in the House Annotator builds on rich un-

derlying data models and a complex range of data sources

and technologies. An aspect that emerged from the inter-

views is that the terms chosen for defining key elements

in the model did not translate well when designing a user

interface. Most users had difficulty navigating the appli-

cation because their expectations about the terms used did

not match with the meaning given to them in the context

of the model. Although the learning curve can be con-

quered, the interviewees expressed that substituting and

simplifying the language (in certain cases, hiding struc-

tures) would be more beneficial to a quick acclimation into
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the application. Although the general-purpose nature of

the tool makes the choice of task-specific language dif-

ficult, use of clear domain-specific and task-appropriate

terms would have been better received by the musicolo-

gists and required less detailed briefing.

Although the functionality of the Beethoven in the

House Annotator is distinctive in ways that were recog-

nised and appreciated, those participants who have worked

with comparable applications commented on affordances

that they missed from the other tools. In particular, famil-

iarity with EDIROM tools left some participants missing

the more advanced navigation system, with, for example,

jumping to measure numbers.

5.5 The workflow outside the application

Our workflow acknowledges the poverty of encoded scores

but does not, currently, accommodate the lack of digitised

images. These, too, have been created according to partic-

ular priorities, which may not reflect those of researchers.

Libraries and archives must weigh up rarity, value, ap-

pearance, physical condition, use and public impact among

many other factors when deciding their digitisation policy.

Interviewees expressed particular concern for sources lo-

cated in institutions for whom the burden posed by digiti-

sation in the first place and publication as IIIF in the second

is too great, while private collectors may have no desire to

engage in digitisation at all. Even following the suggestion

of one interviewee, and supporting user upload of static

images – whether to their own Solid Pods, or some pub-

lic IIIF server operating for the common good – could fall

foul of institutional restrictions. This may indicate a need

to point our structures at musical regions even where no

digital proxy exists at all, something which would require

a semantic representation of musical location. Although

some progress has been made towards such a representa-

tion (see, for example, [14]), further modelling is needed

to make a robust system.

Similarly, interviewees speculated about how additions

are made to the library that the application presents. Cur-

rently, we have no application to support the selection of

items from a published catalogue to create and operate on

a selected workset (steps 2 and 3 in table 1) or the discov-

ery and data transformation this would require. This has

not been the focus of the current research, but it does mean

that we have relied on some manual technical interventions

that would be unsuitable for the sort of musicologists we

target here.

6. CONCLUSIONS AND FURTHER WORK

The research workflow we describe here is one in which

a scholar adds and edits data and metadata, and in which

research priorities develop throughout. We assert this is ex-

presses, albeit schematically, a common approach in mu-

sicological research. Rather than trying to create tools to

manage the whole process, we have advocated for smaller

tools that can comfortably handle mixed, incomplete and

partial data, and accumulate results in a way that is data-

compatible with other applications and IR tools that the

researcher might use.

The musicologists interviewed identified a range of

contexts for the Beethoven in the House Annotator. That

these went not only beyond our design for it, but also be-

yond its capabilities provides evidence of the need for and

dearth of tools that support such activities and the diversity

of approaches that can and should be considered.

Our interviews also point clearly to further work, with

early-phase support – in the form of digitisation, search

and retrieval, and workset gathering – being priorities that

would help researchers prepare their materials for use with

mid phase applications such as our own. Candidates for

components of such tooling, such as Cartographer, but also

Sonic Annotator and MEI Friend, often already exist, and

often have elements that directly support their role in an

ecosystem of tools, particularly in terms of data compati-

bility, but are often seen either as entirely standalone tools

or built into workflows in task-specific ways that are not

generalised.

Our investigation demonstrates that the workflow into

which the Beethoven in the House Annotator fits is

recognised and valued by musicologists. The flexibility

of the annotator tool, in terms of data and functionality,

presents many opportunities in support of musicological

research. Importantly, we show that it supports or replaces

activities currently taking place in forms – such as Word

documents, spreadsheets or on paper – that provide few

opportunities for scholars to take advantage of either MIR

tools in data analysis on the one hand or digital trans-

parency and sharing of results on the other. Thus, it is

recognised as going beyond reproducing existing methods,

by enhancing and extending them.
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ABSTRACT

This paper presents a comprehensive investigation of ex-
isting feature extraction tools for symbolic music and con-
trasts their performance to determine the set of features that
best characterizes the musical style of a given music score.
In this regard, we propose a novel feature extraction tool,
named musif, and evaluate its efficacy on various reper-
toires and file formats, including MIDI, MusicXML, and
**kern. Musif approximates existing tools such as jSym-
bolic and music21 in terms of computational efficiency
while attempting to enhance the usability for custom fea-
ture development. The proposed tool also enhances classifi-
cation accuracy when combined with other sets of features.
We demonstrate the contribution of each set of features and
the computational resources they require. Our findings in-
dicate that the optimal tool for feature extraction is a combi-
nation of the best features from each tool rather than those
of a single one. To facilitate future research in music infor-
mation retrieval, we release the source code of the tool and
benchmarks.

1. INTRODUCTION

Feature extraction is a pivotal task in contemporary ma-
chine learning. Music features can be categorized into
two main types: symbolic and audio. While audio fea-
tures have been subject to extensive research, computa-
tional techniques for symbolic music remain comparatively
underexplored.

In recent years, there has been an increasing interest
in analyzing symbolic scores in music. This encompasses
studies on composer [1] and style recognition [2], affec-
tive computing [3], music generation [4], analysis of perfor-
mance [5], and interpretation [6]. The symbolic dimension
of music concerns the conceptual representation of musi-
cal data [7]. This level has been used in the field of Mu-
sic Information Retrieval (MIR), with particularly success-

© F. Simonetta, A. Llorens, M. Serrano, E. García-
Portugués, and Á. Torrente. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: F. Si-
monetta, A. Llorens, M. Serrano, E. García-Portugués, and Á. Torrente,
“Optimizing Feature Extraction for Symbolic Music”, in Proc. of the

24th Int. Society for Music Information Retrieval Conf., Milan, Italy,
2023.

ful outcomes when employed to support multimodal ap-
proaches [8], which integrate both audio and symbolic lev-
els through audio-to-score alignment techniques [9]. The
symbolic level is also crucial for musicologists, as mu-
sic scores are the most common source for historical mu-
sic studies. Musicologists rely on computational tools to
extract and analyze musical scores on a large scale [10,
11]. However, traditional manual annotations, such as har-
mony [12] and cadence [13], are time-consuming and prone
to errors. Therefore, computational tools are essential for
efficient and accurate musicological analysis. Presently,
two primary tools are available for extracting features from
symbolic music: jSymbolic [14] and music21 [15]. Al-
though both tools are open-source and widely employed,
no comprehensive comparison between them has been con-
ducted yet.

In this paper, we propose a novel set of features that is
specifically, although not exclusively, tailored for the anal-
ysis of 18th-century Italian opera. We have developed a
tool for extracting these features, named musif, that is be-
ing used for the analysis of operatic music in the Didone
project 1 [16]. Here, we conduct a comparative study be-
tween musif and other existing tools, thus providing valu-
able insights into the strengths and weaknesses of each of
them. Additionally, we evaluate the efficiency of each tool
and demonstrate that musif adds useful features to both
music21 and jSymbolic. We observe that, in most cases,
a combination of features from multiple tools yields the
most powerful feature set. To validate our findings, we
test all three tools on various repertoires. We aim to com-
pare the feature sets on file formats with varying levels
of representation abilities, such as MIDI, MusicXML, and
**kern. While MIDI is widespread in computational stud-
ies, it is relatively simplistic for written music; MusicXML
and **kern, instead, are less commonly utilized in MIR but
provide more accurate representations when dealing with
music scores.

The main contributions of this paper are, therefore,
threefold. Firstly, we present a new set of features designed
for the study of an under-represented repertoire in music
computing literature, i.e., 18th-century Italian opera. Sec-
ondly, we introduce musif, a new efficient, extensible, and
open-source Python tool for feature extraction from sym-
bolic music. Finally, we provide a benchmark of music21,

1 https://didone.eu
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jSymbolic, and musif on a variety of repertoires and file
formats.

The whole code used for this study, as well
as the code used for the proposed tool, is avail-
able at https://github.com/DIDONEproject/

music_symbolic_features/.

2. FEATURE EXTRACTION TOOLS

In this study, we compare three tools for feature extraction
from symbolic music: jSymbolic [14], music21 [15], and
musif. Other tools such as Humdrum 2 may be used for
feature extraction, but they would require a larger effort for
assembling different features from various toolkits and or-
ganizing them in a usable tabular format. We will describe
each one in detail in the following subsections.

2.1 jSymbolic

The jSymbolic tool was initially introduced in 2006 [17]
and subsequently updated in 2018 [14]. It is an open-
source, Java-based software designed to extract features
from both MIDI and MEI files. The latest iteration of jSym-
bolic is capable of extracting 246 distinct features, some
of which are multidimensional and account for a total of
1022 values. However, the actual number of extracted fea-
tures may vary depending on the user’s configuration and
the musical composition itself. jSymbolic features relate
to pitch statistics, melodic intervals, chords and vertical in-
tervals, rhythm, instrumentation, texture, and dynamics. In
addition to these features, jSymbolic is capable of comput-
ing certain characteristics that are not readily available in
MIDI files. To achieve this, jSymbolic utilizes the MEI file
format to determine the number of slurs and grace notes in
a given piece. While MEI and other high-informative file
formats offer additional features such as pitch names, har-
monic analysis, and written dynamic or agogic indications,
jSymbolic does not take these into consideration.

The jSymbolic software provides users with the flexibil-
ity to customize configurations and features, facilitating the
integration of previously existing feature values into newer
features. Furthermore, users can extract windowed features
by specifying window size and overlap in seconds. jSym-
bolic does not provide pre-built methods for parallel pro-
cessing of large corpora, thereby requiring the user to im-
plement a suitable strategy. Lastly, jSymbolic provides out-
put options in both CSV and Weka’s ARFF format.

The software is accessible as a self-contained program
featuring a Graphical User Interface (GUI) and a Command
Line Interface (CLI), as well as as a Java library.

2.2 music21

music21 is a Python toolkit designed for computational mu-
sic analysis, which was first introduced in 2010 [18]. One
of its remarkable features is the capability to parse a wide
range of file formats, including MIDI, MusicXML, **kern,
ABC, and various others. The music information is rep-
resented in an object-oriented hierarchical structure that is

2 https://github.com/humdrum-tools/

humdrum-tools

aimed at facilitating the development of novel tools.
After its initial academic publication, music21 was fur-

ther developed with a set of features presented in 2011 [15].
The latest version of music21 includes 69 features intro-
duced by jSymbolic, as well as 20 characteristics computed
using the information parsed from high-informative file for-
mats. These characteristics are related to key, cadence, har-
mony, and lyrics. Regardless of the input file format, mu-
sic21 consistently outputs 633 features. However, the num-
ber of extracted features may vary since some features are
zeroed out when they are not computable.

music21 is a Python module that lacks a CLI or a GUI.
It does not have a configuration format; rather, it offers a
broad range of methods for developing custom pipelines
for different types of music information processing. These
methods encompass the creation of new features and some
automated high-level inference of music characteristics,
such as key [19], as well as tools for windowed analysis.

One disadvantage of music21 is that large music scores
may result in deeply nested Python objects with numerous
non-picklable attributes attached. This makes the program-
ming process challenging, particularly due to the difficulty
of saving these objects to a file.

In this study, we have developed a CLI for utilizing mu-
sic21 feature extraction tools in a manner comparable to
musif. This implementation facilitates parallel processing
by distributing the extraction of features across numerous
files simultaneously.

2.3 musif

Our software is named musif [20]. It is implemented in
Python and built upon the music21 library, and offers an
Application Programming Interface (API) with no default
settings of significance and a CLI with default settings op-
timized for most common use cases.

We leverage music21’s internal representation, enabling
us to extract features from any file format supported by mu-
sic21. musif is highly customizable and allows users to add
custom features as required. After creating the internal rep-
resentation of the musical score using music21, we extract
multiple features and store them in pandas dataframes.
This facilitates exporting results in various formats, mak-
ing musif easily integrable into diverse pipelines.

One limitation of music21 is its restricted ability to seri-
alize complex and large music scores. This restriction also
affects the possibility of parallel processing, as Python’s
single-thread approach necessitates parallelization via pro-
cesses, which in turn requires context copying and data se-
rialization. Furthermore, parsing large XML files is one of
the slowest steps in the feature extraction process. To op-
timize this procedure, a more favorable strategy would be
to store the parsed XML files’ logical structure on disk as
a cache. We have thus implemented a caching system ca-
pable of caching and serializing any music21 object. A re-
striction to note about the caching system is that the cached
scores are read-only. However, this feature enables the writ-
ing of parsed scores onto disk and caching of the output
from resource-intensive music21 functions into memory.

musif can extract harmony-related features by utiliz-
ing standardized harmonic analyses annotated in the Mus-
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Table 1. Computational efficiency of the three feature extraction tools. Each run was repeated twice and the second run
times are indicated between parentheses.

File format Tool Avg CPU Time (s) Avg Real Time (s) Avg RAM (GB) Max RAM (GB) Tot. errored files Tot. files

MIDI

musif 66.30 (13.30) 5.62 (1.14) 9.10 (10.1) 14.2 (19.6) 1
16734music21 55.3 (55.2) 4.72 (4.71) 7.12 (7.12) 9.87 (9.94) 0

jSymbolic 2.20 (2.20) 1.98 (1.97) 7.97 (7.14) 16.1 (11.7) 14

MusicXML
musif 15.4 (6.63) 1.32 (0.57) 5.87 (5.12) 12 (10.1) 4

14712
music21 10.8 (10.8) 0.91 (0.91) 4.30 (4.33) 5.68 (5.55) 0

**kern
musif 26 (13.1) 2.26 (1.14) 5.20 (4.14) 5.60 (4.92) 0

472
music21 14.0 (14.1) 1.21 (1.21) 3.08 (3.04) 4.12 (4.18) 0

eScore file format [12, 13]. Besides, it encompasses a wide
range of features, including melodic intervals, harmony, dy-
namics, tempo, density and texture, lyrics, instrumentation,
scoring, and key. Notably, dynamics and tempo are deter-
mined by the composer’s text notation rather than by MIDI
parameters. Furthermore, our implementation includes all
features provided by music21 with the exception of 14 fea-
tures that utilized the caching system in writing mode. The
number of extracted features depends on the complexity of
the score and is influenced by both the number of parts and
musif’s compatibility with the encoding.

NaN values are used to represent non-computable fea-
tures in a score. For example, when processing datasets
with varying instrumentations, some features may not be
available for all scores. These values can be replaced with a
default value (e.g., 0) or removed from the corpus by delet-
ing either the score or the related feature. In the CLI, we
have implemented a heuristic to determine whether a score
should be removed from the extracted corpus if it contains
too many NaNs. Specifically, we define r as the ratio be-
tween the number of columns without NaN and the total
number of rows in the output table. If r < 0.1, we compute
ni, which is the number of NaNs in the ith row. We remove
rows with ni greater than 1

0.99
q0.99, where q0.99 is the 99%

quantile of {n1, n2, . . .}, indicating that 99% of rows are
not deleted. The factor 1

0.99
can be better understood as di-

viding the Q0.99 by 99, thus obtaining an estimate of Q0.01,
and multiplying it by 100, thus obtaining the expected value
of Q1.00 based on the first 99% of the data. Put differently,
it computes the maximum ni that we expect if the remain-
ing 1% of rows has a number of NaN “similar” to the pre-
vious 99%. Larger values are thus considered outliers. This
method was empirically tested on the corpuses used in this
work (see Section 3), revealing that only a few scores were
generally removed while most lines of the output table were
retained. In case a score is not deleted, the CLI removes
from the tale the features that are NaN in that score.

musif also incorporates a post-processing module that
facilitates the removal, merging, or substitution of values
in specific columns or groups of columns within the ex-
tracted data. This functionality proves especially advanta-
geous when dealing with large tables generated by musif
from a substantial set of scores, as it minimizes the compu-
tational effort required for processing such tables.

Like the other tools, we have implemented the capabil-
ity to extract features at a window level. However, unlike
jSymbolic, in our implementation, the window length is
specified in musically relevant units such as score measures
rather than seconds. This provides more pertinent informa-

tion for processing music scores.
In contrast to other tools, our solution provides an out-

of-the-box capability for processing large corpora through
parallel processing, resulting in a reduction of the required
time.

The design principles and the features included in musif
were presented in a previous publication [20]. The code and
documentation of musif is available online 3 .

3. BENCHMARKING METHODOLOGY

To assess the performance of musif in comparison to other
tools, we devised a benchmarking methodology. Initially,
we identified several datasets that enable testing of diverse
file formats. Subsequently, we developed a standardized
protocol based on an AutoML pipeline [21]. We evaluated
the computational resources utilized by each tool during ex-
traction and their respective efficacy in various classifica-
tion tasks.

3.1 Datasets

We selected five datasets to evaluate the performance of the
tools in analyzing both Standard MIDI Files (SMFs) and
highly informative music score formats. For MIDI analy-
sis, we aimed to test both music scores and performances.
As for highly informative file formats for music scores, we
chose MusicXML and **kern due to their popularity, avail-
ability of large datasets, various conversion tools, and com-
patibility with common music score editing software such
as Finale, Sibelius, and MuseScore. While MEI was con-
sidered as an option, the limited availability of datasets in
this format led us to leave it for future studies.

In this study, we considered the following datasets:
• ASAP [22]: This dataset contains music performances

derived from the Maestro dataset [23] and is synchro-
nized with a corresponding score obtained from the Mus-
eScore’s crowd-sourced online library. The dataset com-
prises 222 music scores in MusicXML and MIDI for-
mats, as well as 1068 music performances in MIDI for-
mat. The authors have rectified any significant notation
errors found in the music scores. We used this dataset for
composer recognition based on music scores and music
performances.

• EWLD [24]: It contains lead sheets obtained from Wik-
ifonia, a crowd-sourced archive. To reduce errors in mu-
sic score transcription by inexperienced users, the au-
thors applied algorithmic selection criteria to the dataset.
3 https://github.com/DIDONEproject/musif,

https://musif.didone.eu
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Table 2. Resulting task size for each dataset and feature set.
Features

musif music21Extension Dataset Classification task Samples Classes
musif musif native music21 music21 native

jSymbolic

ASAP performances Composer 211 10 710 91 633 602 225
ASAP scores Composer 211 7 710 91 633 602 225

EWLD Genre 2645 11 710 91 633 602 225
JLR Attribution 109 3 732 113 633 602 226

Quartets Composer 363 3 1593 974 633 602 225

MIDI

Didone Decade 1622 8 745 126 633 602 225
ASAP scores Composer 211 7 710 91 633 602

EWLD Genre 3197 11 724 105 633 602
JLR Attribution 109 3 739 120 633 602

MusicXML

Didone Decade 1636 8 971 352 633 602
**kern Quartets Composer 363 3 734 115 633 602

Specifically, they retained only scores with simple nota-
tion, without modulations and with a single melodic part.
Moreover, all scores contained key signatures and chords
throughout. The dataset was augmented by incorporat-
ing genre and composer details, as well as the year of
first performance, composer birth and death dates, pre-
cise title, and additional metadata. This was achieved by
cross-referencing the dataset with information sourced
from secondhandsong.com and discogs.com.
We used this dataset for genre recognition.

• Josquin-La Rue [25]: This dataset was created within
the context of the Josquin Research Project and includes
59 Josquin duos and 49 duos by La Rue. The musical
scores underwent a meticulous musicological transcrip-
tion process. Moreover, the music scores were assigned
to two labels based on the security of the attribution,
thus resulting in four labels (Josquin secure, La Rue se-
cure, Josquin not secure, La Rue not secure). The musi-
cal scores are provided in various file formats including
MIDI, MusicXML, **kern, Sibelius, and PDF. We used
this dataset for composer classification in a real-world
attribution problem.

• Quartets [26]: We retrieved a selection of files from the
kern.humdrum.org website, consisting of all avail-
able string quartets in **kern format by Mozart, Haydn,
and Beethoven. While the original sources of these mu-
sical scores are not always declared, the encoding qual-
ity is generally considered to be at a musicological level.
In total, we obtained 363 files. We used this dataset for
composer classification.

• Didone [16]: With the aim of filling an under-studied
repertoire, we curated, analyzed, and transcribed over
1600 arias from 18th-century opera, written by dozens
of composers. The music scores were transcribed into
MusicXML format using Finale Music software and
revised by three musicologists independently. Har-
monic analyses were added by expert musicologists us-
ing MuseScore software in accordance with a prior stan-
dard [12, 13] and were reviewed automatically using the
ms3 tool [27]. We also included various metadata in the
database such as year and place of premiere, composer,
and high-level formal analysis. This database is an ongo-
ing project and will be made freely available in 2024. We
utilized this dataset for classifying the period of compo-
sition of each piece, each period being defined in decades

(i.e., 1720s, 1730s, 1740s, etc.).

3.2 Experimental setup

After selecting the datasets, a standardized protocol was de-
veloped for benchmarking the three aforementioned tools.
The protocol is based on an AutoML pipeline [21] and com-
prises the following steps:
1. Conversion to MIDI: The datasets were selected and

subsequently converted into MIDI format, resulting in
two or three file formats for each dataset: MIDI and
either MusicXML or **kern. This step aims to evalu-
ate the impact of notational file formats, such as Mu-
sicXML or **kern, on classification tasks. Indeed, al-
though MIDI has limited capacity for representing nota-
tional aspects of music, it remains uncertain the extent
to which these aspects can determine the accuracy of
machine-learning algorithms for music symbolic analy-
sis. MusicXML files were converted using MuseScore
3, and **kern files were processed with the Humdrum
toolkit 4 .

2. Feature extraction: Features were extracted from
MIDI, MusicXML, and **kern files using the methods
detailed in Section 2 with default settings and without
the use of windows, resulting in one array of features for
each file. The purpose of this step was to measure the
computational cost of the tools. Therefore, all available
files in the datasets were used to obtain a larger number
of samples and a more accurate estimation of the compu-
tational cost, even if they were discarded in later steps.
For instance, MIDI scores were already provided in the
ASAP dataset; however, we additionally converted them
from the MusicXML files. As a result, we extracted fea-
tures from more files than necessary. We created a CLI
tool in Python for music21 while we utilized the official
CLI tools for jSymbolic and musif. Each file format was
processed individually, resulting in CSV files for each
format. We calculated the average time and RAM us-
age of each tool. Furthermore, CPU time was collected
as a measure of the required time without parallel pro-
cessing. Lastly, we documented the number of files for
which each tool produced errors.

3. AutoML: A state-of-the-art machine learning ap-
proach was employed using the Python module
auto-sklearn [21]. The method utilizes Bayesian

4 See footnote 2 .
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Table 3. Accuracies of AutoML using 10-fold cross-validation on the first ten principal components. The best-performing
tool is underlined. The best-performing combination is shown in bold.

Tools Combinations
Extension Dataset Dummy guessing

musif
musif
native

music21
music21
native

jSymbolic
musif native +
music21 native

musif native +
jSymbolic

music21 native +
jSymbolic

musif native +
music21 native +

jSymbolic
ASAP performances .100 .960 .715 .978 .976 .916 .972 .962 .980 .979

ASAP scores .146 .743 .644 .781 .751 .780 .791 .819 .819 .857
EWLD .091 .201 .157 .212 .204 .257 .219 .245 .242 .259

JLR .344 .700 .642 .779 .751 .722 .711 .751 .742 .741
Quartets .340 .678 .668 .725 .711 .810 .768 .831 .791 .822

MIDI

Didone .125 .359 .362 .403 .380 .443 .414 .451 .479 .462
ASAP scores .171 .773 .669 .759 .745 .785

EWLD .091 .216 .185 .215 .201 .231
JLR .334 .793 .663 .768 .756 .793

MusicXML

Didone .126 .398 .399 .384 .374 .392
**kern Quartets .340 .713 .711 .767 .763 .810

optimization with surrogate models based on random
forests and generates ensembles of models by explor-
ing a vast array of possible architectures. 10-fold cross-
validation was used, and the balanced accuracy averaged
across the test folds was observed. The best-performing
model’s result was used for comparison. To initiate the
AutoML process, a list of valid files for each dataset was
initially defined, discarding those processed in the pre-
vious step but unsuitable for validating the classification
task. Subsequently, files were selected for which all tools
succeeded in extraction, creating comparable datasets for
validation. Finally, classes with a number of samples
less than twice the number of cross-validation splits were
eliminated from each dataset. Consequently, the num-
ber of files and categories used in our study differs from
the numbers officially provided by each dataset. The
classification task performed depended on the dataset, as
shown in Table 2.
We conducted two primary experiments: one utilizing

all of the extracted features and another using only the first
ten principal components. To achieve this, we standardized
the features and applied PCA to obtain the ten first princi-
pal components. The rationale for the latter experiment is
that a larger feature space typically requires a longer Au-
toML optimization process and affects the performance of
the trained classifiers. As the tools extract varying num-
bers of features, this experiment enables a principled com-
parison of the usefulness of the non-redundant information
generated by the different tools by homogenizing the num-
ber of variables in the AutoML process. In other words, it
helps decouple the AutoML optimization capabilities from
the number of features.

Due to the overlap between the features extracted with
musif and those with music21 with jSymbolic, we also an-
alyzed the concatenation of music21, jSymbolic, and our
features. We also observed the performance of musif and
music21 when only the native features were used, i.e. when
musif was utilized without music21 features and when mu-
sic21 was run without jSymbolic features. In the follow-
ing, we denote these feature sets as “native”. We run each
feature extraction and AutoML experiment on a Linux ma-
chine with 32 GB of RAM and an i7-8700 CPU, ending
the AutoML procedure after 30 minutes. We also experi-
mented with longer AutoML processes and more powerful
machines for the first 5 columns of tables 4 and 3, but we
noticed no significant change in accuracy.

4. RESULTS

Table 1 summarizes the comparative computational effi-
ciency of the three tools. It is observed that jSymbolic out-
performs the other tools when no parallel processing is em-
ployed. This can be attributed to the superior performance
of Java language, which facilitates faster I/O operations and
parsing of byte-level structures such as MIDI files. musif’s
caching system significantly reduces the time required for
feature extraction during multiple runs, such as those per-
formed during the development and debugging of newly
added features. For MIDI files, the extraction process can
be accelerated by a factor of five. When comparing the time
needed for extraction, jSymbolic is still faster than musif.
However, our caching system is advantageous when a cache
is available. Regarding MusicXML and **kern files, musif
and music21 use the same parser engine, making their time
values more comparable. In this case, music21 is slightly
faster than musif but also attempts to extract a smaller num-
ber of features. Nevertheless, musif’s the caching system
allows for a 50% reduction in extraction times. The mu-
sic21 tool proves to be the optimal choice when taking into
account RAM utilization.

Table 2 presents the dataset sizes used in our experi-
ments, which are obtained through the protocol detailed in
Section 3.2. The sample sizes vary from 109 to 3197, while
the number of classes ranges from 3 to 11, depending on
the dataset. The music21 feature extraction process pro-
duces a fixed set of 602 native features, supplemented by an
additional 31 features re-implemented from the jSymbolic
feature set. In contrast, jSymbolic consistently extracts a
set of 225 features with minor variations. musif extracts
a variable number of features depending on its ability to
parse different music structures, ranging from 91 to 974 ex-
tracted features. The remaining features extracted by musif
are computed using the music21 feature extraction meth-
ods. It is worth noting that music21 always converts non-
computable features to zero, whereas musif allows users to
assign different values or perform other operations.

Tables 3 and 4 demonstrate the effectiveness of feature
sets in representing significant aspects of music analysis
across various repertoires. The results in Table 4 must be
interpreted with caution due to the longer AutoML process
required by accurate models when using a higher number
of features. Overall, music21 and jSymbolic are effective
tools for extracting features from MIDI files, while musif
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Table 4. Accuracies of AutoML using 10-fold cross-validation on all the extracted features. The best-performing tool is
underlined. The best-performing combination is shown in bold.

Tools Combinations
Extension Dataset Dummy guessing

musif musif native music21 music21 native jSymbolic
musif native +
music21 native

musif native +
jSymbolic

music21 native +
jSymbolic

musif native +
music21 native +

jSymbolic
ASAP performances .100 .983 .839 .983 .984 .985 .983 .985 .990 .988

ASAP scores .146 .843 .626 .877 .887 .886 .911 .898 .912 .937
EWLD .0912 .224 .180 .249 .227 .248 .236 .250 .249 .251

JLR .344 .746 .697 .806 .761 .747 .789 .787 .751 .774
Quartets .340 .828 .771 .843 .813 .901 .843 .896 .880 .904

MIDI

Didone .125 .480 .429 .525 .508 .586 .515 .572 .596 .557
ASAP scores .171 .830 .710 .880 .841 .847

EWLD .091 .251 .200 .266 .253 .245
JLR .334 .797 .704 .815 .806 .750

MusicXML

Didone .126 .510 .504 .527 .516 .535
**kern Quartets .340 .822 .786 .830 .820 .842

Table 5. Accuracies of AutoML. Effect of harmonic features on the Didone dataset.
Extension Harmonic features musif musif native musif native + music21 native musif native + jSymbolic musif native + music21 native + jSymbolic

No .359 .362 .414 .451 .462
MIDI

Yes .380 .372 .398 .452 .465
No .398 .399 .392

First 10 PCs
MusicXML

Yes .385 .406 .409
No .510 .504 .515 .596 .557

MIDI
Yes .507 .437 .518 .575 .560
No .480 .429 .535

All features
MusicXML

Yes .535 .521 .564

shows promising results for MusicXML files, particularly
when utilizing the first ten principal components during val-
idation. This difference in performance can be attributed to
the presence of highly correlated features in musif, a con-
sequence of its granularity. We also evaluated combina-
tions of feature sets and found that optimal performance
is achieved by employing multiple tools. For MIDI files,
jSymbolic is fundamental in achieving model accuracy, but
incorporating musif and music21 generally enhances per-
formance. For MusicXML and **kern files, leveraging
both musif and music21 yields optimal results, especially
when considering the first ten principal components.

When comparing the efficacy of models trained on Mu-
sicXML, **kern, and MIDI files, no discernible pattern
emerges indicating the superiority of highly informative file
formats over SMFs for representing music scores. In fact,
the only instances where the MusicXML files exhibit su-
perior performance are in the Josquin-La Rue dataset and
genre recognition on the EWLD dataset when all features
are utilized. However, for all the remaining tasks, MIDI
files demonstrate superior performance. This is likely due
to the fact that jSymbolic can only extract features from
MIDI files and is simultaneously the most important source
of features for music score analysis. Consequently, in this
study, the MusicXML and **kern datasets lack some rele-
vant features that can be extracted only when converted to
MIDI. Even when comparing only the proposed tool and
music21’s performances, MusicXML and **kern files do
not show a clear advantage over MIDI files, particularly
when considering the combination of both tools. It should
be noted that jSymbolic can extract features from MEI as
well, thus potentially allowing for better performances.

The effect of missing values on tool performance is a
significant concern and may be a contributing factor to
the comparatively lower results for MusicXML and **kern
files. While music21 substitutes all missing values with 0,
musif utilizes a hybrid strategy that entails either removing
a row or column from the table (refer to Section 2). The

most effective method for handling missing values remains
an open issue.

We assessed the impact of harmonic features on the Di-
done dataset using musif. Unfortunately, due to the time-
consuming nature of harmonic annotations, we were un-
able to evaluate these features on the other datasets used
in this study. We annotated our dataset of more than 1600
opera arias using the standard established in previous works
(see Section 2) and extracted melody- and accompaniment-
related features with respect to the local key. The extrac-
tion of harmonic features resulted in 22 additional features
beyond the 126 listed in Table 2 for MIDI files. For Mu-
sicXML files, we extracted 265 additional features, raising
the total number of extracted features to 617. We observed
an overall improvement in classification accuracy when in-
corporating harmonic features, as demonstrated in Table 5.
The only instance where performance was degraded by the
inclusion of harmonic features was for MIDI files when all
the available features were considered (without PCA). We
interpret this degradation as an indication that longer pro-
cessing times are necessary for AutoML when additional,
possibly highly correlated features are introduced.

5. CONCLUSION

This paper presents a comprehensive analysis of tools for
extracting features from symbolic music. A strict protocol
was defined to compare the tools in terms of efficiency and
efficacy across various repertoires and file formats. The re-
sults indicate that using multiple tools is the most effective
approach, with the optimal tool choice depending on the file
format and repertoire.

The study emphasizes the importance of using file for-
mats that are accessible by multiple tools. However, it re-
mains open whether highly informative file formats such as
MusicXML, **kern, or MEI are relevant for the automatic
classification of symbolic scores. The available set of fea-
tures indicates that, while these formats remain fundamen-
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tal for certain types of musicological research, they do not
seem to entail a significant advantage for machine learning
tasks.

The problem of NaN values in extracted features from
music scores remains unresolved. Further research is re-
quired to explore optimal approaches for replacing, remov-
ing, or inferring missing values in music applications.

Additionally, the new musif tool was proposed, which
can process various file formats using the music21 pars-
ing engine. The tool also includes a caching mechanism
to speed up feature development. Moreover, motivated by
the experiments presented in this work, we included the
whole music21 and jSymbolic tools in the newer versions
of musif, easing the extraction of the combined feature sets
from large corpora.
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ABSTRACT

Research in natural language processing has demonstrated

that the quality of generations from trained autoregressive

language models is significantly influenced by the used

sampling strategy. In this study, we investigate the impact

of different sampling techniques on musical qualities such

as diversity and structure. To accomplish this, we train

a high-capacity transformer model on a vast collection of

highly-structured Irish folk melodies and analyze the mu-

sical qualities of the samples generated using distribution

truncation sampling techniques. Specifically, we use nu-

cleus sampling, the recently proposed "typical sampling",

and conventional ancestral sampling. We evaluate the ef-

fect of these sampling strategies in two scenarios: optimal

circumstances with a well-calibrated model and subopti-

mal circumstances where we systematically degrade the

model’s performance. We assess the generated samples

using objective and subjective evaluations. We discover

that probability truncation techniques may restrict diver-

sity and structural patterns in optimal circumstances, but

may also produce more musical samples in suboptimal cir-

cumstances.

1. INTRODUCTION

In recent years, developments in natural language mod-

elling have also accelerated the field of symbolic music

generation. In this context, the musical events of a mu-

sic piece are represented as a sequence of symbols or to-

kens from a fixed vocabulary, and the goal is to learn to

generate new token sequences. At present, the autoregres-

sive transformer model [1] is the basis of many symbolic

music generation models [2–5]. In this context, a con-

ditional distribution is learned by solving a masked self-

prediction task [2–5], and generation is performed with

stochastic sampling techniques, e.g., ancestral sampling, or

maximization-based search techniques, e.g., beam search.

© M. Bjare, S. Lattner, and G. Widmer. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: M. Bjare, S. Lattner, and G. Widmer, “Exploring Sam-

pling Techniques for Generating Melodies with a Transformer Language

Model”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

However, the choice of decoding technique has been

shown to impact various qualitative features of generated

samples substantially. In [6], the authors showed that gen-

eration with nucleus sampling yields natural language sam-

ples that are more contextualized than those from conven-

tional sampling techniques, and samples of nucleus sam-

pling score higher in human evaluations. More recently,

the authors of [7] propose typical sampling and show that

it reduces degenerate sample generation while exhibiting

performance competitive with nucleus sampling. Typical

sampling is based on the authors’ finding that words in hu-

man language are typical. More specifically, the authors

show that most words of human language are, in fact, not

the most likely words (lowest information content (IC)), as

measured with a language model, but rather typical words,

i.e., they have an IC close to the conditional entropy of the

language model. Typical sampling explicitly enforces this

condition.

We hypothesize that a careful choice of sampling tech-

nique could also improve certain aspects of music gener-

ated using language models, particularly because in [8],

it has been shown that musical events tend to be typical.

However, we find that many music generation systems rely

on ordinary sampling techniques. In addition, studies on

the effect of sampling techniques on musical qualities are

limited.

In this work, we study the structural and tonal proper-

ties of music generated with different sampling techniques

applied to a high-capacity transformer model. Specifically,

we measure the IC, long and short-term self-similarities

and scale consistency of samples generated with conven-

tional sampling, nucleus sampling, and typical sampling.

We test the sampling techniques for a well-calibrated

model and for under-calibrated models. We support our

findings by performing a listening study. We conduct our

experiments on The Session dataset [9], a large dataset of

well-structured monophonic music in the established musi-

cal genre of Irish traditional music. We choose this dataset

since we expect it to provide suitable conditions for train-

ing a well-calibrated model. Our findings suggest that trun-

cation techniques can address inadequacies of models that

are not well-fitted to the data.
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2. BACKGROUND AND RELATED WORK

Although maximization-based techniques like beam search

work well for directed language generation tasks 1 (such

as machine translation and summarization), beam search

has been shown to produce dull and repetitive samples for

open-ended language generation tasks 2 [6], an effect that

can be observed in music generation as well [10]. It is,

therefore, more common to use stochastic sampling tech-

niques 3 for open-ended generation tasks. The most ob-

vious method is ancestral sampling, where one token at a

time is sampled based on the predicted distribution, condi-

tioned on the previously generated tokens. However, it has

been shown that truncating the conditional distribution (by

setting the probability of specific tokens to zero, followed

by renormalising), can lead to better sample quality than

the non-truncated variant. An example of distribution trun-

cation is top-k sampling, where all but the k most probable

tokens are zeroed. In [12], the authors showed that top-k

sampling generates more coherent samples than the non-

truncated variant. In [6], it is explained that the quality

improvement of top-k sampling is caused by removing un-

reliably estimated low-probability tokens, and it is found

that top-k sampling mitigates the problem. However, it is

also shown that top-k sampling is sensitive to the distribu-

tion’s entropy (see Section 3.3), making it hard to select a

value of k that fits both high and low certainty conditions.

As a solution, they propose nucleus sampling that assigns

zero probability to the largest set of least probable tokens

that together have a probability below a given threshold.

The authors find that the samples produced using the tech-

nique are preferred by humans over other sampling tech-

niques. Nucleus sampling has been used in music genera-

tion in [13–15], but its effects are difficult to quantify with-

out comparisons to the non-truncated case. Although nu-

cleus sampling mitigates the problem of poorly estimated

low-probability tokens, it does not prevent generating de-

generated repetitive sequences caused by low entropy dis-

tributions (see Section 3). As a solution, in [7], the authors

propose typical sampling and show that this technique pre-

vents degenerated sample generation.

3. ANCESTRAL SAMPLING

Let p (xt|x<t) be the conditional probability of a symbol

xt given previously observed symbols x<t (i.e., the con-

text) and let q be a model fitted to p, e.g., a neural net-

work fitted via likelihood maximization. Given a model

q, ancestral sampling samples one token at a time using

x0 ∼ q(·), x1 ∼ q(·|x0), ..., xt ∼ q(·|x<t).

1 Generation with input sequence conditioning.
2 Generation without input sequence conditioning.
3 In the context of generative models, “sampling techniques” could re-

fer to a multitude of aspects in the generative pipeline (e.g., Gibbs sam-
pling in restricted Boltzmann machines [11]). In our work, “sampling

techniques”, refers to techniques for obtaining samples from a trained
language model.

3.1 Distribution truncation sampling techniques

In distribution truncation, a truncated distribution q̃ is ob-

tained by zeroing the probability of a subset of tokens and

renormalising the resulting distribution. Formally, q̃ is de-

fined by

q̃(xt|x<t) =

{
q(xt|x<t)∑
v∈V

q(v|x<t)
if xt ∈ V

0 otherwise
, (1)

where V is the set of tokens with nonzero probability in

q̃. For the remainder of this article, we use ‘conventional

sampling’ to denote sampling from untruncated distribu-

tions.

3.2 Nucleus sampling

In nucleus sampling, V is defined as the smallest set such

that ∑

v∈V

q(v|x<t) ≥ τ, (2)

where τ is a constant determining the number of tokens to

be removed.

3.3 Typical sampling

In typical sampling [7], V is defined in terms of the token

information content described below.

Definition 3.1 (Conditional information content). The

conditional information content (IC) is given by

IC (xt|x<t) = − log q (xt|x<t). (3)

In computational music perception, IC has been used to

model how surprising a musical event is given the musical

context [16–18].

Definition 3.2 (Conditional entropy). The conditional en-

tropy is the expected conditional information content

H (xt|x<t) = Ext∼q(·|x<t) [IC (xt|x<t)] . (4)

The entropy of a distribution explains how confident a

model is. It ranges from 0 to log n where n is the num-

ber of symbols in the vocabulary, with 0 indicating that the

distribution is deterministic and log n indicating that the

distribution is uniformly random. In typical sampling, the

probabilities of tokens with the highest deviation of infor-

mation from the entropy

|H (xt|x<t)− IC (xt|x<t)| (5)

are set to zero. More precisely, let U = v1, v2, ..., vn be

an ascending ordering of the vocabulary in accordance to

Equation (5). Then V is defined as the smallest prefix of

U such that q(U |x<t) ≥ τ . Equation (5) implies that V
is restricted by a band around the entropy as shown in Fig-

ure 1. Therefore, also the most likely token under q can

have zero probability in q̃. The authors of [7] note that

this property, however, lowers the number of degenerately

repetitive samples, as opposed to nucleus sampling, with-

out degrading preference in human evaluations.
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Figure 1: In typical sampling, a probability band around

the entropy (dark-grey) defines the set V of tokens with

non-zero probabilities in the truncated distribution.

4. EXPERIMENTS

In this section, we describe the setup for both our objective

and subjective experiments, the used data, training details,

degradation scenarios, and generation details, as well as

objective and subjective evaluation.

4.1 Data

Our experiments are performed on monophonic symbolic

music. Specifically, we use the midi-encoded version of

the The Session dataset [9], consisting of 45, 849 tradi-

tional Irish folk tunes originally encoded in ABC notation.

We discard the 5% longest sequences to lower the compu-

tational footprint of the autoregressive transformer model,

and partition the dataset in training, validation, and test sets

with proportions 10/12, 1/12, and 1/12, respectively. All

analyses will be performed on the test set, while our gen-

erative models will be trained and optimized on the train-

ing and validation sets, respectively. The dataset contains

tunes with the same name, corresponding to different ver-

sions of the same tune. We ensure that tunes with the same

name appear in exactly one of the three sets.

We tokenize the sequences using a modified version of

the popular REMI representation [3]. REMI serializes a

score bar-wise from left to right. A bar is serialized as a

sequence of tokens starting with a bar-delimiter token fol-

lowed by a serialization of the notes within that bar. Each

note is serialized as three tokens indicating the onset within

the bar, the pitch and the duration, in that order. The posi-

tion and duration tokens are quantized to 1/12th of a beat.

Contrary to the original REMI implementation, we omit

velocity, tempo change and chord symbols, since these are

not encoded in the original ABC files either. Similar to [4],

we extend the REMI representation with time-signature to-

kens inserted immediately after the bar token. We base our

tokenization implementation on a modified version of the

REMI python implementation in MidiTok [19].

4.2 Training

We train a 21-layered Transformer decoder model [20]

with relative attention [2, 21] in a self-supervised predic-

tion task. We train the model using Adam optimization

[22] with a learning rate of 10−4 until no improvement

takes place on the validation set during 10 subsequent

epochs. The used batch size is 16, and the input sequence

length is 512 tokens. Sequences shorter than 512 tokens

are zero-padded. The negative log-likelihood (NLL) on

the test dataset is measured to be NLL = 0.30, which

is similar to the result of a recent transformer-based model

trained on the same dataset [18]. We thus call this a well-

calibrated model.

4.3 Model Degradation

In addition to the well-calibrated model, we consider two

under-calibrated models, which we achieve by intention-

ally degrading the well-calibrated model. For our first

degradation, we scale the logits vector h of the transformer

softmax output distribution, i.e.,

q(xt|x<t) = Softmax(h/r), (6)

where r > 1.0 is a temperature scale. This degradation in-

creases the distribution’s entropy (uncertainty) while keep-

ing the relative ordering of the probabilities the same. Us-

ing temperature scaling, we deliberately increase the prob-

ability of token predictions xt that fit the token context

x<t poorly, thereby simulating the failure case of unreli-

ably estimated tokens reported for conventional sampling

(see section 2), where truncation techniques are expected

to provide better results. We empirically set r to the mini-

mal value that leads to an audible degradation of the gen-

erated sequences. This resulted in r = 1.5. The NLL

of the test data under the temperature-degraded model is

measured to be NLL = 0.31, which is an increase of 0.01
compared to the well-calibrated model.

Secondly, we consider an unbiased degradation where

we perturb the network weights by adding a small amount

of Gaussian noise. More specifically, for every weight ma-

trix W of the well-calibrated model, we obtain a degraded

weight matrix W ′ by adding noise zW to W

W ′ = W + kzW , (7)

where zW ∼ N (0, std(W )) and k is a constant. We sam-

ple the noise vector once and keep it fixed for all our ex-

periments. We empirically set k to be the minimal value

where sample degradations are audible, which results in

k = 0.175. The NLL of the test data under the resulting

model is measured as NLL = 0.36, which is an increase

of 0.06.

4.4 Generation

When generating sequences with the learned models, for

all models, we perform conventional sampling, nucleus

sampling and typical sampling as described in section 3.
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We sample until either the end-of-sequence token is en-

countered or a maximum length is reached. Due to com-

puting limitations, we fix the maximum sequence length

to the 80%-quantile of the dataset song-length distribution.

We keep both sequences which terminate with the end-of-

sequence token and sequences with the maximum length

reached in our sample sets.

4.5 Objective Evaluation

The objective evaluations are performed by calculating dif-

ferent statistics from the generated sequences and compar-

ing the results between different (non-)degradations, sam-

pling types and with the original reference data.

4.5.1 Surprisal

We are interested in the degree of surprisal of the samples

generated with the different sampling methods. Similar

to [16–18], we measure surprisal using the IC of events.

As we do not have access to the data distribution, we inter-

pret the well-calibrated model to be an oracle that approxi-

mates the data distribution. We then use the well-calibrated

model to measure the mean IC of all events from a specific

sampling method and model.

4.5.2 Structural Consistency

We measure structural consistency by investigating the

self-similarities of the generated pieces. Similar to [5],

we compute a self-similarity distribution from samples of

a given sampling method and contrast it with the similar-

ity distribution calculated from real data. To do so, we

first compute the similarity between bar pairs separated by

measure lags of size t. This is done for each tune x in

sample sets D according to

lxi,i+t =
|N (i) ∩N (i+ t)|

|N (i) ∪N (i+ t)|
, (8)

where the set of notes in the i-th bar is denoted as N(i),
and two notes are deemed equal if their pitches, durations,

and onset positions within their respective bars are identi-

cal. The similarity score lxi,j between any two bars ranges

from 0.0 to 1.0, with a score of 1.0 indicating that the two

bars are identical. After computing the similarity for all

possible lags in each tune of a sample set D, we calculate

the average similarity scores of that sample set by

LD
t =

1

|D|



∑

x∈D

∑

j=i+t

lxi,j


 . (9)

Note that eq. (9) does not define a probability distribution

and does not, in general, sum to one. For each dataset, we

then calculate an overall self-similarity score

SS(D) =
1

T

T∑

t=1

LD
t , (10)

where T is the maximum bar lag considered. SS(D) cap-

tures both short-term self-similarities, e.g., repetitions or

variations of motives, and long-term self-similarities, e.g.,

repetitions or variations of musical segments. Similar to

[5], we also consider the deviation of a sample set’s simi-

larity distribution LD
t to the dataset’s similarity distribution

Lt given by

SE(D) =
1

T

T∑

t=1

∣∣Lt − LD
t

∣∣ . (11)

We interpret this deviation as a measure of how closely the

self-similarities of tunes generated with the different sam-

pling techniques follow the self-similarities of tunes found

in the dataset. We set T = 38 in our experiments (i.e.,

the smallest maximum number of bars generated by any

method).

4.5.3 Tonal Consistency

We are furthermore interested in the tonality coherence of

samples generated with the sampling methods. Specifi-

cally, we investigate the scale consistency [23], i.e., the

maximum percentage of notes fitting a diatonic scale. The

scale consistency is therefore calculated by

max
scale

#pitch_in_scale(x, scale)

#pitches(x)
. (12)

A scale consistency value of 1.0 indicates that all pitches

are within a single scale, whereas lower values indicate

more complex harmonic structures.

4.6 User Study

In addition to the objective evaluations described above,

we also perform a user study to gather subjective evalu-

ations of the tunes’ musical quality, structural properties

and complexity. For that, we hosted a website consisting

of two pages. The first page explains the purpose of the

study, specifically that it aims to evaluate sampling tech-

niques for neural network music generation. Furthermore,

the users are instructed to rate the respective tunes using

the attributes overall quality, short-term structure, long-

term structure and complexity using a 5-point Likert scale.

The users are also asked to use appropriate headphones or

loudspeakers and to announce their level of musical ex-

pertise with choices {Beginner, Intermediate, Expert}. On

the second page, a list of 10 audio widgets is displayed,

one for each tune. Below each widget, the Likert scales

for the 4 different attributes (as described above) are pro-

vided for voting. In addition, the users can click on a “sheet

link” that opens a window displaying the tune in staff no-

tation. The 10 tunes for every user constitute the Cartesian

product of all three sampling methods (i.e., conventional,

nucleus, typical) and all three model modes (i.e., well-

calibrated, temperature degradation, noise-degradation)

plus a reference tune. It is ensured that every user obtains

unique tunes sampled randomly from a set of 500 instances

for each of the 10 types, presented in a random order. To

prevent biases, every user is allowed to perform the study

only once.
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Figure 2: Information content of generated data using dif-

ferent sampling strategies and τ values under the well-

calibrated model.

5. RESULTS AND DISCUSSION

In this section, we present the results of the experiments

described in Section 4. For the figures and tables, we

use the abbreviations WELL, NOISE and TEMP for the

well-calibrated, noise-degraded and temperature-degraded

models, respectively. To these abbreviations, we append

CONV, NUCL and TYP for conventional sampling, nu-

cleus sampling and typical sampling correspondingly.

5.1 Objective Evaluation

In the following section, we analyse and discuss the results

of our objective and subjective evaluations.

5.1.1 Surprisal

We report the results of the IC estimation in Figure 2 for

the truncation degrees τ = 0.4, ..., 1.0. The samples from

the well-calibrated model have the lowest IC and the IC

of samples from the temperature-degraded model is higher

than the IC of samples from the noise-degraded model. For

both nucleus and typical sampling, the IC decreases with

decreasing τ . For typical sampling in particular, this sug-

gests that relatively more high information than low infor-

mation tokens are pruned, similar to what is found in [8].

For most degradation scenarios and sampling methods, a τ
value between 0.8 and 0.9 is shown to recover the original

data distribution best.

5.1.2 Structural Consistency

We compute the self-similarity (see Equation (10)) for all

models and sampling techniques and show the result in

Figure 3a. Similarly, we plot the self-similarity devia-

tion (see Equation (11)) in Figure 3b. From Figure 3a,

we find that the overall self-similarity of samples pro-

duced with typical and nucleus sampling increases as τ
decreases. This holds for both degraded models and the

well-calibrated model. However, we find that the increase

in self-similarity is more moderate for samples generated

with typical sampling than those of nucleus sampling, in-

dicating that the removal of highly probable tokens keeps

the self-similarity at more moderate levels. In the tem-

perature degradation scenario, we find that moderate lev-

els of truncation lower the self-similarity deviation for the

temperature-degraded model and thereby counteract the

temperature degradation (with an optimal τ of 0.8 and

0.6 for nucleus sampling and typical sampling, respec-

tively). In fact, in this scenario, the self-similarity of sam-

ples generated with nucleus and typical sampling follows

the self-similarity of the reference distribution closer than

samples generated with ordinary sampling for most tested

truncation strengths. This is not the case for the unbiased

noise degradation, where the self-similarity increases with

higher truncation strengths, increasing also the deviation

from the reference statistics.

5.1.3 Tonal Consistency

We inspect the tonal consistency by calculating the scale

consistency (see Equation (12)) and report the results in

Figure 3c. For both nucleus and typical sampling, we

find that samples generated with low values of τ lead to a

higher degree of scale consistency. Furthermore, we find

for any given τ that generations from typical sampling

have lower scale consistency than samples generated

with nucleus sampling. Especially when considering

temperature degradation, the scale consistency of nucleus

sampling is almost at the level of the reference distribution

at τ = 0.9, whereas typical sampling stays low even at

high levels of τ . An important observation is that (with the

exception of typical sampling in the temperature degra-

dation scenario) there is an optimal τ for both truncation

techniques that leads to a recovery of the dataset’s scale

consistency statistic in both degradation scenarios.

Similar to the findings in [6] for natural language, our

objective evaluations in the high-temperature scenario in-

dicate that the musical statistics of the samples generated

with truncation techniques more closely match the statis-

tics of samples from the reference distribution. This find-

ing implies that truncation sampling techniques can be ap-

plied to music generative language models, similar to their

application in natural language. This can help remove to-

kens with unreliable probability estimates that do not fit

the musical context well. This approach may have impli-

cations for more complex datasets and limited resources,

where obtaining a well-calibrated model can be challeng-

ing.

5.2 User Study

The user study was performed by 38 participants who,

according to their self-assessment can be divided into 8
beginners, 18 intermediate and 12 musical experts. The

presented melodies (except the reference) are generated

as described in Section 4.4, with τ = 0.8 for both, nu-

cleus and typical sampling. Table 1 shows the user study

results. As there is a high variance for all ratings, we

performed for all attributes a Welch’s t-test between all

m = 10 tune types. Using a desired significance level of

α = 0.05, the corresponding Bonferroni correction to the
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Figure 3: Structural and tonal consistency for different model degradations, sampling strategies and τ values. In (a) the self-

similarity of sample sets generated with different sampling techniques is shown. Higher values indicate a higher degree of

self-similarities. In (b) the deviation of the generated samples’ self-similarities to the self-similarity and the data reference

distribution is shown. A deviation of 0 indicates that the self-similarity of a sample set fits the reference distribution exactly.

In (c) the scale consistency of different sample strategies and the reference dataset is shown.

Method QULT ST_STR LT_STR CPLX

REFERENCE 3.7±1.0 3.8±1.0 3.7±1.1 3.6±0.8
WELL_CONV 3.2±1.1 3.7±0.9 3.5±1.2 3.3±1.0
WELL_NUCL 3.6±1.1 3.9±1.1 3.7±1.1 2.8±1.0
WELL_TYP 3.4±1.2 3.6±0.9 3.7±1.0 3.3±1.0
NOISE_CONV 2.7±1.0 3.2±0.9 3.0±1.0 2.8±0.9
NOISE_NUCL 2.6±1.3 3.2±1.4 2.8±1.5 2.5±1.2
NOISE_TYP 2.7±1.1 3.2±1.1 3.1±1.2 2.4±1.0
TEMP_CONV 2.1±1.3 2.7±1.1 2.1±1.1 3.7±1.0
TEMP_NUCL 3.4±1.2 3.6±0.9 3.4±1.3 3.4±1.1
TEMP_TYP 2.2±1.1 2.7±0.9 2.4±1.0 3.3±0.8

Table 1: Results showing the mean-opinion scores of the

user study ± the standard deviation. QULT denotes the

overall quality estimation, ST_STR the perceived short-

term structure, LT_STR the perceived long-term structure

and CPLX the perceived complexity of the rated samples.

multiple comparisons problem gives a significance level of
α

1

2
m(m−1)

= 0.05
45 = 0.001. We can see in the first column

that the human-composed reference tracks have the high-

est quality scores on average and that the perceived quality

of the tunes tends to degrade for the noise- and tempera-

ture degradation cases as expected. The t-test shows that

the users’ preference for REFERENCE is significant com-

pared to all samples of the under-calibrated models (with

p < 1 × 10−4), except for TEMP_NUCL with p = 0.37.

This shows that nucleus sampling can potentially improve

the sample quality of low-confidence models, while typi-

cal sampling is not able to recover any degradations. Fur-

thermore, we find that WELL_CONV, WELL_NUCL and

WELL_TYP differ in QULT with p = 0.07, 0.67 and

0.37 respectively compared to REFERENCE. This pro-

vides some evidence that nucleus and typical sampling

improves the sampling quality of well-calibrated models,

but this effect is not significant. While nucleus sampling

performs well in the temperature-degraded model, we ob-

serve some (non-significant) evidence of a lower complex-

ity than conventional and typical sampling in the well-

calibrated model (with p = 0.023 and p = 0.044, respec-

tively). Typical sampling (with τ = 0.8) does not cause

significant differences from conventional sampling. As the

p-value between NOISE_TYP and NOISE_CONV is also

low (but not significant, with p = 0.06), there is some evi-

dence that typical sampling slightly reduces the complexity

of outputs from under-calibrated models. This could be ex-

plained by typical sampling pruning the higher and lower

probability events, overall reducing the possible number of

events to be sampled. The well-calibrated model performs

well with all sampling techniques (no significant differ-

ences to REFERENCE), with only some non-significant

evidence for lower complexity with nucleus sampling.

6. CONCLUSION

We investigated the effect of distribution truncation sam-

pling techniques on the musical qualities of information

content, self-similarity, scale consistency and complexity

of samples generated under different degradation scenar-

ios. Our objective evaluations show that a higher trunca-

tion strength leads to increased self-similarity and tonal

consistency. This trend is more pronounced for sam-

ples generated with nucleus sampling compared to sam-

ples generated with typical sampling. For a well-calibrated

model, we show that the increase in self-similarity and

scale consistency leads to an increase in deviations of

these metrics from the reference distribution. However,

for under-calibrated models, we showed that the deviations

from the original data statistics could often be reduced with

the correct truncation strategy and carefully selected trun-

cation levels (where a τ between 0.8 and 0.9 seems to be

good trade-off value over all experiments). While nucleus

sampling carries the risk to reduce complexity of the out-

puts, this trend could not be observed with typical sam-

pling.
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ABSTRACT

Every year, several dozen, primarily European, countries,

send performers to compete on live television at the Euro-

vision Song Contest, with the goal of entertaining an inter-

national audience of more than 150 million viewers. Each

participating country is able to evaluate every other coun-

try’s performance via a combination of rankings from pro-

fessional jurors and telephone votes from viewers. Between

fan sites and the official Song Contest organisation, a com-

plete historical record of musical performances and country-

to-country contest scores is available, back to the very first

edition in 1956, and for the most recent contests, there

is also information about each individual juror’s rankings.

In this paper, we introduce MIRoVision, a set of scripts

which collates the data from these sources into a single,

easy-to-use dataset, and a discrete-choice model to convert

the raw contest scores into a stable, interval-scale measure

of the competitiveness of Eurovision Song Contest entries

across the years. We use this model to simulate contest

outcomes from previous editions and compare the results

to the implied win probabilities from bookmakers at vari-

ous online betting markets. We also assess how success-

ful content-based MIR could be at predicting Eurovision

outcomes, using state-of-the-art music foundation models.

Given its annual recurrence, emphasis on new music and

lesser-known artists, and sophisticated voting structure, the

Eurovision Song Contest is an outstanding testing ground

for MIR algorithms, and we hope that this paper will inspire

the community to use the contest as a regular assessment of

the strength of modern MIR.

1. INTRODUCTION

The Eurovision Song Contest (ESC) is an annual event

wherein several, primarily European, countries compete

against one another by performing original, live songs dur-

ing an internationally televised event. The contest began

in 1956 and is typically held in the country of the previous

year’s winner in the spring.

© J. A. Burgoyne, J. Spijkervet, and D. J. Baker. Licensed

under a Creative Commons Attribution 4.0 International License (CC

BY 4.0). Attribution: J. A. Burgoyne, J. Spijkervet, and D. J. Baker,

“Measuring the Eurovision Song Contest: A Living Dataset for Real-World

MIR”, in Proc. of the 24th Int. Society for Music Information Retrieval

Conf., Milan, Italy, 2023.

The content of the musical acts performed during the

Eurovision Song Contest is always novel and notably di-

verse. Contestants are allowed to sing in whichever lan-

guage they choose, often electing to sing in English to

communicate the meaning of their song to a larger base, but

some countries (notably France) have historically preferred

to sing in their national language. According to the official

Eurovision rules, all musical acts must perform an original

song that is no more than three minutes in length, with the

lead vocals performed live, and acts are limited to only six

performers being on stage at any given moment during the

performance [1].

Within these constraints, the musical acts of Eurovision

are known for their ostentatious performances and camp

aesthetics, which are often accompanied with visual spec-

tacles from lightening to elaborate dance. As the contest

is an international stage, the musical acts have also been a

means in which countries are able to provide meta-political

commentary on either national or global events [2, 3]. The

contest has been noted as serving as an important platform

for global LGBTQ+ visibility, which featured openly gay

and transgender performers as early as the 1990s [4].

The winner of the contest is determined as a combination

of both expert and panel voting, with no set criteria stated

as to what should constitute a winning performance. A

combination of the song’s content, the visual performance,

and the performer’s ability to relate to the zeitgeist are

all presumed to play an important role in determining the

winner. Indeed, the Eurovision Song Contest can be and has

been analysed from a variety of dimensions, summarised by

Wolther as the media, the musical, the musical-economical,

the political, the national-cultural, the national-economic,

and the competitive [5].

We next detail the rules of the contest before introducing

the MIRoVision data set, which contains a multi-faceted

collection of historical data that could be used to predict

the contest’s winner and enable researchers to make deeper

inquiries into the history and music of the contest.

1.1 Rules of Eurovision

In order to participate in the Eurovision Song Contest, parti-

cipating countries work in coordination with the European

Broadcasting Union. While each participating country – or

more specifically the country’s partnered national broad-

caster – is allowed to decide for themselves which act to

send to participate, the results of the Eurovision Song Con-

test are determined by voting over three events. These
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three events referred to as the First Semi-Final, the Second

Semi-Final, and the Grand Final. It is the Grand Final that

typically receives the vast majority of the attention and

viewership.

As described on the official Eurovision website 1 , all

participating countries qualify for two semi-final shows in

the week leading up to the Grand Final, which only a subset

of the total countries will perform. France, Germany, Italy,

Spain and the United Kingdom are automatically included

in the Grand Final and are referred to as the ’Big Five’.

After a country has performed, each other country gives

two sets of votes for the performance. The first set of

votes comes from an expert panel of music industry pro-

fessionals from within that country. Starting in 2016, the

official Eurovision website has published the individual

data of each juror from each participating country. The

second set of votes comes from viewers from the of the

performing country. The votes represent points that are

added together and each country can use their set of points,

{12, 10, 8, 7, 6, 5, 4, 3, 2, 1} for one and only one country.

No juror or television vote can be cast for one’s own coun-

try. In the semi-finals, voting is limited to only countries

participating in their respective show, whereas in the Grand

Final, any country is allowed to vote. The Grand Final tele-

vision show is also characterised by great fanfare surround-

ing each national jury’s announcement of which country

they chose to award ‘douze points’.

No explicit criteria are given as how any vote should be

decided. Said another way, it should not be assumed that all

participants attempt to vote for a measure of musical quality.

Many factors have been discussed in academic literature

on the topic, that suggest there are both geographic and

political factors that can play into how countries decide to

cast their votes [6–10].

2. MIROVISION DATASET

Data that comprises the MIRoVision dataset originates from

three primary sources. The first is the official Eurovison

website (https://eurovision.tv/), the second is the Eurovision

World fan website (https://eurovisionworld.com), the third

are audio features taken directly from the YouTube videos

linked in the contestant metadata. The dataset contains five

primary types of data: (1) contest meta-data; (2) contest

results; (3) voting data; (4) audio features extracted from

recorded performances of the musical acts and (5) betting

office data. All data for each Eurovision Song Contest is

available each year since the year 1956 until present day

with the exception of 2020 when the contest was cancelled

due to the global COVID-19 pandemic. As of 2016, the

official Eurovision website has published data detailing how

each of the five jurors from the expert panel have voted on

all three nights of the contest. The current release of the

data set contains the contestant metadata, contest ranking

and voting data of 1719 entries. The dataset is hosted on a

GitHub repository. 2

1 https://eurovision.tv/about/how-it-works
2 https://github.com/Spijkervet/eurovision-dat

aset

In total, 56 countries are represented in the dataset,

which includes countries that have been dissolved, renamed,

or merged since the inception of the contest in 1956. Voting

data for the contest is stored in three tables: (1) votes; (2)

contestants; and (3) jurors.

The votes table contains data from the contest’s begin-

ning in 1956 and indicates how each country’s aggregated

jury and televoting points were distributed to each other

participating country.

The contestants table contains all metadata regarding

each song entry, such as the artist’s name and song title,

lyrics, composers and lyricists, the running order and the

total points awarded by the jury and televoters in the Semi-

Final and Final Rounds respectively. This table also in-

cludes links to YouTube videos of live performances from

the televised Finals or Semi-Finals, as maintained by the

Eurovision World team.

The jurors table contains data beginning from the year

2016 and indicates how the five anonymous jurors (desig-

nated with letter names A through E) voted for each other

country and in which night of the contest. As noted above,

countries are unable to vote for themselves, are only able to

vote within the Semi-Final they are participating in, whereas

all countries are able to vote in the Grand Final.

In addition to the voting tables, the betting-offices table

provide tables of historical bookmakers’ odds for the contest

winners, as collected by Eurovision World. The Eurovision

Song Contest is a popular target for online betting. Day-

of-contest odds are available for 2016 and 2017, and daily

odds up to six months prior to the contest are available from

2018 onward, for 10 to 20 betting offices.

3. A PREFERENCE MODEL FOR EUROVISION

The Eurovision Song Contest voting system is iconic, but

because the number of contestants varies, it is not possible

to use contest scores to make comparisons across years.

Moreover, the contest scores do not operate on an inter-

val level of measurement: even within a particular year, a

difference of five or ten points may mean something quite

different at the top end of the score range than it does at the

bottom. With the rich data in the MIRoVision set, however,

it is possible to fit statistical models with parameters that

correspond monotonically to actual contest results but that

do behave on an interval scale. Such an interval scale is

not only interesting musicologically and sociologically, but

also for machine-learning applications, as most common

loss functions for training implicitly assume interval-scale

outcomes. In short, we are looking for a true measure of

competitiveness in the Eurovision Song Contest, and one

that applies stably across years.

In order to achieve these desiderata, the contest results

must be sufficient statistics for the model parameters of

interest. If we make the stronger assumption that there be

only a finite number of sufficient statistics beyond these,

then by the Pitman–Koopman–Darmois theorem [11], the

model must be a member of the exponential family. That

leaves a surprisingly small class of plausible models.

The simplest model requires no sufficient statistics other
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than the scores themselves. Under such a model, the prob-

ability of the set of scores from any particular country’s jury

or televoters

Pr[ranking] ∝ exp(s1β1 + s2β2 + · · ·+ sNβN ) , (1)

where the coefficients sn ∈ {12, 10, 8, 7, 6, 5, 4, 3, 2, 1}
are the scores awarded from that jury or televoter group to

contestant n and the βn are the model’s competitiveness

parameters for contestant n. The normaliser Z0(β) for this

distribution is the sum of these terms for any valid assign-

ment of scores under the Eurovision system. After M juries

and televote groups combine their scores independently to

determine a winner, the combined probability

Pr[contest] =
exp(s1β1 + s2β2 + · · ·+ sNβN )

Z0(β)M
, (2)

where s1, s2, . . . , sN now represent the total scores awar-

ded to each contestant. The trouble with this model is that

for a typical Eurovision show of 26 contestants, the normal-

iser contains 26P10 ≈ 19 trillion terms. The model is thus

infeasible in practice, despite its theoretical simplicity.

Most alternatives to this model lose their exponential-

family properties. There is, however, an interesting alternat-

ive if we are willing to consider Eurovision contest scores

from juries and televoters to be ratings instead of rankings.

Specifically, assume that for each song, juries must award

a scores in the set {12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0}, but that

there is no restriction on how many times they can use each

score. While the numerator of such a model remains the

same as (1) and (2), its normaliser

Z(β) =
N∏

n=1

∑

k∈{12,10,8,7,6,5,4,3,2,1,0}

exp(kβn) , (3)

which can be computed easily. Although there are funda-

mental conceptual and mathematical differences between

rankings and ratings [12], if we restrict the outcome space

of rating model (3) to allow only outcomes that would also

be valid in the ranking model (2), the models are equival-

ent [13]. Moreover, we can add an extra set of score-level

parameters ξk to allow (3) to better approximate (2) without

sacrificing equivalency on the restricted outcome space:

Pr[ratings] =
exp (

∑
n snβn) · exp (

∑
k ξk)∏

n

∑
k exp(kβi + ξk)

, (4)

where sn are again the scores from a particular jury or tele-

voter group and k ∈ {12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0}. This

model is known in the psychometric literature as the partial-

credit model [14] and is one of the standard mathematical

tools used for assessing the reliability of rubrics, Likert

scales, and educational test items with partial credit.

4. FITTING THE PREFERENCE MODEL

We fit the partial-credit model (4) to the MIRoVision data

for all Song Contests since 1975, the year that the {12, 10,

8, 7, 6, 5, 4, 3, 2, 1, 0} scoring system was instituted. We
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Figure 1. Correspondence between song competitiveness

(in cantobels) and final Eurovision Song Contest scores in

2019. The pattern in this year is typical of all other years,

with a relatively slow increase in points as competitiveness

improves up to about 0.5 cantobels, followed by a rapid

increase. Because of the semi-final rounds, the relationship

between competitiveness and final score is not a strictly

monotonic as in years without semi-finals, but it is still

nearly monotonic.

considered every vote available as an individual observa-

tion: every country’s jury, every country’s televotes in years

that those votes were counted separately from juries, and all

votes from semi-final rounds when they occurred. We made

the important but unavoidable assumption that the average

competitiveness of a Eurovision entry has remained con-

stant over time, as there are no cross-year comparisons that

would make it possible to estimate the model otherwise.

We fit the joint probability model using the Bayesian

probabilistic programming language Stan, with normal pri-

ors on average country competitiveness and song competit-

iveness and a multivariate normal prior on ξ for each contest.

The complete model code is available in the supplemental

material. For interpretive purposes, we fixed the mean of

the song competitiveness parameters β to 0 and report them

on a 10 log
10

scale, analogous to the decibel. In honour of

the singing at the contest, we deem this unit the cantobel.

An increase of one cantobel in song competitiveness means

that a song improves its chances of receiving one extra point

from any given jury by 10
1

10 ≈ 1.26. Like the decibel scale,

an increase of 3 cantobels means that a song approximately

doubles its chances of receiving one extra point.

Figure 1 illustrates the typical correspondence between

competitiveness in cantobels and actual song contest res-

ults. After a slow increase, the slope rapidly increases for

highly competitive entries. The Eurovision Song Contest

scoring system compresses differences between relatively

uncompetitive entries and dramatically exaggerates small

differences at the top. While this surely contributes to the

exciting television, cantobels are a better scale to use for

scientific purposes.

Figures 2 and 3 reveal the heart of the model. The first

shows the average song quality, as perceived by the Eurovi-

sion Song Contest juries and televoters, over the period from

1975 to 2022. Ukraine, Russia, Italy, and Sweden stand
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Figure 3. Median competitiveness of countries’ Eurovi-

sion Song Contest entries, 1975–2022, in cantobels with

90% credible intervals. Countries are coloured by their

geographic region as defined in the United Nations M49

standard. Ukraine, Russia, Italy, and Sweden stand out

as having sent contestants of exceptional competitiveness,

although Azerbaijan, the United Kingdom, and Greece’s

credible intervals are also strictly greater than zero.

out as having been particularly successful, even though

they have suffered almost-wins instead of victories in many

years. On average, songs from these countries have been a

half cantobel above the average. But the first figure shows

that there are dramatic swings from year to year underneath

these averages. Even one the most convincing victories

from one of the historically strongest countries – Måns

Zelmerlöw’s ‘Heroes’, Sweden’s 2015 entry – was preceded

and succeeded by much less appreciated acts.

4.1 Jury Model

Jury scores at the Eurovision Song Contest are determined

by combining rankings from five independent jurors from

each country, each of whom must make a complete ranking

of contestants at a show, from best to worst. After aver-

aging these ranks, they are converted to the better-known

{12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0} system that is reported on

television. Since 2016, the European Broadcasting Union

0
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12

1 6 11 16 21 26

Rank

Id
e
a
l
S

c
o
re

Figure 4. Ideal scores for averaging ranks within juries,

according to a generalised partial-credit model, with 90%

credible intervals. In recent years, the Eurovision Song

Contest has used an exponential weighting scheme, but

these results suggest that a linear scheme with a small bonus

for the top-ranked entry would be sufficient.

has made not only the final scores but also these individual

rankings public. They have also publicised that they con-

tinue to experiment with the proper way to average the

ranks across jurors, currently using exponential decay. 3

The theory of partial-credit models offers an alternative,

more empirical solution. Rather than taking the scoring rule

in (4) as fixed, the generalised partial-credit model con-

siders an optimal scoring rule that would lead the model to

make the best predictions. Concretely, that would mean con-

sidering alternatives to the {12, 10, 8, 7, 6, 5, 4, 3, 2, 1, 0}
rule for the main contest, and by extension, to the simpler

{1, 2, . . . , N} rule for jury members making a full ranking.

The MIRoVision dataset includes these jury scores, and

we fit a generalised partial-credit model to them analogous

to the model we fit for the contest overall. The code is

available in the supplemental material. Figure 4 shows the

results. Like the European Broadcasting Union’s current

rule, we arbitrarily fix the maximum score to 12. It seems

that rather than replacing the former linear scheme with the

current exponential one may be a more effective simply to

give a small fixed bonus to each juror’s top-ranked entry.

Such a solution would also solve the core issue motivating

the exponential weighting, namely that it it undesirable for

one juror to have unilateral power to spoil the chances of

some other juror’s favourite.

5. PREDICTING WINNERS

The Eurovision Song Contest is also notorious for attracting

online and offline bets on the outcome. Since 2015, the

EurovisionWorld web site has been collecting the odds

posted at a large number of online betting offices, for each

day leading up to the contest. These odds can be converted

into implicit probabilities of winning, and there is often

much discussion in the weeks leading up to the contest

about which acts the bookmakers are favouring.

3 https://eurovision.tv/story/subtle-significa

nt-ebu-changes-weight-individual-jury-rankings
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Year Country Actual Bookmakers

2018 Israel .87 .24
2018 Cyprus .12 .37
2018 Germany .01 .09

2019 Netherlands .53 .51
2019 Italy .45 .09
2019 Switzerland .01 .09
2019 Russia .01 .02

2021 Italy .63 .26
2021 France .35 .22
2021 Switzerland .02 .05

2022 Ukraine .98 .62
2022 Sweden .01 .14
2022 United Kingdom .01 .06
2022 Spain .01 .06

Table 1. Probability of winning the Eurovision Song Con-

test, 2018–2022, given the partial-credit model and perfect

information about jurors’ and televoters’ preferences, com-

pared to bookmakers’ implied win probabilities immedi-

ately prior to the contest final.

We can use our model fits to compare the bookmakers’

predictions to the actual probabilities countries had to win

given jurors’ and televoters’ preferences and the assump-

tions of the partial-credit model. To compute these probab-

ilities, we reshuffled the draws from our Bayesian samples

independently for each country and tallied how often these

would have been the highest, taking advantage of the fact

that competitiveness in cantobels is a sufficient statistics for

actual contest outcomes. Table 1 presents the results. Both

2019 and 2021 were rather close contests, whereas 2018 and

2022 had clearer frontrunners. The bookmakers markedly

mis-called 2018, but have been more accurate since. If one

had been able to place stakes at the online betting offices

with perfect knowledge of the jurors’ and televoters’ prefer-

ences, one would have quadrupled one’s stake on average

(before paying out the bookmakers’ sometimes shockingly

high margins on Eurovision odds).

6. CONTENT-BASED CONTEST PREDICTIONS

Perfect information is of course never available, but per-

haps deep learning and content-based MIR offer some-

thing? Self-supervised music representation learning has

advanced considerably in recent years. It has successfully

been applied to many downstream tasks, including music

tagging [16], genre classification, key detection and emo-

tion recognition [17, 18]. These foundation models are

generally pre-trained in an unsupervised, end-to-end fash-

ion on raw audio samples. By defining an auxiliary loss

objective on large quantities of music and using data per-

turbations, models are able to learn effective and robust

representations.

To evaluate whether a pre-trained foundation model is

able to predict preferences, we extracted embeddings on all

song entries using the TUNe+ [19] and MERT [18] models.

On every window of 2 seconds, an embedding vector of 512

feature dimensions is computed for the TUNe+ model. The

Model L1 L2

TUNe+ [19] 0.828 (0.039) 1.063 (0.052)
MERT [18] 0.820 (0.019) 1.025 (0.027)

Table 2. L1 (MAE) and L2 (RMSE) losses and their stand-

ard deviations after training two state-of-the-art audio em-

beddings to predict the competitiveness of Eurovision Song

Contest entries from 1975–2022, in cantobels.

MERT model returns 25 representation layers, and 1024

feature dimensions on 5-second windows. For every song

entry between 1975 and 2022, a single embedding vector

is calculated by taking the arithmetic mean along the time

dimension for TUNe+ and along the representation layers

for MERT respectively. This results in 1 261 embeddings

in total. For every song entry, we took 4 000 draws from

the fitted model for song competitiveness (in cantobels) and

treated these as our targets Y ; using 4 000 draws instead of a

single point estimate more accurately averages over our un-

certainty about song competitiveness, given the inherently

limited number of rankings available for any single edition

of the contest. We freeze the pre-trained TUNe+ and MERT

models and perform a linear probe using the mean-squared

error between (ŷ, y). We use 5-fold cross-validation and

sample all song entries from two years within each decade

between 1975 and 2023 as our validation set.

Our results in Table 2 show that we can achieve RMSE of

1.025 cantobels by way of training a linear layer on embed-

dings extracted from a pre-trained foundation model. These

models are not specifically trained or designed for our down-

stream task of preference prediction, e.g., features extracted

by the different layers in MERT vary in their downstream

task performance, and we leave further improvements to

future work. But to contextualise the result, the overall

standard deviation of our Eurovision competitiveness rat-

ings is 1.064 cantobels, which means that state-of-the-art

MIR audio embeddings are able to predict 7.2% of the

variance in Eurovision Song Contest competitiveness.

7. CONCLUSION

We present MIRoVision, a collection of data and tools for

studying the Eurovision Song Contest and applying music

information retrieval to several types of data generated from

the contest. One of our key results is a model for converting

the highly non-linear contest scores into a well-behaved

interval-scale measurement we dub the cantobel. Cantobels

facilitate understanding of fluctuations in the contest over

time and more accurately represent both the competitive-

ness and the uncertainty surrounding the competitiveness of

Eurovision Song Contest entries. They also behave better

with the standard loss functions used in machine learning

systems, and allow us to predict a small but meaningful

portion of variance in contest outcomes. We hope this result

is sufficiently tantalising to encourage the community to try

their own models – the Eurovision Song Contest offers a

fresh set of contestants every year – and to find their own

creative uses for this rich musicological data source.
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ABSTRACT

In this work, we address music representation learning us-

ing convolution-free transformers. We build on top of ex-

isting spectrogram-based audio transformers such as AST

and train our models on a supervised task using patchout

training similar to PaSST. In contrast to previous works, we

study how specific design decisions affect downstream mu-

sic tagging tasks instead of focusing on the training task.

We assess the impact of initializing the models with dif-

ferent pre-trained weights, using various input audio seg-

ment lengths, using learned representations from differ-

ent blocks and tokens of the transformer for downstream

tasks, and applying patchout at inference to speed up fea-

ture extraction. We find that 1) initializing the model

from ImageNet or AudioSet weights and using longer in-

put segments are beneficial both for the training and down-

stream tasks, 2) the best representations for the consid-

ered downstream tasks are located in the middle blocks of

the transformer, and 3) using patchout at inference allows

faster processing than our convolutional baselines while

maintaining superior performance. The resulting models,

MAEST, 1 are publicly available and obtain the best per-

formance among open models in music tagging tasks.

1. INTRODUCTION

The goal of representation learning is to develop features

that are suitable for a variety of tasks, rather than being spe-

cific to the training objective. In the context of audio, these

features are sometimes referred to as embeddings, and they

typically have a much lower dimensionality than the origi-

nal signals, making them easier to store and process. When

the embeddings are well-suited to a downstream task, it is

often possible to achieve good performance using shallow

models that require few resources to train and run. Ad-

ditionally, using a single embedding model to feed sev-

eral shallow classifiers or regressors is more efficient than

1 Music Audio Efficient Spectrogram Transformer. Code for training:
https://github.com/palonso/MAEST. This model is part of
Essentia models: https://essentia.upf.edu/models.html

© P. Alonso-Jiménez, X. Serra, and D. Bogdanov. Licensed

under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: P. Alonso-Jiménez, X. Serra, and D. Bogdanov, “Ef-

ficient Supervised Training of Audio Transformers for Music Represen-

tation Learning”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

having individual end-to-end models, and it simplifies ad-

dressing new related tasks with minimal additional effort.

As a result, embedding models are valuable for a diverse

range of applications, from quick prototyping without re-

quiring detailed knowledge of audio processing to large-

scale processing of industrial audio databases.

The universal success of transformers in text [1], vi-

sion [2], and audio [3] tasks motivate further research using

this architecture for music representation learning. How-

ever, most state-of-the-art (SOTA) models are based on

convolutional neural networks (CNNs) [4–7]. We hypoth-

esize that transformers are not ruling this domain yet be-

cause they require large amounts of data and computa-

tional power to overcome their convolutional counterparts,

while such resources are not always available. To address

these challenges, we propose leveraging a large collection

of 3.3 M tracks annotated with public-domain metadata

from Discogs and using techniques to train transformers

efficiently. Specifically, we focus on PaSST [8], a method

that has demonstrated remarkable performance in the Au-

dioSet [9] benchmark. This method uses patchout, a tech-

nique consisting of discarding parts of the input to regu-

larize the training process, while also allows reducing the

GPU memory and computations required for training. In

this work, we investigate the effectiveness of this technique

for music representation learning, considering the impact

of specific design aspects.

We focus on the impact of using different combinations

of tokens from different blocks of the transformer as em-

beddings, starting the training from different pre-trained

weights from publicly available models, using different in-

put segment lengths, and using patchout at inference time

to speed up the embedding extraction. Our experiments

show that the best performance is obtained by extracting

embeddings from the middle of the transformer and ini-

tializing it with weights pre-trained on other audio tasks.

Contrary to previous studies based on CNNs, our trans-

formers benefit from long input segments both in training

and different downstream scenarios. Finally, we show that,

on certain patchout conditions, our transformers are able

to double the inference speed of an EfficientNet-B0 base-

line while producing embeddings that obtain better perfor-

mance on downstream tasks. Moreover, this approach has

the advantage of being entirely configurable at inference

time, allowing the throughput/performance tradeoff to be

adapted to the task at hand.

The remainder of this paper is structured as follows: In
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Section 2 we present existing works related to this study.

The experimental setup is presented in Section 3, and the

proposed experiments and results are in Section 4. Finally,

we conclude in Section 5.

2. BACKGROUND

In this section, we review the literature on music repre-

sentation learning to motivate the selection of our training

task and discuss existing audio and music transformers and

justify our architecture and training approach. Finally, we

introduce existing works on music representation learning

with transformers.

2.1 Music representation learning

Some authors have pursued general-purpose representa-

tion models to address simultaneously speech, audio event,

and music tasks, which led to the proposal of challenges

such as HEAR [10] and benchmarks such as HARES [11].

However, for now, there is no evidence that a single train-

ing paradigm can yield excellent performance in all the au-

dio domains at the same time. Alternatively, audio repre-

sentations can be optimized to a single domain leveraging

specific data, which tends to produce better performance.

In this sense, music-specific representation models are typ-

ically evaluated in music description in terms of genre,

mood, era, rhythmic properties or arousal and valence es-

timation, where the annotations are generally on the track

level. Additionally, music representation models can be

evaluated in more objective tasks such as tempo or key es-

timation, although, specific models using domain knowl-

edge tend to be better suited for these tasks [12].

Music tagging is a multi-label classification task using a

vocabulary that can combine multiple music notions (e.g.,

genre, moods, eras). Some of the most successful music

representation learning approaches are based on music tag-

ging [5, 13–15]. Other directions include training models

on editorial metadata [4,6,16–20], multi-modal correspon-

dence [21], co-listening statistics [4], contrastive super-

vised [7,22–24] and self-supervised [11,25–28] objectives,

music generative models [29], playlist co-occurrences [20,

24], text [7, 30], or combinations of them [4, 19, 24, 29].

While self-supervised approaches have been narrowing the

gap with their supervised counterparts, the SOTA models

use music tagging [4,5], or supervised contrastive learning

in a single-domain [6] or cross-domain [7] settings. Since

the scope of this work is to assess the benefits of transform-

ers, we fix our training task to music tagging for its sim-

plicity, popularity, and empirically shown effectiveness.

2.2 Transformers in audio classification tasks

Transformers have become a popular choice for audio

tasks due to their superior performance compared to their

convolutional counterparts when sufficient data is avail-

able. Lately, AudioSet, with almost 2 M audio event ex-

cerpts, has become a popular benchmark led by trans-

former models. A popular approach consists of applying

attention over small overlapping patches (e.g., 16 × 16)

Model Init. GPUs Time mAP

AST [3] ViT - - 45.9
PaSST [8] DeiT 2 RTX 2080ti 24 h 47.6
MaskSpec [31] FS 64 Tesla V100 36 h 47.3
Beats [32] FS 16 - 48.7

Table 1. Comparison transformers from the literature in

terms of initialization weights, number of GPUs used for

training, training time, and mAP obtained in AudioSet.

from the spectrogram using a classification objective. The

sequence of spectrogram patches is linearly projected to

a 1-D space where a trainable positional encoding signal

is added. A trainable classification token is appended to

the sequence of projections, and after a number of Trans-

former blocks it is used to solve the classification task us-

ing a linear classifier. This idea was first introduced in the

image domain by ViT [2] and adapted to audio spectro-

grams in AST [3]. PaSST extends this approach by intro-

ducing patchout, a technique consisting of discarding ran-

dom patches from the input spectrogram at training time

(see Figure 1) [8]. This technique has two benefits. First,

by discarding input patches, the training sequence length is

significantly reduced, which increases the training speed.

Second, it acts as a regularization technique that improves

the robustness of the transformer. Additionally, patchout

can be combined with other training methods. MaskSpec is

a self-supervised pre-training method based on an encoder-

decoder architecture where the decoder has to reconstruct

the spectrogram from a partial spectrogram altered with

patchout [31]. Beats is a transformer trained with a super-

vised objective and patchout where the labels come from

a codebook of randomly initialized vectors that is itera-

tively optimized [32]. While these techniques prevent the

transformers from depending on initializing from weights

of pre-trained models, such systems are significantly more

resource-demanding. Table 1 compares the mentioned au-

dio transformers in terms of GPUs used for training, train-

ing duration, and mean Average Precision (mAP) on Au-

dioSet. Remarkably, PaSST achieves an excellent trade-

off between mAP and needed resources. Since we aim to

use transformer models that can be trained with a com-

putational budget equivalent to SOTA CNNs (i.e., using

consumer-grade GPUs), we focus on the standard patchout

training with a supervised objective.

2.3 Music representation learning with transformers

Some works already combined music representation learn-

ing and pure-attention-based transformers. S3T com-

bines MoCo’s momentum-based self-supervised con-

trastive learning with the Swin Transformer [33] architec-

ture to learn music representations for classification [28].

MuLan is an audio representation model trained with

cross-domain contrastive learning that aligns the latent rep-

resentations of associated audio and text pairs. The au-

thors experiment both with a ResNet50 and an AST archi-

tecture, with the former obtaining better performance in

downstream music tagging tasks [7].
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Figure 1. Illustration of our system at the training and downstream evaluation stages where x is the input spectrogram, k0

is the sequence of tokens after the patchout, y is the target labels, and BCE is the binary cross-entropy loss. Trainable and

frozen blocks are colored green and blue respectively.

The limited list of studies combining transformers and

music representation learning motivates further research.

We propose addressing this by using a simple supervised

objective and patchout.

3. EXPERIMENTAL SETUP

We train our models using an in-house dataset with 3.3 M

tracks mapped to the Discogs’ public metadata dump. 2

The training task consists of a multi-label classification

of the top 400 music styles from Discogs’ taxonomy. We

compare different training configurations in several down-

stream tasks by training Multi-Layer Perceptrons (MLP)

on representations extracted from the transformers.

3.1 Dataset and pre-processing

Our dataset is derived from a pool of 4 M audio tracks

mapped to the release information from the Discogs web-

site’s public dump. 3 All release metadata, which can in-

clude music style tags following a pre-defined taxonomy,

is submitted by the community of platform users. Master

releases group different versions of the same release such

as special editions, or remasters. We obtain our training la-

bels, y, at the master release level by first aggregating the

style tags of all the associated releases and then discard-

ing master releases with more than five style tags or with-

out any style label among the 400 most frequent among

our pool of tracks. We keep tracks longer than 20 sec-

onds. Since the style annotations are done at the master re-

lease level, the resulting track annotations are expected to

be noisy. We generate validation and testing subsets with

approximately 40,000 tracks and a training set with 3.3 M

tracks, ensuring that every artist appears on a single split.

This pre-processing is similar to our previous work [6], and

additional details and statistics about the resulting dataset

can be found in the repository accompanying this publi-

cation. For now on, we refer to this internal dataset as

Discogs20.

From every track, we sample 30 seconds from the cen-

ter of the track and downmix it to a mono channel at 16

kHz. We extract 96-bands mel-spectrograms, x, using 32

2 https://www.discogs.com/data/
3 In Discogs, releases include albums, EPs, compilations, etc.

ms windows and a hop size of 16 ms compressed with the

expression log10(1 + 10000x) similar to previous works

in music tagging [6, 34]. The resulting representations are

stored as half-precision floats (16 bits) resulting in 1.3 TB

of data. Given that our dataset is in the order of magni-

tude of AudioSet (1.8 M vs. 3.3 M) and presents similar

label density (2.7 average labels in AudioSet and 2.1 in

Discogs20), we adopt the sampling strategy used in previ-

ous works [8]. Every epoch, we take a balanced sample of

200,000 tracks without replacement using the inverse label

frequencies as sample weight. We normalize the input to

the mean and standard deviation of the training set.

3.2 Model and training

Our transformer, MAEST, has the same architecture as

AST [3], ViT [2], or PassT [8], and features 12 blocks of

self-attention plus a dense layer resulting in close to 87

million parameters. We use 16 × 16 patches, xt,f , with

a stride of 10 × 10. Similar to PaSST, we split the posi-

tional encoding into time/frequency encodings (tet, fef )

and apply patchout by randomly discarding entire rows

and columns from the sliced spectrogram. The input se-

quence of tokens, k0, is created as a linear projection of

the patches plus the correspondent time/frequency encod-

ings, k0t,f = P (xt,f )+ tet+fef , where P (·) is a trainable

linear layer. 4 k1 to k12 represent the output tokens of the

respective transformer blocks. Similar to DeiT [35] and

PaSST, we extend k0 with classification (cls0) and distil-

lation (dist0) trainable tokens, which are initialized with

the DeiT or PaSST pre-trained weights in the experiments

involving these models. 5 We take the average of cls12

and dis12 tokens to feed a linear classifier targeting y.

We use the Adam Optimizer with a weight decay of

1e−4 and train the model for 130 epochs. We warm up the

model for 5 epochs and then keep the learning rate at 1e−4
until epoch 50. Then the learning rate is linearly decreased

to 1e−7 during 50 additional epochs. We consider two sets

of weights for inference: those from the last epoch and

4 Since the mel scale is not linear, we considered specialized projectors
for each frequency patch. However, this did not improve the performance.

5 We considered a teacher-student approach similar to DeiT by using
a pre-trained MAEST-30 to generate pseudo-labels that were targeted by
the dist12 token in the training stage. We decided to omit the experiment
details since it did not achieve a significant improvement.
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Dataset Size Lab. Dur. Av. Split

MTGJ-Genre 55,215 87 FT 2.44 split 0 [38]
MTGJ-Inst 25,135 40 FT 2.57 split 0 [38]
MTGJ-Moods 18,486 56 FT 1.77 split 0 [38]
MTGJ-T50 54,380 50 FT 3.07 split 0 [38]
MTT 25,860 50 29s 2.70 12-1-3 [39]
MSDs 241,889 50 30 1.72 usual [15]
MSDc 231,782 50 30 1.31 CALS [40]

Table 2. Automatic tagging datasets used in the down-

stream evaluation. The datasets are compared in terms of

sample size, number of labels, audio duration (Full Tracks

or excerpts of fixed duration), average labels per track, and

the splits used in our evaluations.

those obtained by taking the mean of the model’s weights

every 5 epochs from epoch 50 using Stochastic Weight Av-

eraging (SWA). We pre-compute the mel-spectrograms for

efficiency, which limits the set of data augmentations we

could apply. We use mixup [36] with alpha = 0.3 and

SpecAugment [37] by masking up to 20 groups of 8 times-

tamps and up to 5 groups of 8 frequency bands. 6

Initialization weights. Previous works showed the im-

portance of initializing the transformer to weights pre-

trained on ImageNet [3]. To gain further knowledge,

we consider three initialization options: the DeiT B↑384

model pre-trained on ImageNet [35], the PaSST S S16

model pre-trained on mel-spectrograms from AudioSet,

and random initialization.

Spectrogram segment length. We consider spectro-

gram segment lengths of 5 to 30 seconds resulting in the

architectures MAEST-5s, MAEST-10s, MAEST-20s, and

MAEST-30s. In all cases, we take existing PaSST fre-

quency and temporal encodings and interpolate them to

the target shape as an initialization. We use patchout dis-

carding 3 frequency and 15 temporal patches for MAEST-

5s and increase the temporal patchout proportionally for

models with longer input sequences (e.g., 60 patches for

MAEST-20s).

3.3 Evaluation

We evaluate our models in several music automatic tag-

ging datasets covering various musical notions. We con-

sider the popular MagnaTagATune (MTT) and the Mil-

lion Song Dataset (MSD) with the commonly used train-

ing, validation, and testing splits used in [39] and [15] re-

spectively. Additionally, we report the performance of our

models in the CALS split, which is an artist-filtered ver-

sion of the MSD ground truth [40]. Finally, we use the

MTG-Jamendo Dataset, a dataset of Creative Commons

music containing sub-taxonomies with the tags related to

genre (MTGJ-Genre), moods and themes (MTGJ-Mood),

and instrumentation (MTGJ-Inst), along with the top 50

tags (MTGJ-T50) in the dataset. We use the official split

0 for all the subsets similar to previous works [5, 30, 41].

6 We trained MAEST using 4 Nvidia 2080 RTX Ti GPUs with 12GB
of RAM. The training takes 31 hours for MAEST-5 and 48 hours for
MAEST-30.

Table 2 summarizes these datasets in terms of size, num-

ber of labels, audio duration, average number of labels per

track, and used splits.

We evaluate our models by extracting internal repre-

sentations from different blocks of the transformer and

training MLP classifiers on top. Instead of averaging the

cls12 and dist12 tokens as done in the training stage, we

consider three types of representations, clsn, distn, and

the average of the tokens representing the input spectro-

gram patches (avgn) after n transformer blocks. Addition-

ally, we evaluate the complementarity of these embeddings

training MLP classifiers on stacks of the different tokens.

To generate the dataset of embeddings, we average the em-

beddings extracted from half-overlapped segments across

the entire audio available for the tracks in the downstream

datasets. The same setup is used for the training, validation

and testing stages.

The downstream model is an MLP with a single-hidden

layer of 512 dimensions with a ReLU activation and

dropout. In the experiments described in Sections 4.1, 4.2,

4.3, and 4.5, we use a batch size of 128, drop out of 0.5 and

train the model for 30 epochs. In the downstream evalua-

tion from Section 4.4, we perform a grid search over the

following hyper-parameters for each task:

• batch size: {64, 128, 256}

• epochs: {30, 40, 50, 60, 70, 80}

• drop out: {0.5, 0.75}

• maximum learning rate: {1e−3, 1e−4, 5e−4, 1e−5}

The MLP is trained with the binary cross-entropy loss

using the Adam optimizer with a weight decay of 1e−3.

The learning rate is exponentially raised to its maximum

value during the first 10 epochs, kept constant for the num-

ber of epochs, and linearly reduced until reaching 1e−7 at

the end of training. After training, we report the perfor-

mance on the testing set obtained using the weights from

the epoch with the highest validation ROC-AUC.

4. EXPERIMENTS AND RESULTS

In this section, we present the conducted experiments and

discuss the results.

4.1 Extracting embeddings from the transformer

We are interested in finding the optimal representations

from the transformer to be used as embeddings. To do

this, we extract representations clsn, distn, and avgn from

different transformer blocks n ∈ [5, 12] . To measure

the complementarity of these features, we train MLPs fed

with stacks of combinations of these representations. In

this experiment, we use MAEST-30s intialized with PaSST

weights and the MTT dataset.

Figure 2 shows mAP scores obtained with different

stacks of embeddings extracted from the different trans-

former blocks. In accordance with previous studies [29],

we find that the embeddings with the best performance are

found in the middle blocks of the transformer. This con-

trasts with the typical behavior of CNNs, where the best
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Figure 2. mAP scores obtained with our evaluation setup

in the MTT dataset using embeddings extracted from dif-

ferent blocks and tokens transformer. We evaluate the cls

(c), dist (d), and avg (a) tokens and stacks of their combi-

nations extracted from the transformer blocks 5 to 12.

features are normally towards the last layers of the model,

especially, when the downstream task is well aligned with

the training task. Also, concatenating the features benefits

the performance. In the remaining experiments, we fix our

embedding to the stack (cls7, dist7, avg7).

4.2 Impact of the initial weights

Due to the lack of inductive biases present in architectures

such as CNNs, transformers are heavily dependent on pre-

training. Because of this, many audio transformers are ini-

tialized with weights transferred from image tasks [3, 8].

We evaluate the impact of initializing our models from the

weights of DeiT [35] (image input), the best single PaSST

model [8] (mel-spectrogram input), and random initializa-

tion. In this experiment, we use MAEST-10s and its ver-

sion with SWA weights, MAEST-10s-swa. Although our

main focus is to evaluate MAEST on public downstream

datasets, we also report their performance on the training

task to provide additional insights.

Table 3 shows the performance in both, the training

(Discogs20), and a downstream (MTT) task. In both cases,

the scores are higher when the training is started from pre-

trained weights. Since the PaSST weights result in slightly

higher performance, we use this initialization for the re-

maining of this work. Regarding the SWA, we observe a

positive effect on the training task when the model is ini-

tialized with pre-trained weights. However, we do not ob-

serve improvements in the downstream task.

4.3 Effect of the input segment length

We train MAEST using input segment lengths ranging

from 5 to 30 seconds. In our experiments, we keep the fre-

quency patchout constant and proportionally increase the

temporal patchout. For our models with segment lengths

of 5, 10, 20, and 30 seconds we discard 15, 30, 60, and 90

temporal patches respectively.

Model RW DeiT PaSST

Pre-training task: Discogs20

MAEST-10s 20.5 22.7 22.8
MAEST-10s-swa 20.1 23.2 23.5

Downstream task: MTT

MAEST-10s 38.7 40.4 41.1
MAEST-10s-swa 39.0 40.2 41.0

Table 3. mAP scores obtained in the training and down-

stream tasks using different initializations. We considered

Random Weights, and pre-trained weights from DeiT and

PaSST.

Table 4 shows the performance of the MAEST models

with respect to their input spectrogram segment length in

terms of mAP both in the training (Discogs20) and a down-

stream (MTT) evaluation. While music tagging CNNs tend

to reach their peak of performance with receptive fields of

3 to 5 seconds [14], attention-based systems have shown

the capability to take advantage of longer temporal con-

texts [40]. Our models are consistent with this trend, reach-

ing their best performance when trained on segments of 30

seconds. Although even longer segments could be benefi-

cial, we could not use them while keeping the same model

size due to GPU memory limitations.

4.4 Performance in downstream tasks

Considering our previous findings, we extend the evalua-

tion of MAEST to a number of downstream datasets. We

evaluate MAEST-10s, MAEST-20s, MAEST-30s, and a

baseline consisting of embeddings from the penultimate

layer of an EfficientNet-B0 (EffNet-B0) architecture [43]

trained in the same 400 music style tags from Discogs20

following previous work [6]. Additionally, we report the

performance of SOTA models from the literature consider-

ing approaches fully trained in the downstream tasks and

based on embeddings plus shallow classifiers.

Table 4 shows the results of the different models in

terms of ROC-AUC and mAP. We observe that all the

MAEST models outperform the baseline in all tasks, con-

firming the superiority of the proposed approach. Addi-

tionally, we achieve a new SOTA for the MTGJ-Genre,

MTGJ-Inst, and MSDc datasets, although other models re-

main superior in the rest of the datasets. Specifically, Mu-

Lan [7] obtains higher mAP in MTT, probably because it is

Model 5s 10s 20s 30s

Pre-training task: Discogs20

MAEST-T 21.1 22.8 24.8 26.1
MAEST-T-swa 21.3 23.5 25.8 27.0

Downstream task: MTT

MAEST-T 40.8 41.1 41.2 41.7
MAEST-T-swa 40.9 41.0 41.2 41.5

Table 4. mAP scores obtained in the training and down-

stream tasks using different spectrogram segment lengths.

T represents the spectrogram segment length.
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MTGJ-Genre MTGJ-Inst MTGJ-Mood MTGJ-T50 MTAT MSDs MSDc
ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP ROC mAP

State of the art

Fully-trained
- - - - 77.8 15.6 83.2 29.8 90.69 38.44 92.2 38.9 89.7 34.8
- - - - [42] [42] [34] [34] [41] [41] [40] [40] [40] [40]

Embeddings
87.7 19.9 77.6 19.8 78.6 16.1 84.3 32.1 92.7 41.4 - - 90.3 36.3

[6] [6] [6] [6] [5] † [5] † [5] † [5] † [7] † [5] † - - [5] † [5] †

Baseline

EffNet-B0 87.7 19.9 77.6 19.8 75.6 13.6 83.1 29.7 90.2 37.4 90.4 32.8 88.9 32.8

Our models

MAEST-10s 88.1 21.1 79.7 22.4 77.9 15.1 84.0 31.3 91.8 41.0 91.5 36.9 88.9 32.7
MAEST-20s 88.1 21.4 79.9 22.6 77.9 15.2 84.1 31.5 91.8 41.0 92.1 39.2 89.5 34.5
MAEST-30s 88.2 21.6 80.0 22.9 78.1 15.4 84.0 31.5 92.0 41.9 92.4 40.7 89.8 35.4

Table 5. ROC-AUC and mAP scores obtained in the downstream tasks. Our baseline consists of an EffNet-B0 architecture

trained in Discogs20. Additionally, we report the SOTA results distinguishing models with all parameters trained in the

downstream tasks (fully trained) and models evaluated with shallow classifiers. For every task, we mark in bold the best

score obtained by a MAEST model and highlight in grey models achieving better performance than the best open alternative.
† Models not publicly available.

trained on a much larger corpus of 40 M tracks. In MTGJ-

Moods, MTGJ-T50, MTT, and MSDs, Musicset-Sup, a

model trained on a curated dataset of 1.8 M expert annota-

tions, remains superior [5]. In both cases, the advantage is

likely due to the superiority of the training task. Notably,

none of these models is public, which makes MAEST the

best open music embedding extractor available.

4.5 Faster feature extraction with inference patchout

Inferring with transformers is typically more computation-

ally expensive than with CNNs. To speed up our models,

we consider using two types of patchout at inference time:

Time-wise, we keep one out of T spectrogram patches.

Frequency-wise, we discard specific rows of patches. We

experiment with temporal patchout using T ∈ [2, 3, 5, 10]
and frequency patchout of 3 and 4 patches corresponding

to the first and the two last blocks, and the two first and

two last blocks respectively. The embeddings obtained un-

der different patchout settings are compared in the training

and a downstream task following our downstream evalua-

tion approach on the MTT dataset.

Figure 3 shows the mAP scores on the training and

downstream tasks under different patchout settings. In

the downstream task, even under strong patchout settings,

MAEST-30s overcomes the throughput of standard CNN

architectures by two to three times while keeping higher

mAP. On the training task, this technique is not so effec-

tive because the classifier is frozen and cannot adapt to the

effects of patchout, and also it operates on tokens from the

last block, which requires more computations.

5. CONCLUSION

In this work, we demonstrate the benefits of pure-attention-

based transformers for music representation learning and

study how different design decisions affect the downstream

performance. Our experiments show that the best embed-

dings come from a stack of features from the middle blocks
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Downstream task: MTT

Figure 3. mAP scores against throughput for MAEST-

30s under different amounts of frequency (F) and time (T)

patchout. The radius is proportional to the parameter count

and the inference is performed on the CPU.

of the transformer, initializing from weights pre-trained

in audio event recognition provides the best performance,

and that longer input segments correlate with better re-

sults. We evaluate our models in six popular music tagging

datasets, and experiment with patchout at inference time,

finding that it allows speeding up significantly the trans-

former while producing embeddings with better perfor-

mance/speed trade-offs than our convolutional baselines.

Finally, we present MAEST, a family of transformers for

music style tagging and embedding extraction, which are

publicly available and achieve SOTA performance among

currently available music representation models.

In future work, we will combine our architecture with

additional training objectives combining supervised and

self-supervised paradigms. Additionally, we will experi-

ment with longer input segments and teacher-student se-

tups suitable for noisy datasets such as ours.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

829



6. ACKNOWLEDGEMENTS

This work has been supported by the Musical AI project

- PID2019-111403GB-I00/AEI/10.13039/501100011033,

funded by the Spanish Ministerio de Ciencia e Innovación

and the Agencia Estatal de Investigación.

7. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

“Attention is all you need,” Advances in neural infor-

mation processing systems, 2017.

[2] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-

senborn, X. Zhai, T. Unterthiner, M. Dehghani,

M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and

N. Houlsby, “An image is worth 16x16 words: Trans-

formers for image recognition at scale,” in 9th Intl.

Conf. on Learning Representations (ICLR), 2021.

[3] Y. Gong, Y. Chung, and J. R. Glass, “AST: audio

spectrogram transformer,” in 22nd Annual Conf. of

the Intn. Speech Communication Association (Inter-

speech), 2021.

[4] Q. Huang, A. Jansen, L. Zhang, D. P. Ellis, R. A.

Saurous, and J. Anderson, “Large-scale weakly-

supervised content embeddings for music recommen-

dation and tagging,” in Intl. Conf. on Acoustics, Speech

and Signal Processing (ICASSP), 2020.

[5] M. C. McCallum, F. Korzeniowski, S. Oramas,

F. Gouyon, and A. F. Ehmann, “Supervised and un-

supervised learning of audio representations for music

understanding,” in Intl. Society for Music Information

Retrieval Conf. (ISMIR), 2022.

[6] P. Alonso-Jiménez, X. Serra, and B. Dmitry, “Mu-

sic representation learning based on editorial metadata

from Discogs,” in Intl. Society for Music Information

Retrieval Conf. (ISMIR), 2022.

[7] Q. Huang, A. Jansen, J. Lee, R. Ganti, J. Y. Li, and

D. P. Ellis, “MuLan: A joint embedding of music au-

dio and natural language,” in Intl. Society for Music

Information Retrieval Conf. (ISMIR), 2022.

[8] K. Koutini, J. Schlüter, H. Eghbal-zadeh, and G. Wid-

mer, “Efficient training of audio transformers with

patchout,” in 23rd Annual Conf. of the Intl. Speech

Communication Association (Interspeech), 2022.

[9] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen,

W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter,

“Audio Set: An ontology and human-labeled dataset

for audio events,” in Intl. Conf. on acoustics, speech

and signal processing (ICASSP), 2017.

[10] J. Turian, J. Shier, H. R. Khan, B. Raj, B. W. Schuller,

C. J. Steinmetz, C. Malloy, G. Tzanetakis, G. Velarde,

K. McNally, M. Henry, N. Pinto, C. Noufi, C. Clough,

D. Herremans, E. Fonseca, J. H. Engel, J. Salamon,

P. Esling, P. Manocha, S. Watanabe, Z. Jin, and Y. Bisk,

“HEAR: holistic evaluation of audio representations,”

in Conf. on Neural Information Processing Systems

(NeurIPS), D. Kiela, M. Ciccone, and B. Caputo, Eds.,

2021.

[11] L. Wang, P. Luc, Y. Wu, A. Recasens, L. Smaira,

A. Brock, A. Jaegle, J.-B. Alayrac, S. Dieleman, J. Car-

reira et al., “Towards learning universal audio repre-

sentations,” in Intl. Conf. on Acoustics, Speech and Sig-

nal Processing (ICASSP), 2022.

[12] H. Schreiber and M. Meinard, “A single-step approach

to musical tempo estimation using a convolutional neu-

ral network,” in Intl. Society for Music Information Re-

trieval Conf. (ISMIR), 2018.

[13] A. van den Oord, S. Dieleman, and B. Schrauwen,

“Transfer learning by supervised pre-training for

audio-based music classification,” in Intl. Society for

Music Information Retrieval Conf. (ISMIR), 2014.

[14] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Trans-

fer learning for music classification and regression

tasks,” in Intl. Society for Music Information Retrieval

Conf. (ISMIR), 2017.

[15] J. Lee, J. Park, K. Kim, and J. Nam, “SampleCNN:

End-to-end deep convolutional neural networks using

very small filters for music classification,” Applied Sci-

ences, 2018.

[16] J. Park, J. Lee, J.-W. Ha, and J. Nam, “Representation

learning of music using artist labels,” in Intl. Society

for Music Information Retrieval Conf. (ISMIR), 2018.

[17] J. Kim, M. Won, X. Serra, and C. C. S. Liem, “Transfer

learning of artist group factors to musical genre classi-

fication,” Intl. World Wide Web Conf., 2018.

[18] J. Lee, J. Park, and J. Nam, “Representation learning

of music using artist, album, and track information,”

in Intl. Conf. on Machine Learning (ICML), Machine

Learning for Music Discovery Workshop, 2019.

[19] J. Kim, J. Urbano, C. C. S. Liem, and A. Hanjalic,

“One deep music representation to rule them all? a

comparative analysis of different representation learn-

ing strategies,” Neural Computing and Applications,

2020.

[20] P. Alonso-Jiménez, X. Favory, H. Foroughmand,

G. Bourdalas, X. Serra, T. Lidy, and D. Bogdanov,

“Pre-training strategies using contrastive learning and

playlist information for music classification and simi-

larity,” in Intl. Conf. on Acoustics, Speech and Signal

Processing (ICASSP), 2023.

[21] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello,

“Look, listen, and learn more: Design choices for deep

audio embeddings,” in Intl. Conf. on Acoustics, Speech

and Signal Processing (ICASSP), 2019.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

830



[22] X. Favory, K. Drossos, T. Virtanen, and X. Serra,

“COALA: co-aligned autoencoders for learning se-

mantically enriched audio representations,” in Work-

shop on Self-supervised Learning in Audio and Speech,

Intl. Conf. on Machine Learning (ICML), 2020.

[23] ——, “Learning contextual tag embeddings for cross-

modal alignment of audio and tags,” in Intl. Conf. on

Acoustics, Speech and Signal Processing (ICASSP),

2021.

[24] A. Ferraro, X. Favory, K. Drossos, Y. Kim, and D. Bog-

danov, “Enriched music representations with multiple

cross-modal contrastive learning,” Signal Processing

Letters, 2021.

[25] J. Spijkervet and J. A. Burgoyne, “Contrastive learning

of musical representations,” in Intl. Society for Music

Information Retrieval Conf. (ISMIR), 2021.

[26] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and

K. Kashino, “Byol for audio: Self-supervised learning

for general-purpose audio representation,” in 2021 Intl.

Joint Conf. on Neural Networks (IJCNN), 2021.

[27] D. Yao, Z. Zhao, S. Zhang, J. Zhu, Y. Zhu, R. Zhang,

and X. He, “Contrastive learning with positive-

negative frame mask for music representation,” in Intl.

World Wide Web Conf., 2022.

[28] H. Zhao, C. Zhang, B. Zhu, Z. Ma, and K. Zhang,

“S3t: Self-supervised pre-training with swin trans-

former for music classification,” in Intl. Conf. on

Acoustics, Speech and Signal Processing (ICASSP),

2022.

[29] R. Castellon, C. Donahue, and P. Liang, “Codified au-

dio language modeling learns useful representations

for music information retrieval,” in Intl. Society for

Music Information Retrieval Conf. (ISMIR), 2021.

[30] I. Manco, E. Benetos, E. Quinton, and G. Fazekas,

“Learning music audio representations via weak lan-

guage supervision,” in IEEE Intl. Conf. on Acoustics,

Speech and Signal Processing (ICASSP), 2022.

[31] D. Chong, H. Wang, P. Zhou, and Q. Zeng, “Masked

spectrogram prediction for self-supervised audio pre-

training,” arXiv preprint arXiv:2204.12768, 2022.

[32] S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins,

Z. Chen, and F. Wei, “BEATs: Audio pre-training with

acoustic tokenizers,” arXiv preprint arXiv:2212.09058,

2022.

[33] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin,

and B. Guo, “Swin transformer: Hierarchical vision

transformer using shifted windows,” in Proc. of the

Intl. Conf. on Computer Vision (ICCV), 2021.

[34] J. Pons and X. Serra, “musicnn: Pre-trained convolu-

tional neural networks for music audio tagging,” Late-

Braeking/Demo, Intl. Society for Music Information

Retrieval Conf. (ISMIR), 2019.

[35] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablay-

rolles, and H. Jégou, “Training data-efficient image

transformers & distillation through attention,” in Intl.

Conf. on Machine Learning (ICML), 2021.

[36] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz,

“mixup: Beyond empirical risk minimization,” in Intl.

Conf. on Learning Representations (ICLR), 2018.

[37] D. S. Park, W. Chan, Y. Zhang, C. Chiu, B. Zoph,

E. D. Cubuk, and Q. V. Le, “Specaugment: A simple

data augmentation method for automatic speech recog-

nition,” in Annual Conf. of the Intl. Speech Communi-

cation Association (Interspeech), 2019.

[38] D. Bogdanov, M. Won, P. Tovstogan, A. Porter, and

X. Serra, “The MTG-Jamendo dataset for automatic

music tagging,” in Intl. Conf. on Machine Learning

(ICML), 2019.

[39] A. van den Oord, S. Dieleman, and B. Schrauwen,

“Transfer learning by supervised pre-training for

audio-based music classification,” in Conf. of the

Intl. Society for Music Information Retrieval (ISMIR),

2014.

[40] M. Won, K. Choi, and X. Serra, “Semi-supervised mu-

sic tagging transformer,” in Intl. Society for Music In-

formation Retrieval Conf. (ISMIR), 2021.

[41] M. Won, A. Ferraro, D. Bogdanov, and X. Serra, “Eval-

uation of cnn-based automatic music tagging models,”

in Sound and Music Computing Conf. (SMC), 2020.

[42] D. Knox, T. Greer, B. Ma, E. Kuo, K. Somande-

palli, and S. Narayanan, “Mediaeval 2020 emotion and

theme recognition in music task: Loss function ap-

proaches for multi-label music tagging,” in Proc. of the

MediaEval 2020 Workshop, 2020.

[43] M. Tan and Q. Le, “Efficientnet: Rethinking model

scaling for convolutional neural networks,” in Intl.

Conf. on Machine Learning (ICML), 2019.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

831



A CROSS-VERSION APPROACH TO
AUDIO REPRESENTATION LEARNING FOR ORCHESTRAL MUSIC

Michael Krause1 Christof Weiß2 Meinard Müller1

1 International Audio Laboratories Erlangen, Germany
2 University of Würzburg, Germany

{michael.krause,meinard.mueller}@audiolabs-erlangen.de, christof.weiss@uni-wuerzburg.de

ABSTRACT

Deep learning systems have become popular for tackling
a variety of music information retrieval tasks. However,
these systems often require large amounts of labeled data
for supervised training, which can be very costly to ob-
tain. To alleviate this problem, recent papers on learn-
ing music audio representations employ alternative train-
ing strategies that utilize unannotated data. In this paper,
we introduce a novel cross-version approach to audio rep-
resentation learning that can be used with music datasets
containing several versions (performances) of a musical
work. Our method exploits the correspondences that ex-
ist between two versions of the same musical section. We
evaluate our proposed cross-version approach qualitatively
and quantitatively on complex orchestral music recordings
and show that it can better capture aspects of instrumenta-
tion compared to techniques that do not use cross-version
information.

1. INTRODUCTION

Deep learning (DL) has become a common tool for ap-
proaching diverse tasks in music information retrieval
(MIR). These approaches usually follow a supervised
learning scheme, where a neural network is trained on the
annotations of some dataset. For many MIR tasks, how-
ever, such annotations are costly to obtain. Recent work
has investigated alternatives that require little or no anno-
tations and enable training on large, unannotated datasets.

For certain music genres, there are datasets that contain
several versions (i. e., recorded performances) of a musical
work. For example, the same classical symphony or con-
certo can be performed by different orchestras, and sev-
eral commercial recordings are often available. On such
datasets, automatic music synchronization techniques can
be used to find alignments between different versions of a
work, requiring minimal annotation effort [1, 2].

In this paper, we introduce a conceptually novel ap-
proach to audio representation learning that exploits cross-

© M. Krause, C. Weiß, and M. Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: M. Krause, C. Weiß, and M. Müller, “A Cross-Version
Approach to Audio Representation Learning for Orchestral Music”, in
Proc. of the 24th Int. Society for Music Information Retrieval Conf.,

Milan, Italy, 2023.

Figure 1: Visualization of our cross-version approach to
representation learning for orchestral music. An anchor
(blue) excerpt is selected from a music recording. The pos-
itive (green) and negative (red) excerpts are chosen from a
different version of the same musical piece. For this, an
alignment between versions is needed (gray arrows).

version datasets, thus requiring only alignments between
versions and no further human annotations. Our approach
aims at learning embeddings of audio excerpts such that
musically corresponding excerpts in different versions are
mapped to close points in the embedding space (Figure 1).

There are several musical aspects that stay roughly con-
stant across most versions, e. g., pitches, harmonies or
rhythm. For orchestral music, aspects of instrumentation
(i. e., active instruments or instrument families) are an-
other such property. Instrumentation represents a challeng-
ing MIR scenario given the complexity of instrument tax-
onomies and the difficulty of annotating instrument activ-
ity in orchestral music. In our experiments on a dataset of
complex orchestral music, we show qualitatively and quan-
titatively that—by utilizing the correspondences between
different versions of a musical section—our proposed rep-
resentation learning technique is better at capturing aspects
of instrumentation and instrument texture compared to ap-
proaches that do not exploit cross-version information.
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The remainder of the paper is structured as follows:
Section 2 covers related work on music audio representa-
tion learning, cross-version analysis, and instrumentation
in orchestral music. In Section 3, we introduce our pro-
posed approach. In Section 4, we describe our experimen-
tal setup, including datasets, our model architecture, and
baselines. Section 5 contains qualitative and quantitative
results and Section 6 concludes the paper with a discus-
sion of possible future work.

2. RELATED WORK

Several recent contributions have explored so-called self-
supervised strategies for learning representations from
unannotated music recordings. Often, in these studies, ex-
cerpts from a music recording that are in close proximity
are considered as positive pairs (i. e., should be mapped to
similar representations) whereas excerpts that are further
apart (or from other recordings) are negative pairs (i. e.,
should be mapped to dissimilar representations). This idea
is also illustrated in Figure 2. McCallum [3] originally
considered this with the aim of learning features for music
structure analysis. Wang et al. [4] had a similar use case but
used a supervised learning approach. Several authors em-
ployed such a strategy for learning more general purpose
representations [5–10], often applying additional augmen-
tations. Apart from using temporal proximity, other pa-
pers on music representation learning exploit audio-visual
or audio-text correspondences [11, 12], use classical fea-
tures as training targets [13], exploit metadata [14], or in-
vestigate music generation models [15].

The approach proposed in this paper is conceptually dif-
ferent since we utilize cross-version datasets, rather than
relying on temporal proximity alone. Such datasets contain
several recorded versions of a musical work, which may
vary in aspects related to musical interpretation, recording
conditions, and timbral characteristics of the instruments
used. These datasets have been exploited for expressive
performance rendering [16] or improved harmonic analy-
sis [17]. Cross-version datasets also allow for investigat-
ing model biases and overfitting effects in MIR models
through different dataset splits [18]. To our knowledge,
the only other work utilizing cross-version information for
embedding learning is by Zalkow et al. [19], whose aim
was to compress chromagram excerpts for efficient music
retrieval. In contrast, we propose to learn representations
based on spectrogram-like input features and investigate
them for capturing instrument texture.

In the wider machine learning literature, representations
are often learned by masking a part of an input and predict-
ing the masked content [20, 21]. Other strategies utilize
multi-modal datasets, e. g., containing text–image [22] or
audio–text pairs [23].

Orchestral music has been explored in the context of
source separation [24] or melody extraction [25]. The
authors in [26] considered instrument family recognition
for classical, monotimbral recordings using a supervised
learning approach. Other recent papers on instrument ac-
tivity detection in music recordings [27–29] have also con-

Figure 2: When forming triplets of audio excerpts, the an-
chor and positive/negative excerpts are chosen according
to a maximum/minimum distance τp/τn.

sidered DL-based, supervised learning approaches, but not
within orchestral scenarios.

3. CROSS-VERSION APPROACH TO AUDIO

REPRESENTATION LEARNING

In this section, we formalize our proposed cross-version
approach to representation learning. The key idea is to
utilize correspondences between different versions (i. e.,
recorded performances played by different orchestras) of
the same musical work. We aim to learn embeddings of
audio excerpts such that the same musical section in dif-
ferent versions is represented by neighboring points in the
embedding space and audio excerpts for unrelated musi-
cal sections are mapped to distant points in the embedding
space. To this end, inspired by [19], we sample triplets
of audio excerpts as in Figure 1, and apply a triplet loss
for learning. Musical characteristics that stay roughly con-
stant across different versions of an orchestral work in-
clude pitches and harmonies, as well as instrumentation. In
later sections, we will analyze to what extent our approach
captures pitches or aspects of instrumentation.
Single-Version Approach (SV). We begin by formalizing
a common approach to music representation learning that
only utilizes temporal proximity inside a single version,
see also Section 2 and Figure 2. Let W be a set of musi-
cal works and let Vw be the set of available versions for a
work w ∈ W . We first randomly select a work w ∈ W
and some version of this work v ∈ Vw. Let T denote the
length of v in seconds. We choose an anchor excerpt by
uniformly sampling an anchor position a ∈ [0, T ] and ex-
tracting the excerpt xa of v that is centered around a. To
obtain the positive and negative excerpts, we choose a po-
sition p ∈ [0, T ] for the positive excerpt xp of v such that
|a − p| ≤ τp. Thus, the positive excerpt is in temporal
proximity of the anchor excerpt—up to a threshold of τp

seconds—and is likely to correspond to a musically similar
section. In the same way, we choose a position n ∈ [0, T ]
for the negative excerpt xn of v such that |a − n| ≥ τn.
The negative excerpt is therefore a certain minimum dis-
tance of τn seconds away from the anchor position, likely
corresponding to a musically dissimilar section. 1

1 Due to repetitions and other structural similarities, there may in fact
be some musically related sections that are far apart temporally. In the
majority of cases, however, the assumption underlying positive and neg-
ative sampling will hold [3].
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Embedding Learning. We obtain embeddings by pass-
ing these excerpts through a neural network (described in
Section 4.2), i. e.:

Y = (ya,yp,yn) = (f(xa), f(xp), f(xn)) , (1)

where f is a neural network that embeds an audio excerpt
x into an embedding vector y. Using this triplet, we can
apply a standard triplet loss [30] such as:

L(Y) = max
(

0, ∥ya − yp∥22 − ∥ya − yn∥22 + α
)

, (2)

where α ∈ R≥0 describes the desired minimum margin be-
tween the distance of embeddings for anchor and positive
versus the distance of embeddings for anchor and negative.
Cross-Version Approach (CV). For our proposed cross-
version approach, we sample triplets in a different fash-
ion. Since we utilize multiple versions per work, we now
require |Vw| ≥ 2. To form a triplet of excerpts, we ran-
domly select some version v1 ∈ Vw of a work w ∈ W . We
then sample an anchor position a1 ∈ [0, T1], where T1 is
the length of v1 in seconds, and extract the corresponding
excerpt xa of v1. To obtain the positive and negative ex-
cerpts, we randomly select another version v2 ∈ Vw \{v1}
of w. As before, let T2 denote the length of v2 in seconds.
We can find the position a2 ∈ [0, T2] in v2 corresponding
to the same musical position as the anchor a1 in v1 using
music alignment techniques. With this, we choose a posi-
tion p ∈ [0, T2] for the positive excerpt xp of v2 such that
|a2 − p| ≤ τp. Thus, the positive excerpt corresponds to
the same musical section as the anchor, up to some toler-
ance of τp seconds (in addition to alignment inaccuracies).
Similarly, we sample n ∈ [0, T2] (with |a2 − n| ≥ τn) and
extract xn. Note that only xa is an excerpt of the first ver-
sion v1, whereas both xp and xn are excerpts of the second
version v2. As before, we construct a triplet Y using these
excerpts and apply a standard triplet loss.

4. EXPERIMENTAL SETUP

4.1 Dataset and Splits

To show the potential of our representation learning tech-
nique, we construct a cross-version dataset of commercial
symphonic and opera music recordings, illustrated in Ta-
ble 1. Our dataset contains an act from an opera (the first
act from Richard Wagner’s “Die Walküre”) as well as or-
chestral pieces by Beethoven, Dvorak and Tschaikowsky.
Counting each movement as an individual work, the
dataset contains eleven different works in total. We choose
the first movement of the Beethoven Symphony, the fourth
movement of the Dvorak Symphony and the third move-
ment of the Tschaikowsky Concerto for testing. Since we
do not have multiple opera acts that could be split into
train and test, we choose an excerpt of the Wagner opera
act (measures 697 to 955, corresponding to around twelve
minutes), omit this excerpt during training, and use it for
testing. We further ensure that the train and test set contain
different versions. By splitting our dataset in this fashion,

Composer Work
Versions

Num. Avg. Duration

Wagner Die Walküre, Act 1 8 1 h
Beethoven Symph. 3, Mvmts. 1–4 6 45 min
Dvorak Symph. 9, Mvmts. 1, 2, 4 6 40 min
Tschaikowsky Violin Concerto, Mvmts. 1–3 6 35 min

Total duration 20 h

Table 1: Our cross-version dataset containing several com-
mercial recordings of different orchestral and opera com-
positions.

we aim to avoid overfitting to specific musical composi-
tions or recording conditions (the latter is also referred to
as “album effect” [31]).

For the cross-version approach CV, we obtain an
alignment between versions of the same work using
state-of-the-art music synchronization techniques involv-
ing chroma onset features and multi-scale alignment [2].
For some experiments, we also require pitch-class and
instrument activity annotations for our dataset. To this
end, we manually encoded a score representation of “Die
Walküre” and obtained further scores from the Mutopia
project. 2 Again, we use music synchronization techniques
to align score to audio and create the annotations.

4.2 Model

We implement all representation learning approaches us-
ing a convolutional neural network that takes a harmonic
CQT representation (HCQT, [32]) of an audio excerpt as
input and outputs a corresponding embedding vector. The
HCQT input consists of 201 frames (at a frame rate of
43 Hz, i. e., roughly 4.7 seconds), three bins per semitone
from C1 to B7 (leading to 252 bins), and five harmonics
(with frequency multiples of [0.5, 1, 2, 3, 4]).

The model architecture is adapted from [33] and re-
ceives an HCQT input patch, processes it through several
convolution and max-pooling layers, and outputs a single
ℓ2-normalized vector (length 128) per input. We take this
output as the embedding vector for the center frame of the
input patch. In total, the architecture has roughly 1.5 mil-
lion learnable parameters. We train our network for 200
epochs (with 16 000 triples randomly sampled per epoch)
using the Adam optimizer with a learning rate of 0.002. In
the interest of reproducibility, we release code and trained
models for our approach. 3

In line with previous studies on audio representation
learning [5–7], we apply a number of augmentations to ex-
cerpts during training, including time scaling, pitch shift-
ing, random masking, adding noise and applying random
equalization. For all experiments, we set τp = 0.2 s. With
this, the maximal distance between anchor and positive
excerpt is in the same order of magnitude as the typical
alignment inaccuracy between versions. We further set

2 https://www.mutopiaproject.org/
3 https://www.audiolabs-erlangen.de/resources/

MIR/2023-ISMIR-CrossVersionLearning
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Figure 3: Self-similarity matrices constructed from instrument annotations (RefI) and pitch-class annotations (RefH), or
obtained with a supervised learning system (Sup), the proposed cross-version approach (CV), and a baseline that does not
incorporate cross-version information (SV). The lower row shows the sections highlighted in red from above.

τn = 10.0 s and α = 1.0. We found that results are stable
for a broad range of settings of these parameters.

4.3 Baselines

To investigate the musical properties captured by the rep-
resentation learning approaches CV and SV, we compare
them to several optimistic baselines: First, we extract tradi-
tional music audio features. We use mel-frequency cepstral
coefficients (MFCC), which are known to capture aspects
of instrumentation [34], and Chroma features, which con-
tain the dominant pitch-classes in the recording. Here, our
goal is not to outperform MFCC or Chroma, but to com-
pare them to our learned representations. If our learning
approaches capture instrumentation, we expect them to be-
have similar to MFCCs. Likewise, in case they contain
pitch-class information, we expect them to perform like
Chroma features.

Second, we consider a supervised learning approach
Sup where we train a model on instrument activity anno-
tations and use its hidden representations as features. For
this, we utilize the same model architecture as for CV and
SV and only add a final dense layer with a number of out-
puts equal to the number of instruments to detect. Rather
than using the triplet loss from Section 3, we train this ap-
proach by applying a sigmoid activation and binary cross-
entropy loss. Note that in contrast to CV and SV, the Sup
approach requires instrument activity annotations for the
recordings in the training set.

5. RESULTS

5.1 Feature Analysis using Self-Similarity

In order to visualize and compare the representations
learned by different techniques, we employ self-similarity

matrices. Such matrices are commonly used for mu-
sic structure analysis and allow for visualizing struc-
tures based on repetition and homogeneity in feature se-
quences [1]. Here, we use them to analyze our learned
representations without the need for additional fine-tuning.
This also allows us to directly compare approaches trained
with a fixed instrument vocabulary (Sup) to others that are
not informed about instruments. We provide an alternative
evaluation in Section 5.4.

Given a sequence X = (x1, . . . , xN ) of (learned) rep-
resentations of N audio frames, we construct the corre-
sponding self-similarity matrix S ∈ R

N×N as follows.
We first normalize all representations with respect to the
ℓ2-norm, yielding X̃ = (x̃1, . . . , x̃N ). We then compute
S(n,m) := ⟨x̃n, x̃m⟩ for n,m ∈ [1 : N ]. Thus, S con-
tains the cosine similarities between elements of X , and
all its entries lie in the interval [−1, 1]. By definition, all
entries on the diagonal of S are equal to 1. In addition, re-
peated subsequences appear as path-like structures and ho-
mogeneous segments appear as block-like structures, see
also [1].

We compare the self-similarity matrices obtained from
learned representations to matrices created using reference
annotations. First, we represent an instrument activity an-
notation as a sequence of multi-hot binary vectors (indi-
cating the presence of instruments in different frames). By
normalizing and computing the dot product as before, we
obtain a matrix corresponding to instrument texture, where
blocks indicate segments with similar instrumentation. We
will refer to this matrix using the shorthand RefI. For ex-
ample, the start of the middle measure in Figure 1 would
be encoded as a vector (1, 1, 1)⊤, i. e., all instruments are
active, and the end of that measure would be encoded as
(1, 1, 0)

⊤, i. e., only horn and soprano are active. After
normalization, the dot product of these vectors is 0.82,
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indicating similar instrumentation. Analogously, we con-
struct another matrix RefH from a sequence of pitch-class
annotations. This matrix captures regions with similar har-
monies and pitches.

5.2 Qualitative Results

Figure 3 shows several self-similarity matrices obtained
through reference annotations or by different representa-
tion learning approaches. The excerpt shown in the upper
row is the test excerpt from “Die Walküre” (similar results
are obtained on other inputs). The lower row shows mag-
nified sections from above. Darker color indicates higher
similarity.

In the RefI matrix, arising from instrument annota-
tions as explained in Section 5.1, one can observe many
block and checkerboard-like structures. For example,
from seconds 460 to 560, different combinations of wood-
wind instruments are playing together, creating block and
checkerboard-like patterns (highlighted in blue). White ar-
eas indicate S(n,m) = 0, i. e., no common instruments
are playing. The matrix RefH, on the other hand, indicates
harmonic similarities which are mostly distinct from the
instrument similarities in RefI.

For the Sup system, many of the patterns in RefI are
replicated, albeit with less detail. This is expected, since
this system has been trained on the same kind of anno-
tations that have been used to create RefI. Interestingly,
many of the patterns present in the RefI and Supmatrices
also appear for the proposed approach CV, which has not
been trained using instrument annotations. In particular,
the checkerboard pattern starting at second 460 is captured
by CV, as well as many block structures.

There are fewer similarities between CV and RefH, in-
dicating that the CV representations are more likely to
capture instrumentation rather than pitch-class content.
This behavior is encouraged by our augmentation strat-
egy, where we randomly pitch-shift the anchor, positive
and negative excerpts.

The matrix obtained through the SV approach is blurry
and, unlike the results for CV, fails to capture many of the
checkerboard-like patterns present in RefI. The example
suggests that exploiting cross-version information during
training is important for capturing aspects of instrumenta-
tion in learned representations.

5.3 Quantitative Results

In order to quantify the correlation between our learned
representations and instrument texture, we now apply a
procedure for detecting the boundaries of block-like struc-
tures in self-similarity matrices. We then compare block
boundaries estimated on RefI with boundaries from all
other matrices. Such procedures are often used in the con-
text of music structure analysis [1, 35].

To detect block boundaries, we first correlate a self-
similarity matrix with a checkerboard kernel along the
main diagonal, as proposed in [35]. From this, we ob-
tain a novelty curve. We then apply a peak picking proce-
dure using local thresholding on this novelty curve, yield-
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Figure 4: Results for different representation learning ap-
proaches when comparing estimated structure boundaries
to boundaries from RefI.
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Figure 5: Results for comparing with RefH.

ing sparse positions of detected block structures. We do
this for all approaches and reference matrices. We finally
compare—with a tolerance of up to three seconds—the
detected boundaries for all approaches to those of RefI,
yielding a boundary F-measure. By adjusting the size of
the checkerboard kernel in this procedure, we can iden-
tify changes of instrument texture on short or larger time
scales. For more details on the boundary detection, peak
picking, and evaluation procedure, we refer to [1].

Figure 4 shows the results of our quantitative evalua-
tion for different sizes of the checkerboard kernel. The F-
measures given are averaged over all recordings in the test
dataset. We observe that the supervised approach is best at
capturing instrument texture (as encoded by RefI) com-
pared to all others, with the highest F-measure of 0.77 for
a kernel of eight seconds. CV and MFCC perform roughly
on par. This is surprising, since CV is trained without any
instrument annotations, while MFCC is known to capture
instrumentation. Results for SV deteriorate with larger ker-
nel sizes, dropping to as low as 0.28 F-measure for a kernel
of 48 seconds. The proposed approach CV is better at cap-
turing instrument texture than the alternative SV that does
not utilize cross-version information.

To examine whether our representations capture infor-
mation related with harmonies and pitches played, we per-
form the same evaluation procedure with boundaries from
RefH (see Figure 5). We obtain low F-measures for both
CV and SV (dropping below 0.4 for kernel sizes above
20 seconds for both approaches). In particular, while we
observe an advantage of CV over SV for capturing in-
strumentation, there is no such advantage with regard to
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Scenario
Micro Avg. Macro Avg.

AP AUC F1 S F1 S

MFCC 0.777 0.780 0.600 0.890 0.450 0.847
SV 0.708 0.735 0.590 0.871 0.407 0.820
CV 0.753 0.795 0.657 0.872 0.514 0.835
Sup 0.838 0.881 0.772 0.894 0.714 0.874

Table 2: Results for different representation learning ap-
proaches when performing instrument classification.

pitch-classes. Additionally, standard Chroma features are
clearly superior at capturing the structures in RefH. We
conclude that the representations learned by our proposed
approach CV indeed contain information about instrument
texture rather than pitch-classes and harmonies.

5.4 Feature Analysis Using Classification

To gain further insights into the information captured by
our learned representations, we also perform an indirect
evaluation as typically done in representation learning.
Previous studies often rely on training small classifiers
on top of learned representations to investigate their use-
fulness for different downstream tasks [5, 15]. In this
section, we complement our self-similarity-based analysis
with such a classification-based evaluation strategy.

To this end, we pass individual representation vectors
through a small network of dense layers with 128, 64, and
32 hidden units followed by leaky ReLU activations, re-
spectively. The final layer produces outputs for every in-
strument annotated in our dataset, followed by a sigmoid
activation. For each representation learning technique, we
train and evaluate such a network using the dataset split
as described in Section 4.1. Concretely, we minimize the
mean binary cross-entropy loss over all instrument classes
on the training set, using stochastic gradient descent with
a learning rate of 10−4 for 10 epochs. We finally evalu-
ate the classification results on the test set using standard
metrics, including ranking-based average precision (AP),
mean area under the ROC curves (AUC), F-measure (F1),
and specificity (S). For F1 and S, we threshold the pre-
dicted probabilities at 0.5 and compute both micro and
macro averages of the evaluation scores, where the macro
average is not affected by imbalance among instrument
classes.

The results of this experiment are shown in Table 2.
We observe similar trends as in our self-similarity-based
evaluation. As expected, the supervised baseline again
yields best results. Our proposed cross-version approach
CV clearly outperforms the traditional SV across all metrics
(e. g., AP = 0.753 as opposed to 0.708 for SV). Further-
more, CV even improves upon the optimistic MFCC base-
line in terms of AUC and F-measure (e. g., micro F1 =
0.657 instead of 0.600 for MFCC). Finally, SV performs
worse than MFCC. Overall, the representations learned by
our proposed approach CV are more effective for instru-
ment classification compared to the standard SV approach
that does not utilize cross-version information.

Scenario
Micro Avg. Macro Avg.

AP AUC F1 S F1 S

Chroma 0.802 0.854 0.591 0.964 0.586 0.963
SV 0.427 0.568 0.001 1.000 0.001 1.000
CV 0.430 0.584 0.021 0.994 0.018 0.994
Sup 0.457 0.612 0.137 0.959 0.122 0.958

Table 3: Results for pitch-class classification using the
learned representations.

We repeat this experiment using pitch-classes as the
classification targets instead of instruments. Table 3 shows
the results of the modified experiment, which are inline
with our conclusions from previous sections. Standard
Chroma features strongly outperform all learned repre-
sentations on this task. We conclude that our proposed
approach captures instrumentation rather than pitches.

6. CONCLUSION

In this paper, we described a novel audio representation
learning approach for cross-version music data and investi-
gated its application to orchestral music. Our approach uti-
lizes the correspondences between different versions of the
same musical work. We showed qualitatively and quantita-
tively that the representations learned by our approach cap-
ture aspects of instrumentation. We outperform a standard
training strategy that relies on temporal proximity alone.

Our approach can be applied to any kind of cross-
version music dataset where alignments between versions
can be obtained using standard music synchronization
techniques. Future work may apply our approach to other
musical scenarios and larger datasets, explore more com-
plex feature extraction networks, investigate alternatives to
our triplet loss formulation, or apply the learned represen-
tations in the context of different downstream tasks (such
as structure analysis). One may also study the impact of
design choices such as τp and τn, the pitch shifting aug-
mentation, or the number of versions used for training.
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ABSTRACT

This paper proposes a new music source separation (MSS)

model based on an architecture with MLP-Mixer that lever-

ages multilayer perceptrons (MLPs). Most of the recent

MSS techniques are based on architectures with CNNs,

RNNs, and attention-based transformers that take wave-

forms or complex spectrograms or both as inputs. For

the growth of the research field, we believe it is impor-

tant to study not only the current established methodolo-

gies but also diverse perspectives. Therefore, since the

MLP-Mixer-based architecture has been reported to per-

form as well as or better than architectures with CNNs

and transformers in the computer vision field despite the

MLP’s simple computation, we report a way to effec-

tively apply such an architecture to MSS as a reusable in-

sight. In this paper we propose a model called TFC-MLP,

which is a variant of the MLP-Mixer architecture that pre-

serves time-frequency positional relationships and mixes

time, frequency, and channel dimensions separately, us-

ing complex spectrograms as input. The TFC-MLP was

evaluated with source-to-distortion ratio (SDR) using the

MUSDB18-HQ dataset. Experimental results showed that

the proposed model can achieve competitive SDRs when

compared with state-of-the-art MSS models.

1. INTRODUCTION

Music source separation (MSS) is the task of obtaining

individual source signals — such as vocals, drums, and

bass — from real music acoustic signals. This is an es-

sential technique for various applications, including music

information retrieval and music listening interfaces, where

the characteristics of individual sound sources are ana-

lyzed and utilized. MSS has actually been used to add

effects to individual source (instrument) sounds for mu-

sic appreciation [1] and adjust their volume [1–4], to im-

prove the cochlear implant user’s musical experience by

adjusting the volume of preferred instruments [5], to syn-

thesize singing voices [6], to acquire feature expressions of

singing voices [7], to identify singers [8], to achieve audio-

to-lyrics alignment [9,10], to create music mashups [11], to

© T. Nakano and M. Goto. Licensed under a Creative Com-

mons Attribution 4.0 International License (CC BY 4.0). Attribution:

T. Nakano and M. Goto, “Music source separation with MLP mixing of

time, frequency, and channel”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

separate sources for music education [12], and to estimate

compatibility between vocals and accompaniment [13].

Currently, the mainstream approaches for MSS use

deep neural networks [14, 15], and their performance is

improving year by year. For their performance compar-

ison to measure the improvement, MUSDB18 [16] had

been used as the common standard data set for the four

target sound sources (Vocals, Drums, Bass, and Other).

Then MUSDB18-HQ [17], an extended frequency band-

width version of MUSDB18, was released and has been

used for recent evaluations.

As for the current state-of-the-art MSS models, the top-

ranked models [18, 19] in the Music Demixing (MDX)

Challenge 2021 [20] and the two models presented in

two arXiv papers in 2022 [21, 22] have an average SDR

(source-to-distortion ratio) over 7 dB for the four sources

when using MUSDB18-HQ as training, validation, and test

data. These models are explained in the next section.

Such deep MSS models can be classified in terms of the

type of input and output used for separation and the type

of architecture. The input and output of the models are se-

lected from waveforms, amplitude spectrograms, complex

spectrograms, phase spectrograms, etc. The architecture

of the models is mainly selected from ResNet, DenseNet,

U-Net, and Transformer and is used with layers of Con-

volutional Neural Networks (CNNs) or Recurrent Neural

Networks (RNNs). Simpler architectures based on multi-

layer perceptrons (MLPs), however, have not been used in

state-of-the-art MSS models.

Meanwhile, in the field of computer vision, high-

performance architectures based on MLPs have recently

been proposed and reported to perform as well as or bet-

ter than architectures using CNNs or transformers [23,24].

In addition, those simpler MLP-centric architectures have

also been applied in audio-related research, with cases of

singing voice synthesis [25] and speech enhancement [26].

However, such MLP-centric architectures have not been

applied in the MSS domain, though fully connected layers

and MLPs have been used for linear transformation such

as embedding and expansion. Since we believe that new

perspectives, in addition to the development of established

methodologies, are important for the advancement of the

research field, this paper investigates how MLP-based ar-

chitectures can be effectively leveraged for MSS.

As such a modern MLP-centric high-performance ar-

chitecture, Tolstikhin et al. proposed the MLP-Mixer [23]

that applies MLPs to a Tp × Cp matrix to estimate the
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Table 1. SDRs in MUSDB18-HQ for the state-of-the-art models and our proposed TFC-MLP. The “Avg.” column means

the average of the SDR results for the four sources. The “Per-source” column means that the per-source adjustment/tuning

has been implemented. The “Extra” column indicates the number of songs added as extra training data, and † means that

only mixed sounds were added. Models with “*” are evaluated in MUSDB18 [16], and SDRs for models with “**” are

recalculated in MUSDB18-HQ using the pretrained model. A bold font indicates the maximum value at each source.

Model Test SDR in dB

Name Per-source Extra Avg. Vocals Drums Bass Other

KUIELab-MDX-Net (w/o Demucs) [18]* ✓ 7.28 8.91 7.07 7.33 5.81

TFC-MLP (ours) 7.30 8.91 7.18 6.96 6.14

KUIELab-MDX-Net [18]** ✓ 7.48 8.97 7.20 7.83 5.90

Hybrid Transformer Demucs [22] 7.52 7.93 7.94 8.48 5.72

Hybrid Demucs [19] 7.64 8.35 8.12 8.43 5.65

Band-Split RNN [21] ✓ 8.24 10.01 9.01 7.22 6.70

TFC-MLP (ours) 120 7.78 9.68 7.75 7.23 6.46

Hybrid Demucs [19] 800 8.34 8.75 9.31 9.13 6.18

Hybrid Transformer Demucs [22] 150 8.49 8.56 9.51 9.76 6.13

Hybrid Transformer Demucs [22] 800 8.80 8.93 10.05 9.78 6.42

Band-Split RNN [21] ✓ 1750† 8.97 10.47 10.15 8.16 7.08

Hybrid Transformer Demucs [22] ✓ 800 9.00 9.20 10.08 10.39 6.32

Sparse HT Demucs [22] ✓ 800 9.27 9.37 10.83 10.47 6.41

class of an image. The matrix is obtained by dividing the

image into patches and embedding each patch into a Tp-

dimensional vector, which is called a token, and the num-

ber of tokens is the channel dimension Cp. Here, a token-

mixing MLP, a full connection within an individual token,

and a channel-mixing MLP, a full connection between to-

kens (i.e., channel direction), are applied alternately. Given

sufficient training data, MLP-Mixer was shown to perform

as well as or better than CNNs or transformers.

By extending this MLP-Mixer, for the image recon-

struction task, Mansour et al. proposed the Image-to-Image

Mixer [24] that performs better when trained with fewer

images than the original MLP-Mixer. The Image-to-Image

Mixer transforms images as a 3D tensor (W × H × C)

instead of the 2D matrix (Tp × Cp) and preserves the rel-

ative positions of patches to induce a bias towards natu-

ral images. In other words, the token-mixing MLP and

the channel-mixing MLP are split into three processes

of width-mixing MLP, height-mixing MLP and channel-

mixing MLP. This also keeps the total number of trainable

parameters low, since the size of each dimension of the 2D

matrix (i.e., Tp and Cp) obtained by transformation from

the 3D tensor is relatively large.

In investigating such MLP-based architectures in the

MSS domain, we decided to use a complex spectrogram,

which is a reasonable representation for MSS, as the input.

Since the size of its complex time-frequency representation

is larger than the size of typical images in the computer

vision domain, we apply the memory-efficient Image-to-

Image Mixer to MSS and report its experimental results.

2. RELATED WORK

As described in Section 1, the state-of-the-art models [18,

19, 21, 22] in the MSS study show that the average SDR

score for the four source separations exceeds 7 dB in the

evaluation using MUSDB18-HQ. The SDRs for each of the

four sources based on these models are shown in Table 1.

KUIELab-MDX-Net was proposed by Kim et al. [18].

It is an architecture that combines an extended version

of TFC-TDF-U-Net [27], which separates in the time-

frequency domain (i.e., complex spectrogram), and De-

mucs [28], which separates in the time domain (i.e., wave-

form). Each source signal i separated by those sub-

networks is mixed using source-dependent weights wi.

Specifically, wi was set to 0.5, 0.5, 0.7, and 0.9 for bass,

drums, other, and vocals in MDX Challenge 2021 [20] 1 .

In KUIELab-MDX-Net, to improve performance, a mech-

anism called Mixer was used to remix the music acoustic

signal with the separated signal by using the 1x1 convo-

lution, and different FFT frame sizes were used for each

sound source by applying a frequency cut-off trick [20].

TFC-TDF-U-Net used in the KUIELab-MDX-Net is

a variant of U-Net architecture that combines the time-

frequency convolutions (TFC) block with the time-

distributed fully-connected networks (TDF) block. Here,

TFC is a dense block of 2D CNNs, and TDF is a block that

extracts nonlocal features along the frequency axis, such as

correlations between harmonics, by fully connecting the

entire frequency range of a single frame of the spectro-

gram. TDF was inspired by the Frequency Transformation

Block (FTB) proposed by Yin et al. [29] and was intro-

duced specifically to help separate singing voices [27]. As

the other component of KUIELab-MDX-Net, Demucs [28]

is a U-Net encoder/decoder structure with waveforms as

input and BiLSTM applied to the innermost layer between

the encoder and decoder to provide long-range context.

Hybrid Demucs was proposed by Défossez et al. [19].

It is a bi-U-Net encoder-decoder model that combines 1D

convolution in the time domain and along the frequency

1 https://github.com/kuielab/mdx-net/blob/

Leaderboard_A/README_SUBMISSION.md
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axis in the complex time-frequency domain. BiLSTM and

local attention were used in the innermost layer, and resid-

ual branches, group normalization [30] and GELU were

introduced. In addition, better generalization and stability

were achieved by penalizing the largest singular value in

each layer [31], and overall performance was improved by

bagging multiple models.

Band-Split RNN was proposed by Luo et al. [21]. It is

a state-of-the-art spectrogram-based model that uses com-

plex spectrograms as input and output. By splitting the

complex spectrogram input into subbands specifically de-

signed for each sound source, the intrinsic properties and

patterns of each source signal are utilized. For a 3D ten-

sor representing the time dimension, frequency dimension,

and subband dimension, similar to the Dual-path RNN

[32], a sequence-level RNN is first applied across the time

dimension, then a band-level RNN is applied across the

band dimension. In fact, for Vocals, results showed that the

modified utterance-level SDR can be improved by more

than 2 dB by setting the bandwidth appropriately. In ad-

dition, semi-supervised fine tuning was performed by us-

ing pseudo-targets separated from the mixtures using a pre-

training model in order to make effective use of songs with

only mixtures (1750 songs). The Band-Split RNN cur-

rently achieves a state-of-the-art SDR of 8.24 dB in the

evaluation using only MUSDB18-HQ as training data.

Hybrid Transformer Demucs was proposed by Rouard

et al. [22]. The innermost layer, called the bottleneck,

of the Hybrid Demucs [19] is replaced by a cross-domain

transformer encoder (i.e., time domain and time-frequency

domain) that uses self-attention within each domain and

cross-attention across domains. Compared to the Hy-

brid Demucs, the performance is lower when trained with

MUSDB18-HQ only, but the SDR was 0.46 dB better

when 800 additional training songs were used. Sparse HT

Demucs [22], which extended the receptive field using a

sparse attention kernel, achieved a state-of-the-art result of

9.27 dB SDR by fine-tuning for each source.

As described above, the MLP-centric architecture has

never been applied in state-of-the-art MSS models where

the average SDR exceeds 7 dB on MUSDB18-HQ.

3. TFC-MLP

This paper proposes Time-Frequency-Channel-MLP (TFC-

MLP), which is a model that leverages the Image-to-Image

Mixer architecture [24] to separate music sources using a

complex spectrogram as input. This is realized by replac-

ing the height, width, and color (RGB) in the image with

the time, frequency, and channel in the complex spectro-

gram, respectively. In other words, TFC-MLP has a struc-

ture that alternates mixing in the time, frequency, and chan-

nel dimensions. In this way, we expect to be able to take

into account the nonlocal structure. Especially with respect

to the frequency dimension, we expect to extract nonlocal

relationships along the frequency axis, such as harmonic

structures, by connecting the entire frequency range of the

spectrogram, as in the FTB [29] and the TDF [27].

The process of the TFC-MLP model is shown in Fig-

ure 1. The complex spectrogram XSTFT ∈ C
F0×T0×2 of

a 2-channel (stereo) mixture signal is first converted to a

4-channel 3D tensor XCaC ∈ R
F0×T0×4 with the real and

imaginary parts represented as channels, a.k.a. complex-

as-channels (CaC) [27]. Here T0 is a fixed length. Then, as

with the MLP-Mixer and Image-to-Image Mixer as well as

the Vision Transformer (ViT) [33], the patch embedding is

first performed using C linear weights of size PT ×PF ×4

(Figure 2). This reduces the frequency dimension F0 to

F0/PF and the time dimension T0 to T0/PT , which re-

duces the matrix size and memory consumption in the fol-

lowing frequency-mixing MLP and time-mixing MLP. To

compensate for the information loss due to decreasing the

resolution in the time-frequency plane and the loss of con-

tinuity in the time-frequency direction, we increase the di-

mension in the channel direction.

The embedded tensor then passes through N MLP-

Mixer layers. As shown in Figure 3, each MLP-Mixer

layer mixes the tensor with the frequency dimension, then

the time dimension, and finally the channel dimension.

Such mixing is passed through an MLP consisting of a lin-

ear layer, a GELU nonlinearity, and another linear layer,

and output without changing the tensor size. The dimen-

sion of the tensor at the input/output layer of the MLP is

kept constant, and the dimension at the hidden layer is ad-

justed by multiplying it by a factor f depending on the

input dimension. Skip connections and channel layer nor-

malization have also been added to help with the optimiza-

tion. Here, following the implementation of the Image-to-

Image Mixer [24], skip connections are placed before and

after the two mixing steps of frequency and time (“Type

A”). In addition to that, a version with skip connection and

layer normalization added before time-mixing MLP was

also implemented (“Type B”). After mixing the time, fre-

quency, and channel dimensions, patch expansion is used

to restore the number of time and frequency dimensions for

inverse transformation into waveforms and also to match

the channel dimension to the number of separated sources.

4. EVALUATION

The proposed TFC-MLP was evaluated using the

MUSDB18-HQ dataset [17]. 86 songs were used as train-

ing data, 14 songs as validation data, and 50 songs as test

data. The music acoustic signals were stereo with a sam-

pling frequency of 44.1 kHz, and four sound sources –

“Vocals,” “Drums,” “Bass,” and “Other” – were used for

separation. Separation performance was evaluated by cal-

culating SDR using the museval Python package 2 . As in

most previous studies ( [19, 21], etc.), the SDR of each

source was calculated by taking the median values over all

1-second segments of each song to obtain the SDR of the

track and then taking the median of all tracks.

4.1 Experimental setting

The proposed model was optimized using Adam [34] for

the L1 loss between its separated signals and the ground-

2 https://github.com/sigsep/sigsep-mus-eval
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T  frames
T

F

C
F

bins

4 ch

4 ch

C linear weights

Patch embedding

P

PT

F

0

0

Input Output

...

Figure 2. Patch embedding. After dividing the CaC tensor

of size F0×T0× 4 into patches of size PF ×PT × 4, each

patch was linearly transformed into 1 × 1 × C to obtain a

3D tensor of size F0/PF × T0/PT ×C (i.e., F × T ×C).

This can be implemented as a nonoverlapping CNN.

truth source signals. The Adam parameters were set as

no weight decay, learning rate 0.0003, β1 = 0.9, and

β2 = 0.999. The waveform for calculating the CaC spec-

trogram to be input to the model was normalized so that

the mean amplitude of the music acoustic signal was 0 and

the standard deviation was 1. The training was distributed

across multiple GPUs, with a batch size of 4 on each GPU.

In training, we used data augmentation techniques [19], in-

cluding pitch shift and tempo stretch, randomly swapping

channels, random sign flip, random scaling of amplitude,

and remixing of stems within one batch.

4.2 Base hyperparameters

Due to the many hyperparameters required for the building

of the proposed TFC-MLP model, hyperparameters related

to the short-time Fourier transform (STFT) were first deter-

mined through preliminary experiments. To obtain XCaC,

the STFT frame size (i.e., FFT size) was chosen as 4096,

which had the highest SDR when compared among 512,

1024, 2048, and 4096. As Kim et al. [18] also stated,

the performance tended to increase with larger FFT size.

Therefore the frequency dimension F0 is 2048. Related to

the FFT size, the STFT hop size was investigated among

128, 256, 512, and 1024, and 1024 was selected. Also re-

lated to the FFT size and STFT hop size, the number of

time frames T0 in the complex spectrogram was selected

as 128 from 32, 64, 128, 256, and 512.

The number of time frames T0 of 128 based on an FFT

size of 4096 and an STFT hop size of 1024 is input to the

model, thus the waveform size required for this is equal

to Tw = 1024 × 128 − 1 (about 3 seconds). Therefore,

it is necessary to train the model while cutting out an ap-
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Mixing MLPs
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Figure 3. The Mixer layer contains one frequency-mixing

MLP, one time-mixing MLP, and one channel-mixing

MLP. Before each MLP, a transposition is performed to

apply the MLP to the frequency dimension F , the time di-

mension T , and the channel dimension C. Transposition

is also performed before every layer normalization to nor-

malize along the channel dimension C.

proximately 3-second segment of the waveform, and the

shift size of 16384 (about 0.37 seconds) was used. Luo

et al. [21] found that the shorter the shift, the better the

modified utterance-level SDR, and they used 0.5 seconds.

The above 16384 is short enough compared to 0.5 seconds

and can be considered sufficient in this study.

As hyperparameters regarding the model, the dimen-

sions C of the patch embedding were investigated by us.

Specifically, 128 and 256 were investigated and 256 was

selected. As hyperparameters related to the Mixer layer, 8

and 16 were investigated as the number of layers N and 16

was selected, and the parameter f for adjusting the num-

ber of dimensions of the hidden layer of each MLP was

selected as 4 from 1, 2, and 4. Dropout in the MLP [25]

and skip connections before and after the Mixer layer were

also investigated, but they have not yielded better results.

4.3 Experiment

Using the set of hyperparameters determined in Section 4.2

as a basis, we report the SDR scores obtained under the fol-

lowing various conditions for the other hyperparameters.

• Investigation of the results of complex spectrogram

loss [21].
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Table 2. SDRs for different hyperparameters of the proposed model. The “Seed” column indicates random seeds. In the

“Loss” column, “W” indicates that only waveform loss was used, and “W+S” indicates that complex spectral loss was

added. The “Epoch” column indicates the number of epochs with the smallest validation loss and the specified number

of epochs, where “*” means that validation loss was not considered. Note that “†” means the cases where the number of

epochs with the smallest validation loss did not change when training beyond 200 epochs (i.e., the same model was used

for the evaluation). A bold font indicates the maximum value at each source, both without and with extra training songs.

TFC-MLP Test SDR in dB

Type Seed (PF , PT ) Loss Epoch Extra Avg. Vocals Drums Bass Other

A seed 1 (4, 4) W 134† / 200 7.30 8.91 7.18 6.96 6.14

A seed 2 (4, 4) W 166† / 200 7.26 8.84 7.07 6.89 6.22

A seed 3 (4, 4) W 109 / 200 6.97 8.32 6.98 6.57 5.99

A seed 3 (4, 4) W 283 / 300 6.93 8.49 6.80 6.55 5.87

B seed 1 (4, 4) W 190 / 200 7.17 8.92 6.95 6.83 5.96

B seed 2 (4, 4) W 191 / 200 7.02 8.59 6.78 6.68 6.01

B seed 3 (4, 4) W 157 / 200 6.95 8.56 6.58 6.73 5.91

A seed 1 (2, 2) W 189 / 200 7.13 8.58 7.02 6.99 5.91

A seed 1 (1, 1) W 175 / 200 6.38 7.40 6.33 6.49 5.30

A seed 1 (4, 4) W+S 197 / 200 6.83 8.76 6.60 6.14 5.83

A seed 1 (4, 4) W+S 253 / 300 6.72 8.39 6.69 6.02 5.79

A seed 1 (4, 4) W 142 / 200 120 7.71 9.42 7.66 7.37 6.39

A seed 1 (4, 4) W 200* / 200 120 7.78 9.68 7.75 7.23 6.46

Table 3. The number of model parameters and the average

Real Time Factor (RTF) value. The Hybrid Transformer

Demucs is denoted as “HT Demucs”. Column “GPU”

shows the RTF with a single GPU, and column “CPU”

shows the RTF under the condition without a GPU.

Model GPU CPU Params.

Hybrid Demucs 0.14 1.87 83.9 M

HT Demucs 0.17 2.55 26.9 M

TFC-MLP 0.51 12.28 43.2 M

• Investigation of patch size (PF , PT ) between (4, 4),

(2, 2), and (1, 1), using (4, 4) as the basis, halving

the FFT size and time dimension T for (2, 2), and

halving it further for (1, 1). For (1, 1), the STFT hop

size was set to 512 since the FFT size is 1024.

• The number of epochs for training was set to 200

or 300, and models with the smallest validation loss

within each epoch-condition were evaluated.

• The results of adding 120 full-length songs (sung in

English) to the training data were evaluated.

• For the basic parameter condition, we trained three

times with different random seeds.

In the test phase, the model with the smallest validation

loss was used for evaluation in each training condition. The

signal separated by the proposed model was divided into

segments of fixed length Tw with shift width Tw/4, which

were weighted overlap-added to obtain the final signal. In

addition, the shift trick [28] was performed 10 times.

4.4 Results and discussions

In addition to the evaluation of SDRs using the

MUSDB18-HQ test set, the number of parameters and the

Real Time Factor (RTF) will also be discussed, as file size

and the time required for separation may be important in

some situations depending on how the MSS model is used.

4.4.1 SDRs

The experimental results are shown in Table 2. The high-

est SDR score, up to 7.30 dB, was obtained for the Type

A model using the patch size of (4, 4) and waveform L1

loss in addition to the base hyperparameters. This was not

significantly higher than the state-of-the-art values shown

in Table 1, but close performance was achieved.

Focusing on the results for each source with respect to

our TFC-MLP, as shown in Table 1, the SDRs for Vocals

and Other were 8.91 dB and 6.14 dB, respectively, which

were higher than the 8.35 dB and 5.65 dB SDRs for the

Hybrid Demucs and the 7.93 dB and 5.72 dB SDRs for

the Hybrid Transformer Demucs. This model’s SDR score

for Other also exceeded the one obtained using KUIELab-

MDX-Net, 5.90. Here, in comparison to the KUIELab-

MDX-Net results without waveform information (i.e., ex-

cluding processing by Demucs), it is possible that similar

or better performance was obtained for Drums and Vocals,

although an exact comparison cannot be made because the

test data is different (i.e., MUSDB18 was used). In com-

parison to the Band-Split RNN results, TFC-MLP could

not yield a higher SDR for all sound sources. However,

the current TFC-MLP does not include a source-specific

framework, so addressing this issue is a future challenge.

As for the patch size, the FFT size and other condi-

tions were different due to memory capacity. Therefore, al-

though exact comparisons are not possible, the best results

were obtained for (4, 4) in the current results. However, ad-

ditional study is needed for (2, 2), since it gave results sim-

ilar to those given by (4, 4). As for complex spectrogram
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loss, its SDR was slightly lower than that of all conditions

using only waveform loss. Not only comparisons using the

real and imaginary parts of the complex numbers, but also

losses based on amplitude and phase could be considered.

We also showed that the performance of the models was

further improved by using additional training data. As

shown in Table 1, compared to the current world’s best

model Sparse HT Demucs with 800 songs added as the

training data, we obtained competitive results with an SDR

of 9.68 dB for the Vocals and 6.46 dB for the Others.

4.4.2 RTF and the number of parameters

As comparison, models were trained for each of the Hy-

brid Demucs and Hybrid Transformer Demucs. Based

on the published source codes, a model parameter setting

“80a68df8” 3 was used for Hybrid Demucs, and the default

parameter setting was used for Hybrid Transformer De-

mucs. The same implementation for audio synthesis was

used for all TFC-MLP, Hybrid Demucs, and Hybrid Trans-

former Demucs. We used the 50 songs in the MUSDB18-

HQ test set to obtain the average of their RTFs.

Table 3 shows the results. The RTF values of TFC-MLP

were slower than the other two models. TFC-MLP had an

RTF lower than 1.0 (faster than real time) when a GPU

was used, but the computation time was long without GPU.

This could be due to the large size of the time-frequency

spectrogram. As for the number of model parameters,

TFC-MLP had more parameters than Hybrid Transformer

Demucs, but fewer parameters than Hybrid Demucs.

4.4.3 Comparison with the state-of-the-art models

The proposed TFC-MLP model has some similarities to

the state-of-the-art MSS models, which potentially have

led to the competitive performance achieved.

• The frequency-mixing MLP is similar to the full

connection of frequency dimensions in TDF [27]

and the band-level RNN applied across band dimen-

sions in Band-Split RNN [21].

• The time-mixing MLP is similar to the sequence-

level RNNs applied across time dimensions in Band-

Split RNN [21].

• Increasing the number of the channel dimensions

through patch embedding and increasing the number

of hidden layer dimensions in MLP are techniques

that are usually used regardless of MSS. For MSS,

the improvement is potentially related to the increase

in channel dimensionality in the encoder part, such

as Hybrid Transformer Demucs [22].

• The extra training data improved performance in the

state-of-the-art models, and we confirmed the per-

formance improvement with extra training data in

TFC-MLP as well.

On the other hand, the following are included in the

existing state-of-the-art MSS models but not currently in-

cluded in our TFC-MLP. They have the potential to im-

prove performance when applied in the future.

3 https://github.com/facebookresearch/demucs/

blob/main/docs/training.md

• As presented by Défossez et al. [19] and Kim

et al. [18], a hybrid approach that also considers

waveforms could improve performance.

• As Kim et al. [18], Luo et al. [21], and Rouard

et al. [22] have shown, the introduction of source-

specific techniques, such as band splitting, could im-

prove separation performance.

• Deep learning techniques such as model selection

methods (e.g., exponential moving average), train-

ing stabilization (e.g., singular value decomposition

and sparsification), and the introduction of a learning

rate scheduler could further improve performance.

Finally, to the best of our knowledge, there are no stud-

ies that mix the channel dimension with the time and fre-

quency dimensions as in TFC-MLP. Such a mixer layer

used in the TFC-MLP architecture has the advantage of re-

ducing the overall memory usage compared to the original

MLP-Mixer, just as the Image-to-Image Mixer reduced the

memory usage. This reusable insight of mixing the chan-

nel dimension separately could be useful for other studies

that have dealt with the time and frequency dimensions so

far, but could be extended to the channel dimension.

4.4.4 Future directions

As future work, we plan to improve the performance of

TFC-MLP by incorporating the ideas discussed above and

further exploring more optimal hyperparameters. For ex-

ample, increasing the FFT window size by utilizing fre-

quency cut-off trick [20] is expected to improve the perfor-

mance. Automatic optimization of hyperparameters could

also be incorporated.

Future work will also include the visualization of the

inside of TFC-MLP for analysis. We could visualize the

linear weights used in the patch embedding by converting

them back to complex numbers and then calculating their

amplitudes. The visualized results could allow us to ana-

lyze what local patterns the model is focusing on. How-

ever, when we tried it, it was difficult to understand the

behavior of the mixer layer due to the mixing of real and

imaginary parts during the patch embedding. We are there-

fore interested in using the amplitude and phase (group de-

lay) instead of the real and imaginary parts so that we can

analyze the model in a more comprehensive way.

5. CONCLUSION

This paper has described a new MSS architecture called

TFC-MLP that uses complex spectrograms as input. Our

contributions are summarized as follows:

(1) We proposed a simpler MLP-centric MSS architecture

that achieves competitive performance compared to

state-of-the-art models.

(2) We reported on some hyperparameter searches that

will be useful for other researchers exploring this

type of architecture.

(3) We discussed the similarities and differences between

the state-of-the-art models and TFC-MLP, and sug-

gested directions for future research.
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ABSTRACT

Music Information Retrieval (MIR) has seen a recent

surge in deep learning-based approaches, which often in-

volve encoding symbolic music (i.e., music represented in

terms of discrete note events) in an image-like or language-

like fashion. However, symbolic music is neither an image

nor a sentence, and research in the symbolic domain lacks a

comprehensive overview of the different available represen-

tations. In this paper, we investigate matrix (piano roll), se-

quence, and graph representations and their corresponding

neural architectures, in combination with symbolic scores

and performances on three piece-level classification tasks.

We also introduce a novel graph representation for sym-

bolic performances and explore the capability of graph rep-

resentations in global classification tasks. Our systematic

evaluation shows advantages and limitations of each input

representation. Our results suggest that the graph represen-

tation, as the newest and least explored among the three

approaches, exhibits promising performance, while being

more light-weight in training.

1. INTRODUCTION

The deep learning boom has profoundly impacted MIR,

including research involving symbolic music representa-

tions (MIDI, scores, etc.). A large body of recent literature

focuses on adapting existing architectures from computer

vision and natural language processing to the field of sym-

bolic MIR. These approaches often treat music data as an

image (piano roll), as a sequence of language tokens, or,

more recently, as a graph. However, a piece of music is nei-

ther an image nor a sentence or graph, therefore, a critical

question still remains open concerning the choice of input

representations for symbolic music.

A source of complexity in symbolic music arises from

the different modalities of data such as scores and perfor-

mances. A score contains information about music notation

© H. Zhang, E. Karystinatos, S. Dixon, G. Widmer, C.E.

Cancino-Chacón. Licensed under a Creative Commons Attribution 4.0

International License (CC BY 4.0). Attribution: H. Zhang, E. Karysti-

natos, S. Dixon, G. Widmer, C.E. Cancino-Chacón, “Symbolic Music

Representations for Classification Tasks: A Systematic Evaluation”, in

Proc. of the 24th Int. Society for Music Information Retrieval Conf., Milan,

Italy, 2023.

and often includes rich hierarchically structured informa-

tion such as metrical structure and voicing. Symbolic music

performances, on the other hand, such as those recorded

on a MIDI-capable instrument, consist of a stream of con-

troller events. Extracting a hierarchical structure from such

a stream is not a trivial task [1–3]. Furthermore, such perfor-

mance data omit some of the rich information that a score

provides, such as pitch spelling and articulation markings,

but instead, it can include information about expression,

timing, local tempo, and performance dynamics.

Recent research has produced relatively large datasets

containing scores and performances at the symbolic level,

including efforts to align these [4–6]. Motivated by these

developments, we present an attempt to shed light on ques-

tions revolving around the input representation of symbolic

music for deep-learning-based MIR. We formulate an empir-

ical framework where we test multiple input representations,

models, and piece-level classification tasks.

In terms of input representations, we investigate piano

rolls, tokenized sequences, and graphs. We evaluate multi-

ple models based on these representations on three differ-

ent tasks: composer classification, performer classification,

and (playing) difficulty assessment. Furthermore, having

datasets containing both performances and their correspond-

ing scores such as ATEPP and ASAP [4, 5], allows us to

apply each combination of representation and task to ei-

ther score or performance. Our goal is to contribute an

experimental overview of different symbolic music repre-

sentations. The contributions of this work are threefold:

1. We investigate the performance and complexity of

matrix, sequence and graph input representations, and

their corresponding neural architectures (respectively

Convolutional Neural Networks, Transformers, and

Graph Neural Networks).

2. We compare the impact that the different information

contained in symbolic scores and performances has

on different piece-level classification tasks.

3. We introduce a new graph representation for symbolic

performances, and explore the capability of graph

representations in classification tasks.

2. RELATED WORK

The complexity of representing music data has been dis-

cussed in the literature [7–9]. Wiggins et al. [10] analyzed
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the trade-offs of music representation systems with respect

to expressive completeness and structural generality. In the

age of deep learning, such considerations are still relevant

regarding the variety of machine-readable representations

such as piano rolls, MIDI-like sequences, NoteTuples, and

Musical Spaces [11, 12]. In this section, we focus on three

symbolic representations (matrix, sequence, and graphs)

and discuss their respective strengths and limitations.

Music as a Matrix: Similar to audio spectrograms, a

pitch-time representation that is typically used as input to

a CNN, the piano roll representation of music naturally

emerges as the symbolic equivalent. Piano rolls have been

widely applied in tasks such as automatic music transcrip-

tion [13, 14], classification of piece-level attributes such as

difficulty and composer [15–18], as well as generation of

music accompaniment or performed dynamics [19, 20].

A piano roll is a bare-bones representation of symbolic

music data, and, therefore, information such as key signa-

tures, articulation annotations, metrical structure, different

instrument parts, and voicing structure are not encoded in

the representation [11, 21].

Music as a Sequence: Modeling symbolic music as se-

quences has a longstanding tradition in MIR. The multiple

viewpoint system is a sequence representation that has been

widely used for music analysis, generation, and classifica-

tion [22–25], as well as the basis for cognitively plausible

models of expectation [26, 27]. In this system, musical

elements are represented by viewpoints [28], which are ab-

stract functions mapping musical events to abstract derived

features like pitch, interval, and melodic contour.

With the advances of deep learning-based language mod-

els, sequential representation of music as language tokens

has recently received a lot of attention in sequence-to-

sequence generative tasks from automatic orchestration [29]

to description-based medley generation [30]. Similar to a

stream of MIDI messages, various tokenization schemes

encode music features such as pitch, onset time, duration,

and velocity sequentially. Besides generation, large-scale

pre-training using music sequences has been applied to

downstream music understanding tasks [31, 32].

However, tokenized music sequence representations cre-

ate difficulty for models to learn the dependency of long

contexts. Length reduction methods such as Byte Pair En-

coding (BPE) [29, 33] aim to address the length overflow

problem by replacing the occurrence of frequent subse-

quences with new tokens.

Music as a Graph: A musical score can also be seen as a

graph where notes form the vertices and relations between

notes define the edges. Jeong and al. [34] introduced a

graph modeling of a musical score for generating expressive

performances. Recently, Karystinaios and Widmer [35]

presented a new modeling of the score graph based on three

different note relations and a Graph Convolutional Network

for cadence detection in classical music. A score graph

can be homogeneous or heterogeneous, i.e. having one or

several types of edges and/or vertices, respectively [36]. We

will investigate both heterogeneous and homogeneous score

graphs based on the representation used in [35].

Graph Neural Networks have gained popularity in re-

cent years, however, graph learning inherently presents

some limitations, such as over-smoothing in deep graph

networks [37] and restrictions of Message Passing, where

information in graph neural networks flows only between

edge relations predetermined by the representation (in con-

trast to a Transformer architecture where everything is in-

terconnected [38]).

3. METHODOLOGY

In this section, we describe the methodology followed, the

corpora used, and the experiments conducted to investigate

in-depth the different symbolic representations.

3.1 Representation Design

We briefly introduce a formal definition of each representa-

tion type, i.e. matrix, sequence, and graph. An example of

the three representations is shown in Figure 1.

3.1.1 Matrix

We define as a matrix representation of music a 2-

dimensional array M ∈ N
H×W that depicts musical notes

on the time axis, commonly referred to as a piano roll. The

vertical axis consists of 128 possible values attributed to

the MIDI pitch of note events, where we add three more

optional fields for the una corda, sostenuto, and sustain

pedals only applied on the MIDI performances.

In this work, we experimented with multiple channels

as used in Onsets and Frames [39]. The onset channel is a

binarized roll with activations at onset timestamps, while

the frame channel encodes the duration of the note and the

velocity of the MIDI event. For scores, the velocity values

are substituted by the voice index, i.e. the integer number

assigned to a note to indicate the index among the number

of independent voices. 1

3.1.2 Sequence

A symbolic music sequence S ∈ N
1×N is defined by a se-

ries of discrete tokens that represent attributes of notes. Vo-

cabularies such as Vpitch, VTimeShift, VVel assign seman-

tic meanings to tokens, and different tokenization schemes

translate into different grammars of sequence construction.

In this work, we test three popular tokenization schemes:

MIDILike [40, 41], REMI [42], and CompoundWord [43]

and use the implementation of the MidiTok library [44].

As there is no existing tokenizer for processing scores,

we implemented custom MusicXML tokenizers following

MidiTok’s framework, in the style of REMI as well as Com-

poundWord. The major difference is the timing of bars and

event positions, as well as the addition of score-specific

tokens such as VKeySig, VVoice. 2

Byte Pair Encoding (BPE) is a tokenizer add-on tech-

nique that has recently been applied to music sequence

learning [33]. It consists of a data compression technique

1 This voice information is commonly available in formats such as
MusicXML, **Kern, and MEI.

2 Full documentation is provided with our open-source tokenizer in the
project repository.
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Figure 1. Excerpt of Schubert’s Impromptu Op. 90 No.4 and its input visualizations (from left to right): generic matrix,

sequence (REMI-like) and graph.

that replaces the most common token subsequences in a

corpus with newly created tokens. BPE increases the vo-

cabulary size and shortens the sequence length. We follow

the best results from [33] and adopt a BPE with 4 times

the original vocabulary size. On average, this reduced our

sequence length between 55− 65% in both datasets.

3.1.3 Graph

A homogeneous score graph G is defined by a tuple (V,E)
of vertices and edges. V is the set of notes in a musical score

and E ⊆ V × V . Given a score with N notes, we extract

a matrix of k-dimensional note-wise features X ∈ R
N×k

based on features contained in the score or performance.

A heterogenous score graph G = (V,E,R) also includes

a set of relation types R such that for every edge e ∈ E,

e is of type r ∈ R if a condition defined by r holds. In

our work, we consider the following relations between two

notes u, v which define the edges e ∈ E:

• u and v have the same onset, i.e. on(v) = on(u),
then r = onset;

• The offset of u is the onset of v, i.e. off (u) = on(v),
then r = consecutive;

• The onset of u lies between the onset of v and the

offset of v, i.e. on(v) < on(u) ∧ on(u) < off (v),
then r = overlap.

The above relations only hold in the case of score graphs.

To adapt this to performance graphs, we use a window

tolerance ttol, such that if two notes (u, v) ∈ E and:

• |on(v)− on(u)| < ttol, then r = onset;

• |off (u)− on(v)| < ttol, then r = consecutive;

• on(v) < on(u)∧on(u) < off (v), then r = overlap.

In our configurations, for all graphs created from perfor-

mance MIDI, we set ttol = 30ms, a perceptual threshold of

expressive timing [45]. In addition to the above relations,

we consider the possibility of adding an inversely directed

edge for the overlap and the consecutive edge types, and

we name the inclusion of such edges inverse edges. For a

homogeneous graph Ghom and heterogeneous graph Ghet,

e ∈ Ghom =⇒ e ∈ Ghet.

The node features X are divided into two categories,

the basic and the advanced features. The basic features are

implicitly contained in any score or performance note such

as one-hot encoding of pitch class and octave of the note’s

pitch, and duration information. The advanced features

Figure 2. Left: front end for three representations, matrix,

graph, and sequence, from top to bottom. Right: fixed back

end with attention modules.

contains articulation, dynamics, and notation information

from the Partitura python package [46]. The detailed com-

putation of these features can be found in original partitura

paper [47] and the basis mixer [48].

3.1.4 Information Levels

Given the differences in information captured by symbolic

scores and performances (Sec. 1), we run experiments with

separate levels of used information. For the base compar-

ison experiments, we input the basic level of information

that is present in both modalities: pitch, duration and onset.

The advanced level of information for performance includes

dynamics (MIDI velocity) and pedals, while for score in-

cludes the voice index (Sec. 3.1) as well as score markings

such as articulation and dynamics. The results and com-

parison of each level of information, also with respect to

different tasks, will be discussed in Section 4.3.

3.2 Modelling Pipelines

In this work, we evaluate the input representations under the

same training pipeline of different piece-level classification

tasks, as discussed in Section 3.3. We split our training ar-

chitecture into two parts, a front end that projects a window

of musical context into a 64-dimensional embedding, and a

back end that aggregates the embedding for final prediction.

The front end is representation-specific while the back end
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ASAP-performance ASAP-score ATEPP-performance ATEPP-score

ACC F1 ACC F1 ACC F1 ACC F1

Matrix

Resl Chnl

400 On+Fm 0.59±0.04 0.18±0.02 0.59±0.03 0.18±0.01 0.24±0.05 0.20±0.04 0.25±0.02 0.16±0.03

600 On+Fm 0.62±0.06 0.21±0.03 0.61±0.07 0.19±0.02 0.28±0.01 0.22±0.03 0.24±0.02 0.16±0.04

800 Fm 0.62±0.04 0.21±0.02 0.58±0.06 0.18±0.03 0.22±0.03 0.17±0.01 0.22±0.02 0.18±0.03

800 On+Fm 0.63±0.04 0.20±0.01 0.57±0.04 0.18±0.03 0.28±0.02 0.22±0.01 0.22±0.04 0.14±0.02

Sequence

Tokn BPE

MidiLike × 0.53±0.05 0.16±0.02 N/A N/A 0.18±0.04 0.10±0.02 N/A N/A

REMI × 0.51±0.04 0.15±0.02 0.43±0.04 0.14±0.01 0.23±0.04 0.10±0.02 0.23±0.04 0.13±0.02

CP × 0.48±0.02 0.09±0.05 0.45±0.05 0.10±0.01 0.11±0.02 0.09±0.01 0.17±0.06 0.11±0.04

MidiLike 4 0.52±0.04 0.15±0.02 N/A N/A 0.17±0.03 0.12±0.01 N/A N/A

REMI 4 0.51±0.02 0.15±0.01 0.43±0.03 0.13±0.01 0.21±0.01 0.13±0.03 0.23±0.03 0.13±0.01

Graph

Bi-dir Multi-rel

× × 0.56±0.01 0.17±0.02 0.51±0.05 0.16±0.02 0.22±0.02 0.10±0.03 0.23±0.03 0.21±0.05

× ✓ 0.58±0.03 0.19±0.01 0.54±0.05 0.17±0.02 0.27±0.03 0.13±0.02 0.29±0.10 0.18±0.06

✓ ✓ 0.62±0.02 0.21±0.01 0.50±0.04 0.17±0.01 0.23±0.04 0.16±0.03 0.27±0.06 0.22±0.03

Table 1. Composer classification results for all representations, on all target subsets of our datasets on the composer

classification task using only basic level features. For each subset of data, we present the accuracy score and the macro F1

score with 8-fold cross-validation. See Section 4.1 for explanation of the parameters.

rests fixed. For a fair comparison, we ensure that the same

amount of musical context is given for different front ends

to learn. For MIDI performances we fix a window of 60 s,
and for symbolic scores, we choose a window of 120 beats

given that 120 bpm is a common tempo for music.

For the front end, we employ a commonly used architec-

ture for each respective representation domain:

Matrix: Convolutional neural network based on ResNet

[49] blocks with channel numbers adapted to our input.

Sequence: Transformer-encoder [50] front end with po-

sitional encoding. Each layer includes multi-head attention

with 16 heads followed by an Add & Norm layer. For

the combined tokens CPWord we add separate embedding

layers for each token category in the front end.

Graph: Our graph convolution network (GCN) is built

by stacking GraphSAGE blocks [51] followed by a global

mean pooling layer. We experiment with both heteroge-

neous and homogeneous GraphSAGE. Note that a hetero-

geneous network has r times more parameters, where r is

the number of distinct edge relation types.

For the fixed back end, we used a multi-head attention

block with linear projection heads to the desired number of

classes, as shown in Figure 2. To minimize the impact of

model capacity on our comparative discussion, we carried

out an ablation study to understand the size of the architec-

ture proportional to each kind of representation (Sec. 4.2).

3.3 Tasks and Datasets

In this work, we focus on three tasks: composer classifi-

cation, performer classification, and difficulty assessment.

Each one of these tasks is a piece-level task since a label is

attributed per piece. The composer classification consists of

predicting the composer of the piece. The performer clas-

sification involves the prediction of the performer among

a list of predefined performers included in the data source.

Finally, difficulty assessment involves the prediction of a

number between 1-9, with 1 being easy and 9 being hard.

The difficulty labels were assembled from Henle Music. 3

To evaluate the aforementioned tasks, we use two large-

scale collections of Western classical piano music that con-

tain corresponding symbolic scores (MusicXML files) and

performances (MIDI files), ASAP (1067 performances, 245

scores) and ATEPP (11742 performances, 415 scores). Both

datasets contain individual files per movement.

For the composer classification task, we exclude the least

populated composer classes for balance in experiments,

resulting in 10 classes for the ASAP dataset and 9 classes

for the ATEPP dataset. The performer classification task

uses MIDI performances of ATEPP with 20 classes. For

difficulty, given that both ASAP and ATEPP datasets focus

on concert repertoire, the actual classes used range from

difficulty 4-9. 4 For all experiments, we use an eight-fold

cross-validation evaluation where 85% of our data is used

for training and 15% for testing in each fold.

3.4 Training

We performed hyperparameter optimization sweeps to deter-

mine the optimal learning rate and model hyperparameters.

Our convergence criteria include early stopping at the 60

epoch breakpoint with the patience parameter set at 0.005
on the validation accuracy. All our experiments are trained

on a single A5000 GPU, and the best models, training logs,

3 Henle Music difficulty labels, https://www.henle.de/en/
about-us/levels-of-difficulty-piano/

4 The full distribution of the classes for each task is shown in the
supplementary material.
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and the code is available in the repository. 5

4. EXPERIMENTS AND RESULTS

To evaluate the different representations we performed three

experiments. Our first experiment focuses on a detailed

comparison of the predictive accuracy of the three represen-

tations/architectures applied to the composer classification

task, since it is the most well-understood task among the

three. The second experiment studies the impact of model

capacity (number of trainable parameters) per representa-

tion. Our last experiment investigates the effect of different

levels of input features (see Section 3.1.4) on the three tasks.

4.1 Representations for Composer Classification

Our first experiment is a comparative analysis of the three

representations on our two datasets, in the domains of both

MIDI performance and MusicXML score with basic level

features. For each representation group we test different

configurations, i.e. for matrix we experiment with the chan-

nel (Chnl) and timestep resolution (Resl), for sequence we

change the tokenization scheme (Tokn) and apply BPE,

and for graph we investigate the effect of homogeneous

or heterogeneous graphs (Multi-rel) and the addition of in-

verse edges (Bi-dir) (see Sec. 3.1). In Table 1, we present

for each data subset the accuracy score and the macro F1

score and their respective standard deviations under 8-fold

cross-validation (see Sec. 3.3).

In terms of observations per representation, the matrix

representation results indicate no significant differences un-

der different experimental configurations. For sequence rep-

resentations, the MIDILike and REMI tokenization schemes

yield comparable performance. However, our experiments

suggest that CPWord is a more challenging representation

to learn in the same setting. Concerning the BPE technique,

no significant difference is observed between results with 4

times the original vocabulary and the non-BPE version.

Our graph-based models exhibit similar performance

regardless of the configuration of the graph edges. In par-

ticular, the effect of reverse edges is not significant, and

homogeneous graph convolution already achieves similar

results to heterogeneous graph convolutional models, which

indicates that implicit structural information contained in

the heterogeneous approach is not strictly necessary for

piece-level classification tasks.

Overall, we observe that three representations show

small performance differences in given experiments, with

the matrix-CNN approach having the overall best metric

across the experiment groups and sequence have the worst.

Finally, we would like to discuss the album effect, which

concerns the tendency of classification models to learn non-

intended features, such as acoustic features in pieces of

the same album [52]. In our case, this effect concerns

different performances of the same piece that may give

away cues for classification. Training with the entire corpus

of performance MIDI, which involves different interpreta-

tions of the same piece, yields an average accuracy of 90%

5 https://github.com/anusfoil/SymRep

Figure 3. Model capacity vs. macro F1 score for each

representation approaches on the ASAP-composer task.

(see supplementary material), which is 30% higher for the

ASAP-perf group. To address this issue, we fix the splits

to only contain unseen pieces in the test set, which reduced

the accuracy score gap between performance and score.

This issue has often been overlooked in literature [53, 54]

and a commonly-used dataset split is not piece-specific [16].

Given the recent development of large score-performance

datasets, we wish to establish a scientifically correct evalua-

tion split taking into consideration the piece effect.

4.2 Complexity

In our second experiment we investigate the impact of

model capacity for each representation on the composer

classification task using the ASAP dataset. We experiment

with different hidden dimensions h and the number of lay-

ers N on each architecture corresponding to each of the

three representations (Sec 3.2), and show our results in Fig-

ure 3. Overall, we observe that the GCN achieves its best

performance using 1.3M parameters, while architectures for

matrix and sequence achieve a similar accuracy at around

three times the number of parameters.

Another observation concerns the use of large models

for piece-level classification tasks on symbolic data. Large

convolution models such as ResNet-18/34/50 [16] are sub-

stantially over-parametrized, as our results suggest we can

achieve similar results using a reduced version of ResNet-8,

using less than half the parameters of the smallest used

ResNet architecture. Similar observations can be made for

transformers, where scaling the model beyond 4.3M param-

eters does not further improve the performance. Our most

efficient transformer encoder consists of 4 layers of atten-

tion modules with a hidden dimension of 256, significantly

less than transformers used in previous related work [33].

Finally, we note one aspect of our results after scaling

our graph network. While oversmoothing [37] (features

of graph vertices converging to the same value) is a well-

known challenge to train deep GCN, our best performing

model is a relatively deep and narrow network consisting

of 5 layers with a hidden dimension of 64. One possible

interpretation is that convergence of node features does not
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Composer Performer Difficulty

perf score perf (ATEPP) perf score

Matrix

basic feats 0.625 0.572 0.364 0.403 0.420

advanced feats 0.618 0.577 0.342 0.411 0.415

Sequence

basic feats 0.530 0.447 0.287 0.438 0.368

advanced feats 0.513 0.393 0.292 0.426 0.349

Graph

basic feats 0.607 0.545 0.305 0.373 0.361

advanced feats 0.598 0.697 0.323 0.356 0.405

Table 2. Accuracy of three identification tasks on the ASAP

dataset, with basic or higher-level features.

complicate training in the graph-level classification context.

4.3 Comparison of Feature Levels and Tasks

As discussed in Section 3.1.4, we are also interested in

understanding the impact of different levels of features on

the three classification tasks. With this motivation, we

performed our third set of experiments, where we adopted

the best configuration of models explored in experiment 1

(see Section 4.1). We report the accuracy results in Table 2.

Our results indicate that MIDI performances and Mu-

sicXML scores have similar capabilities for distinguishing

composers and difficulty. Furthermore, matrix and sequence

approaches exhibit better results when learning with perfor-

mances compared to scores. For the difficulty classification

task, in particular, all three representations achieved approx-

imately 40% accuracy on the 6 difficulty levels. Performer

classification is more challenging since the difference lies in

the timing nuances and dynamic changes instead of the pitch

information, which are more prominent in our input rep-

resentations. In the 20-way classification, our approaches

generally achieved around 30% accuracy.

Our observations suggest that the addition of advanced

features has a variable impact on the representations. Inter-

estingly, the addition of advanced features does not improve

the training from sequence representations in most experi-

ments, which can possibly be explained by the increase in

vocabulary size and relative sparsity of such information.

Graph structures benefit from the addition of voice edges,

especially in the representation of scores, where the perfor-

mance boosts for both composer and difficulty classification.

Notably, the graph-score with advanced features con-

figuration achieved the best result in score-based composer

classification, when jointly compared with Table 1.

4.4 Transformer vs. GNN: Are We Learning the Same

Set of Musical Edges?

A transformer can be seen as a special case of Graph Neural

Networks [38]. Assuming a fully connected graph where

vertices are tokens in a sequence, we can draw parallels be-

tween a GCN and learned attention in a transformer block.

Therefore, we examine attention weights between

NoteOn tokens in an effort to understand how our graph

representation of the score relates to the sequence-based

representation. For all pairs of NoteOn tokens from music

Figure 4. Visualization of graph edges (all edge types

aggregated) and the attention among NoteOn tokens for

the first measures of Mozart Piano Sonata No.12, 1st mvt.

sequences, we output their attention values and compute

the correlation with the aggregated adjacency matrix (with

all musical edges constructed in Sec. 3.1). Across the test

set of ASAP composer classification on scores, there is a

weak positive correlation, with Pearson’s value of 0.212.

In Figure 4, we visualize two measures of music with its

constructed graph edges, and the attention across NoteOn

tokens. We can observe some structural similarities, espe-

cially the overlap pattern in both measures, but overall the

learned attention spans are much more global while graph

edges connect nodes within a local range.

5. DISCUSSION AND FUTURE WORK

In this paper, we presented a series of systematic experi-

ments to investigate the impact of symbolic representations

for three piece-level tasks. In terms of simple classifica-

tion performance, we found that for a given task, different

representations showed small performance differences, but

no clear pattern of superiority emerged. The matrix results

were marginally better on average, and usually more robust

to hyper-parameter changes. More advanced features were

beneficial only for certain tasks and representations.

The graph representation, as the newest and least ex-

plored among the three approaches, exhibits promising

performance, while being more light-weight (in terms of

required model complexity – cf. Fig. 3). We observe that

homogeneous graphs produce comparable results to het-

erogeneous graphs for our piece-level classification tasks,

and deep GCNs perform better despite over-smoothing. As

graphs are arguably a more natural representation for struc-

tured artifacts such as musical scores, we believe that they

should merit more detailed studies in the future.

Our model complexity experiments demonstrated that

commonly used architectures in the literature are larger than

necessary for our tasks, as the same results can be achieved

with smaller architectures (Section 4.2). Furthermore, we

discussed the album effect in score-performance datasets,

where multiple interpretations of the same composition

may cause information leakage. Our results indicate the

profound impact of the album effect, and we introduce new

evaluation splits to guard against this effect.
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8. APPENDIX

8.1 Album effect

As mentioned in the main paper Section 4, the Album Effect

remains a non-trivial issue in similar classification tasks.

Here we present in Table 4 the same content as the original

table (Table 1) from the paper which contains results from

the experiment that is trained on the entire performance

corpus with overlapping interpretations. Training under this

non-piece-specific split, we achieved comparable accuracy

(93%) with the literature [16].

8.2 Complexity

8.2.1 Memory

Given that the same amount of music context is input into

the models, we are interested in understanding the memory

efficiency of the representations. We used the native numpy

and cuda functions to monitor the memory of data and

memory changes during training.

In terms the representation of a single piece of data, se-

quence is the most compact one while matrix takes 70×
more space, given that a lot of redundant pixels are taken

in the 2D representation. The size of graph varies depend-

ing on the number of nodes and edges, but overall it is in

between that of the matrix and sequence.

However, during training we can observe that the se-

quence is the least memory-efficient representation during

training, and it takes 30× compares to the memory usage

of matrix and graphs. Given the quadratic complexity of

transformer-like architectures, the training memory needed

is one of the major limitation of sequence compared to the

other representations.

KB / seg KB / piece Training step (MB)

Mtr 819.2 5129.6 ± 3332.7 185.9 ± 105.9

Seq 12.8 77.8 ± 56.7 5548.9 ± 1736.2

Gph 100.5 ± 57.3 610.9 ± 300.0 125.2 ± 103.4

Table 3. Size estimation of each representation with basic

level features from ASAP-perf data. We include the average

size per segment (60s), average size per piece (as piece have

different length), as well as the average allocated memory

increase during each training step with a batch size of 1.

8.2.2 Convergence epochs

During training, we also observed a difference in the time

it takes the models to convergence, given the 60 epochs

convergence criteria defined in Sec 3.4. We first performed

learning rate search using pytorch lightning’s learning rate

finder. Under the suggested learning rate, among different

ASAP-perf experiment of composer classification, the

matrix have on average 143.0±24.7 epochs to converge, the

sequence and the graph have 132.0±31.1 and 262.0±55.7

epochs. During training, the graph models have relatively

slower learning progress.

8.3 Dataset class distributions

We present our dataset class distribution for each task in the

Table 8.4.

8.4 Silence and voice edges

Besides the onset, consecutive and overlap edges in Sec 3.1,

we also add optional silence edges (edges that bridge over si-

lence) to ensure a connected graph. A silence edge Esilence

is added between a node that’s not connected by any con-

secutive edge and the time-wise closest node before it. The

silence edge doesn’t carry much music semantic meaning,

and its main purpose is to prevent the disjoint subgraphs

formed by distinct music sections, in which stops informa-

tion flow in training.

In the advanced representation of score graph, we input

the voicing information as voice edges. Given that we can’t

guarantee the consistency of voice annotation in MusicXML

scores (as they are mostly labeled for visual purposes like

beaming), we limit the voice edge connection within a

measure: If two notes are labelled with the same voice, then

they are connected by a voice edge Evoice.
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ASAP-performance ASAP-score ATEPP-performance ATEPP-score

ACC F1 ACC F1 ACC F1 ACC F1

Matrix

Resl Chnl

400 On+Fm 0.926±0.02 0.796±0.06 0.598±0.03 0.177±0.01 0.905±0.04 0.796±0.03 0.246±0.02 0.156±0.03

600 On+Fm 0.931±0.01 0.800±0.07 0.613±0.07 0.186±0.02 0.930±0.05 0.818±0.03 0.238±0.02 0.156±0.04

800 Fm 0.925±0.02 0.723±0.11 0.583±0.06 0.182±0.03 0.891±0.02 0.737±0.02 0.221±0.02 0.181±0.03

800 On+Fm 0.926±0.02 0.812±0.05 0.572±0.04 0.185±0.03 0.932±0.03 0.832±0.01 0.225±0.04 0.138±0.02

Sequence

Tokn BPE

MidiLike × 0.860±0.03 0.674±0.11 N/A N/A 0.926±0.01 0.769±0.01 N/A N/A

REMI × 0.783±0.04 0.521±0.05 0.431±0.04 0.138±0.01 0.910±0.01 0.729±0.02 0.229±0.04 0.129±0.02

CP × 0.679±0.08 0.331±0.06 0.447±0.05 0.099±0.01 0.864±0.02 0.556±0.01 0.171±0.06 0.107±0.04

MidiLike 4 0.905±0.02 0.727±0.06 N/A N/A 0.895±0.01 0.691±0.01 N/A N/A

REMI 4 0.862±0.01 0.692±0.07 0.432±0.03 0.132±0.01 0.826±0.04 0.529±0.03 0.234±0.03 0.125±0.01

Graph

Bi-dir Multi-rel

× × 0.768±0.03 0.500±0.08 0.509±0.05 0.163±0.02 0.788±0.03 0.501±0.06 0.226±0.03 0.205±0.05

× ✓ 0.861±0.03 0.763±0.03 0.545±0.05 0.174±0.02 0.928±0.01 0.781±0.03 0.289±0.10 0.176±0.06

✓ ✓ 0.833±0.03 0.703±0.11 0.500±0.04 0.173±0.01 0.897±0.01 0.767±0.02 0.271±0.06 0.217±0.03

Table 4. Base experiment composer classification results with the entire performance MIDI corpus and no piece-specific

split.

ASAP composer ATEPP composer ATEPP performer ASAP difficulty

Beethoven 195 Beethoven 3033 Richter 1581 9 164

Bach 163 Chopin 1739 Ashkenazy 1188 8 176

Chopin 162 Mozart 653 Arrau 833 7 132

Liszt 67 Schubert 264 Brendel 743 6 150

Schubert 55 Debussy 254 Kempff 609 5 56

Schumann 26 Schumann 243 Barenboim 603 4 23

Haydn 23 Bach 231 Schiff 595

Mozart 10 Ravel 169 Horowitz 576

Scriabin 9 Liszt 122 Gulda 459

Ravel 9 Gieseking 362

Gould 326

Gilels 322

Perahia 288

Pollini 256

Argerich 240

Schnabel 240

François 234

Uchida 210

Casadesus 164

Lugansky 125

Table 5. Dataset class distribution for the tasks. The performer task is in regards to the distribution of the performed MIDI,

and the other three columns are in regards to the MusicXML score.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

858



THE MUSIC META ONTOLOGY: A FLEXIBLE SEMANTIC MODEL
FOR THE INTEROPERABILITY OF MUSIC METADATA

Jacopo de Berardinis1 Valentina Anita Carriero 2 Albert Meroño-Penuela1

Andrea Poltronieri2 Valentina Presutti2

1 King’s College London, UK
2 University of Bologna, Italy

jacopo.deberardinis@kcl.ac.uk, andrea.poltronieri2@unibo.it

ABSTRACT

The semantic description of music metadata is a key re-
quirement for the creation of music datasets that can be
aligned, integrated, and accessed for information retrieval
and knowledge discovery. It is nonetheless an open chal-
lenge due to the complexity of musical concepts arising
from different genres, styles, and periods – standing to
benefit from a lingua franca to accommodate various stake-
holders (musicologists, librarians, data engineers, etc.). To
initiate this transition, we introduce the Music Meta on-
tology, a rich and flexible semantic model to describe mu-
sic metadata related to artists, compositions, performances,
recordings, and links. We follow eXtreme Design method-
ologies and best practices for data engineering, to reflect
the perspectives and the requirements of various stakehold-
ers into the design of the model, while leveraging ontology
design patterns and accounting for provenance at different
levels (claims, links). After presenting the main features
of Music Meta, we provide a first evaluation of the model,
alignments to other schema (Music Ontology, DOREMUS,
Wikidata), and support for data transformation.

1. INTRODUCTION

A music analyst, a computational musicologist, a music li-
brarian, and a data engineer are working on a joint project.
They need to contribute data from various musical sources,
ranging from music libraries, annotated corpora and tune
books, to audiovisual archives, radio broadcasts, and music
catalogues. All data is eventually merged/aggregated as in-
terconnected corpora, and linked to online music databases
(e.g. MusicBrainz, Discogs) and knowledge bases (e.g.
Wikidata). This creates opportunities to link cultural her-
itage artefacts to music industry data (streaming services,
music professionals, etc.) and viceversa.

This plot subsumes a recurring challenge for musical
heritage projects [1]. Besides the individual requirements

© J. de Berardinis, V.A. Carriero, A. Meroño-Peñuela, A.
Poltronieri, and V. Presutti. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: J. de Berar-
dinis, V.A. Carriero, A. Meroño-Peñuela, A. Poltronieri, and V. Presutti,
“The Music Meta Ontology: a flexible semantic model for the interop-
erability of music metadata”, in Proc. of the 24th Int. Society for Music

Information Retrieval Conf., Milan, Italy, 2023.

of each stakeholder – possibly rooted in different music
genres, periods and datasets, a fundamental requirement is
the interoperability of music metadata.

Music metadata (alias bibliographic, or documentary
music data) is used to consistently identify and describe
musical works, their artists, recordings, and performances.
For music industry, it allows for efficient management and
distribution of music, which facilitate search and recom-
mendation [2]. When metadata is accurate, it ensures that
artists receive proper credit and compensation [3]. For mu-
sical heritage, metadata allows for the preservation and dis-
semination of musical works and traditions, but also aid in
the research and study of music history and culture [4].
When integrating both views, metadata can help to pro-
mote diversity and inclusivity in the music industry by
highlighting lesser-known genres and artists, while inte-
grating information and artefacts of cultural interest [5].

Hence, a model that can consistently describe metadata
is highly desirable – as it enables linking entities and con-
cepts from various datasets (e.g. a composer is linked to
a tune that has no authors in another collection). Seman-
tic Web technologies can help achieve interoperability, as
they facilitate data access and integration, resource discov-
ery, semantic reasoning and knowledge extraction [6]. In
the Resource Description Framework [7], data is described
as <subject-predicate-object> triples using on-
tologies, and released as Knowledge Graphs (KGs).

To achieve interoperability, one possibility akin to [8]
is to let stakeholders design their own domain-specific on-
tologies, then use alignment algorithms to find connections
between them (e.g. MusicalWork and Composition
referring to the same concept). However, this approach
comes with three major drawbacks: (i) ontology alignment
is error-prone, hence links would still require manual in-
spection; (ii) even when alignment is sound, the semantics
of classes and relationships may vastly differ across do-
mains, which in turn, may create inconsistent alignments;
(iii) it does not address the problem in the long-term.

1.1 Challenges and requirements for interoperability

Another possibility is to reuse current ontologies for mu-
sic metadata, such as the Music Ontology (MO) [9] and
the DOREMUS ontology [10]. However, modelling music
metadata across different genres and historical periods, to
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accommodate various use cases over heterogeneous data
sources poses a number of challenges. First of all, it re-
quires a perspective that harmonises all requirements from
different stakeholders – to design a model that can be tai-
lored to different data sources rather than to a single type
of dataset. We categorise the main challenges and require-
ments for metadata interoperability as follows.

1.1.1 Domain specificity hampers interoperability

When looking at current ontologies, MO leans towards
modelling discographic data with a focus on contempo-
rary music, whereas DOREMUS is inherently rooted in
classical music. These ontologies have been demonstrated
to model metadata from MusicBrainz and BBC Music
[11], and from classical music libraries and radio broad-
casts for concerts programming [12], respectively. Their
specificity makes them appealing when downstream ap-
plications show considerable overlap in terms of require-
ments and data. Examples include the reuse of MO in the
WASABI project [13], to support the semantic annotation
of audio music (emotions, lyrics, structures), but also for
music recommendation [14] and listening [15]; and the
adoption of DOREMUS by Philarmonie de Paris, Bib-

lioteque National de France, and Radio France.
Nevertheless, when drifting from discographic data and

classical music, or attempting to reuse both models, ad-
dressing e.g. cultural heritage requirements while fostering
interoperability becomes difficult. Indeed, a model reflect-
ing the view and the interpretations ascribable to a musical
genre, stakeholder, or dataset type may be difficult to reuse
and extend to other domains. For instance, a music artefact
may originate from oral transmission or be the result of a
creative process that does not necessarily entail a formal
composition process. The latter is common in songwrit-
ing, but also in folk music whenever a set of tunes (col-
lected from different manuscripts) allows for the identifica-
tion of a tune family [16]. Similarly, when expressing rela-
tionships between musical artefacts (alias derivations), it is
important not to impose any modelling bias that may con-
strain possible interpretations (e.g. an arrangement having
proper musical identity vs simply providing a different in-
strumentation). This is commonly referred to as “domi-
nance of concept” [12], whose definition should be left to
users depending on their data and domain expertise.

Rather than attempting to achieve consensus on musi-
cal concepts and jargon, accounting for the interoperability
calls for an abstraction layer for music metadata (“zoom-

out”) that can then be specialised, extended, and adapted
to address domain-specific requirements (“zoom-in”).

1.1.2 Expressivity is needed at different levels

Another requirement for interoperability and reuse across
various data sources is providing expressivity at different
degrees, i.e. the possibility to conveniently describe mu-
sic metadata at the right level of detail. For example, one
data source may have granular/detailed information that
requires high semantic expressivity (a composition pro-
cess spread over different time, places, and involving more

artists); whereas others may have basic (only the name of
an artist is known) or even incomplete and uncertain infor-
mation (a composition tentatively attributed to an artist).

Here, the WikiProject Music 1 has been successful in
providing expressivity to represent music metadata from
different sources. As an extreme case of ontological flex-
ibility, the schema underlying Wikidata – an open-ended,
multi-domain KG built collaboratively like Wikipedia – is
not specified in a previously agreed ontology, and the high
expressivity overly adds complexity to the model. This is
due to Wikidata’s scope being the most general.

1.1.3 Provenance is fundamental for data integration

Accounting for provenance is a central requirement for
both cultural heritage and music industry. This becomes
fundamental when integrating Knowledge Graphs from
different datasets and stakeholders – as every single bit of
data (each triple) should be attributable to a dataset/KG.
Furthermore, integrating provenance is also needed within
the context of a single dataset, at least for claims and links.

Claims-Interpretations. Cultural heritage applications
often require representing debatable statements or claims
[17, 18]. These are usually the result of an interpreta-
tion process based on factual or documentary evidence
(a dataset, a manuscript, etc.), and following a methodol-
ogy and/or theory. Examples include personal information
(e.g. the year/place of birth of a composer), and authorship
claims (e.g. a composition being attributed to an artist).

Links and identifiers. These includes links to artists’
official websites, fan pages, discussion forums, music re-
views, record shops; as well as identifiers from music
databases (e.g. MusicBrainz, Discogs, AllMusic), stream-
ing platforms (e.g. Deezer, Spotify), and authoritative
sources (e.g. ISNI, ISWC, ISRC). As most links and iden-
tifiers are crowdsourced or automatically inferred by entity
linking algorithms, modelling provenance here promotes
traceability and accountability of data sources.

Notably, Wikidata addresses both these requirements,
as every triple is considered a statement per se, for which
so-called references can be appended and ranked. Refer-
ences may include information on the source, whether a
computational method was used, and a date of retrieval.

1.2 Our contribution

We leverage the expertise and complementary views of
various music stakeholders (musicologists, data engineers,
music analysts, and heritage archivists) to contribute:

• The Music Meta ontology, a rich flexible model to
describe Western music metadata and its provenance
at different levels of granularity.

• An example-driven validation of the model, focused
on the data elicited from four different stakeholders.

• Code support to create Music Meta KGs without ex-
pert knowledge of the model, with automatic align-
ments to the MO, DOREMUS, and Wikidata.

1 https://en.wikipedia.org/wiki/Wikipedia:

WikiProject_Music
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2. RELATED WORK

Besides metadata, the use of Semantic Web technologies
in the music domain has contributed several ontologies,
covering a variety of musical aspects and spanning both
symbolic and audio music.

Among them, the Music Theory Ontology [19] describe
theoretical concepts of compositions, whereas the Music
Score [20] and Music Notation [21] propose granular on-
tologies to represent elements of music scores. OMAC ex-
presses features of musical entities but also musicological
claims [22], while the OMRAS project [23] contributed
ontologies to describe music chords as well as concepts re-
lated to tonality and temperament.

In the audio domain, ontologies describe music produc-
tion [24], audio features [25], effects [26]; an also model
listening habits/taste [27], music-induced emotions [28],
music structure [29, 30], and musical similarities [31].

These ontologies have specific focus, and many were
developed as stand-alone projects, with little or no align-
ment [32]. Instead, some ontologies focus on achieving in-
teroperability between notations, taxonomies, and formats.
These include the Internet of Musical Things [33], where
heterogeneous musical objects are envisioned to coexist;
the Music Annotation Pattern [34] which allows to model
music annotations in the JAMS format [35]; and the Hamse
ontology [36] describing musical features for musicologi-
cal research. Similarly, [37] models abstract annotations of
musical works, rather than concrete encodings.

Interoperability at the level of musical content level re-
sulted in successful MIR applications, such as the MIDI
Linked Data Cloud [38] – integrating MIDI music to learn
embeddings over the resulting KG [39]; and ChoCo [40] –
a chord corpus integrating 18 chord datasets and enabling
novel workflows for computational creativity [41].

3. THE MUSIC META ONTOLOGY

To derive requirements from various music stakeholders,
we leverage the domain expertise and views in Polifonia
– a European H2020 project aiming to connect “music,
people, places and events” from the 16th century. The
interdisciplinarity of Polifonia, involving data engineers,
anthropologists, ethnomusicologists, historians of music,
linguists, musical heritage archivists, cataloguers, and cre-
ative professionals – makes it an ideal testbed for this work.

Music Meta is part of the Polifonia Ontology Network
[42], from which we reuse the CORE module. This is done
to consistently reuse general-purpose elements of design
(e.g. Person, Time, Place) and ontology design patterns.
The reuse of this module also ensures alignment with other
foundational models (FOAF, Dublin Core, etc.).

The ontology (prefixed as mm) is available at the
following URI: https://w3id.org/polifonia/

ontology/music-meta/, and is released as open
source project under the CC-BY 4.0 on GitHub 2 .

2 https://github.com/polifonia-project/

music-meta-ontology

3.1 Methodology

The development of Music Meta is driven by eXtreme De-
sign (XD) [43], an agile ontology engineering methodol-
ogy that makes extensive use of ontology design patterns
(ODPs) – small ontologies that work as reusable templates
for recurrent modelling problems. An ODP is intuitive and
compact, clearly and formally defined, tackles a specific
(sub)set of requirements, and is designed for a modular
reuse, enabling a pragmatic cognitive analysis [44].

In XD, a story-based approach guides the collection of
requirements. A story is a framework for customers to de-
scribe their needs, and is composed of 4 sections: (i) the
persona, a description of a typical user; (ii) the overarching
goal they need to address; (iii) the scenario, describing how
the goal will be address; (iv) the competency questions
(CQs) translating needs into formal requirements. Ontol-
ogy modelling starts iteratively from the CQs, and is based
on the reuse of ODPs and existent templates.

3.1.1 From FRBR to Information Objects/Realisations

At the core of Music Meta lies the use of the Information-
Realisation (IR) ODP [45]. An information object is a non-
physical social object carrying information that can have
one or multiple materialisations (information realisations).
Each realisation is a particular physical object, or event, re-
alising the the information object, or involving the latter as
a participant. Both information object and realisation are
intended as information entities (IE), i.e. (social) objects
created and/or used to communicate, reason, and specify
new entities. This allows to distinguish between a piece of
information (e.g. the content of a composition) from how
it is materialised (e.g. as a performance).

On the other hand, both the Music Ontology [9] and
DOREMUS [12] are built on top of different flavours of
FRBR [46] (FRBRer and FRBRoo, respectively). FRBR
is a conceptual model describing bibliographic resources at
four levels: Work, Expression, Manifestation, andItem. In
contrast, the two levels of the IR pattern map to Expression

and Item, since Work and Manifestation are said to provide
non-informative conceptualisations [45]. Moreover, [47]
argues that FRBR’s Works – intended as “entities that pre-
exist expressions”, cannot represent improvisations or tra-
ditional music, as they do not derive from a formal com-
position process leading to a realisation. FRBR’s Work
is often ambiguously intended as an entity retrospectively
created for grouping multiple expressions for cataloguing
needs. As for the Manifestation level, while its represen-
tation is straightforward in the bibliographic domain (e.g.
the printed version of a book), its correspondence in the
music domain is not fully intuitive, as it may relate to ei-
ther a recording, a score, a compact disc, or all the above –
thereby introducing complexity and ambiguity.

Nevertheless, being aligned to two levels of FRBR, the
IR ODP makes our model leaner and flexible, while still
achieving interoperability with FRBR-based (music) on-
tologies. In fact, IE patterns are meant to boost the seman-
tic integration of contents, tools, platforms, resources that
are silo-ed or non-interoperable [45].
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Figure 1. Describing music artists as musicians, music ensembles, and algorithms using the Graffoo notation (yellow boxes
are classes, blue/green arrows are object/datatype properties, purple circles are individuals, green polygons are datatypes).

3.2 Main elements of design

From Polifonia’s CQs 3 , we identified those related to
metadata, and aimed for a model capable to address the
requirements in Section 1.1. Music Meta follows a hierar-
chical design (where each level extends the former to add
expressiveness) and is complemented by data transforma-
tion rules to conveniently translate one level into another.

To enable data integration from existing knowledge
bases and datasets, we align Music Meta to other ontolo-
gies: the Music Ontology, DOREMUS, and Wikidata, after
having identified common/similar classes and properties.

3.2.1 Music artists

To represent music creatives the class mm:MusicArtist
generalises over musicians (mm:Musician), ensem-
bles (mm:MusicEnsemble), and computational meth-
ods (mm:MusicAlgorithm), as illustrated in Figure 1.
Musicians are seen as a specialisation of persons who
can optionally be associated to a medium of performance
(e.g. voice, guitar), and be part of a music ensemble (e.g.
MusicGroup, Orchestra, Choir). Depending on the
data available, the latter can be expressed either through
a membership relationship (core:isMemberOf), a spe-
cialisation of the former, such as mm:isSingerOf, or
through a mm:MusicEnsembleMembershipwhen the
period of participation of the musician is available.

All music artists can be associated to (one or more)
mm:MusicGenre(s), express influences or collabora-
tions, and share a period of activity. Here, the start date
refers to the foundation for music ensembles, whereas the
end date is used for discontinued projects for algorithms.

3.2.2 Music inception

The focal point of Music Meta is the mm:MusicEntity
class (Figures 2 and 3). This class represents an Informa-
tion Object, which is defined as the sum of all the elements
that make up a piece of music. A Music Entity is com-
posed of several components, including lyrics (generalised

3 https://github.com/polifonia-project/stories

through mm:Text to also account for mm:Libretto),
the entailed musical content (mm:AbstractScore) and
its instrumentation (mm:Instrumentation).

A mm:AbstractScore provides an abstraction to
describe the musical properties of an entity, such as
the form of a piece (mm:FormType), its constituents
parts (e.g. mm:Movement or mm:Section), and its
key (mm:Key). Datatype properties also describe the
tempo of the composition (mm:tempo) and its order
(mm:orderNumber). A mm:Instrumentation can
instead be formalised in a mm:Score, which can be either
digital or paper. Through the score, the instrumentation
describes one or more mm:MediumOfPerformance,
each of which has a cardinality (e.g. 3 violins).

It is also possible to describe relationships be-
tween different Music Entities, defined by parthood
(mm:hasPart) and derivation (mm:isDerivedFrom).
Derivations are used at the user’s discretion, based on
the dominance of concept [12] (whose criteria attribute
proper identity to a musical entity) and can be of differ-
ent types: revision, transposition, cover, reconstruction,
reduction, etc. This makes it possible to describe dif-
ferent types of compositions, rearrangements and modi-
fications of an original piece, as well as influences and
more complex types of derivations. For example, the
production of a cover song (e.g. in a different mu-
sical genre) may keep the lyrics and introduce a new
composition and instrumentation, hence resulting in a
new mm:MusicEntity. In addition, Music Entities
can be organised in mm:Collection, according to a
mm:CollectionConcept that binds them together.

In sum, the model provides flexibility across periods
and genres as the proposed classes allow generalisations to
be made about the text, the musical composition and its ar-
rangement. (c.f. Section 1.1.1). Through the specialisation
of classes, depending on the target domain/application,
specificity can easily be achieved (c.f. Section 1.1.2). For
example, a tune family can be seen as a mm:Collection
encompassing several tunes (as music entities) based on
specific criteria (e.g. similarity, provenance).

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

862



mm:CreativeProcess mm:CreativeActionmm:involves
CreativeAction

core:hasPlace
core:hasTime

Interval

rdfs:subClassOf

core:executes
Task

mm:LyricsWriting

mm:MusicWriting

mm:Instrumentation

mm:Orchestration

mm:MusicArtistcore:AgentRole

core:Role

core:involvesRole

core:has
AgentRole

core:isInvolvedIn

core:TimeIndexed
Situation rdfs:subClassOf

core:hasTime
Interval

core:involvesAgent

mm:MusicEntity

mm:creates

core:Placecore:TimeInterval

core:CreativeTask

core:Task

mm:Remix

mm:Rearrangement

rdf:type

Figure 2. Abstracting music inception as an product of a creative process, involving music artists in activities (music
writing, instrumentation, etc.), defined in time and space and according to different roles.
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Figure 3. Describing a music entity and the elements it contains: Text, AbstractScore and Instrumentation.

3.2.3 From performance to recording and broadcast

The realisation of a mm:MusicEntity is exempli-
fied by mm:MusicalPerformance, which can be
either live (mm:LivePerformance) or in a studio
(mm:StudioPerformance). As illustrated in Fig-
ure 4, the place and time interval of a performance are
described by core:Place and core:TimeInterval
– involving one or more music artists (optionally, with
a specific role). A performance may also create a new
mm:MusicEntity if, e.g., the execution differs signif-
icantly from the original version.

A Music Entity can also be recorded by means of
a mm:RecordingProcess, which is a subclass of a
mm:CreativeProcess. This makes it possible to de-
scribe information about both the production (e.g., pro-
ducers) and the technical aspects of it (e.g., sound engi-
neer, equipment used). The recording process produces a
mm:Recording, which is contained in a mm:Release.

Information about the broadcasting of a recording is
modelled through the mm:BroadcastingSituation
class (an instance of the Situation ODP [48]), which de-
scribes when and where the song was broadcast, and by
which broadcaster (mm:Broadcaster).

3.2.4 Publishing and licensing information

The mm:PublicationSituation class describes in-
formation about the publication of a release, which is com-
mon to the publication of a mm:Score (c.f. Figure 4). For
both a release and a score, it describes when and where
they were published, and by a mm:Publisher.

Licence information is described by the mm:License
class, which applies to records, releases and scores.

3.2.5 Modelling links and integrating provenance

We propose a pattern based on RDF* [49] to describe the
provenance at different levels (Figure 5). The use of RDF*
is particularly useful for this purpose, as it allows to embed
provenance information to every triple in the dataset. This
simplifies and streamlines the model, eliminating the need
for n-ary relations or reification for each triple.

The proposed pattern is straightforward and com-
prises the class core:Reference, which describes the
source of the reference (using the class core:Source)
and the method used to obtain the annotation (us-
ing the class core:SourceMethod). Addition-
ally, the datatype properties core:confidence and
core:retrievedOn describe the confidence of the an-
notation and the date it was produced, respectively.
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Figure 5. Our pattern to describe provenance with RDF*.

3.3 Conversion rules and code support

To facilitate the reuse of Music Meta and its data con-
version into OWL/RDF Knowledge Graphs, we developed
PyMusicMeta – a library to map arbitrary music meta-
data into RDF triples. This enables a practical and scalable
workflows for data lifting to create Music KGs without ex-
pert knowledge of our ontological model. The library is
developed in Python as an extension of RDF-Lib [50].

With each triple, PyMusicMeta adds alignments
to the supported schema whenever possible. For
example, the pseudo triple <DavidBowieURI,

rdf:type, mm:Musician> in Music Meta will be
complemented with <DavidBowieURI, rdf:type,

http://purl.org/ontology/mo/MusicArtist>

for Music Ontology, <DavidBowieURI, rdf:type,

http://erlangen-crm.org/E21_Person> for
DOREMUS (via the Erlangen Conceptual Reference
Model [51]) and <DavidBowieURI, rdf:type,

https://www.wikidata.org/wiki/Q639669>

for Wikidata; to achieve interoperability of the Music KG.

4. VALIDATION AND ADOPTION

Following the XD methodology (c.f. Section 3.1), we val-
idate Music Meta against the competency questions (CQs)
driving its design. In this context, testing consists in for-
mulating logical statements for each competency question
– using the ontology as a formal model. Logical state-
ments are encoded as SPARQL queries to evaluate the

model. Examples of tested CQs include “In which time in-

terval did the creation process take place?” and “Which is

the language of the name/alias of a music artist?”. The
complete list of CQs, together with their correspondent
SPARQL queries can be found in the project’s repository.
This also contributes a test framework where the ontol-
ogy is automatically tested using the available SPARQL
queries [52], whenever changes occur or new requirements
are supported in future versions of Music Meta.

Music Meta has already been used in ChoCo [40], the
largest Harmony KG to date, obtained from the integra-
tion of 18 MIR datasets 4 . The ontology has also been
specialised for folk metadata (Tunes Ontology) and ex-

tended to describe music datasets (CoMeta Ontology). All
ontologies are part of the Polifonia Ontology Network
(PON) and can be found at https://github.com/
polifonia-project/ontology-network. We
also provide documentation, examples, and tutorials 5 .

5. CONCLUSIONS

The interoperability of metadata is an essential require-
ment for the integration of music datasets, which is cur-
rently hampered by the specificity of existent ontologies.

Our work addresses interoperability requirements for
the design of the Music Meta ontology – a rich and flex-
ible semantic model for (Western) music metadata across
different genres and periods, for various stakeholders and
music datasets. The model is based on the Information-
Realisation ontology design pattern, allowing to reduce
complexity while maintaining alignment to other ontolo-
gies (Music Ontology, DOREMUS). We validate Music
Meta following the XD methodology, to demonstrate the
support of requirements collected from various stakehold-
ers (music analysts, archivists, musicologists, and data en-
gineers). The model has modular design – allowing users
to describe music data depending on their specificity and
type, while providing provenance support through RDF*.

We are extending the evaluation of Music Meta across
cultural heritage and music industry datasets, while work-
ing with our stakeholders to specialise the model for the
integration and release of Music Knowledge Graphs.

4 https://github.com/smashub/choco
5 https://polifonia-project.github.io/

ontology-network/
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ABSTRACT

Large-scale studies of musical harmony are often ham-

pered by lack of suitably labelled data. It would be highly

advantageous if an algorithm were able to autonomously

describe chords, scales, etc. in a consistent and musically

informative way. In this paper, we revisit tonal interval

vectors (TIVs), which reveal certain insights as to the in-

terval and tonal nature of pitch class sets. We then describe

the qualities and criteria required to comprehensively and

consistently measure displacements between TIVs. Next,

we present the Polar Manhattan Displacement (PMD), a

compound magnitude and phase measure for describing

the displacements between pitch class sets in a tonally-

informed manner. We end by providing examples of how

PMD can be used in automated harmonic sequence analy-

sis over a complex chord vocabulary.

1. INTRODUCTION

Attempts to autonomously label and analyse harmonic se-

quences in music constitute some of the longest-standing

challenges in music information research (MIR) [1]. Var-

ious strategies have been applied to chord sequence iden-

tification, including information theory [2], graph theory

[3–5], and predictive methods such as Hidden Markov

Models [6]. Much attention has been given to developing

geometric models of musical distance [7–11].

First proposed by Lewin in 1959 [12] and later, in 2007,

[13], the discrete Fourier transform can be applied to col-

lections of pitch classes to produce Tonal Interval Vec-

tors (TIVs), which can be used to describe the tonal quali-

ties of chords and pitch class profiles (PCPs) by revealing

their constituent intervals and tonal structures [14]. Yust

et al. [15] have employed the Fourier transform as a form

of cluster analysis on large groups of weighted PCP sets,

while Tymoczko and Yust [16] have explored the relation-

ship between voice-leading and Fourier analysis. Other

previous work has focused primarily on the magnitude

© J. Miller, J. Pauwels, and M. Sandler. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: J. Miller, J. Pauwels, and M. Sandler, “Polar Manhattan

Displacement: measuring tonal distances between chords based on inter-

vallic content”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

components of TIVs [17, 18], which offer a useful but in-

complete picture of intervallic content and tonal quality,

as transposition is ignored and certain chord types such as

major and minor cannot be disambiguated [19]. Further-

more, many existing methods of measuring distance be-

tween TIVs are problematic as they are restricted to pairs

of chords and are inconsistent when groups of three or

more chords are considered. Additionally, many musical

distances falter because they do not capture the directional

nature of musical harmonic tension or are adversely af-

fected by enharmonic spellings and conflicting chord vo-

cabularies.

We present the Polar Manhattan Displacement (PMD),

a method of describing component-wise directional dis-

tance (i.e., displacement) between TIVs which utilises both

magnitude and phase information. We demonstrate PMD

within the context of the 12-tone equally tempered sym-

bolic domain.

PMD addresses all 4,095 possible pitch class combi-

nations and thus can be applied to any chord vocabulary.

PMD offers a consistent displacement measure between

chord types (e.g., major7, diminished7, etc.) regardless

of transposition or the complexity of the chord vocabulary

employed. PMD also measures the intervallic displace-

ment between chords, regardless of chord type. In both

cases, displacement measurements are unaffected by trans-

position of an entire sequence, allowing PMD to identify

relative harmonic movements regardless of local key struc-

ture.

To demonstrate the utility of PMD, we employ a ro-

bust chord vocabulary of 13 chord types including triads,

7th chord types, and suspended chords, as well as chro-

matic and whole tone scales. We measure displacements

amongst these chord types and transpositions, and close by

presenting example applications of PMD to automated har-

monic analysis and discuss potential applications to other

areas of music informatics.

2. BACKGROUND

2.1 Pitch Class Profiles & common musical terms

A pitch class profile (PCP) is a vector of 12 binary val-

ues, each representing the categorical presence of its cor-

responding pitch class in the relevant musical context. This

context is set within the time domain; unless otherwise

specified, we shall be considering notes which occur si-

868



multaneously. Commonly occurring collections of simul-

taneous pitch events may be referred to as ‘chords’. A suc-

cession of notes occurring sequentially in ascending or de-

scending pitch order is commonly referred to as a ‘scale’.

When the time window is increased further and some sta-

tistical weighting or filtering is considered, the dominant

members of the pitch class set may imply a ‘key’.

Throughout this paper, when referring to the col-

lection of possible PCPs, we exclude the empty PCP

[0,0,0,0,0,0,0,0,0,0,0,0] which represents an absence of all

pitch classes, resulting in 212 − 1 = 4, 095 possible PCPs.

To improve clarity, the terms ’chord’ and ’scale’ shall be

considered interchangeable with ’PCP’ unless otherwise

noted. The term ’chord type’ refers to the quality of a chord

(e.g., major, minor, etc.) regardless of the chord transposi-

tion. A ’chord’, however, is a specific combination of root

and chord type, such as Amin or Fmaj7.

2.2 Chord vocabulary

For transcription and harmonic analysis purposes, it is use-

ful to focus on the subset of PCPs which correspond to cer-

tain chord types. Within the domain of all 4,095 PCPs, the

choice of chord vocabulary can be a fairly arbitrary deci-

sion. Often, smaller vocabularies of simple chords are cho-

sen to simplify experiments and boost performance scores.

There is a risk that an over-simplified chord vocabulary can

reduce the usefulness of an analytic system, so it is advan-

tageous that a suitably complex chord vocabulary is em-

ployed.

For our examples, we restrict ourselves to a vocabulary

of 13 chord types (including, by extension, two scales),

but the PMD can be applied to any pitch class profile. Our

vocabulary included triads: major, minor, diminished, aug-

mented, suspended4; tetrads: major7, minor7, dominant7,

diminished7, half-diminished7, minor/major7, and scales:

chromatic, wholetone. Note that some PCPs can be de-

scribed using different chord types depending on context,

thus some chord types, such as maj6, min6 and sus2, are

synonymous with other chords already listed in our vocab-

ulary. Regardless of the labels assigned to such synony-

mous chords, the source PCPs remain the same. For ex-

ample, PCP [1,0,0,0,1,0,0,1,0,1,0,0] could be described as

either Cmaj6 or Amin7. Labelling of chords is highly de-

pendent on context and annotator subjectivity. As PMD

operates on the basis of underlying PCPs, it is unaffected

by such discrepancies in annotation.

2.3 DFTs and Tonal Interval Vectors

By applying a discrete Fourier transform (DFT) to a pitch

class profile, we can decompose the PCP into a series of

constituent intervallic components. Each of these compo-

nents will describe the degree to which a particular interval

is present within the PCP. Only components F1 – F6 are

required to provide a complete representation, since com-

ponents F7 − F11 are redundant. Additionally, F0 reveals

the cardinality of the pitch class set; its value is useful for

normalisation and allows us to compare any pair of PCPs

regardless of the number of pitches present in either.

The resulting 6-dimensional complex vector is referred

to as a tonal interval vector (TIV). Scaling may be applied

to the various components – often for normalisation pur-

poses, but also in an attempt to more accurately depict

perceived cognitive distances between the various interval

types within a musical context. [18]

It is worth noting that when generating TIVs, the DFT

is applied to the symbolic pitch class vectors and not to

audio data. The purpose of the DFT and resulting TIV is

to discover the manner in which the pitch classes divide an

octave into various musical intervals, and to describe the

strength and evenness of each intervallic division.

2.4 Mapping PCPs to TIV space

Each of the 4,095 possible non-empty PCPs produces a

unique tonal interval vector. The TIV space therefore is

an injection of PCP space: each TIV can be mapped un-

ambiguously to a corresponding pitch class profile. Fur-

thermore, each 6D complex TIV can be represented as a

12-dimensional real-valued vector by converting the com-

plex values of the TIV into magnitude and phase values.

The magnitude and phase values of the recast TIV vec-

tor can be represented as a set of 6 tuples (m, p), where m

is an unbounded positive real value, and p is a real value

p ∈ R such that −π ≤ p ≤ π. We will refer to a mag-

nitude and phase tuple (m, p) as a MagPhase tuple. The

set of 6 tuples describing Fourier components F1 - F6 of a

TIV will be referred to as a MagPhase vector.

It has been shown [14,17,18] that converting the Fourier

coefficients from complex values to real magnitude and

phase values reveals direct correlations to chord type,

transposition, and interval ordinality.

2.5 Descriptive properties of Magnitude and Phase

Each TIV Fourier component Fn can be associated with a

tonal interval and its complementary inverse interval, e.g.

F1 is associated with the presence of both minor 2nd and

major 7th intervals, etc. [14] The magnitude value of a TIV

component reflects how strongly the associated interval oc-

curs in the source PCP. For example, F3 is associated with

the presence of major 3rds. Augmented triads (which are

composed of nothing but major 3rds) have a maximal F3

magnitude, whereas diminished 7th chords, which contain

no major 3rds, have an F3 magnitude of 0. Most chords are

composed of several interval types and thus have non-zero

magnitudes for all 6 components.

Chords containing the same collection of intervals will

share a common magnitude profile. This allows some de-

gree of chord classification based on magnitude values.

However, magnitude profiles do not convey the ordinal

placement of the intervals within the source PCP, mean-

ing that chord types with identical sets of intervals cannot

be disambiguated. For example, major and minor triads

both contain one of each of the following atomic intervals:

{m3,M3, P4} and thus will have identical magnitude pro-

files. For the same reason, magnitude profiles alone do

not encode information about the transposition (i.e., the

root) of a source PCP, making it impossible to differentiate
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Cdom7 from Fdom7 or Gdom7, for example. By incorporat-

ing phase information, both of these shortcomings can be

addressed.

3. MOTIVATION

Each component F1 - F6 of a TIV describes the strength

and position of a particular intervallic quality. By mea-

suring the differences between TIV dimensions separately,

the intervallic content of TIVs could be exposed and com-

pared. It is reasonable to consider how distances between

them might be useful in describing the relationship be-

tween their respective PCPs, as well as enabling compu-

tational modelling of musical chords and chord sequences,

and the automated study of large corpora.

Distance measures are by definition non-directional.

However, harmonic transitions are often asymmetrical in

practice, e.g., there is a difference harmonically between

a V 7 → I transition and a I → V 7 transition. By mea-

suring displacement between TIVs, both the distance and

direction between them are exposed, which increases the

descriptive power of the measure.

To extend the difference measure beyond comparisons

of isolated pairs of chords, it would be highly advanta-

geous for the measurements to exhibit collinearity under

the addition operation. For example, if two chords of the

same type a semitone apart have a particular displacement

value, it stands to reason that two chords a whole tone apart

should have a displacement double that value. Crucially,

this would allow multiple displacements to be summed,

making it possible to build sequences and represent vari-

ous progressions between two chords consistently.

Finally, if differences in chord types and intervallic dis-

tances between chords were decoupled, displacement be-

tween chords could be visualised on a grid whose orthog-

onal axes represented each quality. The additive collinear-

ity discussed above would ensure that displacement val-

ues could be summed consistently, regardless of which dis-

placements were measured or in what order.

This would allow chord sequences to be represented

as traversals across a tonal grid. An example of such a

grid is displayed in Figure 1. Chord transitions such as

V 7 → I would have the same displacement regardless of

the transposition of the pair. For example, G7 → Cmaj

and A7 → Dmaj would have an identical displacement,

despite being in different keys. Such transpositional invari-

ance would enable an algorithm to catalogue and identify

commonly occurring functional sequences.

4. POLAR MANHATTAN DISPLACEMENT

To satisfy the criteria outlined in section 3, we propose the

Polar Manhattan Displacement (PMD). PMD measures the

component-wise displacement between two TIVs by cal-

culating the differences in the magnitude and phase of each

component. As each component Fk describes some aspect

of the tonal nature of the source chord, this allows us to

measure the displacements between chords in an interval-

lically informed way.

Figure 1. Decoupled chord type and intervallic displace-

ments for the chord transition G7 → Cmaj . There are

three routes from G7 → Cmaj ; The PMDs of each arrow

are summed. All routes result in the same final displace-

ment value. Note that the direction of the progression is

significant.

PMD thus borrows from L-1 Manhattan distance but ex-

tends it to measure the directional displacements between

corresponding magnitudes and phases in each dimension

of the polar representation of the TIV plane. The differ-

ences are signed, meaning that PMD reflects displacement

rather than formal distance. This is advantageous within a

musical context because tonal harmony is directional; for

example the transition (Cmaj → G7) has a markedly dif-

ferent tonal impact than (G7 → Cmaj).

4.1 Magnitude processing

The processing of magnitude values is straightforward as

it involves only scaling and subtraction. After a TIV is ex-

tracted from a PCP, the magnitudes of F1 to F6 are divided

by the value of F0. This normalises all magnitudes to the

same scale and allows comparison of TIVs having different

numbers of pitches in their source PCPs. Further scaling

of each component magnitude may be applied to improve

the perceptual basis of the space [18] [20]. However, per-

ceptual scaling has not been applied in our study. Follow-

ing the application of normalisation and scaling, magni-

tude values are simply subtracted such that the difference

between the magnitudes of TIVs U and V is

Dispmag(U → V ) = (Vmag − Umag) (1)

4.2 Phase processing

Phase values are simply subtracted in a similar fashion to

that presented in section 4.1 such that the angular displace-
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Chord type M1 M2 M3 M4 M5 M6

Maj7 X

Min7 X X

Dim7 X X X X X

Aug X X X X

Sus4 X

Chrom X X X X X X

WholeTone X X X X X

Table 1. Some common chord types with zero-magnitude

components. ’X’ indicates a zero-magnitude vector.

ment between TIVs U and V is

Dispphase(U → V ) = (Vphase − Uphase) (2)

The cyclic nature of phase information necessitates ad-

ditional processing. Angular phase values θ need to be

cyclically wrapped into the interval −π < θ ≤ π after all

additive and subtractive operations on phase values.

4.3 Definition of PMD

Having defined Dispmag in Eq. (1) and Dispphase in Eq.

(2), we can now present the definition of the Polar Manhat-

tan Displacement. PMD is created by concatenating the 6D

magnitude and phase displacement vectors Dispmag and

Dispphase into one 12D vector.

Given chords (Pj ,Qk) and their corresponding TIVs

(U ,V ),

PMD(Pj , Qk) =

[

Dispmag(U → V )
Dispphase(U → V )

]

(3)

4.4 Zero-magnitude handling

Some PCPs have various TIV components with zero-

valued magnitudes. This indicates that the correspond-

ing interval type is absent from the source PCP. While

this is of no consequence when calculating magnitude

difference (for the magnitude is simply 0), the associ-

ated phase of these components is effectively undefined,

complicating the calculation of differences between phase

values. In our vocabulary, the following chord types

contain one or more zero-magnitude component vectors:

{maj7,min7, dim7, aug, sus4, chrom,wltn}. Table 1

details these zero-magnitude chords and their affected

components.

We employ the convention that these phase values are

considered to be 0. This preserves the additive proper-

ties of PMD and allows multiple displacement values to

be added together consistently.

4.5 Investigating displacements of type and interval

As indicated in section 3, it would be highly advantageous

(and musically interesting) to find a way to distinguish the

degree of displacement due to changes in chord types ver-

sus shifts of interval. In this section, we examine to what

extent such a decoupling is possible.

For convenience, we present the terms Disptype (rep-

resenting the displacement between chord types) and

Dispintv (representing the intervallic displacement be-

tween any two chords of the same type). We define each

with a functional representation, then provide an example

of the relevant function in use. We employ the following

convention to represent a movement from one chord to an-

other:

(Pj → Qk) (4)

where j and k denote chord types from our vocabulary and

P and Q denote two arbitrary chord roots. For example,

the following represents a movement from G7 to Cmaj :

(G7 → Cmaj) (5)

where j = dom7, k = maj, P = G, and Q = C. Note

that the direction of the chord transition is significant.

4.5.1 Type-based displacement

A type-based displacement Disptype can be derived by cal-

culating the PMD of two chords (Pj , Qk) having the same

root (i.e., P = Q) but different types (j ̸= k). Formally,

Disptype(j, k) = PMD(Pj , Pk) (6)

where j ̸= k.

Significantly, these displacement values are consistent

for all pairs of chord types (j, k) regardless of the values

of root (P ). As an example, the PMD values corresponding

to the displacement from a chromatic scale (j) to each of

the chords in our vocabulary (k) are detailed in table 2.

4.5.2 Intervallic displacement

Likewise, the intervallic displacement Dispintv between

any two chords (Pj , Qk) should ideally be consistent re-

gardless of the chord types involved. In a similar fashion

to the calculation of Disptype, we calculate Dispintv by

calculating the PMD of two chords (Pj , Qk) having differ-

ent roots (i.e., P ̸= Q) but identical types (j = k).

Dispintv(P,Q, j) = PMD(Pj , Qj) (7)

where P ̸= Q. Note that Dispintv is a vector of real num-

ber values and is not expressed in semitones.

Crucially, the Dispintv is largely – but not entirely

– independent of chord type j. For all chord types j

with uniquely non-zero TIV magnitude components, the

Dispintv in function of the root interval shift (P → Q) ex-

pressed in semitones is shown in table 3. Chord types j that

contain magnitudes of zero (as shown in table 1) have the

same PMD as in table 3 for their non-zero components, but

both magnitude and phase components of the PMD corre-

sponding to the TIV components with value zero are also

zero. By combining tables 1 and 3, the Dispintv for all

chord types in our vocabulary can be determined.
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Comp Chrom Dim7 Wltn Aug Min7 Dom7 Maj7 Dim HDim7 Major MinMaj7 Minor Susp4

M1 0.00 0.00 0.00 0.00 0.18 0.13 0.13 0.33 0.13 0.17 0.25 0.17 0.24

M2 0.00 0.00 0.00 0.00 0.00 0.25 0.43 0.33 0.25 0.33 0.25 0.33 0.67

M3 0.00 0.00 0.00 1.00 0.50 0.35 0.71 0.33 0.35 0.75 0.79 0.75 0.33

M4 0.00 1.00 0.00 0.00 0.50 0.66 0.25 1.00 0.66 0.58 0.25 0.58 0.00

M5 0.00 0.00 0.00 0.00 0.68 0.48 0.48 0.33 0.48 0.64 0.25 0.64 0.91

M6 0.00 0.00 1.00 1.00 0.00 0.50 0.00 0.33 0.50 0.33 0.50 0.33 0.33

P1 0.00 0.00 0.00 0.00 0.52 1.31 0.26 -1.57 -0.26 -2.36 0.00 -1.31 3.14

P2 0.00 0.00 0.00 0.00 0.00 1.05 0.53 0.00 1.05 0.00 0.00 -1.05 0.00

P3 0.00 0.00 0.00 0.00 1.57 0.79 0.79 1.57 2.36 0.46 1.25 1.11 0.00

P4 0.00 0.00 0.00 0.00 -1.05 -1.76 -2.09 0.00 -0.33 -1.57 0.00 -0.52 0.00

P5 0.00 0.00 0.00 0.00 -0.52 0.26 1.31 -1.57 -1.31 0.79 0.00 -0.26 0.00

P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.14 3.14 3.14

Table 2. PM Displacements for each chord type from our vocabulary as end chord, starting from the chromatic scale and

with the same root. Each column is a PMD vector representing the displacement from the chromatic scale chord type. To

reverse the direction, invert the signs of the values.

Component +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12

M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P1 -0.52 -1.05 -1.57 -2.09 -2.62 3.14 2.62 2.09 1.57 1.05 0.52 0.00

P2 -1.05 -2.09 3.14 2.09 1.05 0.00 -1.05 -2.09 3.14 2.09 1.05 0.00

P3 -1.57 3.14 1.57 0.00 -1.57 3.14 1.57 0.00 -1.57 3.14 1.57 0.00

P4 -2.09 2.09 0.00 -2.09 2.09 0.00 -2.09 2.09 0.00 -2.09 2.09 0.00

P5 -2.62 1.05 -1.57 2.09 -0.52 3.14 0.52 -2.09 1.57 -1.05 2.62 0.00

P6 3.14 0.00 3.14 0.00 3.14 0.00 3.14 0.00 3.14 0.00 3.14 0.00

Table 3. PM Displacements of each ascending transposition interval in semitones for chord types that have no zero-valued

TIV magnitudes. Each column is a PMD vector. Note the symmetry of the column values; intervallic distances are constant,

while the sign indicates the direction of transposition. To reverse the direction, (i.e., to transpose down) invert the signs of

the values. Also, note that only the phase elements are affected by transposition.

Component Tritone Substitution V7 − I

(G7, Db7) (A7, Eb7) (G7, Cmaj) (B7, Emaj)

M1 0 0 0.043 0.043

M2 0 0 0.083 0.083

M3 0 0 0.392 0.392

M4 0 0 -0.084 -0.084

M5 0 0 0.161 0.161

M6 0 0 -0.167 -0.167

P1 3.142 3.142 0 0

P2 0 0 0 0

P3 3.142 3.142 -1.893 -1.893

P4 0 0 2.285 2.285

P5 3.142 3.142 0 0

P6 0 0 3.142 3.142

Table 4. PMD comparisons of a) two tritone substitutions and b) two V7 − I sequences. Notice that within each pair the

PMD values are identical. This indicates that any pair of chords separated by this displacement will constitute a tritone

substitution pair or V7 − I sequence, respectively, regardless of the transposition.
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5. PMD EXAMPLES

5.1 Example 1:Tritone substitution

It is well known within musical harmonic practice that cer-

tain chords may be substituted for one another to provide

alternative or extended versions of an existing or expected

harmony. A common example of this is the tritone substi-

tution, wherein a dominant 7th chord can be replaced with

a different dominant 7th whose root is a tritone (i.e., an

augmented 4th or diminished 5th) away from the original

root. The pitches acting as the 3rd and 7th of the original

chord are retained, but their functions are swapped. The re-

maining 2 pitches of the first chord are replaced with other

pitches. The overall function is of a new chord that retains

the essential character of the original chord, but provides

addition harmonic tension.

While issues of perceptual similarity are beyond the

scope of the current study, PMD can provide an ob-

jective means of numerically describing such relation-

ships. For example, consider the Polar Manhattan Dis-

placements between each of these two tritone substitution

pairs: (G7, Db7) and (A7, E♭7) as detailed in Table 4. No-

tice that the PMD values are identical. Any pair of chords

separated by this displacement will constitute a tritone sub-

stitution pair.

5.2 Example 2: V7 - I detection

There are a number of MIR tasks involving chord estima-

tion, transcription, and automated harmonic analysis that

could benefit from the ability to autonomously identify cer-

tain chord progressions, particularly those which are har-

monically significant. Traditionally, these tasks are ham-

pered by lack of labelled data, inconsistent chord vocab-

ularies, inter-annotator disagreement, etc. As PMD oper-

ates on unlabelled symbolic data, it could contribute to ad-

dressing such shortcomings and improving performance in

automated transcription, labelling, and harmonic analysis.

Table 4 describes the displacement between two different

(V7 → I) progressions and confirms that PMD can iden-

tify and encode the (V7 → I) progression consistently,

regardless of key or transpositional context.

6. CONCLUSIONS & FURTHER WORK

We began with a background review of pitch class profiles

and some basic terms of musical harmonic structures. We

then discussed tonal interval vectors: how discrete Fourier

transforms can be applied to PCPs to create TIVs, how

TIVs can be represented as vectors containing magnitude

and phase values, and how those values describe some as-

pects of the intervallic construction of a chord. We pro-

posed that it could be useful to measure displacements be-

tween these objects, and then described the properties nec-

essary for a robust and self-consistent measure of displace-

ment.

We then presented the Polar Manhattan Displacement,

its fundamental components, and the processing required

to calculate the measurement of magnitude and phase dif-

ference values. There was a brief description of our chord

vocabulary and the need for suitable chord vocabularies,

and a brief discussion of how to maintain transpositional

invariance when dealing with non-existent magnitude vec-

tors.

Having discussed the criteria for a suitable displace-

ment measure, and detailed the functional components of

our proposed measurement algorithm, we demonstrated

how these components could be aggregated to create the

Polar Manhattan Displacement measure. We then provided

two examples of potential use cases of PMD, one involv-

ing the autonomous identification of tritone substitutions,

and the other, V7 − I progressions.

Future technical work will involve evaluating the ro-

bustness of PMD when employed on audio data and at

various scales of temporal granularity. It would be inter-

esting to investigate extension of PMD to process non-

binary PCPs, such as weighted PCPs and harmonic pitch

class profiles. As the additive properties of PMD allow

displacements to be summed, we would also like to extend

the application of PMD to chord sequence modelling and

analysis. Finally, we would like to deploy PMD as part

of a large corpus study to investigate chord similarity and

harmonic practice.
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