Conference paper Open Access

An architectural proposal to explore the data of a private community through visual analytic

Durán-Escudero, J.; García-Peñalvo, F. J.; Therón, R.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/1035787</identifier>
  <creators>
    <creator>
      <creatorName>Durán-Escudero, J.</creatorName>
      <givenName>J.</givenName>
      <familyName>Durán-Escudero</familyName>
      <affiliation>University of Salamanca</affiliation>
    </creator>
    <creator>
      <creatorName>García-Peñalvo, F. J.</creatorName>
      <givenName>F. J.</givenName>
      <familyName>García-Peñalvo</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9987-5584</nameIdentifier>
      <affiliation>University of Salamanca</affiliation>
    </creator>
    <creator>
      <creatorName>Therón, R.</creatorName>
      <givenName>R.</givenName>
      <familyName>Therón</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6739-8875</nameIdentifier>
      <affiliation>University of Salamanca</affiliation>
    </creator>
  </creators>
  <titles>
    <title>An architectural proposal to explore the data of a private community through visual analytic</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <subjects>
    <subject>Visual Analytic, Social Network, Software Architecture, Data Generation, Users Interaction, Interaction in Social Networks, WYRED</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2017-10-24</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/1035787</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3144826.3145398</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/wyred</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;In this document, a proposal is made to study the data that will be generated in the private and anonymous community of the WYRED project, in order to extract knowledge about how their users interact, both between them, and with the platform. To do this, it is started with the creation of a system that will generate a set of test data, as close as possible to the original. With this information and considering the impact of privacy when dealing with the data of the project, a flexible and complete architecture has been proposed for the development of interactive visualizations that will allow to visualize the previously generated data. Finally, a use case is presented where the suitability of the visual analytic is demonstrated to perform analysis of the data of the project and to extract knowledge, in a simple way&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/727066/">727066</awardNumber>
      <awardTitle>netWorked Youth Research for Empowerment in the Digital society</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
20
75
views
downloads
Views 20
Downloads 75
Data volume 171.3 MB
Unique views 20
Unique downloads 75

Share

Cite as