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Abstract—Recent advances in drone visual sensors and integration 
of complex vision algorithms, facilitate further potential, entirely 
disrupting in a positive way their applications and capabilities. In 
particular, real-time object detection, usually the initial necessary 
step in multiple computer vision and image processing applications, 
has been gaining momentum in drone- based applications. Whilst 
heavily researched in conventional systems, drone-based vision 
algorithms have to consider extrinsic parameters to measure their 
efficiency, as their performance is heavily impacted by various 
flying parameters such as altitude. Further, the parameters that 
directly impact the performance of the vision algorithms, also 
impact the duration of the flight (i.e. battery life), as the vision 
algorithmic performance is affected by the flying route and altitude 
as well. This paper therefore, presents a holistic performance 
evaluation framework for multi-rotor drone-based object detection 
applications, that considers various trade-offs such as flight 
duration, camera resolution, computational platform performance, 
drone battery performance, etc., in providing a thorough analysis of 
the various factors affecting the operation of object detection. The 
framework showcases indeed that the flying altitude, in 
combination with the camera resolution, vastly impacts the flight 
duration as well as the performance of the object detection 
algorithm, when targeting coverage of a specific area. The 
framework has been experimentally verified using a commercial 
grade state-of-the-art drone and high-resolution camera, as well as 
a high-end embedded processing platform that performs the 
detection algorithm.  

I. INTRODUCTION  
Commercial multi-rotor UAS have become ubiquitous in our 
daily lives, and are expected to dominate the consumer 
electronics market in an unseen trend, as their application 
spectrum ranges from civil protection to entrepreneurial 
activities, to hobbyists and many more. In the recent past, the 
use of UAS has been mainly focused in military and high end 
aerospace applications requiring enormous economical 
investments. Nowadays, such a technology is widely available 
to anyone at very low cost. By doing a spherical overview of 
the capabilities of these autonomous flying machines, 
someone can easily conclude that UAS can be beneficiary to a 
wide range of applications including search and rescue, 
intelligence surveillance, traffic monitoring and inspection, 
disaster evaluation, wildfires monitoring, border patrolling, 
photography and media productions etc. They are now 
equipped with high-end sensing and communication nodes, 
and low-power lightweight on-board embedded processing 

platforms, while they also exhibit increased flying times, 
excellent maneuverability, and extended ranges of operation. 
Their ability to carry a variety of sensors and payload while 
being able to monitor from above, give a huge advantage to 
the ground units in terms of cost, situational awareness as well 
as safety by minimizing the use of manned helicopters. 
 
Introducing computer vision and specifically object detection 
in UAS can be beneficial in a broad range of applications. For 
the purposes of this paper rotorcrafts will be considered at all 
times. Automatic object detection either real time or offline is 
a very hot subject for computer vision researchers. Already, an 
extensive research has been done in the part of object 
detection algorithms and the outcome seems to be very 
promising for a wide range of applications involved in 
automated systems. Real time aerial object detection adopted 
in UAS give an intelligent autonomous flying machine that is 
suitable for an enormous number of applications. Since 
commercial low priced UAS technology is widely available, 
aerial object detection is getting more and more popular. At 
very low cost, it is possible to have a complete autonomous 
vision based aerial system. 

 
The purpose of this paper is to investigate how different 
parameters of flight performance can affect object detection 
algorithms and vice-versa. It will be shown that parameters 
such as flight altitude, overall weight, camera specifications 
are all interrelated with each other and affect directly or 
indirectly the performance of an object detection algorithm as 
well as the total flight time. The flight time is an important 
parameter for any application, especially when path planning 
algorithms are being used. With current technology available, 
batteries have limitations in terms of capacity versus weight 
meaning that is the main drawback. Many researchers across 
the world are investigating how to minimize power 
consumption of embedded systems in UAS in order to 
counterbalance the battery capacity limitation. However, this 
paper will demonstrate that power consumption from inbound 
electronics is not only the case but weight is much more 
important factor for maximizing overall flight time 

II. BACKGROUND  
Computer vision has been mainly introduced into military 
UAS in the past with extremely high costs, however this 
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technology has been introduced recently in commercial UAS. 
Since then, the combination of computational vision and 
unmanned flying machines has been investigated in a variety 
of aspects. For instance, power line inspection is a difficult 
and risky task for the maintenance personnel, however, an 
autonomous vision-based power line inspection using UAS 
could be extremely beneficiary as introduced in [1], [2]. An 
application that a fully autonomous UAS will be able to 
provide a massive help, is Search and Rescue. During such 
operation parameters such as time management, response time 
and situational awareness are crucial. A fully autonomous 
vision-based UAS can monitor a search area and provide 
useful aerial information to first responders. In [3], a UAS 
carrying thermal and optical cameras is executing a scan into 
Search and Rescue field while at the same time is performing 
image processing to detect human bodies. A multi-purpose use 
of the combination of vision and UAS is simultaneous 
localization and mapping as well as obstacle avoidance 
system. The latter can be used in any application and can 
increase the autonomous ability of a UAS, since most real life 
applications are performed in unknown environments. In [4], a 
micro air vehicle equipped with four cameras is using onboard 
computer vision combined with inertial measurement 
information in order to navigate autonomously in space while 
being able to avoid obstacles. A similar research has been 
introduced in [5], an onboard processing using stereo vision is 
done on a flapping wing micro air vehicle to avoid obstacles in 
generic environments. Automation of UAS aided by computer 
vision algorithms does not stop there. In [6] a technique for 
automatic vision-based take-off, terrain following and landing 
has been demonstrated, while in [7] a similar work has been 
presented. In [7] a UAV is performing automated take-off and 
landing on a moving platform using infrared cameras without 
the need of communication between the UAS and the 
platform. A similar work has been done in [PAPER] [8] where 
a color detection algorithm is performed to guide a UAV for 
landing in a moving vehicle. Another interesting research 
involving aerial vision processing is introduced in [9] where 
the UAS is automated with the support of computer vision 
algorithms to inspect and identify plantation failure. 
As can be seen, the popularity and demand in commercial low 
priced UAS keeps increasing. However, at the moment there 
are limitations in the technology available that make the task 
of autonomous UAS even more challenging. Vision is a 
fundamental part of a fully autonomous UAS. Nevertheless, 
being able to perform real-time onboard video processing for 
autonomous purposes while keeping the overall weight and 
power consumption to minimum but with a high processing 
ability makes the task really complicated and hard. In [10], 
this problem has been investigated by introducing alternative 
methods for onboard vision such as FPGAs and ASICs that 
have shown encouraging results. Another interesting research 
has been presented in [11]. A framework for choosing the best 
possible embedded platform for UAS on-board image 
processing has been introduced by taking into consideration 
parameters such as algorithm complexity, UAS velocity, 
power consumption and flight time. 

III. FRAMEWORK ANALYSIS 
In order to perform accurate visual analysis (i.e., identifying 
all objects/areas of interest correctly without false 
positive/negative detections) a sufficient amount of 
information must be collected (i.e. the object resolution must 
be sufficient). Johnson’s Criteria defines the number of picture 
elements (pixels) required to discriminate an object on an 
image based on three main levels with more than 50% 
probability of success [12], [13]. These criteria have been 
drafted with a human operator in mind and for infrared image 
intensifiers and as such may not be precise for automated 
visual analysis tools.  However, the same principles apply for 
other camera types and analysis options and thus can be used 
to build a basic understanding on the camera sensor features. 
According to Johnson’s criteria, the three main levels of 
discrimination are as follows a) detection, b) recognition and 
c) identification. As suggested by the criteria, detection means 
that an object is present, and this is achieved when the object 
of interest has approximately 6 picture elements (pixels). For 
recognition, the type of the object should be distinguished; for 
example, whether the object is a car or human and it is 
achieved when the object has at least 80 pixels. The third level 
of discrimination is identification in which someone is able to 
identify the object, for instance it is able to distinguish 
whether a human is male or female. The identification level 
can be performed when the object has around 250 picture 
elements. Figure 1 presents the three level of discrimination 
according to the picture element values. 
 
For a given camera sensor, distance of the object from the 
camera will determine the discrimination level. As the object 
gets closer to the camera, more information about the object is 
visible and hence it covers more picture elements in the 
imagery taken from the sensor. The human brain is capable of 
effortlessly discriminating and classifying objects from among 
tens of thousands of possibilities almost instantly despite the 
tremendous variation in appearance that each object produces 
such as shape, color and texture [14], [15], [16]. However, 
despite the fact that Johnson’s criteria have been introduced 
for humans, the concept can be applied in computer vision 
algorithms for object detection, thus, a minimum resolution 
depending on the object of interest, is required to perform 
detection (and identification). 

 
Object detection involves a sliding window scanning the input 
image, in order to find objects of interest in various sizes. This 
search is usually done by extracting smaller regions from the 
frame, called search windows, of m×n pixels, which are 

 
Fig. 1. Johnsons Criteria discrimination levels 
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processed by a classification algorithm to determine if they 
contain the object of interest or not. To account for the 
variable sizes in objects, given the typically fixed size of the 
search window, an object detection system typically 
downscales the input image in steps (through a process known 
as image pyramid generation), effectively reducing the size of 
the object of interest, and re-examines the image, until the 
downscaled image is equal to the size of the search window. 
The classifier is being trained using a dataset consisting of 
positives and negatives samples in order to extract features of 
the object that has to be learnt. The dataset image samples 
used for the training, both negatives and positives, should have 
the same dimensions. The dimensions of the images can be 
used to calculate the recognition pixel value for a specific 
object detector. Figure 2 illustrates the procedure of classifier 
training and object detection. The main problem of aerial 
object detection is altitude. Since the UAS altitude is inverse 
proportional to the object of interest size, the camera field of 
view geometry should be examined to adjust the object 
detection algorithm parameters accordingly. 

 
Figure 3 illustrates a diagram of the geometry of the UAS and 
camera field of view. As shown in the figure, r is the actual 
metric distance of the field of view on the ground, h is the 
above ground level (AGL) altitude of the UAS and φ is the 
field of view angle as specified by the camera specifications. 
Most of the times, the field of view angles between horizontal 
and vertical axis along the ground are not the equal and hence 

the field of view ground projection is rectangle. By applying 
simple trigonometry identities on the geometry of the field of 
view as shown in Figure 3; an equation relating UAS altitude 
h, camera field of view angle φ and corresponding ground 
metric distance r can be derived as shown in (1). 

 
ℎ =

𝑟

2 tan 𝜑
2

 (1) 

 
In order to introduce detection characteristics into (1), it is 
required to combine camera specifications and detector 
capabilities. Such parameters should include camera 
resolution, detector’s training sample dimensions and desired 
object characteristics such as area. All these parameters can be 
related as shown in (2), where hd (meters) is the 
desired/maximum UAS altitude that a recognition of a specific 
object can be done, 𝒑 (pixels) is the camera resolution either 
horizontally or vertically, 𝝋 (degrees) is the corresponding 
camera field of view angle according to the selection of 
camera resolution, obj (square meters) is the top down object 
of interest and rec (square pixels) is the total number of pixels 
of a single training sample image used to train the object 
detector. Object of interest area obj, is the only parameter that 
is not given but can be estimated. Usually objects have some 
variation in dimensions such as vehicles where there is a range 
of values that can be as the average vehicle area. Some 
vehicles for instance are wider and longer giving a relatively 
high top down area while others are narrower and shorter 
giving relatively low area. However, (2) provides an 
estimation value of the desired altitude and hence, by using 
empirical knowledge and information someone can easily 
decide a reasonable estimation of the area for a specific object. 
 

ℎ+ 	≤ 	
𝑝

2 tan 𝜑
2

	×	
𝑜𝑏𝑗
𝑟𝑒𝑐

 (2) 

 
As can be seen from (2), the resolution of the camera is 
proportional to the maximum recognition altitude. This is due 
to the fact that at a fixed field of view angle, higher resolution 
cameras will provide more information, allowing the object of 
interest to be recognized from increased altitudes. The 
maximum altitude is also proportional to the square root of the 
area of the object of interest. Obviously, as the object of 
interest area is getting larger it can be recognized from higher 
altitudes. On the other side, field of view angle is inverse 
proportional to the maximum UAS altitude. This happens 
because as the field of view is getting larger and the resolution 
of the camera is kept constant, the information captured from 
the camera is spread along the larger field of view. This 
phenomenon decreases the probability of an object being 
recognized. Equation 2, provides information about the 
capabilities of a specific aerial object detection algorithm in 
terms of altitude. By estimating the maximum altitude that an 
object detector is capable to perform effectively for a specific 
object using aerial images or video taken from a specific 

 
Fig. 3.  UAS field of view geometry 
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camera sensor, provides the initial step of the evaluation 
framework. Consequently, the range of altitudes up to hd 
meters will be called effective altitude range. The images or 
frames obtained from the camera sensor have a fixed 
resolution and field of view. Therefore, to maintain the 
accuracy of the algorithm along the range of effective 
altitudes, an image processing technique called image pyramid 
should be implemented in order to downscale images 
according to the altitude. This can be achieved by solving (2) 
in terms of image resolution 𝒑 as shown in (3). It is important 
to notice that the field of view angle used in (3), will give the 
corresponding downscaled image resolution. Hence, to find 
the other image resolution, the aspect ratio of the initial image 
has to be kept constant. 
 

𝑝 = 	2ℎ tan
𝜑
2

𝑟𝑒𝑐
𝑜𝑏𝑗

	 (3) 

 
As can be seen from (3), altitude and image resolution are 
proportional, meaning that as the altitude is decreased the 
corresponding ideal resolution is decreased too. By 
downscaling an image there is a loss of information meaning 
that the processing speed required is decreased. Consequently, 
object detection processing at lower altitudes can be 
performed faster. At real time object detection, the UAS has 
the capability to travel at higher velocities in lower altitudes 
while keeping the processed frame rate high. Nevertheless, 
field of view ground distance at lower altitudes is minor and it 
will require more travel distance in order to cover a pre-
specified search area. On the other hand, higher altitudes, are 
restricted in lower velocities due to the high processing time 
required for each image, but the advantage of large field of 
view ground distance gives the opportunity to cover a pre-
specified search area with less travel distance. All these 
parameters will be discussed to find the optimal solution. For 
real time object detection, it is important to maintain a balance 
between UAS velocity and CPU processing speed. For 
instance, if both UAS velocity and processing speed required 
to process a single frame are relatively high, then the 
processed frame rate will not be able to cope up with the UAS 
velocity. This phenomenon will lead to extreme loss of 
information since the UAS will be able to travel a relatively 
high distance while the detector will not be able to cover 
effectively this distance. Figure 4, illustrates a diagram of the 
movement of the UAS with velocity U (meters per second) 
travelled a distance d (meters per frame) in some time t 
(seconds per frame). The purpose is to find a relationship 
which will give the maximum velocity that the UAS will be 
able to travel at a specific altitude, bearing in mind the 
processing speed required for each single frame in order to 
maintain a smooth frame rate without the presence of lag and 
loss of information. After the maximum velocity is estimated, 
it is possible to use power consumption formulas in terms of 
aerodynamic forces using this velocity value to estimate the 
overall flight time at each altitude. By using the overall flight 

time estimation, a holistic performance evaluation can be 
achieved. 
 
Equation 4, is the fundamental equation of motion at constant 
speed, where will be used to describe the motion illustrated in 
Figure 4.  
 

𝑈 = 	
𝑑
𝑡
	 (4) 

 
To find the maximum velocity in each altitude as described 
earlier, it is required to introduce altitude in the travel distance 
d and a parameter that will represent the smoothness of the 
processed frame rate. It is important to state that, it is required 
to find an optimal travel distance per processed frame at each 
altitude. This will give an estimation of the velocity required 
for traveling to counterbalance the frame processing speed 
while maintaining a smooth processed frame rate. The travel 
distance is directly related to the altitude. However, to notice 
the change of travel distance at higher altitudes the travel 
distance should be larger compared to that in lower altitudes. 
This indicates that there is a ratio which relates the change in 
travel distance with the altitude. This ratio c (1/ frame) will be 
called distance ratio. Equation 5, relates the distance ratio c 
with the travelled distance d and field of view ground distance 
r. As can be seen from (5), distance ratio can be translated as 
the percentage of travel distance in terms of field of view 
ground distance.   
 

𝑐 = 	
𝑑
𝑟
	 (5) 

 
Field of view ground distance can be directly related with 
altitude. Using simple trigonometry equations combined with 
(4) and (5), an equation relating maximum speed U, distance 
ratio c, altitude h, field of view angle φ and processing time 
required for a single frame t can be derived as shown in (6). 
 

 
 

Fig. 4.  The motion of UAS between two adjacent processed frames 
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𝑈 = 	
2𝑐ℎ tan 𝜑

2
𝑡

	 (6) 

 
Distance ratio values range from 0 < c < 1. Normally the value 
should be close to zero, meaning that for a single frame 
processed, the travelled distance is minimal ensuring smooth 
processed frame rate that will be ideal for real time processing. 
 
Since the maximum velocity in each altitude has been 
estimated, it is possible to introduce power consumption 
formulas that consider aerodynamic forces to estimate the 
overall flight time at each altitude using the corresponding 
velocity. Equation 7 and 8, shows the power produced by the 
propeller PP (W) and the torque required to spin the propeller τ 
(Nm) respectively. Where TT (N) is the total thrust produced 
by the propellers, n is the total number of motors/propellers, A 
(m2) is the blade area, ρ (= 1.225 Kg/m3) is the air density, CDP 
is the coefficient of drag of a single propeller and DP (m) is the 
diameter of the propeller. 
 

𝑃9 =
𝑇;
𝑛
	

𝑇;
2𝑛𝜌𝐴

 (7) 

 

𝜏 = 2𝜋𝐶B9𝜌𝑃9C𝐷9E
F

		 (8) 

 
By combining (7) and (8), a relationship relating the required 
torque with the total thrust can be derived, as shown in (9). 
 

𝜏 =
𝑇;
𝑛

𝜋𝐶B9𝐷9E

𝐴

F

		 (9) 

 
The current drawn by a DC motor is related with torque as 
shown in (10). Where IP (A) is the current drawn by a single 
motor and KT (Vs) is the motor torque constant. Usually torque 
constant is not given and has to be replaced with a known 
parameter. This parameter should be motor constant KV 
(rad/sV) and is related with torque constant with the relation 
presented in (11). Motor constant is given in the motor 
specifications. Combining (10) and (11), the current can be 
related with the motor constant and torque as in (12). 
 

𝐼9 =
𝜏
𝐾;
		 (10) 

 

𝐾; = 	
60
2𝜋𝐾K

 (11) 

 

𝐼9 = 	
𝜏𝜋𝐾K
30

 (12) 

 
Substituting (9) to (12), a relationship that combines total 
thrust, motor and propeller specifications, with the current 
drawn can be derived as shown in (13). Where the motor’s 
efficiency can be expressed as η. 

 

𝐼9 =
𝑇;𝜋𝐾K𝐷9
30𝑛𝜂

4𝐶B9
F 		 (13) 

 
The ultimate purpose is to introduce flight time in the 
equations. This can be achieved by using the current draw 
together with the battery capacity. However, IP is the current 
drawn by a single motor. Equation 14, shows the total current 
drawn IT (mA) by all motors. 

𝐼; = 1000𝑛𝐼9 (14) 
 
As long as the total current drawn is calculated, the total UAS 
flight time tEST (minutes) can be found by (15). Where CBAT 
(mAh) is the capacity of the battery that is used to power the 
UASs motors. 
 

𝑡PQ; =
60𝐶RS;
𝐼;

 (15) 

 
Combining (13), (14) and (15) a final expression for total UAS 
flight time can be derived as shown in (16). Equation 16, 
relates the total flight time with the total thrust produced by 
the propellers. 
 

𝑡PQ; =
1.8𝜂𝐶RS;

𝑇;𝜋𝐾K𝐷9 4𝐶B9
F  (16) 

 
At this point, it is necessary to analyze total thrust. Total thrust 
corresponds to the aerodynamic force produced by propellers. 
However, to find total thrust it is important to realize the 
forces acting on a UAS. For the purposes of this paper, the 
UAS will be considered to be quadcopter. For simplicity 
purposes, it will be assumed that the UAS will either hover or 
travelling at constant velocity. Figure 5, illustrates the free 
body diagrams for both states hovering (see Figure 5a) and 
travelling at constant speed (see Figure 5b). While the UAS is 
hovering, the resultant thrust is acting on the center of mass 
with an upwards direction. In this situation Newton’s Third 
Law is applied and hence, the weight force W (N) has an equal 
magnitude but opposite direction from total thrust. In the case 
where the UAS is travelling at a constant speed, the forces 
acting on it are becoming more complicated. During the 
constant speed movement, the backward propellers are both 
required to produce the same amount of thrust resulting to a 

 
(a) (b) 

Fig. 5.  UAS free body diagram in (a) hover state and (b) travelling at 
constant speed 

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2017 International Conference on Unmanned
Aircraft Systems. Received February 26, 2017.



total backward thrust, TP1 (N). This applies to the forward pair 
of propellers too which they produce a resultant forward 
thrust, TP2 (N).  However, the total backward thrust and total 
forward thrust are not necessarily equal, but the total thrust is 
the sum of these two components. In order to perform thrust 
analysis in the UAS while travelling in constant velocity, it is 
required to find the vertical and horizontal components of both 
backward and forward thrusts as shown in Figure 5b. The total 
thrust component in horizontal dimension is equal to the drag 
force D (N), while the total thrust in vertical dimension is 
equal to weight. The drag force can be expressed as in (17), 
where CD is the coefficient of drag of the UAS and S (m2) is 
the frontal surface area of the UAS. The weight force can be 
expressed as in (18), where m (kg) is the total mass of the 
UAS and g = 9.81 (m/s2) is the gravitational acceleration.  
 

𝐷 =
1
2
𝜌𝑈C𝐶B𝑆 (17) 

 
𝑊 = 𝑚𝑔 (18) 

 
By performing simple trigonometry using the angle of attack α 
(degrees) of the UAS, it is possible to find an expression that 
will relate the total thrust produced by the propellers with the 
UAS velocity. This expression is demonstrated in (19). 
 

𝑇; = 𝑇9Z + 𝑇9C = 𝑚C𝑔C +
1
2
𝜌𝑈C𝐶B𝑆

C

 (19) 

 
As can be seen from (19) if the velocity U is equal to zero, 
which means the UAS is hovering, the total thrust becomes 
equal to weight verifying the Newton’s Third Law. 
 
At this stage, all the parameters discussed can be combined. 
First of all, the processing speed required to process a frame at 
each altitude using a specific object detection algorithm has to 
be found. Then, the UAS traveling velocity can be calculated. 
By estimating the UAS velocity with (6) at a specific altitude, 
it is possible to find the total thrust required to travel at that 
velocity by using (19). As long as the total thrust is known for 
each velocity along the range of effective altitudes, the total 
flight time for each altitude can be estimated as shown in (16). 
To evaluate the performance of the detection algorithm in 
terms of total flight time and altitude, it is necessary to find 
how much search area can be covered while flying at different 
altitudes bearing in mind all these parameters.  

IV. EXPERIMENTAL ANALYSIS 
For the experimental analysis the equipment shown in Table 1 
will be used. Additionally, the table illustrates important 
specifications or parameters that are related with each 
equipment. The next step, is to follow the procedure as 
explained in section III.  
 
 
 

TABLE 1 

UAS DJI Matrice 100 

Max Velocity 22 m/s 

MTOW 3.4 Kg 

CBAT (TB47D) 4500 mAh (each) 

Propeller Diameter 0.33 m 

Coefficient of drag CD Approx. 0.8 

Frontal Surface Area S Approx. 0.12 m2 

Camera Sensor X3 - Zenmuse 

Resolution 4000 x 2250 

Field Of View Angle - φ 87.15 degrees 

Processing Platform I 
High-End Platform Early 

2015 

CPU Intel I7 3.1GHz 

Processing Platform II Nvidia Jetson TK1 

CPU ARM - Cortex A15 2.3GHz 

Weight 0.241 kg 

Processing Platform III Raspberry Pi 2 

CPU ARM – Cortex A7 900MHz 

Weight 0.08 kg 
 
For the purpose of this investigation, an object detection 
algorithm trained to detect vehicles has been used. Just for 
reference, the algorithm has been trained using Histogram of 
Oriented Gradients (HOG) and approximately 4000 positive 
samples and around 50000 negative samples have been used, 
each of them had a size of 40 x 20 pixels. The first step on the 
procedure is to find the maximum altitude that the UAS will 
be able travel according to the camera specifications, while the 
detector will be able to perform effectively. Although this 

 
Fig. 6.  Shows the processing speed required to process a single frame, at 

each altitude 
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altitude has been found to be approximately 200 meters high, 
for safety reasons and to comply with airworthiness 
regulations we reached a maximum altitude of 130 meters. So 
the effective altitude range for our experiment was 0-130 
meters. Starting from an altitude of 10 meters increasing the 
altitude with a step of 10 meters, top down images have been 
taken all the way up to 130 meters. A total of 13 images have 
been collected and each of them has been resized accordingly 
using (3). Each image has been processed through the vehicle 
detector using the three available processing platforms as 
shown in Table 1. The processing speed required by each 
processing platform for each frame at each altitude has been 
plotted as shown in Figure 6. 
As shown from Figure 6, it is obvious that generally for all 
processing platforms as the altitude is increasing, the 
processing speed required to process a single frame is 
increasing exponentially. This is expected since for higher 
altitudes the resolution of the image required to perform object 
detection is higher, meaning that more information have to be 
processed demanding more processing time. When designing 
an aerial object detection algorithm, it is important to bear in 
mind that altitude indeed affects the performance of the 
algorithm, especially if the processing has to be real time. The 
following step is to calculate the UAS maximum velocity at 
each altitude for each processing platform according their 
capability in terms of frame processing speed using (6). If the 
processing speed required to process a single frame is very 
low, the velocity restriction may be too high and practically 
impossible to achieve. Therefore, it is essential to consider the 
UAS maximum velocity, according to manufacturer 
specifications, as the velocity upper limit. Regarding the 
distance ratio c, it is decided to use all the range between 
0<c<1, in order to have a spherical overview of its impact. 
The next phase is to estimate the total thrust required to 
achieve each velocity using (19). At this point it is possible to 
estimate the total flight time of the UAS at each altitude using 
(16). However, using total flight time is not able to evaluate 
the performance of an object detection algorithm. 
Nevertheless, using flight time, corresponding UAS velocity 

and field of view ground distance, it is possible to estimate the 
total area that the UAS will be able to cover. Figures 7,8 and 9 
present a 3-Dimensional plot of the UAS altitude, distance 
ratio and total area coverage for High-End Platform, Nvidia 
Jetson TK1 and Raspberry Pi 2 respectively. Obviously High-
End Platform is not able to perform onboard processing and 
hence, to maintain the comparison at the same standards these 
three plots consider that the processing is performing on the 
ground. As can be seen from Figure 7, where the performance 
of High-End Platform is illustrated, there is a minimum 
distance ratio value at each altitude at which any greater 
values distance ratio the total area coverage remains the same. 
This happens because as the distance ratio is getting larger, the 
overlay between adjacent processed frames is getting  
lower. This means that the distance between adjacent 
processed frames is getting larger allowing the processing 
platform to have additional available time to process a frame 
while the UAS is travelling to cover the larger distance 
towards the next frame. Since High-End Platform has high 
processing capabilities, this gives the opportunity to the UAS 
to travel at high speeds and theoretically exceeding the UAS 

 
Fig. 7.  Shows the relationship between the range of altitudes and 
corresponding total area coverage for all values of distance ratio c, 
according to High-End Platform processing performance 

 
Fig. 9.  Shows the relationship between the range of altitudes and 
corresponding total area coverage for all values of distance ratio c, 
according to Raspberry Pi 2 processing performance 

 
Fig. 8.  Shows the relationship between the range of altitudes and 
corresponding total area coverage for all values of distance ratio c, 
according to Nvidia Jetson TK1 processing performance 

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2017 International Conference on Unmanned
Aircraft Systems. Received February 26, 2017.



maximum specifications velocity for these distance ratio 
values. In practice this is not possible and hence the UAS is 
travelling at its maximum allowed speed. Consequently, the 
total flight time remains the same at each altitude for all these 
values of distance ratio providing the same total area coverage 
at each altitude. This can also be noticed in Figure 8, where 
the same applies to Nvidia Jetson TK1. However, High-End 
Platform is more powerful in terms of performance 
capabilities compared to Nvidia Jetson TK1, therefore, 
comparing the corresponding altitudes in both Figures 7 and 
8, it can be noticed that the minimum distance ratio value at 
which the total area coverage remains unchanged, is lower for 
High-End Platform compared to Nvidia Jetson TK1. As can be 
seen from Figure 9, the same applies to Raspberry Pi 2 but in 
much lower scale. Due to the fact that Raspberry Pi 2 has 
significantly lower performance capabilities compared to the 
other two platforms, only at altitudes of 10-20 meters there 
exist a minimum distance ratio value at which the total area 
coverage remains unchanged. Comparing Figures 7,8 and 9 it 
can be clearly seen that there is a distance ratio value at each 
altitude that gives the maximum total area coverage. It can 
also be noticed that these optimal distance ratio values form a 
linear relationship with altitude. Additionally, the gradient of 
this linear relationship is getting lower as the processing 
platform is more powerful. As explained earlier in Section III, 
the distance ratio value is expected to be close to zero to 
ensure a smooth frame rate and being ideal for real time 
processing. This means that state of the art processing 
platforms will have minimal gradient between optimal 
distance ratio and altitude as shown in Figure 7. Since High-
End Platform has high performance capabilities, the optimal 
distance ratio values are all close to zero (minimal gradient), 
meaning that for all the effective altitude range High-End 
Platform is more capable in performing real time object 
detection compared to the other two platforms. A hardware 
designer that is looking forward to design a processing 
platform ideal for aerial real time object detection, can 
determine a maximum distance ratio value for real time object 
detection and then by using this framework can evaluate the 
performance of the hardware and software in terms of flying 
altitude for optimized area coverage. 
 
As said earlier, the processing in this experiment has been 
done on the ground, nevertheless, if the processing is being 
held onboard then the overall mass of the UAS will be 
increased due to extra processing platform weight and hence 
the power consumption will have an increase. These 
parameters will not affect the shape of the plots. The only 
impact will be the total area coverage that will be decreased by 
some percent since the overall time will be decreased as a 
result of the increased weight and power consumption. Since 
Raspberry Pi 2 is low weight, low power consumption 
processing platform will have minimal impact on the area 
coverage compared to that of Nvidia Jetson TK1. 

V. CONCLUSIONS 
This paper demonstrates a holistic performance evaluation 
framework for aerial object detection platforms and 
algorithms. It has been shown how various parameters such as 
altitude, camera specifications and aerodynamic forces affect 
the performance of an object detection algorithm. A hardware 
or software designer aiming to develop a new hardware or 
software specifically designed for real time object detection 
onboard a UAS should consider all these factors. This 
framework can be used as a guideline to evaluate the 
performance of the processing platform and object detection 
algorithms. Most real life applications that could benefit from 
an autonomous UAS require aerial monitoring and 
surveillance. Knowing in advance how all these parameters 
are related to each other and being able to find the optimal 
area coverage while maintaining the ability of real time 
processing is vital for designing the best possible solution. 
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