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ABSTRACT

Music Performance Analysis is based on the evaluation of
performance parameters such as pitch, dynamics, timbre,
tempo and timing. While timbre is the least specific param-
eter among these and is often only implicitly understood,
prominent brass pedagogues have reported that the pres-
ence of excessive muscle tension and inefficiency in play-
ing by a musician is reflected in the timbre quality of the
sound produced. In this work, we explore the application
of machine learning to automatically assess timbre qual-
ity in trumpet playing, given both its educational value and
connection to performance quality. An extensive dataset
consisting of more than 19,000 tones played by 110 trum-
pet players of different expertise has been collected. A sub-
set of 1,481 tones from this dataset was labeled by eight
professional graders on a scale of 1 to 4 based on the per-
ceived efficiency of sound production. Statistical analysis
is performed to identify the correlation among the assigned
ratings by the expert graders. A Random Forest classifier
is trained using the mode of the ratings and its accuracy
and variability is assessed with respect to the variability in
human graders as a reference. An analysis of the important
discriminatory features identifies stability of spectral peaks
as a critical factor in trumpet timbre quality.

1. INTRODUCTION

The significance of tone quality in brass musical instru-
ments has attracted considerable attention due to its rele-
vance in areas such as pedagogy and musical performance.
Teaching aural discrimination skills of tone quality is in-
deed a major component of music training [1]. The em-
phasis placed on the development of good tone quality can
be attributed to its close relationship with sound produc-
tion efficiency. In brass instrument pedagogy, there is a
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widely held belief that the most efficient sounds are per-
ceived as rich and round, while less efficiently produced
tones tend to sound strained and shrill [2–4]. This implies
that a method that can accurately and consistently distin-
guish the perceived tone quality in a brass instrument may
hold significant potential in pedagogical applications, pro-
viding guidance to beginning students on how to achieve
greater efficiency in sound production. However, under-
standing factors that contribute to the timbral quality of
trumpet sound remains an unsolved challenge thus far.

Playing a trumpet tone involves a complex interplay
between the musician’s embouchure, oral cavity, and air-
flow [5]. It is a delicate balance in which even the slightest
alteration in any component contributing to the creation of
a tone can result in changes to the overall timbre [6]. The
multi-variable interaction that contributes to the character-
ization of timbre makes defining its quality a challenging
task [7].

Helmoltz was among the first to attempt providing in-
sight into the audio properties related to the quality of
a musical tone by proposing a direct relationship to the
quantity and to the relative intensity of its constituent par-
tials [8]. In an exploratory study using the trumpet as a case
study, Madsen and Geringer identified the amplitude of the
first overtone as a discriminatory feature between tones of
differing sound quality [9]. Building on this finding, a sub-
sequent perceptual study by Geringer and Worthy analyzed
the tonal quality of the trumpet by altering the content of
partials in the sound [10].

In recent years, the investigation of trumpet tone quality
has emerged as an area of inquiry within the field of Mu-
sic Information Retrieval. A pioneering study conducted
by Knight et al. examined the potential of a model classi-
fier to categorize trumpet tones into two, three, and seven
classes [11]. This research assessed 56 single- and multi-
dimensional audio features, as well as their correlations
with human judgments, utilizing a dataset comprised of
239 individual sounds. Despite the relatively low accuracy
of the resultant model, this foundational work has paved
the way for subsequent advancements in the automatic as-
sessment of brass tone quality, highlighting its potential in
pedagogical applications.

A subsequent collaborative research project between
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the Music Technology Group of Pompeu Fabra University
(MTG-UPF) and KORG Inc. employed machine learning
algorithms to evaluate various musical parameters of trum-
pet sounds, including timbre quality [12, 13]. To the best
of our knowledge, this represents the most recent investi-
gation in this domain. The researchers collected and ana-
lyzed a publicly accessible dataset containing 738 trumpet
sounds. However, the findings revealed a weak correlation
between the scores generated by the trained model and the
rankings assigned by human evaluators, indicating signif-
icant room for improvement in the model’s performance.
Limitations were also identified in relation to the reference
dataset, which lacked diversity by utilizing sounds from
only two graduated trumpet players, and in the proposed
interface for implementation in pedagogical contexts [14].

The current study aims to provide a comprehensive ex-
ploration of this subject, incorporating a complete dataset
of sampled sounds and expert-generated labels. 1 Sec-
tion 2 describes dataset collection and preprocessing, while
Section 3 presents the machine learning training, results
and visualization based on the most important feature.

2. MATERIALS

The dataset employed for training the proposed model
comprises auditory samples gathered by the first author
at various music institutions and master classes through-
out Europe before the start of his academic program at the
host institution. In total, 110 distinct trumpet performers
were recorded under varying acoustic conditions. To en-
compass the complete spectrum of sound production effi-
ciency levels, individuals from diverse backgrounds were
recorded, including students and instructors from amateur
music schools, arts universities, orchestral musicians, and
international jazz and classical soloists.

The same recording system was utilized across all
data acquisition sessions, specifically the IM69D130
Shield2Go evaluation board developed by Infineon Tech-
nologies, which is equipped with two Infineon IM69D130
Micro-Electro-Mechanical Systems microphones. Such a
microphone exhibits an Acoustic Overload Point of 130
dB, allowing it to capture loud audio signals such as those
produced by a trumpet without distortion or saturation.
Moreover, the microphone offers a sufficiently flat and ex-
tensive frequency response ranging from 20 Hz to 20 kHz,
thereby covering the entire audible spectrum.

The selected evaluation board was connected to a Rasp-
berry Pi 4 Model B and a Raspberry Pi Model 3B+ for
recording. A sampling rate of 48 kHz and 32-bit depth
were used for the acquisition of audio data. The subse-
quent section provides a detailed account of the recording
methodology employed for audio data collection.

2.1 Dataset acquisition methodology

The data acquisition process involved inviting each musi-
cian into a room with a fairly low ambient noise level. A

1 The dataset can be accessed at: https://github.com/

PNinad/ISMIR2023

microphone was positioned approximately 50 cm in front
of the trumpet bell and 10 cm from its longitudinal axis.
In most instances, a set of two microphones was employed
concurrently to ensure data redundancy, mitigating the risk
of data loss should a device malfunction occur during the
recording session.

Participants were instructed to play isolated tones of ap-
proximately one-second duration over a chromatic scale
ranging from E3 to BZ5 at three distinct dynamic levels:
piano, mezzoforte, and forte, in their preferred sequence.
Musicians utilized their personal instruments and mouth-
pieces and were not required to adhere to a reference pitch
(e.g., A4 at 440 Hz) as timbral quality concerning sound
production efficiency is anticipated to be independent of a
reference pitch.

The inclusion of various dynamic levels aimed to en-
hance the dataset’s variability, as the timbre of brass instru-
ments is significantly influenced by loudness [15]. A digi-
tal sound level meter was positioned adjacent to the micro-
phone, providing real-time decibel level readings during
the recording. Trumpet players were given indicative ref-
erence levels of 85 dB, 105 dB, and 115 dB, corresponding
to the piano, mezzoforte, and forte dynamic levels, respec-
tively.

Despite the specified guidelines, the dataset exhibits
several inherent variabilities:

• The sustain duration of the tones ranged from 0.7 to
4 seconds.

• The chromatic scale’s range was contingent upon
the performer’s skill level. Generally, less proficient
musicians struggled to produce tones in the high reg-
ister, in which case they were instructed to play up
to their highest achievable note.

• For beginner musicians, playing a chromatic scale in
front of a microphone proved challenging at times.
Some participants opted to perform legato notes
rather than separate tones.

• Less skilled musicians often experience difficulty in
controlling the instrument’s dynamic range, result-
ing in the recommended dynamic levels being pri-
marily adhered to by more proficient players.

During the recording sessions, the first author, who
holds a degree in trumpet performance and has profes-
sional experience as a musician and instructor, assigned
a preliminary grade of the overall sound production effi-
ciency on a scale of 1 to 100 to each player. Figure 1 illus-
trates the distribution of assigned grades divided into four
ranges (i.e., 0–25, 26–50, 51–75, and 75–100), demon-
strating that a substantial number of players are repre-
sented in each category.

The dataset under examination was partitioned into dis-
crete trumpet tones utilizing the pyin vamp plugin devel-
oped by Mauch and Dixon [16], yielding a collection of
over 19,000 tones. Although the segmentation process
demonstrated a degree of inaccuracy, with certain audio
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Figure 1. Distribution of recorded players according to the
level of tone quality noted at the time of recording.

segments containing noise rather than trumpet tones, it
nevertheless provided a satisfactory initial categorization
of the data.

The following section outlines the methodology em-
ployed to prepare the dataset for label assignment by cho-
sen evaluators.

2.2 Dataset preparation

Considering the approximate accuracy of the segmentation
algorithm and the extensive nature of the overall dataset, it
was decided to select a representative subset of the dataset
for the manual examination of audio samples. To ensure
that the whole range of tone quality is sufficiently repre-
sented, the subset was constructed of seventeen trumpet
players such that five individuals had received a prelimi-
nary vote between 0–25 and four individuals with a grade
between the other 3 ranges 26–50, 51–75, and 76–100
respectively. The first category was assigned one player
more as the less experienced participants only partially
cover the required chromatic scale, thus compensating for
the lower representation of tones within this class. The se-
lected subset encompassed 1,712 distinct trumpet tones.

It was decided to classify each tone into four categories
based on their sound production efficiency, resulting in
four classification levels: 1:poor, 2:fair, 3:good, and 4:ex-
cellent. This classification into four levels was employed
with the intention of simplifying the label assignment pro-
cess while retaining sufficient variability, as suggested by
Wesolowski [17] and employed by Köktürk-Güzel et al. in
a related research study [18].

The web interface shown in Figure 2 was subsequently
developed to facilitate blind listening (i.e., without reveal-
ing the player’s identity) and label assignment for each
tone. The first author listened to all 1,712 sounds in the
subset under analysis through the interface and assigned a
label to each tone. The "Not a note" button enabled tag-
ging of erroneously segmented sound samples which were
filtered out to yield a dataset 1,481 clean samples.

The assignment of sound production efficiency class
through anonymous listening to the audio samples in ran-
dom order facilitated the allocation of a grade on a note-

by-note basis, as opposed to providing an overall grade to
the performance. This allowed for different grades to be
assigned depending on the note if the level of sound effi-
ciency varied along the chromatic scale. Additionally, the
reliability of unbiased judgment could be assessed through
a comparison with the preliminary grades assigned dur-
ing the recording. The Spearman correlation coefficient
between the two sets of grades was found to be 0.873
(P value<0.001), indicating the consistency of the author
in assigning grades over time. This further indicates that
players in general exhibit a consistent level of sound pro-
duction efficiency along the chromatic scale.

Figure 2. Interface for blind grading the trumpet tones.

2.3 Assessment labels

The cleaned dataset with 1,481 samples was subsequently
presented to a panel of expert raters for evaluation via the
described interface. A total of seven experts from different
schools across Europe, North America and South Amer-
ica were chosen for the task. Among the raters, six were
trumpet players, and one was a bass trombone player. All
raters have professional experience as performers and/or
teachers. This exploratory perceptual study was conducted
online, with raters instructed to complete the task in a low-
noise environment using professional headphones.

The rating sessions started with an introduction to the
concept expressed by renowned brass instrument peda-
gogues, which asserts that rigidities in a trumpet player’s
body result in inefficiencies in playing, manifesting as a
forced and strained sound. In contrast, a high-quality
sound indicates efficiency of the embouchure and breath-
ing muscles. Audio samples demonstrating extreme cases
of this idea were presented and each rater confirmed their
understanding of the concept and their ability to discern
sound production efficiency in trumpet sounds based solely
on audio information.

The dataset of 1,481 samples was split into two parts
with 100 and 1,381 tones respectively. The raters first
graded each of the 100 samples in approximately 15 min-
utes. After a 5 minute break, additional samples, randomly
selected from the remaining 1,381 samples were presented
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for evaluation. The raters continued to assess the trumpet
tones until they experienced fatigue or until 90 minutes had
elapsed from the beginning of the experiment. Table 1 dis-
plays the number of audio samples rated by each grader.
Grader 1 corresponds to the first author who assigned the
ratings manually by listening to all 1,481 samples in the
subdataset, as described in the previous section. The set
of 100 sounds were chosen such that they were equally
distributed across the four classes, as determined from the
labels by the author, and were used to ascertain the level of
inter-rater reliability.

The next section describes the statistical analysis imple-
mented on the data thus collected.

Grader ID Graded tones

Grader 1 100 + 1381
Grader 2 100 + 401
Grader 3 100 + 206
Grader 4 100 + 312
Grader 5 100 + 383
Grader 6 100 + 366
Grader 7 100 + 564
Grader 8 100 + 491

Table 1. Number of individual tones evaluated by each
grader.

2.4 Data analysis

The inter-rater reliability was assessed using the subdataset
containing 100 tones graded by all the experts. Table 2
presents the Spearman ρ correlation coefficients with the
corresponding P values for each pair of evaluators. As de-
picted in the table, all P values, representing the likelihood
of obtaining the same results by chance, are less than 0.05.

The reported Spearman correlation coefficients range
from 0.237 to 0.701. Notably, pairs including Grader
8 (the sole non-trumpet-playing expert) exhibited signif-
icantly lower correlation coefficients than all other pairs,
potentially suggesting the significance of employing ex-
perts whose primary instrument aligns with the instrument
under analysis for tasks of this nature. Due to the substan-
tial differences in the ratings relative to the other raters,
Grader 8 was deemed an outlier, and their results were
excluded from further consideration. This adjustment in-
creased Spearman ρ coefficients from 0.496 to 0.701, indi-
cating fairly strong agreement among the judges [19].

Subsequently, a confusion matrix was computed for
each evaluator, comparing the ratings assigned by that spe-
cific grader to the most frequently occurring (i.e., statistical
mode) value in the ratings assigned by the seven evaluators
for that specific tone. Cases where the mode was uncertain
on one value were eliminated, resulting in 87 overall tones.
The first seven subplots of Figure 3 display the resulting
confusion matrices for each grader and their respective ac-
curacy values (average f1 scores).

The next section describes the description of a model
trained on the data obtained with reference to the variabil-
ity of human assessment.

3. METHODOLOGY AND RESULTS

3.1 Audio Preprocessing and Model Training

The dataset preparation process described in Section 2.2
yielded a clean dataset with the audio samples of 1,481
tones. As a preprocessing step, the sound samples were
first normalized to have a maximum signal amplitude equal
to one. White noise at -60 dB was then added to the nor-
malized audio to overcome the numerical errors (division
by zero) encountered during feature extraction, without
significantly altering the original signal. The audio fea-
tures for each tone were then extracted using the Extractor
algorithm from the Essentia library [20]. To reduce the
computational complexity, only the statistical aggregates
of the audio features (e.g., mean, variance, and mean of
derivative) were utilized. Rhythm-based features were ex-
cluded since they were not deemed suitable for a timbre
classification task. A total of 1,230 features were thus ex-
tracted to represent each audio sample.

As a first step, a Random Forest (RF) Classifier [21] was
trained using the extracted audio features and labels pro-
vided by Grader 1, since Grader 1 had annotated each of
1,481 samples in the dataset. When the model was trained
using the full set of audio features, a mean accuracy score
of 78% was obtained in the 10-fold cross-validation. Using
the model based feature selection in scikit-learn, the top
256 features were identified from an RF-classifier model
trained using a 75%-25% train-test split of the dataset. Us-
ing just the top 256 features for training, the mean accuracy
for the 10-fold cross-validation improved to 81.37%. The
model thus obtained was implemented in a pedagogical ap-
plication in a concurrent publication by the authors [22].

To eliminate the bias introduced by using a single
grader, it was assumed that the most frequent label given
by the expert graders is the true label. Only samples with
at least two votes were used and samples which had equal
number of votes for two labels by the expert graders were
assumed to be ambiguous and were discarded from the
dataset. With this approach, out of the 1,381 samples, 871
samples were deemed unambiguous. Similarly, 87 out of
the 100 samples were unambiguous. An accuracy score of
59% was obtained on the test set of 87 samples for the RF
model trained using the 871 samples as training set. The
confusion matrices on the test-set for the different graders
and the RF classifier can be seen in the bottom right subplot
of Figure 3. It can be observed that most of the confusion
is between the adjacent classes. Since the audio samples in
the adjacent classes are in fact more similar to each other
than the other classes, the errors seem to be reasonable,
for both the graders and the model. While an accuracy
score of 59% appears low, it is within the range of accu-
racy scores (53%–72%) of the human expert graders and
it demonstrates that the extracted audio features could be
used to classify the audio samples based on timbre quality.

The trained model was tested in real time by trumpet
players and on labeled datasets different from the one in
this study [12] showing promising generalisability.
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Grader Pair
Grader

2 3 4 5 6 7 8
1 0.691* 0.668* 0.654* 0.645* 0.523* 0.638* 0.247***
2 - 0.701* 0.628* 0.650* 0.589* 0.650* 0.279**
3 - 0.599* 0.594* 0.496* 0.667* 0.237***
4 - 0.696* 0.650* 0.567* 0.349*
5 - 0.502* 0.637* 0.275**
6 - 0.524* 0.264**
7 - 0.353*

Table 2. Spearman ρ correlation coefficients between each pair of graders. Legend: * p<.001, ** p<.01, *** p<.05

Figure 3. Confusion matrices with the predicted labels of each grader and of the trained RF classifier (horizontal axis) with
respect to the true label as the mode of the assigned grade (vertical axis) and the corresponding f1 scores.

3.2 Feature importance

Due to a slightly subjective nature of the problem, there
is considerable variability in the labels by human experts.
Hence, very high classification accuracy scores cannot be
achieved even with sophisticated machine learning mod-
els. However, even with a moderately accurate classifier,
analysis of the most important features could help to de-
velop an intuitive understanding of good quality timbre in
trumpet sounds.

One of the main reasons to choose the Random Forest
Classifier algorithm was that it gives access to the impor-
tance of each feature in the classification task. The feature
importance scores for the classification are available as a
model property in the scikit-learn implementation of the
Random Forest algorithm [23]. The top 20 observed fea-
tures are listed in Table 3.

Many of the top features are based on the mean
of the derivative ‘dmean’ and the mean of the double
derivative ‘dmean2’, suggesting that the change in the

spectrum accross time is a crucial factor in the per-
ception of the timbre quality. Notably three of the
top features namely lowLevel.spectral_complexity.dmean,
lowLevel.spectral_complexity.dmean2 and lowLevel.spec-
tral_complexity.dvar are related to the time varying proper-
ties of the same underlying feature of spectral complexity.

A scatter plot of the lowLevel.spectral_complexi-
ty.dmean and lowLevel.spectral_complexity.dmean2 fea-
tures considering only the best and worst class samples is
shown in Figure 4. It is apparent that just this pair of fea-
tures is quite successful in discriminating between the best
and worst samples. Since both features are statistical ag-
gregates of the spectral complexity feature, the raw feature
was explored to develop a visualization of the sound pro-
duction efficiency as described in the following subsection.

3.3 Visualization based on Spectral Complexity

Spectral complexity is based on the number of peaks in the
spectrum of a time window [24]. The Essentia implemen-
tation of this feature considers the spectral peaks only up
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Audio feature Score (%)

lowLevel.spectral_complexity.dmean 1.381
lowLevel.scvalleys.mean_5 1.182
lowLevel.spectral_complexity.dmean2 1.049
lowLevel.spectral_complexity.dvar 0.897
lowLevel.sccoeffs.var_5 0.648
lowLevel.scvalleys.mean_3 0.636
lowLevel.sccoeffs.stdev_5 0.622
lowLevel.scvalleys.median_5 0.594
lowLevel.spectral_spread.dmean 0.570
sfx.tristimulus.dmean2_2 0.561
lowLevel.sccoeffs.median_4 0.531
lowLevel.sccoeffs.dmean2_3 0.496
lowLevel.scvalleys.median_3 0.492
lowLevel.barkbands.dmean_25 0.478
lowLevel.pitch_
instantaneous_confidence.dmean2 0.465
lowLevel.spectral_flux.dmean 0.465
lowLevel.spectral_complexity.dvar2 0.425
lowLevel.sccoeffs.mean_4 0.424
lowLevel.scvalleys.mean_2 0.412
lowLevel.spectral_complexity.stdev 0.402

Table 3. Top 20 features ranked by importance in the Ran-
dom Forest Classifier.

Figure 4. Scatter plot depicting the spectral complexity
based features for best (blue) and worst (orange) class sam-
ples.

to 5 kHz. From the spectra of the collected dataset, the
presence of harmonic peaks at frequencies higher than 5
kHz was evident. It was therefore decided to implement
the spectral complexity considering the entire audible fre-
quency range. To enhance peak detection accuracy, prior
knowledge of the fundamental frequency ‘f0’ of the tone
was utilized to search for spectral peaks exclusively in the
vicinity of the integer multiples of the f0 frequency. For
a normalized audio, peaks with signal energy less than
−40dB were discarded to reduce noise. An FFT-bin mask
was generated by assigning the value of one to the FFT bin
if a peak was detected in it while all other bins were as-
signed a value of zero, thus generating a visualization to
track the peaks across the analysis time windows.

Figure 5 shows the visualization for two representative
sounds. It is evident that for sounds rated as excellent qual-
ity, the spectral peaks consistently lie in the same FFT-bin
across time, leading to flat horizontal lines in the visualiza-

Figure 5. Visualization of the temporal evolution of spec-
tral peaks for trumpet sounds rated as low-quality (top) and
high-quality (bottom) timbre.

tion. Whereas for sounds rated as poor quality, the spec-
tral peaks show unsteadiness, particularly at the higher har-
monics, which leads to broken and wavy lines in the visu-
alization. The total number of peaks could be more or less
depending on the f0 frequency of the note and the loudness.
However, it appears that the perception of timbre quality is
correlated to the steadiness of the peaks rather than their
total number. A real-time implementation of this visual-
ization could offer invaluable feedback on the efficiency of
sound production, greatly benefiting new trumpet students
who are still developing their auditory skills.

4. CONCLUSIONS

In this paper, we introduced the importance of timbre qual-
ity in trumpet performance and pedagogy. With an aim
to develop an automated tool for the assessment and vi-
sualization of trumpet tone quality, an extensive dataset
of trumpet tones was collected and manually graded with
the help of experts. Through the inter-grader analysis pre-
sented, it was shown that while there are some differences
in timbre preferences, most experts generally concur in dif-
ferentiating the different levels of trumpet tone quality.

Random Forest Classifier models trained using ex-
tracted audio features were found to have accuracy scores
comparable to the accuracy scores of human experts. Fea-
tures based on spectral complexity were observed to have
very high importance in the models trained for the task of
trumpet timbre discrimination.

A representation based on the harmonic peaks in the
spectrum was developed to visualize the timbre quality.
The proposed visualization suggests that the stability over
time of spectral partials plays an important role in discrim-
inating the timbre quality of trumpet sounds.

Future research aims to incorporate the developed
model and visualization in a pedagogical application and
assess its efficacy in music classrooms.
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