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ABSTRACT

Automatic harmonic analysis of symbolic music is an im-

portant and useful task for both composers and listeners.

The task consists of two components: recognizing har-

mony labels and finding their time boundaries. Most of the

previous attempts focused on the first component, while

time boundaries were rarely modeled explicitly. Lack of

boundary modeling in the objective function could lead to

segmentation errors. In this paper, we introduce a novel

approach named Harana, to jointly detect the labels and

boundaries of harmonic regions using neural semi-CRF

(conditional random field). In contrast to rule-based scores

used in traditional semi-CRF, a neural score function is

proposed to incorporate features with more representa-

tional power. To improve the robustness of the model to

imperfect harmony profiles, we design an additional score

component to penalize the match between the candidate

harmony label and the absent notes in the music. Quantita-

tive results from our experiments demonstrate that the pro-

posed approach improves segmentation quality as well as

frame-level accuracy compared to previous methods. The

source code used in this paper is available on GitHub 1 .

1. INTRODUCTION

In music, harmony is the sound resulted from two or more

pitches being performed together. It is the vertical aspect of

music [1], and is essential for both music creation and per-

ception. During music analysis, a harmony label is often

assigned to a music segment that is harmonically coher-

ent. Many composers use harmonic progressions to set up

a musical template in which texture could then be filled [2].

For listeners, harmonic structure is a crucial mid-level rep-

resentation of music that can influence the perception of

other music elements such as melody and rhythm [3].

The task of harmonic analysis aims to find the correct

segmentation of a music piece and to identify the corre-

sponding label for each segmented region. These two goals

are closely related. Regions with strong confidence of a

candidate harmony label tend to possess the boundaries of

1 https://github.com/QiaoyuYang/harana
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a true segmentation [4]. On the other hand, the oracle seg-

mentation could help the prediction of the true underlying

harmony for the notes in each region [4]. Therefore, to

achieve successful analysis of harmony, both of the two

goals as well as their relationship should be considered.

Targeting the two indispensable components of har-

monic analysis simultaneously, we propose an approach

to jointly predict the boundaries and labels of harmonic re-

gions using neural semi-Markov conditional random field

(semi-CRF). It is well-known that the harmonic regions in

music do not always share the same length [5]. Compared

to conventional sequence labeling models, semi-CRF is

more suitable for the task because it allows for various

lengths among the labeled regions [6].

In the original setting of semi-CRF, a score is com-

puted in each segmented region using the weighted sum

of rule-based features [6]. However, rule-based features

are bounded by pre-defined rules and might not exploit

the interaction between notes and other intermediate mu-

sic representations deeply enough. To solve this problem,

we design a neural scoring function that first estimates

the frame-level harmony distributions using a neural net-

work and then adapts them to candidate harmony labels

with an attention mechanism. The attention mechanism

could make the scoring module more efficient by concen-

trating on sub-regions that are more harmonically related

to the candidate label. In addition, an absence score is

added to the scoring function to improve the robustness

of the model to imperfect harmony profiles of the music.

Through experiments we find that the proposed architec-

tural components collectively yield improvement on both

segmentation quality and harmony labels accuracy. We fo-

cus on MIDI-like symbolic music input in our experiments

but the method could be easily adapted to audio.

In summary, our contributions include:

• Proposing the first neural semi-CRF model to jointly

estimate harmony labels and their time boundaries;

• Proposing an attention-based score function to alle-

viate the influence of extra non-chordal notes and

missing chordal notes; and

• Proposing a novel absence score to improve the ro-

bustness to imperfect harmony profiles.

2. RELATED WORKS

Due to the importance of harmony in music, a substantial

amount of automatic systems have been designed for har-
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monic analysis. Early systems tended to focus on using

music audio as input and apply domain knowledge from

music theory. To encode the audio waveform, a time-

frequency representation, or spectrogram, is usually ex-

tracted using the short-time Fourier Transform. Then, with

the observation that it is the pitch class of notes rather than

the absolute pitch height that affects the harmonic content,

a common practice is to reduce the spectrogram to a chro-

magram with 12 bins corresponding to the 12 pitch classes.

In the decoding stage, the chromagram can be matched to

predefined chord profiles [7, 8] or made to emit explicit

labels using probabilistic models such as hidden Markov

model (HMM) [9–11] or CRF [11].

With the increasing popularity of deep learning in the

past decade, end-to-end models based on deep neural

networks have received extensive attention [12–16]. To

model the temporal evolution of music context, Boulanger-

Lewandowsk et al. extracted audio features using a re-

current neural network (RNN) [17]. To better aggregate

context information and learn intermediate representations

with a temporal hierarchy, Zhou and Lerch used a convo-

lutional neural network (CNN) with low-pass filters [12].

McFee and Bello further combined CNN and RNN in the

feature encoder for chord recognition [13]. As a pow-

erful attention-based architecture designed for long-term

sequence modeling, transformers have also been incor-

porated in some recent approaches to harmonic analysis

[14, 15].

While the harmonic progression or context informa-

tion can be modeled with various techniques, the majority

of existing methods do not directly optimize for region-

level output. Some methods adopt a two-stage approach,

where the first stage outputs frame-level chord labels and

the second stage smooths frame-level labels with post-

processing [9–11, 18–20]. However, different from other

simple sequence labeling tasks such as part-of-speech tag-

ging, a harmonic label could correspond to a region span-

ning multiple frames. Although temporal smoothing by

HMM or CRF regresses some sporadically outliers back

to the harmonic streams, these models could still suffer

from segmentation errors. Masada and Bunescu relaxed

the constraint on fixed-size time-span of the output predic-

tion [21]. They used a generalized variant of CRF, semi-

CRF, to jointly detect chord labels and their boundaries.

However, the features to the semi-CRF are entirely rule-

based, which means they are not necessarily optimal for

the end task. In this work, we build on the semi-CRF

framework and explore neural features and scoring tech-

niques that are jointly optimized for the end task - harmony

labeling and boundary prediction.

3. METHODS

In our proposed model, Harana, we first estimate the har-

mony (including root, quality, and pitch activation in this

work) at the frame-level; then we aggregate the frame-level

estimation into region-level segment scores based on can-

didate segments; finally, we use semi-CRF to find the best

segmentation candidate and its corresponding labels. We

focus on symbolic music input in our experiments. The

following subsections describe the model in detail.

3.1 Data Representation

3.1.1 Symbolic Music Input

Given a symbolic music piece, we slice it into short frames

of one eighth of a beat long. We use beat instead of note

duration in order to represent the basic time unit because

music with different meters may have different distribu-

tions on the note length. The pitch information in each

frame is summarized with a 12-d pitch class distribution

vector, which describes the normalized distribution of the

duration of each pitch class in the frame. To help distin-

guish between harmonies with the same pitch class vector,

we also include the bass note (the lowest note) in the input

to the model; it is represented as a 12-d one-hot vector in-

dicating the bass pitch class in each frame. Combining the

pitch class distribution and the bass note, the input to the

model is a sequence of 24-d vectors.

3.1.2 Harmony

A popular representation of music harmony in symbolic

music is the Roman numeral encoding, where the full har-

monic context of a label, including tonic and degree, is

considered [22]. However, the combination of all the com-

ponents produces 47k different harmony labels, which are

intractable for a classification model with limited training

data. A possible solution is to classify each harmony com-

ponent independently, but this is incompatible with semi-

CRF because the boundary of each component must be the

same. As a compromise, we use a subset of the harmony

components, root and quality, and model them jointly.

The root is represented as a 12-d one-hot vector cor-

responding to the 12 pitch classes. The quality is repre-

sented as a 10-d one-hot vector corresponding to 10 com-

monly used classes. In addition to root and quality, we

use another harmony representation, the pitch class activa-

tion vector, in the neural score function. Previous works

have shown its effectiveness as a label encoding for har-

monic analysis [13]. These vectors are 12-d multi-hot and

are circularly shifted from the pitch-class activation vectors

rooted at C.

3.2 Semi-CRF

Semi-CRF is a probabilistic model for sequence labeling

with a variable label-span. Given a sequence of input

frames X = ⟨X1, X2, ..., XN ⟩, semi-CRF provides the

conditional probability of the sequence of contiguous non-

overlapping labeled segments Y = ⟨Y1, Y2, ..., YK⟩, where

N is the number of frames and K is the number of seg-

ments. Since the labeled segments could span multiple

frames, they are represented as three-dimensional tuples

Yi = (ui, vi, li), where ui, vi and li respectively denote

the onset, offset and label of the segment. In the context

of harmonic analysis, X represents the input music frames

and Y represents the harmonic regions.
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Figure 1: The semi-CRF architecture in the context of harmonic analysis. The total score is computed from music input and

a set of candidate harmony segments. Numbers in the blue squares are the frame indices. Numbers in the green rectangles

are the indices of candidate harmony segments.

The conditional probability given by semi-CRF takes

the form of

P (Y |X) =
eWF (Y,X)

Z(X)
, (1)

where F is a feature vector computed from X and Y , W

is a learnable weight matrix, and Z =
∑

Y eWF (Y,X) is

a normalization factor summarizing all possible segmenta-

tion and labeling of the input sequence. In this work, we

propose to generalize the weighted feature score to a neural

score function S(Y,X) so that

P (Y |X) =
eS(Y,X)

Z(X)
. (2)

With the assumption that the harmony labels are Marko-

vian given the music input, the score function could be de-

composed into the sum of segment-level scores that are de-

pendent only on the current and the previous segments.

S(Y,X) =
K∑

i=1

Si(Yi, X;Yi−1). (3)

To simplify the notation, we treat Yi−1 as a parameter for

the i-th segment’s score function and omit it in the follow-

ing sections. Figure 1 demonstrates the structure of semi-

CRF in the context of music harmonic analysis.

3.3 Frame-Level Estimation

Followng Micci et al. [23], the frame-level estimation of

harmony information is achieved with a DenseNet-GRU

architecture. The DenseNet-GRU module is followed by

fully connected layers and finally the vectors correspond-

ing to different types of harmony information are estimated

using separate linear heads. The softmax function is used

to produce the class distributions of the root and the qual-

ity, whereas sigmoid is used to find the activation of each

pitch class. Mathematically, the computation of frame-

level harmony estimation can be formulated as

E(n) = MLP (GRU(DenseNet(Xn))),

D̂R(n) = Softmax(FCR(E(n))),

D̂Q(n) = Softmax(FCQ(E(n))),

P̂C(n) = Sigmoid(FCPC(E(n))),

(4)

where Xn is the nth frame of the input music. D̂R(n),
D̂Q(n) and P̂C(n) represent the root distribution, quality

distribution and the pitch class activations of the estimated

harmony for a frame.

3.4 Attention-Based Score Function

As described in Eq. (3), the CRF model evaluates possible

sequences of harmony labels and their segmentation. For

each segment, i.e., a candidate harmony region, we need to

aggregate the frame-level harmony information (root, qual-

ity and pitch activation) computed from Eq. (4). A simple

method would be taking the average or the mode, but we

note that a harmonic region is not likely to contain homo-

geneous harmonic content. In order to dynamically weigh

the harmonic importance of each frame within a region, an

attention module is proposed to focus on the frames that

are most similar to the candidate harmony label. In partic-

ular, the scaled dot-product attention [24] is used:

A(Q,K, V ) =

∑N

i=1 Q
TKiVi√
d

, (5)

where Q is the query vector, K is the key sequence, V is

the value sequence and d is the vector size.

In the context of our model, the estimated frame-level

harmony sequence of a candidate harmony region serves

as both the key and value while the candidate region-level

harmony itself is the query. Then, the candidate-informed

(CI) estimation can be computed as

ĤCI(Yi) = A(H(li), Ĥ(ui : vi), Ĥ(ui : vi)), (6)

where li is the i-th candidate harmony label, and H(li) is

its harmony representation, which can be root DR, quality

DQ or pitch class activation PC as defined in Eq. (4).

Variables ui and vi are the first and last frames of the ith

harmonic region Yi, and Ĥ(ui : vi) is the vector sequence

of estimated frame-level harmony representations from the

music input.

Now that we have a single embedding vector to summa-

rize the harmonic content in the i-th candidate region, the

score of assigning the candidate harmony label li to this

region can be described by the similarity between the can-

didate harmony label embedding H(li) and the candidate-

informed music embedding ĤCI(Yi). Dot product is used
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Figure 2: The proposed pipeline of the neural encoder and scoring function.

to calculate the similarity:

SH
i (Yi, X) = H(li)

T ĤCI(Yi). (7)

To further model the transition probability between adja-

cent harmony labels and enforce more inductive bias in de-

coding, a transition score between segments is computed:

ST
i (Yi) = T [li−1, li] + (vi − ui)T [li, li], (8)

where T is the transition matrix containing log-

probabilities of harmony transitions at the frame level. It is

pre-computed from the ground-truth labels in the training

data.

Combining the similarity score and the transition score,

the score function of a candidate harmony region is

Si(Yi, X) =
∑

H

SH
i (Yi, X) + λST

i (Yi), (9)

where λ is a hyperparameter to balance the two score com-

ponents. Figure 2 illustrates the overall structure of the

neural front end and the scoring function.

3.5 Absence Score

In Eq. (7), the comparison between the candidate-informed

music embedding ĤCI with the candidate harmony repre-

sentation H indicates the likelihood of the candidate har-

mony. However, this comparison may not be robust when

there are many non-chordal notes or missing chordal notes

in the estimation. In this case, the estimated class distribu-

tions D̂R and D̂Q in Eq. (4) would be relatively flat and

the pitch class activation vector P̂C would not align well

with a chord template. In other words, the neural front-end

may not sufficiently suppress non-chordal notes and rec-

ognize missing chordal notes to produce class distributions

discriminative enough for the semi-CRF to decode the har-

mony. To improve the robustness of the model to such

issues, we introduce an absence score to allow the model

to filter out pitch activations that are not active within the

input music, the majority of which represent non-chordal

notes that should not intersect with chordal notes of the un-

derlying harmony. To compute the absence score, the com-

plement of the input pitch class vector is sent to the neural

front-end. That means the input to Eq. (4) is transformed

by

Xn[1 : 12] = 1−Xn[1 : 12]. (10)

The harmony information estimated from the inactive mu-

sic Ĥinact are then compared with the candidate harmony

vectors H(li). The similarity between them should be min-

imized. In summary, the absence score of a candidate har-

mony region is

ASH
i (Yi, X) = −H(li)

T Ĥinact
CI (Yi). (11)

When the absense score is used, the complete score func-

tion becomes

Si(Yi, X) =
∑

H

SH
i (Yi, X) +ASH

i (Yi, X) + λST
i (Yi),

(12)

3.6 Optimization

For training, both the input music frames and the ground-

truth harmony label segments are provided. The goal is

to update the model parameters such that the probability

computed in Eq. (2) is maximized. This is equivalent to

minimizing the negative log likelihood (NLL) loss:

NLL(θ) = − logPθ(Y |X)

= log(Zθ(X))− Sθ(Y,X),
(13)

where θ are the model parameters. We then compute the

gradient of the loss with respect to the parameters to train

our model using gradient descent.

During inference, where only the input music frames

are provided, the goal becomes finding the correct seg-

mentation and the corresponding labels that maximize the

probability P (Y |X). Since the normalization factor as a

sum of exponential scores stays positive, maximizing the

score function S(Y,X) suffices to decode the segments

and labels.

In both training and inference, we used the algorithms

based on dynamic programming proposed in the original

semi-CRF paper to expedite the optimization process [6].
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4. EXPERIMENTS

4.1 Data

A collection of datasets from various sources [22, 25–27]

organized by Micchi et al. [28] is used to train and evaluate

the proposed architecture. Table 1 summarizes the statis-

tics of the data included in our experiments. MusPy [29] is

used to read the compressed MusicXML files and a parser

adapted from [28] is employed to handle the proposed data

representations. To increase the size of the dataset and help

alleviate possible data imbalance, each piece is transposed

to 12 different keys. The dataset is split into disjoint sub-

sets for training and testing with a 2:1 split.

4.2 Implementation Details

Following the original paper for faster training [30],

DenseNet is implemented in three separate blocks. 1-D

convolution along the time frame dimension is used in

each convolutional layer. Guided by the observation that

harmony changes usually occur on average at a lower fre-

quency than the frame rate, pooling layers are added be-

tween blocks to reduce the temporal resolution of the har-

mony output.

To ensure continuity and completeness of harmony re-

gions in the training samples, we force the sample bound-

aries to be aligned with measure boundaries. A sample

is chosen as 96 frames because it is divisible by all the

common measure lengths existed in the dataset. Addition-

ally, to avoid over-sampling from music pieces with longer

length, the piece index is sampled uniformly first before a

music sample is selected from the piece.

The entire pipeline is implemented using PyTorch.

Adam optimizer is applied with learning rate of 10−4 and

weight decay of 10−2. Dropout with rate 0.2 is added be-

tween GRU layers and after each hidden fully-connected

layer to avoid over-fitting. The λ in Eq. (12) is chosen

empirically to be 0.001.

4.3 Evaluation Metrics

The task of music harmony analysis is two fold: recogniz-

ing the correct labels and finding the correct segmentation

corresponding to the labels. To obtain a full picture of the

model performance, we used two types of evaluation met-

rics to assess both aspects of the task.

First, the frame-level accuracy is computed for both root

and quality. The accuracy on a reduced dictionary of qual-

ity including only major and minor is also reported due to

Pieces Crotchet Chord Annotations

BPSFH 32 23554 8615

Roman Text 82 18208 7935

Tavern 27 20673 10723

Lopez 180 31367 16666

Table 1: Summary of statistics of the datasets.

its prevalence in the literature and adequacy in many prac-

tical uses. During training, the accuracy is computed at

the sample level. During inference, the result is averaged

across all frames in a song.

The other evaluation metric focuses on the segmenta-

tion quality of the output. We use the standard segmenta-

tion scores from the mir_eval package [31,32]. The scores

are based on directional Hamming distance and consider

the overlap between the estimated harmony intervals and

the ground-truth intervals. The directional Hamming dis-

tance between the set of estimated intervals Î = {Îi} =
{[ûi, v̂i]} and the set of ground-truth intervals I = {Ii} is

computed as the following:

DHD(Î, I) =
∑

Îi∈Î
(|Îi| −maxIj∈I |Îi ∩ Ij |))

∑
Îi∈Î

|Îi|
.

(14)

When a harmony boundary is missing from the estima-

tion, an estimated harmony interval overlaps with mul-

tiple ground-truth intervals, but the maximum overlap is

bounded by the length of the ground-truth intervals, leav-

ing a large portion of the estimated interval not sub-

tracted hence a large distance value. Therefore, a large

DHD(Î, I) often indicates under-segmentation, while a

large DHD(I, Î) often indicates over-segmentation. To

summarize the two directional distances in a single metric,

the overall segmentation quality score is computed as

SQ = 1−max(DHD(I, Î), DHD(Î, I)). (15)

4.4 Baseline Models

Three baseline models are included in our experiments

to demonstrate the performance improvement of our pro-

posed method. The chosen baselines are all relevant to our

model by sharing parts of the architecture. Since the neu-

ral front-end of Harana is CRNN, we first test if a plain

CRNN model [23] could achieve comparable results. A

second baseline model, frog [28], also relies on CRNN to

extract music features. In contrast to our model, it uses a

neural autoregressive distribution estimator (NADE) to de-

code the harmony label. At the decoding stage, it defines

an order of the harmony components and iteratively predict

the next component conditioned on the current component.

The same output harmony categories of root and quality

output are considered in the NADE decoder. A third base-

line worth comparing to is the rule-based semi-CRF pro-

posed by Masada and Bunescu [21]. It uses handcrafted

rules as features to compute the segment scores in semi-

CRF. For simplicity, we implemented the two most impor-

tant features, chord coverage and segment purity, in our

experiment. Chord coverage measures what percentage of

chordal notes are covered by the music segment while seg-

ment purity describes what proportion of notes in the music

segment are indeed chordal notes.
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Model Root Acc Quality Acc Overall Acc Under Seg Over Seg Overall Seg

Harana 0.744 0.743 0.651 0.722 0.747 0.649

Harana - no semi-CRF 0.732 0.715 0.634 0.678 0.740 0.639

Harana - no Attention Fusing 0.741 0.738 0.650 0.716 0.749 0.645

Harana - no Absence Score 0.743 0.746 0.643 0.719 0.748 0.650

Table 2: The result of ablation studies summarizing the effect of removing each proposed component of the model on both

frame-level accuracy and segmentation quality.

Model Root Quality Majmin Overall

CRNN 0.735 0.714 0.865 0.634

frog 0.733 0.542 0.815 0.459

RuleSCRF 0.684 0.645 0.847 0.600

Harana 0.744 0.743 0.886 0.651

Table 3: The frame-level accuracy for different models.

5. RESULTS

5.1 Frame-Level Accuracy

Table 3 shows the result on frame-level accuracy. It can be

seen that Harana outperforms the baseline models on all

the measures. The large gap between Harana and the rule-

based semi-CRF model demonstrates the value of a neural

score function. Without a neural front-end, the rule-based

model even has weaker performance than the plain CRNN.

We also notice that frog has lower accuracy than the plain

CRNN model. While the autoregressive decoding in frog

could help enforce coherence between harmony compo-

nents, it may require the full spectrum of the harmony com-

ponents including key and degree. However, only root and

quality were used in our experiments. Complete harmony

information is difficult to collect so we believe Harana has

a greater potential to leverage larger datasets in the future.

5.2 Segmentation Quality

As shown in Table 4, Harana provides improvement on

segmentation quality compared to other models. Higher

under-segmentation score of Harana means there are fewer

missing boundaries in the estimation. Higher over-

segmentation score shows that most detected boundaries

are indeed true boundaries. An interesting observation is

that the rule-based semi-CRF yields the most severe under-

segmentation even though it is optimized on the segmen-

tation boundaries. The reason for this might be that rule

based-features are unable to clean noises such as the non-

chordal notes and missing chordal notes in the input music

but directly compute features from them. The noise in the

features of short regions may be confused with the intrinsic

noise of longer regions.

5.3 Ablation Studies

To show the effectiveness of each component of the ar-

chitecture, we conduct additional ablation studies by re-

moving each component. Table 2 summarizes the results.

Model Under Seg Over Seg Overall

CRNN 0.681 0.738 0.639

frog 0.681 0.724 0.624

RuleSCRF 0.666 0.741 0.625

Harana 0.722 0.747 0.649

Table 4: The segmentation quality for different models.

We can see that the full architecture achieves the best re-

sult overall. Among the missing components, semi-CRF

leads to the largest performance drop. That confirms semi-

CRF is an indispensable component to capture boundary

information in harmony analysis. The attention module,

although also helpful, produces relatively smaller perfor-

mance gain. It is expected because after the neural front-

end, the frame-level estimations to be aggregated may be

already harmonically coherent; The attention module only

helps to focus on the most representative frames. The

effect of removing the absence score is less significant.

Without it, the quality accuracy and overall segmentation

quality even slightly improved. The phenomenon could

result from the more difficult training objective. Inactive

pitch class activations of the input music are an extreme

scenario of noisy harmonic information. More data and a

larger neural front-end might be needed to fully leverage

the advantage of the absence score [33].

6. CONCLUSIONS

In this paper, we proposed an automated approach for har-

monic analysis based on neural semi-CRF to jointly seg-

ment the harmonic regions and predict the labels. We de-

veloped a neural encoder and an attention mechanism to

replace the conventional rule-based score function. We

further proposed an absense score to improve the model

robustness to imperfect harmony profiles. Experiments

showed that our proposed architecture improves the per-

formance on both frame-level accuracy and segmentation

quality. Although our experiments focused on music in-

put of symbolic format, the architecture could be adapted

to audio input by simple modifications on the neural front-

end. One limitation of the semi-CRF architecture is that

it has quadratic time complexity with respect to sequence

length so it is difficult to train the model on very long se-

quences. To capture the long-term dependency of harmony

progression, more efficient sequence modeling methods

could be explored in the future.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

681



7. ACKNOWLEDGEMENTS

This work is partially supported by National Science

Foundation grants No. 1846184 and 2222129. Frank

Cwitkowitz would like to thank the synergistic activities

funded by NSF grant DGE-1922591.

8. REFERENCES

[1] S. Kostka, D. Payne, and B. Almén, Tonal harmony.

McGraw-Hill Higher Education, 2012.

[2] S. Bennett, “The process of musical creation: Inter-

views with eight composers,” Journal of Research in

Music Education, vol. 24, no. 1, pp. 3–13, 1976.

[3] W. F. Thompson, “Modeling perceived relationships

between melody, harmony, and key,” Perception Psy-

chophysics, vol. 53, no. 1, pp. 13–24, 1993.

[4] B. Pardo and W. P. Birmingham, “Algorithms for

chordal analysis,” Computer Music Journal, vol. 26,

no. 2, pp. 27–49, 2002.

[5] J. Pauwels, K. O’Hanlon, E. Gómez, and M. Sandler,

“20 years of automatic chord recognition from audio,”

in Int. Society of Music Information Retrieval Conf.,

2019, pp. 54–63.

[6] S. Sarawagi and W. W. Cohen, “Semi-Markov con-

ditional random fields for information extraction,”

in Conf. on Neural Information Processing Systems,

2004.

[7] T. Fujishima, “Real-time chord recognition of musical

sound: A system using common lisp music,” in Int.

Computer Music Conf., 1999.

[8] C. Harte and M. Sandler, “Automatic chord identifca-

tion using a quantised chromagram,” in Audio Engi-

neering Society Convention, 2005.

[9] A. Sheh and D. P. Ellis, “Chord segmentation and

recognition using em-trained hidden Markov models,”

in Int. Society of Music Information Retrieval Conf.,

2003, pp. 185–191.

[10] J. P. Bello and J. Pickens, “A robust mid-level repre-

sentation for harmonic content in music signals,” in Int.

Society of Music Information Retrieval Conf., 2005, pp.

304–311.

[11] J. A. Burgoyne, L. Pugin, C. Kereliuk, and I. Fujinaga,

“A cross-validated study of modelling strategies for au-

tomatic chord recognition in audio,” in Int. Society of

Music Information Retrieval Conf., 2007, pp. 251–254.

[12] X. Zhou and A. Lerch, “Chord detection using deep

learning,” in Int. Society of Music Information Re-

trieval Conf., 2015.

[13] B. McFee and J. P. Bello, “Structured training for large-

vocabulary chord recognition,” in Int. Society of Music

Information Retrieval Conf., 2017, pp. 188–194.

[14] J. Park, K. Choi, S. Jeon, D. Kim, and J. Park, “A bi-

directional transformer for musical chord recognition,”

in Int. Society of Music Information Retrieval Conf.,

2019.

[15] T.-P. Chen and L. Su, “Harmony transformer: Incorpo-

rating chord segmentation into harmony recognition,”

in Int. Society of Music Information Retrieval Conf.,

2019.

[16] J. Jiang, K. Chen, W. Li, and G. Xia, “Large-

vocabulary chord transcription via chord structure de-

composition,” in Int. Society of Music Information Re-

trieval Conf., 2019, pp. 644–651.

[17] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-

cent, “Audio chord recognition with recurrent neural

networks,” in Int. Society of Music Information Re-

trieval Conf., 2013, pp. 335–340.

[18] F. Korzeniowski and G. Widmer, “A fully convolu-

tional deep auditory model for musical chord recogni-

tion,” in Int. Workshop on Machine Learning for Signal

Processing, 2016, pp. 1–6.

[19] Y. Wu and W. Li, “Automatic audio chord recognition

with MIDI-trained deep feature and BLSTM-CRF se-

quence decoding model,” in Int. Workshop on Machine

Learning for Signal Processing, 2019, p. 355–366.

[20] J. Park, K. Choi, S. Jeon, D. Kim, and J. Park, “A bi-

directional transformer for musical chord recognition,”

in Int. Society of Music Information Retrieval Conf.,

2019.

[21] K. Masada and R. C. Bunescu, “Chord recognition in

symbolic music using semi-Markov conditional ran-

dom fields,” in Int. Society of Music Information Re-

trieval Conf., 2017, pp. 272–278.

[22] D. Tymoczko, M. Gotham, M. S. Cuthbert, and

C. Ariza, “The romantext format: A flexible and stan-

dard method for representing roman numeral analy-

ses,” in Int. Society of Music Information Retrieval

Conf., 2019.

[23] G. Micchi, M. Gotham, and M. Giraud, “Not all roads

lead to rome: Pitch representation and model archi-

tecture for automatic harmonic analysis,” Trans. of the

International Society for Music Information Retrieval,

vol. 3, no. 1, pp. 42–54, 2020.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Łukasz Kaiser, and I. Polo-

sukhin, “Attention is all you need,” in Conf. on Neural

Information Processing Systems, 2017.

[25] T.-P. Chen and L. Su, “Functional harmony recogni-

tion of symbolic music data with multi-task recurrent

neural networks,” in Int. Society of Music Information

Retrieval Conf., 2018, pp. 90–97.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

682



[26] J. Devaney, C. Arthur, N. Condit-Schultz, and

K. Nisula, “Theme and variation encodings with ro-

man numerals (tavern): A new data set for symbolic

music analysis,” in Int. Society of Music Information

Retrieval Conf., 2015.

[27] N. N. López, Automatic harmonic analysis of classical

string quartets from symbolic score. Doctoral disser-

tation, Universitat Pompeu Fabra, 2017.

[28] G. Micchi, K. Kosta, G. Medeot, and P. Chanquion,

“A deep learning method for enforcing coherence in

automatic chord recognition,” in Int. Society of Music

Information Retrieval Conf., 2017, pp. 443–451.

[29] H.-W. Dong, K. Chen, J. McAuley, and T. Berg-

Kirkpatrick, “Muspy: A toolkit for symbolic music

generation,” in Int. Society of Music Information Re-

trieval Conf., 2020.

[30] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Wein-

berger, “Densely connected convolutional networks,”

in Conf. on Computer Vision and Pattern Recognition,

2017, pp. 4700–4708.

[31] C. Raffel, B. McFee, E. J. Humphrey, J. Salamon,

O. Nieto, D. Liang, and D. P. W. Ellis, “mir_eval: A

transparent implementation of common MIR metrics,”

in Int. Society of Music Information Retrieval Conf.,

2014, pp. 367–372.

[32] C. Harte, Towards automatic extraction of harmony in-

formation from music signals. Doctoral dissertation,

Queen Mary University of London, 2010.

[33] J. Clarysse, J. Hörrmann, and F. Yang, “Why adversar-

ial training can hurt robust accuracy,” in Int. Conf. on

Learning Representations, 2023.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

683


