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Abstract—In this work a system for the estimation of the
forces (both longitudinal and lateral) exerted between the
tires and the road is presented. Starting from two of the
most commonly used descriptions of the vehicle dynamics, the
single-corner and the single-track models, a system composed of
Sub-Optimal Second Order Sliding Mode observers in a cascade
structure plus an adaptive element is developed and verified
to be effective in conditions in which the effect of the weight
transfer can be neglected. One notable property of this approach
is that only standard sensors, which are present in most of the
stock cars, are exploited. The practical implementation is done
using a switched/time-based adaptation law for the gains of the
observers, in order to be able to track the quantities in a wide
range of conditions while keeping the chattering low. Simulation
results are presented in IPG Car-Maker.

Index Terms—Vehicle dynamics, Sliding mode control,
Estimation, Automotive engineering

I. INTRODUCTION

Active control systems in vehicles nowadays are of
paramount importance, as they help to improve safety,
efficiency and comfort. In order to have them working
properly, accurate vehicle state information is needed. In
particular, the knowledge about instantaneous tire-road forces
can be exploited in many different ways (e.g. longitudinal and
lateral dynamic stability control). Due to economic reasons, it
is overly expensive for standard vehicles to equip sensors able
to provide such measurements. It becomes then fundamental
the contribution of online observers that only exploit standard
sensors for accurate estimations.

In literature a lot of different approaches are presented,
mainly devoted to the final aim of identifying the tire-road fric-
tion curve. One example can be found in [1], where an observer
that uses the available measures of the wheels speed in combi-
nation with the LuGre model is used to identify changes in the
road surface type. A different approach is adopted in [2], where
the longitudinal and lateral tire forces are estimated using an
Extended Kalman Filter (EKF) in combination with the vehicle
single-track model, while using the Burckhardt parametrization
for the tire-road friction forces. In [3] different methods for the
estimation of the longitudinal tire forces are presented and ex-
ploited to identify the tire-road friction coefficient via recursive
least squares. Ray estimates longitudinal and lateral forces using
EKF in [4] or an Extended Kalman-Bucy filtering and Bayesian
hypothesis selection [5]. While EKF is suitable for online
estimation, it is sensible to inaccuracies in the friction model.
An attempt to overcome this problem is done by introducing a
proper correction generated by a Neural Network in [6]. Lateral
forces are estimated in [7], using a four-wheels vehicle model
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and an EKF-based observer, and in [8] using a Super-Twisting
Second Order Sliding Mode (ST-SOSM) based observer.
Sliding mode is also used in [9], where its effectiveness in a
real-time framework is analyzed. An experimental evaluation of
a sliding mode observer is carried out in [10]. The application of
longitudinal forces estimation for the online identification of the
tire/road friction curve has been proposed by the authors in [11].

In the majority of the mentioned works only longitudinal or
lateral dynamics are considered and some approximations are
explicitly made (e.g. losses are neglected, steering angles are
supposed small). In this work, an online adaptive Sub-optimal
Second Order Sliding Mode (SSOSM) based observer is
presented for the estimation of the instantaneous (both
longitudinal and lateral) forces exerted between the tires and
the road. In particular, it only exploits standard sensors and it is
not based on a specific tire-road contact model. A combination
of single-corner and single-track models is exploited: as a
result, the observer is independent from the specific tire-road
modelling and robust against road surface changes.

II. VEHICLE MODEL

The purpose of the observer presented in this work is to
provide an estimation for the longitudinal and lateral tire
forces acting on the vehicle.

Throughout the discussion, continuous reference to the
following symbols will be made:

Fkl,ij, k∈{x,y}; l∈{w,b}; i∈{ f ,r}; j∈{l,r} (1)
where k denotes a longitudinal or lateral force, l the reference
frame (wheel or vehicle body), and the couple i j identifies the
wheel (forward/rear, left/right). F̂ represents the estimation
of the considered force. For the modelling of the longitudinal
forces it is possible to start from the first equation of the
so-called single-corner model (see Fig. 1(a)), which considers
the dynamics of a single wheel with respect to its own
reference frame, as described e.g. in [12]. By introducing
also an additional term Tloss, which takes into account all
the losses (e.g. mechanical and aerodynamic friction), the
following model is obtained

Jwω̇ =Tw−Tloss−ReFxw (2)
where Jw, ω , Re are the moment of inertia, the angular speed
and the effective radius of the wheel, respectively, Tw is the
torque acting on the wheel and Fxw is the traction/braking
force (i j pedices are omitted, as for each wheel the same
model is used).

In this work, we consider the total losses due to aerodynamic
resistance and rolling resistance to be equally split between
the 4 wheels. Although this assumption is not entirely correct
in several situations, such as low speed cornering and hard



(a) Single Corner Model (b) Single Track Vehicle Model

Figure 1. Graphical representation of the models used

braking of selected wheels, it can be in general considered
to be an improvement in the description of the longitudinal
dynamics, compared to the case where Tloss is neglected.

For the lateral forces (referred to the vehicle reference
frame), the modelling is made starting from the first part of
the so-called single-track model (see e.g. [13]), schematically
represented in Fig. 1(b), given by

ψ̈ = 1
Jz
(lfFyb,f−lrFyb,r+

1
2 bf∆Fxb,f+

1
2 br∆Fxb,r)

Fyb,f=Fyb,fl+Fyb,fr

Fyb,r=Fyb,rl+Fyb,rr

∆Fxb,f=Fxb,fr−Fxb,fl

∆Fxb,r=Fxb,rr−Fxb,rl

(3)

where ψ̇ is the yaw rate, Jz is the vehicle total moment of
inertia, lf, lr are the distances of the front and rear axles from
the center of gravity, and bf, br are the distances between the
two wheels of the same (front or rear) axle. Since in this case
the effects of the longitudinal forces on the overall yaw moment
have to be taken into account as well, the two additional terms
1
2 bf∆Fxb,f, 1

2 br∆Fxb,r must be considered, which represent the
moment generated by the differences in the longitudinal forces
acting on the wheels of the same axle (∆Fxb,k).

III. OBSERVERS DESCRIPTION

In order to estimate the longitudinal forces Fxw,ij, an
observer is used for each wheel, exploiting model (2). The
knowledge of all the involved quantities, except for Tloss
and the force itself, allows to develop a Sub-Optimal SOSM
observer [14] which steers to zero the error

σx=ω−ω̂ (4)
by controlling the system

Jw ˙̂ω =Tw−T̂loss−Reu (5)
where u is the observer input law. As a result, in analogy with
[15], the estimated force is F̂xw=u.

Figure 2. Front-left wheel forces representation

The loss term is estimated via the PI adaptive law
˙̂Tloss=KP ·ėPI+KI ·ePI, (6)

where T̂loss is the estimate, KP and KI are the proportional and
integral parameters of the PI, and the input error is given by

ePI=max−∑
ij
(F̂xb,ij), (7)

in which m is the total mass of the vehicle and ax is the longitu-
dinal acceleration (with respect to the vehicle reference frame)
measured by the vehicle accelerometer. As a result, the first
term represents the total measured force, while the second one is
the total estimated force. Since the estimation is based on model
(2), in which the forces are referred to the wheels reference
frames, a linear transformation has to be performed in order to
guarantee consistency in presence of a non-null steering angle
δ (see Fig. 2). Please note that δ , in a typical passenger vehicle
has a limited range of possible values, so that one can assume

cos(δ )>>0 (8)
in all the considered situations. Moreover, in a common vehicle
such transformation involves only the front wheels as they are
affected by the steering angle. We consider the front-left wheel,
since the same computations hold for the front-right one{

Fxb,fl=cos(δ )Fxw,fl−sin(δ )Fyw,fl

Fyb,fl=sin(δ )Fxw,fl+cos(δ )Fyw,fl
(9)

From the second equation in (9), Fyw,fl can be derived and
substituted into the first equation, obtaining

Fxb,fl=
(

cos(δ )+
sin2(δ )

cos(δ )

)
Fxw,fl−

sin(δ )
cos(δ )

Fyb,fl

=
1

cos(δ )
Fxw,fl−tan(δ )Fyb,fl

(10)

Repeating the same reasoning for the front-right wheel
and considering the rear wheels as non-steering, the overall
transformation required to obtain the terms in (7) turns out to be

F̂xb,fl=
1

cos(δ ) F̂xw,fl−tan(δ )F̂yb,fl

F̂xb,fr=
1

cos(δ ) F̂xw,fr−tan(δ )F̂yb,fr

F̂xb,rl= F̂xw,rl

F̂xb,rr= F̂xw,rr

(11)

Regarding the lateral forces, only one observer is needed:
making the assumption that two wheels attached to the same
axle share the same lateral force (with respect to the vehicle
reference frame), it is possible to exploit the single-track
model described in (3). By merging it with the equation for
the total lateral acceleration

may=Fyb,f+Fyb,r, (12)
in which it is assumed that the lateral acceleration ay is
available for measurement by means of an accelerometer, a
SSOSM observer can be designed in order to steer to zero



the estimation error
σy= ψ̇− ˙̂ψ (13)

Then, the following system is obtained
¨̂ψ = 1

Jz
[lfmay−(lf+lr)u+ 1

2 bf∆F̂xb,f+
1
2 br∆F̂xb,r]

F̂yb,f=may−u
∆F̂xb,f= F̂xb,fr−F̂xb,fl
∆F̂xb,r= F̂xb,rr−F̂xb,rl

(14)

Due to the choices made, and with similar considerations as in
the longitudinal case, it holds that the estimated force acting
on the rear axle is F̂yb,r = u. To estimate the lateral forces
on each quarter-car, the force acting on each axis is equally
splitted on the two corresponding wheels. This is a reasonable
approximation if the difference in the normal forces acting on
each of the two wheels is small enough. With this assumption,
the following expression is valid{

F̂yb,fl= F̂yb,fr=
1
2 (may−F̂yb,r)

F̂yb,rl= F̂yb,rr=
1
2 F̂yb,r

(15)

1

2

3

4

Figure 3. The complete observation scheme, where Q(δ ) is the matrix
representing the linear transformation from Equation (11)

By merging all the described parts, the complete scheme
appears as in Fig. 3. In the next section the finite-time
convergence of the whole system is analyzed.

IV. CONVERGENCE ANALYSIS

In order to verify the convergence of the whole cascade
system with adaptive law, the finite-time convergence of the
two SSOSM observers is considered independently. In [14]
the convergence of the SSOSM algorithm is proven, for a
suitable choice of the observer gain K, under the hypothesis
that the terms φ and D in the so-called auxiliary problem, i.e.{

ζ̇1=ζ2

ζ̇2=φ+Du̇
(16)

satisfy the conditions{
|φ |<Φ

0<D1<D<D2.
(17)

Note that, in the considered application, ζ1 =σk, where k is
defined as in (1). Under these hypothesis, the observer input law

u̇(t)=−α
∗ ·K ·sign

(
σk(t)−

1
2

σk,MAX

)
, (18)

where σk,MAX is the value of σk at the last peak detection
(i.e. when σ̇k = 0), ensures that the sliding variable σk and
its derivative σ̇k converge in finite time to the origin. In this
context it can be assumed without loss of generality α∗=1,

with the aim of reducing complexity. In the following it will
be shown that conditions (17) are verified for the models (5)
and (14) under the following reasonable assumptions:
a1) All the physical quantities which affect the observers

dynamics are bounded, with bounded first derivative;
a2) The real behavior of the considered systems is fully

captured by the used models, except for some terms
(possibly nonlinear) which represent the unmodelled part
and are bounded with bounded first derivative.

Then, the observers will be considered as a unique system
featuring a PI logic, which is in charge of increasing the
tracking precision of the observed quantities via the adaptive
estimation of the loss term T̂loss.

A. Convergence of the longitudinal forces estimation
In order to prove the convergence of the four observers for

the longitudinal forces, it is sufficient to consider only one of
them, as the same procedure can be adopted for all the others.
Let us consider the term T̂loss as an exogenous disturbance
with bounded first derivative. This is a reasonable assumption,
as it is the output of a PI controller fed by the limited and
continuous error ePI defined in (7). Indeed,

ePI=max−∑
ij
(F̂xb,ij)

=max+∑
j
[

1
cos(δ )

∫
(Kxsign(σx−

σx,MAX

2
)fj)+

+tan(δ )
∫
(Kysign(σy−

σy,MAX

2
)fj)+

+
∫
(Kxsign(σx−

σx,MAX

2
)rj)]

(19)

is limited, since m and ax are physical quantities and the
SSOSM observers have sufficiently high gains so that the
sliding variables σk move towards the origin. Therefore, due to
assumption a1) mȧx is limited, and so is also ėPI. Let us also
assume that the real dynamics of the wheel are described by
model (2), plus a term Ux which represents the uncertainties
affecting the system and satisfies assumptions a1) and a2), so
that the new model considered is

ω̇ =
1

Jw
(Tw−Tloss−ReFw)+Ux (20)

The dynamic equation of the corresponding observer is
presented in Equation (5). Hence, the second derivative of the
chosen sliding variable (Equation (4)) is

σ̈x= ω̈− ¨̂ω

=
1

Jw
( ˙̂Tloss−Ṫloss−ReḞxw)+U̇x+

Re

Jw
u̇

=φx+Dxu̇

(21)

According to assumption a1) previously made, a bound
Φx exists such that |φx| ≤ Φx and Dx = Re

Jw
. Therefore, for

a properly chosen gain Kx, the convergence is guaranteed
(σ̇x=0), leading in finite time to

F̂xw=u=Fxw+
1
Re

(Tloss−T̂loss)+
Jw

Re
Ux (22)

One can see from (22) how a necessary condition for the
estimation of F̂xw is that the torque loss estimation error T̃loss=
Tloss−T̂loss is bounded. This will be proven in Subsection IV-C.

B. Convergence of the lateral forces estimation
In order to prove the convergence of the observer for the

lateral forces acting on the wheels (referred to the vehicle



reference frame), it is sufficient to note that the estimation
of the Fxw forces can be determined from the input of
the SSOSM observers. Moreover, as noted in Section III,
˙̂Fxw=−Kxsign(σx−

σx,MAX
2 ) is always bounded. Assuming that

the real dynamics of the yaw rate are described by Equation
(3) plus an additional Uy term representing the uncertainties,
the first equation of (3) becomes

ψ̈ =
1
Jz
(lfFyb,f−lrFyb,r+

1
2

bf∆Fxb,f+
1
2

br∆Fxb,r)+Uy (23)

Since the observer used is the one described in Equation (14),
the second derivative of the chosen sliding variable (13) is

σ̈y= r̈− ¨̂r

=
1
Jz

[
bf

2
(∆Ḟxb,f−∆

˙̂Fxb,f)+
br

2
(∆Ḟxb,r−∆

˙̂Fxb,r)

]
+

− (lf+lr)
Jz

Ḟy,r+U̇y+
(lf+lr)

Jz
u̇

=φy+Dyu̇

(24)

where r = ψ̇ . Similarly to the longitudinal case, thanks to
assumption a1), one can say that a bound Φy exists such that
|φy|≤Φy and Dy =

(lf+lr)
Jz

. Therefore, assuming a sufficiently
high Ky is selected, the convergence is guaranteed (σ̇y = 0).
If the same T̂loss is considered for all the wheels (as it is the
case), this leads in finite time to the following value for the
estimation F̂yb,r=u:

F̂yb,r=Fyb,r+ξ (25)
where

ξ =
Jw

2Re(lf+lr)

[
1

cos(δ )
bf(Ux,fl−Ux,fr)+

−br(Ux,rr−Ux,rl)]+
Jz

lf+lr
Uy

(26)

Notice that the term ξ only depends on the uncertainties,
and considering also the inequality (8), one can see how the
steering angle does not introduce excessive error amplification.
The convergence of the front axle force estimation comes as
a consequence, based on the second Equation in (14).

C. Convergence of the torque loss estimation

Since the observers converge in finite time and the effects
of Tloss are only present in the estimations of the Fxw forces,
the estimated total longitudinal force can be considered as the
output of a system fed only with time-varying disturbances
and with T̂loss as the control variable. Having defined
F̂yb,f := F̂yb,fl+F̂yb,fr, one has:

∑F̂xb=
1

cos(δ )
(F̂xw,fl+F̂xw,fr)−tan(δ )F̂yb,f+F̂xw,rl+F̂xw,rr

=
1

cos(δ )
(Fxw,fl+Fxw,fr+

2(Tloss−T̂loss)

Re
+

+
Jw

Re
(Ux,fl+Ux,fr))−tan(δ )(may−Fyb,r−ξ )+Fxw,rl+

+Fxw,rr+
2(Tloss−T̂loss)

Re
+

Jw

Re
(Ux,rl+Ux,rr)

=∑Fxb+κ+

(
1+

1
cos(δ )

)
2(Tloss−T̂loss)

Re
(27)

where
κ =

Jw

Re

(
1

cos(δ )
(Ux,fl+Ux,fr)+Ux,rl+Ux,rr

)
+tan(δ )ξ (28)

When evaluating the estimation error for the total longitudinal
force eFx , the uncertainty term c (respecting assumption a2)) is
considered, in order to account for the measurement deviation.
In this way, one obtains:

eFx =∑Fxb+c−∑F̂xb

=−
(

1+
1

cos(δ )

)
2(Tloss−T̂loss)

Re
−κ+c

(29)

The error eFx vanishes asymptotically under the action of
the PI controller (providing suitable proportional and integral
parameters), leading to the following expression for the torque
losses estimation:

T̃loss=(c−κ)
Recos(δ )

2(cos(δ )+1)
(30)

One can see from Equations (26), (28) and (30) how the
total estimation error T̃loss is also bounded, with bounded
first derivative, as requested in Subsection IV-A for the
convergence of the longitudinal force estimation.

V. PRACTICAL IMPLEMENTATION AND SIMULATIONS

By exploiting results from [14] it is possible to compute
a region in the (Kx, Ky) plane which leads to finite-time
convergence for the two SSOSM observers. Moreover, from
a theoretical viewpoint, it is needed to guarantee that the
longitudinal forces observer converges faster than the one
for the lateral forces, according to the so-called “control
hierarchy” method illustrated in [16]. A detailed discussion
of the convergence rates will be proposed in future works.

The gains which fall into the mentioned region are sufficient
to guarantee the theoretical effectiveness of the proposed
observation system. This holds in a large class of use cases
(even non-standard, if a worst-case analysis is carried out), at
the cost of increased gains. The control law is only used for
estimation, so the common problems involving the actuators
(e.g. mechanical wearing) do not arise. Nevertheless, the
chattering is surely an effective problem if accurate results are
needed. In a real implementation, usually the following holds:
• The geometrical values of the vehicle are well-known;
• The maximum rate of variation of the involved

quantities can be studied, using the knowledge about the
characteristics of sensors and actuators;

• The class of situations in which the observation has to
be performed can be identified;

• A trade-off between accuracy and chattering can
be achieved, considering the practical usage of the
estimations.

Hence, suitable values for the gains could be tailored for the
specific application. Possibly, they can happen to be far smaller
than the ones theoretically determined making reference to
the worst case. This might make the system unable to perform
well in all the theoretical situations. In order to preserve
convergence while avoiding the consequent chattering, an
adaptive tuning of the gains could be introduced. In this paper
the combined switched/time-based adaptation (STBA-SOSM)
method is used [17]. An adaptive law is introduced for the
determination of the gain of each observer. In particular, the
instantaneous gain is given by

K(t)=Ks(t)+Ktb(t) (31)
In (31) Ks(t) is determined by a switched adaptation law, here-
after briefly outlined, referring the reader to [17] for the details.
The (σk,σ̇k) state-space is partitioned into a certain number of



regions R j, j=0,...,l as, for example, in Fig. 5(a). The values of
σk and σ̇k determining each region have to be selected properly.
To each region a specific gain K j is associated, to be used
when the current value of the pair (σk,σ̇k) lies in the region.

The second term in (31), Ktb(t), is a piece-wise constant
term determined on the basis of the so-called “sliding mode
indicator”: the time is sliced in intervals of fixed length T and,
at the end of each interval Ti, the number of zero-crossings
Nsw,i of the quantity σk(t)− 1

2 σk,MAX is considered. Note that a
high number of such crossings (Nsw,i≥N∗, where N∗ has to be
properly chosen) is associated with the occurrence of the sliding
mode behavior, revealing that the current gain is sufficiently
high. The Ktb term can hence be reduced accordingly. On the
contrary, a low number of crossings reveals the inability of the
current gain to produce the sliding mode behavior, so it is must
be increased. In particular, Algorithm 1 is used. In the algorithm

Algorithm 1 STBA Algorithm: Time Based Component

Ktb(t)=Ki
M, t∈Ti (32)

K1
M =0 (33)

Ki+1
M =

{
max(Ki

M−Λ1T,−Kl) if Nsw(t)≥N∗

min(Ki
M+Λ2T,0) if Nsw(t)<N∗

(34)

Λ1 and Λ2 are constants to be properly selected and Kl is the
gain of the switched adaptation rule in the innermost region.

To verify the effectiveness of the presented system, two
simulations are carried out in IPG Car-Maker: in the first one a
steering maneuver is performed. The estimated forces are then
compared with the actual ones, and the used STBA-SOSM
parameters are presented as an example. To further verify
the validity of the scheme also a purely longitudinal braking
maneuver over two different road surfaces is simulated in IPG
Car-Maker, using a known static Pacejka friction model. The
forces obtained from the observation are used for an offline
non-linear LS estimation of the curve parameters. The real
and the estimated curves are then compared.

A. Steering maneuver
In this simulation the front axle is considered. The maneuver

starts at the initial velocity of 40km/h and the stability control
is deactivated. The steering angle δ (t) changes with a sinusoid-
like trajectory in the interval 2s−10s. The results of the lateral
force observation are presented in Fig. 4, for the front axle.
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Figure 4. Lateral force estimation: front axle

(a) Example of switching regions in
the STBA algorithm
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Figure 5. STBA algorithm representation

Table I
Ks,x(t) SWITCHED LAW PARAMETERS

Region Gain Kx |σx| Interval |σ̇x| Interval

1 200000 20−∞ 50−∞

2 50000 15−20 25−50
3 25000 2.5−15 10−25
4 10000 1−2.5 2.5−10
5 2500 0−1 0−2.5

Table II
Ks,y(t) SWITCHED LAW PARAMETERS

Region Gain Ky |σy| Interval |σ̇y| Interval

1 1500 10−∞ 25−∞

2 250 2.5−10 5−25
3 100 0−2.5 0−5

Table III
Ktb(t) TIME-BASED ADAPTATION PARAMETERS

Observer N∗ T Λ1 Λ2

Fx 6 0.01 50000 25000
Fy 2 0.01 25000 12500

The parameters of the STBA-SOSM are reported in Table
I for the longitudinal, and in Table II for the lateral forces.
The time based law for the two observers uses the parameters
reported in Table III.

As an indication of the general behavior of the observer, the
number of time instants in which the pair (σy,σ̇y) lies in each of
the regions during the simulation is plotted in Fig. 5(b). Notice
that Region 1 (the more external) is the only one in which it is
necessary to have a sufficiently high gain in order to maintain
the tracking ability. In the other regions, the gain has to be se-
lected as small as possible in order to avoid excessive chattering
while keeping (σk,σ̇k) at least in the same region. In general,
the more samples fall in internal regions (higher-numbered
ones in this case), the more effective is the observation in
terms of tracking precision and chattering avoidance.



B. Braking Maneuver
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Figure 6. Longitudinal force estimation: front-left wheel

This simulation involves a purely longitudinal braking
maneuver, performed in a straight road with three different
surface types. The friction coefficients are computed via a
static Pacejka friction model from known parameters. At the
beginning a cruise phase is present, during which (at 1.44s) the
first surface change occurs. Then, at 1.78s, a braking request
is sent to the ABS controller, which acts in order to maintain
an almost sinusoidal slip until the end of the simulation. At
2.67s the road surface changes again, and remains the same
until 4.02s, when it returns to be the high-grip initial one. The
lateral forces involved are negligible, so only the plot of the
longitudinal forces is proposed. The robustness of the observer
against the road surface changes can be appreciated in Fig. 6.

Figure 7. Longitudinal force identification: Tire/Road curve identification

By starting from the observations of the longitudinal force (rear-
left tire) and the slip (which in practice can be easily obtained
using a vehicle velocity observer such as the one in [18], an
offline parameters estimation is performed. For the sake of
clarity in the plot, only two different surfaces are considered:
the samples are taken starting from 2.67s. The results, obtained
using a nonlinear least squares method, are presented in Fig. 7.

VI. CONCLUSIONS

In this paper, an observer for the estimation of the longitu-
dinal and lateral forces acting on a vehicle is presented. The
observer is composed of the cascade of two Sub-optimal Second
Order Sliding Mode observers, with switched/time-based adap-
tation of the observer gains, plus an adaptive feedback loop for

the estimation of the longitudinal torque losses. The different
bandwidths of the Sliding Mode observers are exploited, in
order to prove the convergence of the observed quantities.

The proposed observer shows promising results in the
presented simulations, which are performed in IPG Car-Maker.

The authors plan to provide formal proof of the different
convergence rates of the Sliding Mode observers as a future
development of this work. Next research may also include the
extension of the longitudinal vehicle model to the cases where
different torque losses for each wheel are estimated and the
normal forces distribution is taken into account, as well as the
experimental application of the algorithm on a test vehicle.
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