
MUSIC AS FLOW: A FORMAL REPRESENTATION OF HIERARCHICAL
PROCESSES IN MUSIC

Zeng Ren

EPFL
zeng.ren@epfl.ch

Wulfram Gerstner

EPFL
wulfram.gerstner@epfl.ch

Martin Rohrmeier

EPFL
martin.rohrmeier@epfl.ch

ABSTRACT

Modeling the temporal unfolding of musical events and its
interpretation in terms of hierarchical relations is a com-
mon theme in music theory, cognition, and composition.
To faithfully encode such relations, we need an elegant
way to represent both the semantics of prolongation, where
a single event is elaborated into multiple events, and pro-
cess, where the connection from one event to another is
elaborated into multiple connections. In existing works,
trees are used to capture the former and graphs for the lat-
ter. Each such model has the potential to either encode
relations between events (e.g., an event being a repetition
of another), or relations between processes (e.g., two con-
secutive steps making up a larger skip), but not both to-
gether explicitly. To model meaningful relations between
musical events and processes and combine the semantic
expressiveness of trees and graphs, we propose a struc-
tured representation using algebraic datatype (ADT) with
dependent type. We demonstrate its applications towards
encoding functional interpretations of harmonic progres-
sions, and large scale organizations of key regions. This
paper offers two contributions. First, we provide a novel
unifying hierarchical framework for musical processes and
events. Second, we provide a structured data type encoding
such interpretations, which could facilitate computational
approaches in music theory and generation.

1. INTRODUCTION

When understanding music as a temporal art, there are at
least two properties we need to model. The first is that
musical events are ordered in a nontrivial way resembling
goal-directedness; the essence of a piece is lost if we “re-
compose” a piece by performing random temporal permu-
tations. The second phenomenon is the temporal hierarchy,
which is a central theme in the understanding of Western
tonal music, where we hear multiple entities as the mani-
festation of a single musical entity. Regarding this hierar-
chy, there are at least two kinds of such entities. The first
kind is a stationary process, such as key region, and har-

© Z. Ren, W. Gerstner, and M. Rohrmeier. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Z. Ren, W. Gerstner, and M. Rohrmeier, “Music as flow:
a formal representation of hierarchical processes in music”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,
2023.

mony; we can say a phrase that enforces a key contains
a tonic region (like some presentation in a non-modulating
sentence) and we can also describe a time span as an arpeg-
giation of a harmony. The second kind is a transitory pro-
cess, such as modulation region, passing, and neighboring
motion; a descending third progression contains two step-
wise downward motions.

There are multiple attempts to represent the hierarchical
structure of such entities. For stationary entities, trees of
musical events have been used to model tonal harmony [1,
2], extended tonal harmony [3], jazz harmony [4], rhythm
and meter [2, 5]. One limitation of using trees of musical
events is that semantics such as passing tones could not be
elegantly expressed because one is forced to select either
the left or the right parent event for the subordinate event
whereas we would like to express an intermediate event
subordinate to the melodic motion itself [2].

For the transitory process, trees on event transitions are
also sometimes used [6]. They could model the semantics
for a passing tone by describing how a melodic motion is
split into two motions, one going to the passing note and
one leaving the passing note. However, as the fundamen-
tal entities are transitions, it can not express the idea that
a single event being elaborated in the temporal dimension,
such as unfoldings, complete neighbor chords/tones, repe-
titions, and rearticulations [7].

There are attempts using graphical notations to capture
both stationary and transitory processes [7–9]. There are
also models [10] that extend such hierarchical organiza-
tions beyond the temporal dimension with inner structures
of events resembling concurrent processes.

One could potentially encode the hierarchical organiza-
tion between these two kinds of processes implicitly us-
ing networks and graphs, or more expressively using hy-
pergraphs where higher-order relations can be encoded as
hyper-edge. One could formulate a rewrite grammar on
such networks and hypergraphs to describe the elaboration
of nodes and edges. However, we believe there should be a
more direct, elegant, and specialized solution (in a similar
spirit as [11]) to not only implement but also characterize
such generative principles of hierarchical processes.

In summary, there is a lack of formal representation as
well as a specially designed data structure that explicitly
captures the intricate hierarchical organizations of both the
stationary and transitory processes, a fundamental idea in
reductive theories of tonal music. This paper offers two
contributions. First, we provide a novel unifying hierar-

627

chical framework for stationary and transitory processes.
Second, we provide a structured data type encoding such
interpretations, which could facilitate computational ap-
proaches in music theory, musicology, and algorithmic
music composition.

2. THE HIERARCHICAL ORGANIZATIONS OF

GENERAL PROCESSES

To demonstrate how these two kinds of processes could be
hierarchically organized in the temporal dimension, per-
haps it is helpful to consider a scenario in everyday life:
“On his way back to home, John went to the supermarket,
where he got his favorite yogurt from the fridge. Although
he could take a bus directly to his house, he decided to
get off one stop earlier by the lake to enjoy a short walk.”
One hierarchical organization of this particular scenario is
depicted in Fig.1. The overarching process is that John
went back home from someplace. This transitory process
(represented by the arrow connecting “someplace” denoted
by X to “home”) contains three component processes: a
transitory process from “someplace” to “supermarket”, a
stationary process at “supermarket,” and a transitory pro-
cess from “supermarket” to “home.” The stationary pro-
cess at “supermarket” further contains a stationary process
at the “entrance” of the supermarket, a transitory process
from “entrance” to the “exit,” and a stationary process at
the “exit”.

2.1 The syntactic constraint of the hierarchical

organization of stationary and transitory processes

One pattern that we observe is the mutual recursive rela-
tionship between stationary and transitory processes. A
stationary process can contain three components (station-
ary, transitory, stationary). Symmetrically, a transitory pro-
cess can contain three components (transitory, stationary,
transitory).

However, it is clear from the above example (Fig. 1)
we can not arbitrarily subdivide a stationary process at X
(denoted by pX), or a transitory process from X to Y (de-

noted by XÑY
ÝÝÝÝÑ) into arbitrary triples of processes, even

if they conform to the (stationary, transitory, stationary) or
(transitory, stationary, transitory) patterns. We may allow a

transitory process AÑB
ÝÝÝÑ to be elaborated into three com-

ponents of the form

AÑX
ÝÝÝÝÑ pX XÑB

ÝÝÝÝÑ

But we would not allow a decomposition like

CÑD
ÝÝÝÝÑ pX EÑF

ÝÝÝÑ

because their states are not compatible.
We can summarize the constraints as the following: a

stationary process pX may contain (pX , XÑX
ÝÝÝÝÑ, pX); like-

wise, a transitory process XÑY
ÝÝÝÝÑ may contain p

XÑZ
ÝÝÝÝÑ

, Ẑ,
ZÑY

ÝÝÝÑq. The “entrance” and “exit” in the previous ex-
ample, although being technically different, are equivalent
to “supermarket” from abstract level.

3. LINEAR PROCESSES

We start with characterizing linear processes representing
a single hierarchical stream.

3.1 An axiomatic system

We refer to a stationary process as Joint, and define it
as a predicate Jx indexed by a state x : A. We refer to
a transitory process as Link and define it as a predicate
Lx,y indexed by two states x, y of the same type. Then we
propose the following four axioms to characterize the hi-
erarchical interactions between of stationary and transitory
processes.

@px : Aq Dpj : Jxq (1)

@px, y : Aq Dpl : Lx,yq (2)

@pj, j1
: Jxq @pl : Lx,xq Dpj˚

: Jxq (3)

@pl : Lx,zq @pj : Jzq @pl1 : Lz,yq Dpl˚ : Lx,yq (4)

Axiom 1 states that we may form a stationary process for a
given state. Axiom 2 states that we may form a transitory
process by for a pair of states of the same kind. Axiom
3 states that we may form a stationary process at x from
any triple of processes pj, l, j1q, where j and j1 are both
of stationary processes at x and l is a loop starting and
ending at x . Axiom 4 states that we may form a transitory
process from any triple of processes pl, j, l1q, where l and l1

are transitory and j is stationary, provided that their states
are compatible.

3.2 A syntax based on dependent type theory

Using two mutually inductive algebraic datatypes, Joint
and Link, we formalize the notion of hierarchical process
in Backus–Naur form (Eq. 5,6,7,8). For a stationary pro-
cess, the base case (Eq. 5) of a Joint is a Point, which
means an atomic stationary process, whereas the inductive
case (Eq. 6) resembles a stationary process (on the current
level) containing two stationary process and a transitory
process. The base case of a Link is a Unit (Eq. 7), repre-
senting a indivisible change of state, whereas the inductive
case (Eq. 8) represents a composite motion that contains
two changes and one stationary process. Eq. (5,6,7,8) cor-
responnds to Axiom. (1,3,2,4) respectively.

Jointpx:aq :“xPointy px : aq (5)

| xJointy Jointx Linkx,x Jointx
(6)

Linkpx:aq,py:aq :“xUnity px : aq py : aq (7)

| xLinky Linkx,z Jointz Linkz,y
(8)

Dependent typing [12] allows us to define types de-
pending on value. This algebraic data structure with de-
pendent typing has an important application for a gener-
ative system. One can define a function using polymor-
phic recursion to sample a value of the given type. Do-

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

628

pX XÑh
ÝÝÝÑ {home

pX XÑs
ÝÝÝÑ {supermarket

sÑh
ÝÝÝÑ {home

pX XÑs„en
ÝÝÝÝÝÝÑ {entrance

enÑex
ÝÝÝÝÑ yexit ex„sÑl

ÝÝÝÝÝÑ ylake lÑh
ÝÝÝÑ {home

pX XÑen
ÝÝÝÝÑ {entrance

enÑf
ÝÝÝÝÑ {fridge fÑex

ÝÝÝÝÑ yexit exÑl
ÝÝÝÑ ylake lÑh

ÝÝÝÑ {home

Figure 1: A hierarchical interpretation of John’s journey. Words on the transitions are abbreviated to save space. The
symbol s „ en means the "entrance" is functionally equivalent to "supermarket" in the interpretation of this journey

.

ing so will guarantee the syntactic correctness of the out-
put. For example, writing a harmonic transition between
I and V means sampling a value of type LinkI,V ; elab-
orating a melodic motion from 8̂ to 5̂ becomes sampling
a value of type Link

8̂,5̂. Note that between these two
examples, the type of the state is different; the first is
harmony(roman-numeral) while the second is scale degree.
However, within each example, the types of the states are
always the same by construction (Axiom 2, 3, 4).

3.3 A data structure in Haskell

Haskell is a functional programming language with an ex-
pressive type system [13]. Although the dependent type
is not yet built into the language, there exists an encoding
involving Algebraic Datatype and Singletons [14] to sim-
ulate the behavior of dependent type. The implementation
of the linear process is shown below 1 .

data Joint (x::a)

= Point (Sing x)

| Joint (Joint x) (Link x x) (Joint x)

data Link (x::a) (y::a)

= Unit (Sing x) (Sing y)

| forall (z::a). Link (Link x z) (Joint z) (Link z y)

3.4 A graphical notation system

To visualize an interpretation of hierarchical processes, we
use two types of slurs to connect states in a sequence. For
a Point, the base case of Joint, no visual representation
is needed as the state it expresses is sufficient. For a Unit,
the base case of Link, a dashed slur is drawn connecting
the starting state to the ending state. Nontrivial stationary
processes (the inductive cases) are represented as continu-
ous slurs whereas transitory processes are represented with
dashed slur. For a non-trivial processes, the left/right an-
chor point of the slur is the same as the left/right anchor
point of the slur of the process’s first/last component.

Five simple examples of such notation are provided in
Fig. 2. The easiest to understand is Ex. D, which is a

stationary process pI , decomposed into a pI IÑI
ÝÝÝÑ pI . This

expresses not just repetition but also the loop from I to it-
self. This loop can be the parent for further elaborations

1 Specifying the singleton arguments can be sometimes redundant and
cumbersome. Instead, one could use the "implicit-passed" singleton by
replacing the argument “Sing x" by a constraint “SingI x". In this way,
the “Point" and “Unit" constructor takes no explicit argument and the
state information is thus encoded as a phantom type that can be pattern
matched using type application such as “Point @IV".

such as passing and neighbor chords. Note that the contin-
uous slur covers a point, a dashed slur, and a point. This
visual "covering" is intend to convey the hierarchical rela-
tion of processes where parent processes contains its com-
ponent processes. Ex. C shows a more complex situa-
tion; although the top two level is the same as Ex. D (a
Joint containing two base case Joint and a Link), there
are richer structures within the Link in Ex. C. This dashed
slur covers a dashed slur, a continuous slur, and a dashed
slur, signaling a non-trivial transitory process that contains

a transitory process I V
ÝÝÝÝÑ, a stationary process at V , and

a transitory process V I
ÝÝÝÝÑ. This stationary process at V is

also a non-trivial one, capturing the sense of prolongation
within which passing notes can be generated connecting
its chordal pitches, forming a harmonic the entity V7´6´5

5´4´3
.

Ex. B expresses an overarching stationary process at I con-
taining a nontrivial initial stationary process, a nontrivial
transitory process and a trivial stationary process. The ini-
tial stationary process resembles a neighbor-passing chord
with in the harmony of I . Note that there is a difference in
semantic in drawing the continuous slur over the first two
Is vs the last two Is. The former means that the overarch-
ing motion is stationary first and then moving to the target
I chord, whereas the latter means the motion moves first
and then performs a stationary rest. This kind of fine dis-
tinction could be used to further express embodied musi-
cal concepts such as “momentum,” “potential energy,” and
“forces” [15]. Ex. A presents two interpretations of the
same chord progression, where the top and bottom analy-
sis reflects the melody and the bass respectively.

4. APPLICATIONS IN MUSIC ANALYSIS

We will demonstrate the potential usage of the proposed
model in reductive analysis in three different levels of com-
plexity.

4.1 The harmonic sequence of a hybrid theme type

For a harmonic sequence I ´ V ´ V ´ I ´ IV ´ V ´ I

in an 8-bar phrase, we may interpret the first four chords
as a tonic prolongation and the rest as an incomplete ca-
dential progression, as in an antecedent + cadential hybrid
theme type [16]. Such an interpretation is captured by the
derivation process in Fig. 3.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

629

Figure 2: Examples of the graphic notation for Hierarchical processes where continuous slurs represent Joint and dashed
slurs represent Link.

pI
pI IÑI

ÝÝÝÑ pI
pI IÑI

ÝÝÝÑ pI IÑV
ÝÝÝÑ pV V ÑI

ÝÝÝÑ pI
pI IÑV

ÝÝÝÑ pV V ÑI
ÝÝÝÑ pI IÑIV

ÝÝÝÝÑ xIV IV ÑV
ÝÝÝÝÑ pV V ÑI

ÝÝÝÑ pI

Figure 3: One derivation process for the harmonic se-
quence I ´V ´V ´ I ´ IV ´V ´ I . The first three steps
are elaboration of types whereas the last step is the instan-
tiations of the types (in the framework of formal grammar,
this corresponds to rules generating nonterminal and ter-
minal symbols)

4.2 The key-level modulation analysis of a simple

ternary form

Now we present an analysis of a section of Haydn, Pi-
ano Sonata in D, H.37, iii, using the proposed model (Fig.
4). The main focus of the analysis here is on key cen-
ter and functional harmony. This overall section resem-
bles a stationary process at the home key region. It con-
tains a stationary process expressing the home key region,
followed by a transitory process from to a home key re-
gion to another home key region. Within this transitory
process, there is a stationary process at the dominant key
region, as well as the two transitory processes function-
ing as key transition. The first connects the tonic chord
in the home key ItIu to the tonic chord in the dominant
key V tI6u as the pivot chord for modulation. The second
connects ItV u to ItIu as to signal the return to the home
key. In a prolongational framework of pitch reduction, this
link at mm.12 is the interrupted motion in a typical inter-
ruption, implying the restart of the fundamental line [8].
In a functional harmony framework, this same link is the
dominant to tonic preparation relation, also implying the
arrival of the tonic in the home key. Within the domi-
nant region the first stationary process corresponds to the
complete cadential progression signaling the stabilization
of the dominant key, whereas the following transitory pro-

cess
5̂Ñ||1̂

ÝÝÝÝÝÝÝÝÑ
V tIuÑ||ItV u

corresponds to first attempted descent

(interrupted) of the fundamental line accompanied by the
“Ponte” modulation schema [17] that gradually change the
underlying key of a chord.

4.3 A harmonic analysis of a Bach chorale

A more elaborated example of such harmonic organiza-
tion can be found in Bach Chorale No 9 BWV 248 (Fig.
5). This analysis interprets the overarching structure of the
piece as a stationary process in the home key tonic, con-
taining an establishment of the home key, detour around
the home key, and the re-stablization of the home key. This

transitory process 1̂Ñ8̂
ÝÝÝÝÝÝÝÑ
ItIuÑItIu

enforces its unity with an as-

cending linear progression of an octave, within which the
music modulates to the relative minor (vi) via its domi-
nant minor key (V {vi). The first stationary process around
the home key is elaborated into a I ´ V ´ I ternary-like
structure on the key level.

5. CONCURRENT PROCESSES

Besides providing a formalization for processes in the tem-
poral dimension, we also offer an extension to model the
processes that are simultaneous, which enables us to model
polyphonic texture.

5.1 The Formalism

To model concurrent processes, we add two non-

commutative binary 2 operations to construct Joint and
Link respectively:

p8q : Jointx Ñ Jointy Ñ Jointpx,yq (9)

pòq : Linkx,y Ñ Linkx1,y1 Ñ Linkpx,x1q,py,y1q (10)

The first constructor 8, called “when”, expresses the con-
currency of two stationary processes. The second construc-
tor ò, called “while”, expresses the concurrency of two
transitory processes. Applying these operators using infix

2 Although these operations are currently formulated as binary opera-
tions, they can be naturally extended to n-nary versions where the input
is a vector of Joint and Link respectively.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

630

notations, we have Eq. 11, 12:

px8py :“ zpx, yq (11)

xÑy
ÝÝÝÑò

x1Ñy1

ÝÝÝÝÑ :“
px,x1qÑpy,y1q

ÝÝÝÝÝÝÝÝÑ (12)

In addition we add an algebraic law (Eq. 13) on these two
operations:

ppx8pyqp
xÑx

ÝÝÝÑò
yÑy

ÝÝÝÑqppx8pyq

“ (13)

ppx xÑx
ÝÝÝÑ pxq8ppy yÑy

ÝÝÝÑ pyq

To model temporal displacement of concurrent pro-
cesses (like the suspension in fourth species counterpoint)
we define a function ÒÒ called “leads” that is derivable
from the basic operations in terms of Eq. 9,10 :

pÒÒq : Linkx,y Ñ Linkx1,y1 Ñ Linkpx,x1q,py,y1q

xÑy
ÝÝÝÑÒÒ

x1Ñy1

ÝÝÝÝÑ “
px,x1qÑpy,x1q

ÝÝÝÝÝÝÝÝÑ {py, x1q
py,x1qÑpy,y1q

ÝÝÝÝÝÝÝÝÑ
(14)

“ p
xÑy

ÝÝÝÑò
x1Ñx1

ÝÝÝÝÑqppy8 px1qp
yÑy

ÝÝÝÑò
x1Ñy1

ÝÝÝÝÑq
(15)

With Eq. 14, we formalize the relation about two pro-
cesses where that one process leads the other. For example,
in a typical suspension, this allows us to capture the mean-
ing that the bass motion leads the melody motion, causing
a consonance-dissonance-consonance pattern.

5.2 Concurrent processes in contrapuntal textures

Now we demonstrate that using the proposed formalism,
we can model many complex hierarchical coordination of
processes in both temporal (horizontal) and spatial (verti-
cal) dimensions.

5.2.1 First species counterpoint

For first species counterpoint, processes are always verti-
cally aligned in a one-to-one fashion.

3 ´ 2 ´ 1

1 ´ 7 ´ 1

can be modeled as:

zp3, 1q
´`

3Ñ2
ÝÝÝÑò

1Ñ7
ÝÝÝÑ

˘ zp2, 7q
`

2Ñ1
ÝÝÝÑò

7Ñ1
ÝÝÝÑ

˘¯
zp1, 1q

5.2.2 Second species counterpoint

For second species counterpoint, we encounter concurrent
processes where one is more elaborated than the other. A
segment of such texture

5 ´ 4 ´ 3

7 ´ 1

can be modeled as

zp5, 7q
`
p
5Ñ4

ÝÝÝÑ p4 4Ñ3
ÝÝÝÑq ò p

7Ñ1
ÝÝÝÑq

˘ zp3, 1q

Notice that the two-against-one coordination of the motion
is reflected in the structure of the encoding and we do not
need to "break" the 7̂ into two copies of 7̂ to convert it into
first species texture.

5.2.3 Third species counterpoint

Third species counterpoint is a more elaborated version of
the second species but the form of the representation is
very similar.

5.2.4 Fourth species counterpoint

Fourth species counterpoint presents the opportunity of
suspension. We can generalize such textures as overlay-
ing transitory processes in an alternating manner, creating
temporal displacement. Consider this 7-6 suspension (“=”
represents “tied-over”)

3 “ 3 ´ 2 “ 2 ´ 1

5 ´ 4 “ 4 ´ 3 “ 3

It can be modeled using Eq. 14 as the following:

zp3, 5q
´`

5Ñ4
ÝÝÝÑÒÒ

3Ñ2
ÝÝÝÑ

˘ zp2, 4q
`

4Ñ3
ÝÝÝÑÒÒ

2Ñ1
ÝÝÝÑ

˘¯
zp1, 3q

6. DISCUSSION

The contribution of this paper is to offer a characteriza-
tion and representation on the hierarchical organization of
both stationary and transitory musical processes as well as
how they can be concurrently structured. Linear processes
are modeled using two mutually inductive types Joint and
Link. Concurrent processes are modeled on top of linear
processes by adding two binary operations for Joint and
Link respectively. In addition, an algebraic law is imposed
on these two operators to express an isomorphism between
the horizontal view and the vertical view. We introduced a
graphical notation for linear processes and presented sev-
eral harmonic analysis using the notation to demonstrate
the music analytical application of the characterization of
linear processes. To demonstrate the analytical applica-
tion of the concurrent processes, we presented their cor-
responding encoding for contrapuntal textures in species
counterpoint.

This general formalism can be flexible to adapt to spe-
cific music theoretical constraints. One might encode spe-
cialized elaboration rules by equipping the Link construc-
tor with domain specific constraints on the type level and
reuse the function itself. In Eq. 8, such constraint could be
a predicate on the type variables px,z,y 3 .

3 Upper neighbor elaboration, for example, corresponds to the predi-
cate px,z,y “ px “ y, z “Ò xq. Likewise, downward passing elabora-
tion corresponds to the predicate px,z,y “ pz “Ó x, y “Ó zq.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

631

F
ig

u
re

4
:

A
pr

ol
on

ga
ti

on
al

an
al

ys
is

of
H

ay
dn

,
P

ia
no

S
on

at
a

in
D

,
H

.3
7,

ii
i,

m
m

.
1-

20
us

in
g

th
e

no
ta

ti
on

of
hi

er
ar

ch
ic

al
pr

oc
es

s.
K

ey
re

gi
on

s
ar

e
in

di
ca

te
d

by
ro

m
an

nu
m

er
al

s
fo

ll
ow

ed
by

cu
rl

y
br

ac
ke

ts
.

F
ig

u
re

5
:

A
n

an
al

ys
is

of
B

ac
h

C
ho

ra
le

N
o

9
B

W
V

24
8.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

632

7. ACKNOWLEDGEMENT

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation program under grant
agreement No 760081 – PMSB. We thank Claude Latour
for supporting this research through the Latour Chair in
Digital Musicology.

We thank the team of the Digital and Cognitive Musi-
cology Lab (DCML), particularly Gabriele Cecchetti and
Xinyi Guan, for their helpful comments on earlier versions
of this paper. Furthermore, we thank Yannis Rammos and
Christoph Finkensiep for fruitful discussions on the mu-
sic interpretations and implementation of the model in this
paper.

8. REFERENCES

[1] M. Rohrmeier, “Towards a generative syntax of tonal
harmony,” Journal of Mathematics and Music, vol. 5,
no. 1, pp. 35–53, 2011.

[2] F. Lerdahl and R. S. Jackendoff, A Generative Theory

of Tonal Music, reissue, with a new preface. MIT
press, 1996.

[3] M. Rohrmeier and F. C. Moss, “A formal model of
extended tonal harmony,” in Proceedings of the 22nd

International Society for Music Information Retrieval

Conference, no. CONF, 2021, pp. 569–578.

[4] M. Rohrmeier, “The syntax of jazz harmony: Diatonic
tonality, phrase structure, and form,” Music Theory and

Analysis (MTA), vol. 7, no. 1, pp. 1–63, 2020.

[5] ——, “Towards a formalization of musical rhythm.” in
ISMIR, 2020, pp. 621–629.

[6] É. Gilbert and D. Conklin, “A probabilistic context-free
grammar for melodic reduction,” in Proceedings of the

International Workshop on Artificial Intelligence and

Music, 20th International Joint Conference on Artifi-

cial Intelligence, 2007, pp. 83–94.

[7] P. Westergaard, An introduction to tonal theory. Nor-
ton New York, 1975.

[8] H. Schenker, Free Composition: Volume III of new mu-

sical theories and fantasies. Pendragon Press, 2001,
vol. 1.

[9] J. Yust, Organized time: rhythm, tonality, and form.
Oxford University Press, 2018.

[10] C. Finkensiep, “The structure of free polyphony,” p.
321, 2023. [Online]. Available: http://infoscience.epfl.
ch/record/300206

[11] A. Mokhov, “Algebraic graphs with class (functional
pearl),” SIGPLAN Not., vol. 52, no. 10, p. 2–13,
sep 2017. [Online]. Available: https://doi.org/10.1145/
3156695.3122956

[12] M. Hofmann and M. Hofmann, “Syntax and semantics
of dependent types,” Extensional Constructs in Inten-

sional Type Theory, pp. 13–54, 1997.

[13] S. Marlow et al., “Haskell 2010 language report,”
Available online http://www. haskell. org/(May 2011),
2010.

[14] R. A. Eisenberg and S. Weirich, “Dependently typed
programming with singletons,” ACM SIGPLAN No-

tices, vol. 47, no. 12, pp. 117–130, 2012.

[15] S. Larson, Musical forces: Motion, metaphor, and

meaning in music. Indiana University Press, 2012.

[16] W. E. Caplin, Analyzing classical form: An approach

for the classroom. Oxford University Press, USA,
2013.

[17] R. Gjerdingen, Music in the Galant Style. OUP USA,
2007.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

633

