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ABSTRACT

Large-scale studies of musical harmony are often ham-

pered by lack of suitably labelled data. It would be highly

advantageous if an algorithm were able to autonomously

describe chords, scales, etc. in a consistent and musically

informative way. In this paper, we revisit tonal interval

vectors (TIVs), which reveal certain insights as to the in-

terval and tonal nature of pitch class sets. We then describe

the qualities and criteria required to comprehensively and

consistently measure displacements between TIVs. Next,

we present the Polar Manhattan Displacement (PMD), a

compound magnitude and phase measure for describing

the displacements between pitch class sets in a tonally-

informed manner. We end by providing examples of how

PMD can be used in automated harmonic sequence analy-

sis over a complex chord vocabulary.

1. INTRODUCTION

Attempts to autonomously label and analyse harmonic se-

quences in music constitute some of the longest-standing

challenges in music information research (MIR) [1]. Var-

ious strategies have been applied to chord sequence iden-

tification, including information theory [2], graph theory

[3–5], and predictive methods such as Hidden Markov

Models [6]. Much attention has been given to developing

geometric models of musical distance [7–11].

First proposed by Lewin in 1959 [12] and later, in 2007,

[13], the discrete Fourier transform can be applied to col-

lections of pitch classes to produce Tonal Interval Vec-

tors (TIVs), which can be used to describe the tonal quali-

ties of chords and pitch class profiles (PCPs) by revealing

their constituent intervals and tonal structures [14]. Yust

et al. [15] have employed the Fourier transform as a form

of cluster analysis on large groups of weighted PCP sets,

while Tymoczko and Yust [16] have explored the relation-

ship between voice-leading and Fourier analysis. Other

previous work has focused primarily on the magnitude
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components of TIVs [17, 18], which offer a useful but in-

complete picture of intervallic content and tonal quality,

as transposition is ignored and certain chord types such as

major and minor cannot be disambiguated [19]. Further-

more, many existing methods of measuring distance be-

tween TIVs are problematic as they are restricted to pairs

of chords and are inconsistent when groups of three or

more chords are considered. Additionally, many musical

distances falter because they do not capture the directional

nature of musical harmonic tension or are adversely af-

fected by enharmonic spellings and conflicting chord vo-

cabularies.

We present the Polar Manhattan Displacement (PMD),

a method of describing component-wise directional dis-

tance (i.e., displacement) between TIVs which utilises both

magnitude and phase information. We demonstrate PMD

within the context of the 12-tone equally tempered sym-

bolic domain.

PMD addresses all 4,095 possible pitch class combi-

nations and thus can be applied to any chord vocabulary.

PMD offers a consistent displacement measure between

chord types (e.g., major7, diminished7, etc.) regardless

of transposition or the complexity of the chord vocabulary

employed. PMD also measures the intervallic displace-

ment between chords, regardless of chord type. In both

cases, displacement measurements are unaffected by trans-

position of an entire sequence, allowing PMD to identify

relative harmonic movements regardless of local key struc-

ture.

To demonstrate the utility of PMD, we employ a ro-

bust chord vocabulary of 13 chord types including triads,

7th chord types, and suspended chords, as well as chro-

matic and whole tone scales. We measure displacements

amongst these chord types and transpositions, and close by

presenting example applications of PMD to automated har-

monic analysis and discuss potential applications to other

areas of music informatics.

2. BACKGROUND

2.1 Pitch Class Profiles & common musical terms

A pitch class profile (PCP) is a vector of 12 binary val-

ues, each representing the categorical presence of its cor-

responding pitch class in the relevant musical context. This

context is set within the time domain; unless otherwise

specified, we shall be considering notes which occur si-
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multaneously. Commonly occurring collections of simul-

taneous pitch events may be referred to as ‘chords’. A suc-

cession of notes occurring sequentially in ascending or de-

scending pitch order is commonly referred to as a ‘scale’.

When the time window is increased further and some sta-

tistical weighting or filtering is considered, the dominant

members of the pitch class set may imply a ‘key’.

Throughout this paper, when referring to the col-

lection of possible PCPs, we exclude the empty PCP

[0,0,0,0,0,0,0,0,0,0,0,0] which represents an absence of all

pitch classes, resulting in 212 − 1 = 4, 095 possible PCPs.

To improve clarity, the terms ’chord’ and ’scale’ shall be

considered interchangeable with ’PCP’ unless otherwise

noted. The term ’chord type’ refers to the quality of a chord

(e.g., major, minor, etc.) regardless of the chord transposi-

tion. A ’chord’, however, is a specific combination of root

and chord type, such as Amin or Fmaj7.

2.2 Chord vocabulary

For transcription and harmonic analysis purposes, it is use-

ful to focus on the subset of PCPs which correspond to cer-

tain chord types. Within the domain of all 4,095 PCPs, the

choice of chord vocabulary can be a fairly arbitrary deci-

sion. Often, smaller vocabularies of simple chords are cho-

sen to simplify experiments and boost performance scores.

There is a risk that an over-simplified chord vocabulary can

reduce the usefulness of an analytic system, so it is advan-

tageous that a suitably complex chord vocabulary is em-

ployed.

For our examples, we restrict ourselves to a vocabulary

of 13 chord types (including, by extension, two scales),

but the PMD can be applied to any pitch class profile. Our

vocabulary included triads: major, minor, diminished, aug-

mented, suspended4; tetrads: major7, minor7, dominant7,

diminished7, half-diminished7, minor/major7, and scales:

chromatic, wholetone. Note that some PCPs can be de-

scribed using different chord types depending on context,

thus some chord types, such as maj6, min6 and sus2, are

synonymous with other chords already listed in our vocab-

ulary. Regardless of the labels assigned to such synony-

mous chords, the source PCPs remain the same. For ex-

ample, PCP [1,0,0,0,1,0,0,1,0,1,0,0] could be described as

either Cmaj6 or Amin7. Labelling of chords is highly de-

pendent on context and annotator subjectivity. As PMD

operates on the basis of underlying PCPs, it is unaffected

by such discrepancies in annotation.

2.3 DFTs and Tonal Interval Vectors

By applying a discrete Fourier transform (DFT) to a pitch

class profile, we can decompose the PCP into a series of

constituent intervallic components. Each of these compo-

nents will describe the degree to which a particular interval

is present within the PCP. Only components F1 – F6 are

required to provide a complete representation, since com-

ponents F7 − F11 are redundant. Additionally, F0 reveals

the cardinality of the pitch class set; its value is useful for

normalisation and allows us to compare any pair of PCPs

regardless of the number of pitches present in either.

The resulting 6-dimensional complex vector is referred

to as a tonal interval vector (TIV). Scaling may be applied

to the various components – often for normalisation pur-

poses, but also in an attempt to more accurately depict

perceived cognitive distances between the various interval

types within a musical context. [18]

It is worth noting that when generating TIVs, the DFT

is applied to the symbolic pitch class vectors and not to

audio data. The purpose of the DFT and resulting TIV is

to discover the manner in which the pitch classes divide an

octave into various musical intervals, and to describe the

strength and evenness of each intervallic division.

2.4 Mapping PCPs to TIV space

Each of the 4,095 possible non-empty PCPs produces a

unique tonal interval vector. The TIV space therefore is

an injection of PCP space: each TIV can be mapped un-

ambiguously to a corresponding pitch class profile. Fur-

thermore, each 6D complex TIV can be represented as a

12-dimensional real-valued vector by converting the com-

plex values of the TIV into magnitude and phase values.

The magnitude and phase values of the recast TIV vec-

tor can be represented as a set of 6 tuples (m, p), where m

is an unbounded positive real value, and p is a real value

p ∈ R such that −π ≤ p ≤ π. We will refer to a mag-

nitude and phase tuple (m, p) as a MagPhase tuple. The

set of 6 tuples describing Fourier components F1 - F6 of a

TIV will be referred to as a MagPhase vector.

It has been shown [14,17,18] that converting the Fourier

coefficients from complex values to real magnitude and

phase values reveals direct correlations to chord type,

transposition, and interval ordinality.

2.5 Descriptive properties of Magnitude and Phase

Each TIV Fourier component Fn can be associated with a

tonal interval and its complementary inverse interval, e.g.

F1 is associated with the presence of both minor 2nd and

major 7th intervals, etc. [14] The magnitude value of a TIV

component reflects how strongly the associated interval oc-

curs in the source PCP. For example, F3 is associated with

the presence of major 3rds. Augmented triads (which are

composed of nothing but major 3rds) have a maximal F3

magnitude, whereas diminished 7th chords, which contain

no major 3rds, have an F3 magnitude of 0. Most chords are

composed of several interval types and thus have non-zero

magnitudes for all 6 components.

Chords containing the same collection of intervals will

share a common magnitude profile. This allows some de-

gree of chord classification based on magnitude values.

However, magnitude profiles do not convey the ordinal

placement of the intervals within the source PCP, mean-

ing that chord types with identical sets of intervals cannot

be disambiguated. For example, major and minor triads

both contain one of each of the following atomic intervals:

{m3,M3, P4} and thus will have identical magnitude pro-

files. For the same reason, magnitude profiles alone do

not encode information about the transposition (i.e., the

root) of a source PCP, making it impossible to differentiate
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Cdom7 from Fdom7 or Gdom7, for example. By incorporat-

ing phase information, both of these shortcomings can be

addressed.

3. MOTIVATION

Each component F1 - F6 of a TIV describes the strength

and position of a particular intervallic quality. By mea-

suring the differences between TIV dimensions separately,

the intervallic content of TIVs could be exposed and com-

pared. It is reasonable to consider how distances between

them might be useful in describing the relationship be-

tween their respective PCPs, as well as enabling compu-

tational modelling of musical chords and chord sequences,

and the automated study of large corpora.

Distance measures are by definition non-directional.

However, harmonic transitions are often asymmetrical in

practice, e.g., there is a difference harmonically between

a V 7 → I transition and a I → V 7 transition. By mea-

suring displacement between TIVs, both the distance and

direction between them are exposed, which increases the

descriptive power of the measure.

To extend the difference measure beyond comparisons

of isolated pairs of chords, it would be highly advanta-

geous for the measurements to exhibit collinearity under

the addition operation. For example, if two chords of the

same type a semitone apart have a particular displacement

value, it stands to reason that two chords a whole tone apart

should have a displacement double that value. Crucially,

this would allow multiple displacements to be summed,

making it possible to build sequences and represent vari-

ous progressions between two chords consistently.

Finally, if differences in chord types and intervallic dis-

tances between chords were decoupled, displacement be-

tween chords could be visualised on a grid whose orthog-

onal axes represented each quality. The additive collinear-

ity discussed above would ensure that displacement val-

ues could be summed consistently, regardless of which dis-

placements were measured or in what order.

This would allow chord sequences to be represented

as traversals across a tonal grid. An example of such a

grid is displayed in Figure 1. Chord transitions such as

V 7 → I would have the same displacement regardless of

the transposition of the pair. For example, G7 → Cmaj

and A7 → Dmaj would have an identical displacement,

despite being in different keys. Such transpositional invari-

ance would enable an algorithm to catalogue and identify

commonly occurring functional sequences.

4. POLAR MANHATTAN DISPLACEMENT

To satisfy the criteria outlined in section 3, we propose the

Polar Manhattan Displacement (PMD). PMD measures the

component-wise displacement between two TIVs by cal-

culating the differences in the magnitude and phase of each

component. As each component Fk describes some aspect

of the tonal nature of the source chord, this allows us to

measure the displacements between chords in an interval-

lically informed way.

Figure 1. Decoupled chord type and intervallic displace-

ments for the chord transition G7 → Cmaj . There are

three routes from G7 → Cmaj ; The PMDs of each arrow

are summed. All routes result in the same final displace-

ment value. Note that the direction of the progression is

significant.

PMD thus borrows from L-1 Manhattan distance but ex-

tends it to measure the directional displacements between

corresponding magnitudes and phases in each dimension

of the polar representation of the TIV plane. The differ-

ences are signed, meaning that PMD reflects displacement

rather than formal distance. This is advantageous within a

musical context because tonal harmony is directional; for

example the transition (Cmaj → G7) has a markedly dif-

ferent tonal impact than (G7 → Cmaj).

4.1 Magnitude processing

The processing of magnitude values is straightforward as

it involves only scaling and subtraction. After a TIV is ex-

tracted from a PCP, the magnitudes of F1 to F6 are divided

by the value of F0. This normalises all magnitudes to the

same scale and allows comparison of TIVs having different

numbers of pitches in their source PCPs. Further scaling

of each component magnitude may be applied to improve

the perceptual basis of the space [18] [20]. However, per-

ceptual scaling has not been applied in our study. Follow-

ing the application of normalisation and scaling, magni-

tude values are simply subtracted such that the difference

between the magnitudes of TIVs U and V is

Dispmag(U → V ) = (Vmag − Umag) (1)

4.2 Phase processing

Phase values are simply subtracted in a similar fashion to

that presented in section 4.1 such that the angular displace-
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Chord type M1 M2 M3 M4 M5 M6

Maj7 X

Min7 X X

Dim7 X X X X X

Aug X X X X

Sus4 X

Chrom X X X X X X

WholeTone X X X X X

Table 1. Some common chord types with zero-magnitude

components. ’X’ indicates a zero-magnitude vector.

ment between TIVs U and V is

Dispphase(U → V ) = (Vphase − Uphase) (2)

The cyclic nature of phase information necessitates ad-

ditional processing. Angular phase values θ need to be

cyclically wrapped into the interval −π < θ ≤ π after all

additive and subtractive operations on phase values.

4.3 Definition of PMD

Having defined Dispmag in Eq. (1) and Dispphase in Eq.

(2), we can now present the definition of the Polar Manhat-

tan Displacement. PMD is created by concatenating the 6D

magnitude and phase displacement vectors Dispmag and

Dispphase into one 12D vector.

Given chords (Pj ,Qk) and their corresponding TIVs

(U ,V ),

PMD(Pj , Qk) =

[

Dispmag(U → V )
Dispphase(U → V )

]

(3)

4.4 Zero-magnitude handling

Some PCPs have various TIV components with zero-

valued magnitudes. This indicates that the correspond-

ing interval type is absent from the source PCP. While

this is of no consequence when calculating magnitude

difference (for the magnitude is simply 0), the associ-

ated phase of these components is effectively undefined,

complicating the calculation of differences between phase

values. In our vocabulary, the following chord types

contain one or more zero-magnitude component vectors:

{maj7,min7, dim7, aug, sus4, chrom,wltn}. Table 1

details these zero-magnitude chords and their affected

components.

We employ the convention that these phase values are

considered to be 0. This preserves the additive proper-

ties of PMD and allows multiple displacement values to

be added together consistently.

4.5 Investigating displacements of type and interval

As indicated in section 3, it would be highly advantageous

(and musically interesting) to find a way to distinguish the

degree of displacement due to changes in chord types ver-

sus shifts of interval. In this section, we examine to what

extent such a decoupling is possible.

For convenience, we present the terms Disptype (rep-

resenting the displacement between chord types) and

Dispintv (representing the intervallic displacement be-

tween any two chords of the same type). We define each

with a functional representation, then provide an example

of the relevant function in use. We employ the following

convention to represent a movement from one chord to an-

other:

(Pj → Qk) (4)

where j and k denote chord types from our vocabulary and

P and Q denote two arbitrary chord roots. For example,

the following represents a movement from G7 to Cmaj :

(G7 → Cmaj) (5)

where j = dom7, k = maj, P = G, and Q = C. Note

that the direction of the chord transition is significant.

4.5.1 Type-based displacement

A type-based displacement Disptype can be derived by cal-

culating the PMD of two chords (Pj , Qk) having the same

root (i.e., P = Q) but different types (j ̸= k). Formally,

Disptype(j, k) = PMD(Pj , Pk) (6)

where j ̸= k.

Significantly, these displacement values are consistent

for all pairs of chord types (j, k) regardless of the values

of root (P ). As an example, the PMD values corresponding

to the displacement from a chromatic scale (j) to each of

the chords in our vocabulary (k) are detailed in table 2.

4.5.2 Intervallic displacement

Likewise, the intervallic displacement Dispintv between

any two chords (Pj , Qk) should ideally be consistent re-

gardless of the chord types involved. In a similar fashion

to the calculation of Disptype, we calculate Dispintv by

calculating the PMD of two chords (Pj , Qk) having differ-

ent roots (i.e., P ̸= Q) but identical types (j = k).

Dispintv(P,Q, j) = PMD(Pj , Qj) (7)

where P ̸= Q. Note that Dispintv is a vector of real num-

ber values and is not expressed in semitones.

Crucially, the Dispintv is largely – but not entirely

– independent of chord type j. For all chord types j

with uniquely non-zero TIV magnitude components, the

Dispintv in function of the root interval shift (P → Q) ex-

pressed in semitones is shown in table 3. Chord types j that

contain magnitudes of zero (as shown in table 1) have the

same PMD as in table 3 for their non-zero components, but

both magnitude and phase components of the PMD corre-

sponding to the TIV components with value zero are also

zero. By combining tables 1 and 3, the Dispintv for all

chord types in our vocabulary can be determined.
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Comp Chrom Dim7 Wltn Aug Min7 Dom7 Maj7 Dim HDim7 Major MinMaj7 Minor Susp4

M1 0.00 0.00 0.00 0.00 0.18 0.13 0.13 0.33 0.13 0.17 0.25 0.17 0.24

M2 0.00 0.00 0.00 0.00 0.00 0.25 0.43 0.33 0.25 0.33 0.25 0.33 0.67

M3 0.00 0.00 0.00 1.00 0.50 0.35 0.71 0.33 0.35 0.75 0.79 0.75 0.33

M4 0.00 1.00 0.00 0.00 0.50 0.66 0.25 1.00 0.66 0.58 0.25 0.58 0.00

M5 0.00 0.00 0.00 0.00 0.68 0.48 0.48 0.33 0.48 0.64 0.25 0.64 0.91

M6 0.00 0.00 1.00 1.00 0.00 0.50 0.00 0.33 0.50 0.33 0.50 0.33 0.33

P1 0.00 0.00 0.00 0.00 0.52 1.31 0.26 -1.57 -0.26 -2.36 0.00 -1.31 3.14

P2 0.00 0.00 0.00 0.00 0.00 1.05 0.53 0.00 1.05 0.00 0.00 -1.05 0.00

P3 0.00 0.00 0.00 0.00 1.57 0.79 0.79 1.57 2.36 0.46 1.25 1.11 0.00

P4 0.00 0.00 0.00 0.00 -1.05 -1.76 -2.09 0.00 -0.33 -1.57 0.00 -0.52 0.00

P5 0.00 0.00 0.00 0.00 -0.52 0.26 1.31 -1.57 -1.31 0.79 0.00 -0.26 0.00

P6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.14 3.14 3.14

Table 2. PM Displacements for each chord type from our vocabulary as end chord, starting from the chromatic scale and

with the same root. Each column is a PMD vector representing the displacement from the chromatic scale chord type. To

reverse the direction, invert the signs of the values.

Component +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12

M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

P1 -0.52 -1.05 -1.57 -2.09 -2.62 3.14 2.62 2.09 1.57 1.05 0.52 0.00

P2 -1.05 -2.09 3.14 2.09 1.05 0.00 -1.05 -2.09 3.14 2.09 1.05 0.00

P3 -1.57 3.14 1.57 0.00 -1.57 3.14 1.57 0.00 -1.57 3.14 1.57 0.00

P4 -2.09 2.09 0.00 -2.09 2.09 0.00 -2.09 2.09 0.00 -2.09 2.09 0.00

P5 -2.62 1.05 -1.57 2.09 -0.52 3.14 0.52 -2.09 1.57 -1.05 2.62 0.00

P6 3.14 0.00 3.14 0.00 3.14 0.00 3.14 0.00 3.14 0.00 3.14 0.00

Table 3. PM Displacements of each ascending transposition interval in semitones for chord types that have no zero-valued

TIV magnitudes. Each column is a PMD vector. Note the symmetry of the column values; intervallic distances are constant,

while the sign indicates the direction of transposition. To reverse the direction, (i.e., to transpose down) invert the signs of

the values. Also, note that only the phase elements are affected by transposition.

Component Tritone Substitution V7 − I

(G7, Db7) (A7, Eb7) (G7, Cmaj) (B7, Emaj)

M1 0 0 0.043 0.043

M2 0 0 0.083 0.083

M3 0 0 0.392 0.392

M4 0 0 -0.084 -0.084

M5 0 0 0.161 0.161

M6 0 0 -0.167 -0.167

P1 3.142 3.142 0 0

P2 0 0 0 0

P3 3.142 3.142 -1.893 -1.893

P4 0 0 2.285 2.285

P5 3.142 3.142 0 0

P6 0 0 3.142 3.142

Table 4. PMD comparisons of a) two tritone substitutions and b) two V7 − I sequences. Notice that within each pair the

PMD values are identical. This indicates that any pair of chords separated by this displacement will constitute a tritone

substitution pair or V7 − I sequence, respectively, regardless of the transposition.
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5. PMD EXAMPLES

5.1 Example 1:Tritone substitution

It is well known within musical harmonic practice that cer-

tain chords may be substituted for one another to provide

alternative or extended versions of an existing or expected

harmony. A common example of this is the tritone substi-

tution, wherein a dominant 7th chord can be replaced with

a different dominant 7th whose root is a tritone (i.e., an

augmented 4th or diminished 5th) away from the original

root. The pitches acting as the 3rd and 7th of the original

chord are retained, but their functions are swapped. The re-

maining 2 pitches of the first chord are replaced with other

pitches. The overall function is of a new chord that retains

the essential character of the original chord, but provides

addition harmonic tension.

While issues of perceptual similarity are beyond the

scope of the current study, PMD can provide an ob-

jective means of numerically describing such relation-

ships. For example, consider the Polar Manhattan Dis-

placements between each of these two tritone substitution

pairs: (G7, Db7) and (A7, E♭7) as detailed in Table 4. No-

tice that the PMD values are identical. Any pair of chords

separated by this displacement will constitute a tritone sub-

stitution pair.

5.2 Example 2: V7 - I detection

There are a number of MIR tasks involving chord estima-

tion, transcription, and automated harmonic analysis that

could benefit from the ability to autonomously identify cer-

tain chord progressions, particularly those which are har-

monically significant. Traditionally, these tasks are ham-

pered by lack of labelled data, inconsistent chord vocab-

ularies, inter-annotator disagreement, etc. As PMD oper-

ates on unlabelled symbolic data, it could contribute to ad-

dressing such shortcomings and improving performance in

automated transcription, labelling, and harmonic analysis.

Table 4 describes the displacement between two different

(V7 → I) progressions and confirms that PMD can iden-

tify and encode the (V7 → I) progression consistently,

regardless of key or transpositional context.

6. CONCLUSIONS & FURTHER WORK

We began with a background review of pitch class profiles

and some basic terms of musical harmonic structures. We

then discussed tonal interval vectors: how discrete Fourier

transforms can be applied to PCPs to create TIVs, how

TIVs can be represented as vectors containing magnitude

and phase values, and how those values describe some as-

pects of the intervallic construction of a chord. We pro-

posed that it could be useful to measure displacements be-

tween these objects, and then described the properties nec-

essary for a robust and self-consistent measure of displace-

ment.

We then presented the Polar Manhattan Displacement,

its fundamental components, and the processing required

to calculate the measurement of magnitude and phase dif-

ference values. There was a brief description of our chord

vocabulary and the need for suitable chord vocabularies,

and a brief discussion of how to maintain transpositional

invariance when dealing with non-existent magnitude vec-

tors.

Having discussed the criteria for a suitable displace-

ment measure, and detailed the functional components of

our proposed measurement algorithm, we demonstrated

how these components could be aggregated to create the

Polar Manhattan Displacement measure. We then provided

two examples of potential use cases of PMD, one involv-

ing the autonomous identification of tritone substitutions,

and the other, V7 − I progressions.

Future technical work will involve evaluating the ro-

bustness of PMD when employed on audio data and at

various scales of temporal granularity. It would be inter-

esting to investigate extension of PMD to process non-

binary PCPs, such as weighted PCPs and harmonic pitch

class profiles. As the additive properties of PMD allow

displacements to be summed, we would also like to extend

the application of PMD to chord sequence modelling and

analysis. Finally, we would like to deploy PMD as part

of a large corpus study to investigate chord similarity and

harmonic practice.
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