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ABSTRACT

We present ScorePerformer, an encoder-decoder trans-

former with hierarchical style encoding heads for control-

lable rendering of expressive piano music performances.

We design a tokenized representation of symbolic score

and performance music, the Score Performance Music tu-

ple (SPMuple), and validate a novel way to encode the

local performance tempo in a local note time window.

Along with the encoding, we extend a transformer encoder

with multi-level maximum mean discrepancy variational

autoencoder style modeling heads that learn performance

style at the global, bar, beat, and onset levels for fine-

grained performance control. To offer an interpretation of

the learned latent spaces, we introduce performance direc-

tion marking classifiers that associate vectors in the latent

space with direction markings to guide performance ren-

dering through the model. Evaluation results show the im-

portance of the architectural design choices and demon-

strate that ScorePerformer produces diverse and coherent

piano performances that follow the control input.

1. INTRODUCTION

Musical expression is the human touch that transforms a

written piece of music into an emotionally moving experi-

ence. In musical interpretation and performance, the musi-

cian interprets a musical score and translates the intended

expression through the control of the musical instrument,

the sound of which conveys affect and emotion to the lis-

tener [1, 2]. However, effective control of musical instru-

ments often requires considerable expertise and training,

making musical expression less accessible than it could be.

Deep learning music performance models reduce the

need for musical expertise and open up new ways to cre-

ate and perform music [3, 4]. To render expressive perfor-

mances of written music [5, 6], the models mix recurrent

neural networks to learn temporal dependencies in music

with variational autoencoders to encode performance style

and enable controllable generation [7–11]. The models are

trained on real and categorical score and performance fea-

tures for aligned score and performance notes.
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The related task of symbolic music generation is ap-

proached differently. Transformer models [12] are primar-

ily utilized due to their ability to effectively learn long-term

dependencies in music sequences [13–17]. The symbolic

music is encoded as sequences of musical tokens, either

individual [15, 18, 19] or stacked into tuples [16, 20]. Sim-

ilar approaches could be applied to the task of rendering

expressive music performances for written compositions.

Aiming to advance the research and make musical ex-

pression more accessible, we develop ScorePerformer 1 ,

a piano music performance rendering model with inter-

active fine-grained performance style control. The model

combines encoder and decoder transformers [12] with hi-

erarchical maximum mean discrepancy variational autoen-

coders [21, 22] that encode performance style representa-

tions at the global, bar, beat, and onset levels.

To interpret the learned style embedding spaces, we

train embedding classifiers that associate local perfor-

mance contexts with written musical score direction mark-

ings. For each marking, we use the classifier predictions to

compute the average delta vectors in the style space from

negatively to positively classified style embeddings. These

vectors provide quantified model control inputs to move

the performance rendering per given direction marking.

For data encoding, we design a tokenized representa-

tion of score and performance music, a Score-Performance

Music tuple (SPMuple). It introduces a local window on-

set tempo function that produces smoother and more robust

tempos than inset-bar, -beat, or -onset tempo functions.

The experiments and evaluation results show that the

model trained on the designed encoding successfully cap-

tures different performance styles, can sample diverse and

coherent piano performances, and can be used for expres-

sive performance rendering with fine-grained style control.

Our main contributions are:

1. We extend transformers for expressive piano per-

formance rendering with hierarchical style encoding

and control at the global, bar, beat, and onset levels;

2. We design a tokenized encoding for aligned score

and performance music that proposes an efficient lo-

cal tempo computation function;

3. We introduce performance direction classifiers to

provide musical language-driven performance con-

trol by modifying the learned style latent spaces.

1 Source code and demo are available at: https://github.com/
ilya16/scoreperformer
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2. RELATED WORK

Expressive Music Performance: Recent expressive mu-

sic performance rendering models mainly utilize deep

learning methods [3, 6]. Jeong et al. [8] and Maezawa et

al. [9] use conditional variational autoencoders for perfor-

mance style encoding and recurrent neural networks for

expressive performance rendering. Rhyu et al. [11] allow

performance style to be intuitively “sketched” by a set of

learned latent representations. We propose to use trans-

formers with self-attention mechanisms [12] to infer pat-

terns in music performance and model its style through hi-

erarchical style encoding heads.

Symbolic Music Generation: Symbolic music gen-

eration with deep learning [4] is dominated by trans-

formers for learning long-term sequential musical patterns

[13, 15–17, 23] and variational autoencoders for unsuper-

vised style encoding and control [19, 23–26]. The models

offer unconditional or priming melody-based music gen-

eration [14], global control of performance style [14, 25]

or fine-grained control of music through learned high-level

features [23, 26] and descriptions [19]. Our model is close

to the melody-conditioned transformer autoencoder [14],

but introduces modifications for the task of score-based

performance rendering with style control.

Symbolic Music Encoding: The simplest way to en-

code symbolic music is a MIDI-like encoding with note-

on, note-off, and time-shift events [13, 18]. REMI [15],

REMI+ [19], and Compound Word [16] replace position

shifts with absolute bar, position, and beat tempo tokens.

OctupleMIDI [20] shortens sequence lengths by stacking

note attributes into tuples of 8 tokens. For expressive mu-

sic performance rendering, it is common to mix real, cat-

egorical and pianoroll-based score and performance fea-

tures parsed from MusicXML and MIDI files [8,9,11,27].

Transformers work well with tokenized data [12, 28, 29].

Inspired by OctupleMIDI, we design a tuple-like token en-

coding that naturally fits aligned score-performance data.

3. DATA ENCODING

3.1 Score and Performance Data Matching

Expressive music performance rendering models require

datasets of aligned score and performance music [5,30]. In

this work, we consider piano music performances in MIDI

format and use the following data preparation pipeline.

First, we compute alignments using Nakamura’s alignment

tool [31]. The alignments may contain errors, such as

alignment holes or close performance notes aligned with

distant and unrelated score notes. Following the litera-

ture [8, 32], we revise the alignments and filter out notes

that deviate from the local performance tempo. After the

cleanup, we omit performances with less than 80% aligned

notes. Finally, to achieve a perfect match, we remove ex-

tra performed notes and interpolate missing notes using the

local performance tempos and dynamics, since taking only

matched notes and discarding score notes can result in the

removal of important chord and bar information.

3.2 SPMuple Encoding

We introduce the Score-Performance Music tuple (SPMu-

ple), a tokenized representation for aligned symbolic score

and performance music. It encodes performed notes using

tuples of 8 score and 4 performance tokens.

Score Tokens: a set of features extracted from the score

MIDI. Pitch is a MIDI pitch number in the range 21 to

108. Duration is a score note value, encoded by 128 to-

kens with high and low resolution tokens for short and long

durations, respectively [20,33]. Bar is an index of the mu-

sical bar to which the note refers, ranging from 0 to the

maximum bar in the data. Position is the position of the

note in the bar, one of 128 tokens with 64th note resolution.

TimeSignature is the time signature of the beat containing

the note, a set of 22 tokens for 2nd, 4th, and 8th note beat

lengths, with a maximum bar length of 2 whole notes for

2nd note, and 1.5 for 4th and 8th note. OnsetShift is the

positional interval between the current and previous note

onsets (chords). NotesInOnset and PositionInOnset are

the number of notes and the index of the note in the onset,

ranging from 1 to 12, notes are ordered by pitch.

Performance Tokens: a set of performance features

extracted from the performance MIDI and processed us-

ing the aligned score note features. Velocity is a MIDI

velocity from 1 to 127. Tempo is the performance tempo

at the bar, beat or onset level, encoded by a geometric se-

quence of 121 tokens for beats per minute tempos from 15

to 480. RelOnsetDeviation models the exact timing of the

note, encoded as the ratio of the absolute note-onset posi-

tion deviation to the inter-onset interval scaled by the local

onset tempo using 161 tokens for values in the range -2 to

2. RelPerformedDuration is an articulation of the per-

formed note, computed as the ratio of the performed dura-

tion to the score duration, scaled by the local onset tempo,

and encoded by 121 tokens for logarithmically distributed

values between 0.1 and 3.

The score and performance token sequences are sorted

by score note start position, pitch and duration.

3.3 Local Tempo

Inset-onset tempos are noisy and have very high variance,

while beat and bar tempos are smoother but still fluctuate

at beat/bar boundaries, which can lead to degraded musical

experience [34–36]. We design a smooth alternative, local

onset tempos, weighted with respect to previous onsets in

the local onset time window.

Let {IOIsi} and {IOIpi } be the sets of score and per-

formance inter-onset intervals between the onset o and N

preceding onsets oi in the time window W . The weights

wo
i for inter-onset tempos

IOIsi
IOIp

i

are computed as:

wo
i = 1−

IOIpi
maxj{IOIpj}+ 10−2

(1)

The weights give more attention to the closest preceding

onsets, but still consider the more distant onsets to smooth

the local tempo. Based on the decoding quality, we set

the time window length W to 8s as the optimal one. In
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Figure 1. The overall architecture of ScorePerformer, hierarchical style encoding heads and direction classifiers.

addition to the window W , we filter out the nearest onsets

with IOIpi < 0.5 to reduce the effect of immediate tempo

changes, and take at least Nmin = 8 past onsets with any

IOIp to have enough points for smoothing (N ≥ Nmin).

4. MODEL

With a focus on hierarchical performance style control

and efficient training on tokenized sequences, we present

ScorePerformer, an encoder-decoder model that com-

bines transformers [12] and maximum mean discrepancy

variational autoencoders (MMD-VAE) [21,22] for control-

lable expressive rendering of piano performances for writ-

ten scores. The model is illustrated in Figure 1.

4.1 Model Architecture

Score Encoder is an encoder transformer that computes a

contextual representation of the written music. It maps a

score note sequence y+ ∈ N
N×10 (score tokens y + score

tempos and velocities) to note embeddings cs ∈ R
L×D.

Performance Encoder is an encoder transformer that

computes performance style representations at different

levels of the musical hierarchy. It takes a sequence of mu-

sic tuples of score and performance tokens m = [y, x],
y ∈ N

N×8, x ∈ N
N×4, and outputs performance context

embeddings cp ∈ R
N×D. The embeddings are grouped

and averaged over the entire sequence, bars, beats, and on-

sets, and iteratively passed through conditional linear lay-

ers to compute global, bar, beat, and onset latents zG, zB ,

zb, and zo. With the idea of learning missing lower-level

details hierarchically, at each step t the latent z∗t depends

on the context c
p
t and all higher-level latents containing the

note, e.g. zbt = f b
φ(c

p
t , z

G
t , zBt ). All note latents are stacked

to produce note-level style embeddings z ∈ R
N×Dz .

The latent spaces are fit into the Gaussian distribution

using a maximum mean discrepancy objective:

LMMD(p∥q) = Ep(z),p(z′)[k(z, z
′)] + Eq(z),q(z′)[k(z, z

′)]

− 2Ep(z),q(z′)[k(z, z
′)], (2)

where k(z, z′) = e−
∥z−z′∥2

2σ2 is a Gaussian kernel.

We use MMD-VAE [21, 22] to solve issues with poste-

rior collapse and latent space holes [37] common to con-

ventional variational autoencoders [38], especially, when

trained on sequential data [39].

Performance Decoder is a decoder transformer that

renders performance by sequentially predicting perfor-

mance tokens xt for score note tokens yt. The input token

sequence combines two sequences: 1) a sequence ms = y

with the current score notes to be rendered; 2) a sequence

m−1 = [y−1, x−1] shifted one step into the past score y−1

and rendered performance tokens x−1 describing the past

performance history. To reuse the SPMuple token embed-

der, the first sequence is extended with the masked per-

formance tokens. The two sequence embeddings are con-

catenated with the score context cs and passed to the trans-

former layers together with the style embeddings z.

We use style-adaptive layer normalization (SALN) [40]

and pass style embeddings z to the decoder’s layer nor-

malization layers, rather than concatenating the style and

input token embeddings, to increase the focus on the per-

formance style at each transformer layer.

The performance decoder minimizes the negative log-

likelihood for the sequence of performance tokens x:

Lperf = −

N∑

t=1

log pθ(xt|x<t, y≤t, c≤t, z≤t) (3)

4.2 Transformer Modifications

Discrete+Continuous Tokens: Discrete musical tokens

do not explicitly encode the absolute and relative informa-

tion about note attributes, e.g. that pitches C2, C3, and

C4 differ by an octave, or that velocity 80 is louder than

60. We mix discrete and continuous tokens by summing

learned discrete token embeddings with delta embeddings

provided by a learned nonlinear mapping of the real values

associated with tokens to the token embedding dimensions.

Relative Attention: We use the learned ALiBi relative

positional bias [41] in the decoder and the learned bidi-

rectional symmetric bias [42] in the encoder for efficient

interpolation to sequence lengths not seen during training.
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Other: We use single key-value attention heads [43] to

speed up decoding, SwiGLU activation [44,45] in feedfor-

ward layers, reuse token embedding weights between the

encoders and decoder since they share token vocabularies,

and tie input and output embeddings in the decoder [45].

4.3 Performance Direction Classifiers

We provide an intuitive interpretation of the learned style

embedding space by training performance direction clas-

sifiers on the learned note style embeddings. We extract

performance direction markings from MusicXML files

and associate score notes with performance direction la-

bels where they are present. We train classifiers for dy-

namics (degrees of piano and forte), dynamic changes

(crescendo and diminuendo), tempo (adagio, largo, etc.),

tempo changes (accelerando, ritardando, etc.) and note

articulation binary classes (staccato, fermata, etc.).

Classifiers take as input the combined note-level perfor-

mance style embeddings z = [zG, zB , zb, zo] and output

the probabilities of directions being performed in a given

performance context. The module minimizes the sum of

cross entropy losses for K classifiers with Ck classes each:

Lclf =

K∑

k=1

Lk
clf = −

1

N

K∑

k=1

N∑

t=1

Ck∑

c=1

dkt,c log(d̂
k
t,c), (4)

where dkt,c and d̂kt,c are true and predicted labels for direc-

tion c of the classifier k at step t.

Given the smoothness of the learned latent space, the

differences between embeddings with high and low classi-

fication scores for a given marking may provide a direction

in the latent space to move the generation toward the mark-

ing. We compute and use mean per-marking delta embed-

dings to control performance rendering. Since markings

are related to defined musical concepts, we can map natu-

ral language commands, such as “play more piano here”

or “switch to largo”, to quantitative model control inputs.

4.4 Training and Inference

The total loss minimized by the model during training is:

L = Lperf + LMMD + Lclf (5)

To avoid overfitting of the decoder to lower-level perfor-

mance embeddings during training, we drop bar, beat, and

onset embeddings with probabilities of 0.1, 0.2, and 0.4,

respectively. The embeddings are dropped inclusively, i.e.

if the bar latent is dropped out, all beat and onset latents

are also dropped. Additionally, the classifiers are trained

on detached style embeddings z, as we found the model to

overfit the unbalanced direction markings labels.

During inference, the sampled or modified reference

performance embeddings can be used to control the render-

ing of the music performance. Based on the learned style

spaces, the control can range from high-level global to low-

level onset. The extracted performance direction delta em-

beddings can be used to provide intuitive, command-driven

performance manipulation. The model supports real-time

inference on the CPU for use in interactive applications.

5. EXPERIMENTS

Datasets: For all experiments, we use the ASAP dataset of

matched piano scores and performances [46], preprocessed

as described in Section 3.1. The prepared dataset repre-

sents 212 musical compositions by 15 composers with a

total of 937 performances, 79 hours of performed music.

The data is divided into training and evaluation sets with an

approximate ratio of 9:1 for the number of performances in

the entire dataset and for each composer.

Implementation: The SPMuple data encoding is im-

plemented using miditok’s [33] MIDI tokenizer inter-

face. The encoders and decoders in all experiments have a

hidden dimension of 256, 4 layers, and 4 attention heads,

except for the score encoder, which has 2 layers. The to-

ken embedding dimension is set to 128 for each token type,

the projected embedding dimension for input embeddings

is set to 256. The global, bar, beat, and onset latent dimen-

sions are set to 32, 20, 8, and 4, respectively.

Training: The maximum sequence length during train-

ing is set to 256 tokens. To regularize the model and arti-

ficially increase the variety of data, we augment the data

with sampled pitch shifts (up to ±3 semitones) and ve-

locity shifts (up to ±12 MIDI values). In addition, we

randomly replace real performances with deadpan perfor-

mances with a probability of 25% to allow the model to

learn the style of both expressive and inexpressive music.

We use the ADAM optimizer [47] with an initial learning

rate of 2 · 10−4, decaying by 0.995 after each epoch. Mod-

els are trained for 70,000 iterations with batch size 128.

Evaluation: We conduct three sets of experiments: 1)

evaluation of the designed data encoding and different lo-

cal tempo calculation functions; 2) comparison of different

latent style hierarchies and their impact on performance

rendering; 3) an ablation study on the model architec-

ture design. For the metrics, we use Pearson correlation

[9, 11, 48] and mean absolute error for performance fea-

tures: inter-onset intervals (IOI), absolute onset deviations

(OD), performed note durations (PD), and velocity (Vel).

We generate 3 samples for each performance in the evalu-

ation set and compute and average the metrics between the

ground truth and the generated performances, decoded to

MIDI. The errors are measured in seconds, except for ve-

locities, which are measured in MIDI velocity values. Af-

ter the objective evaluation, we analyze the generation and

control capabilities of the designed ScorePerformer model.

6. EVALUATION

6.1 Encoding and Local Tempos

The tokenized representation of performance is not loss-

less, since some information is lost during feature quanti-

zation. We evaluate the decoding quality and performance

of ScorePerformer on sequences encoded using SPMuple

with different local tempo functions.

Table 1 shows the evaluation results. The local window

onset tempo function (Section 3.3) shows the least degra-

dation in decoding quality for inter-onset intervals and on-

set deviations. It captures local tempo changes and note
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Decoded Generated, ∆z = 0

Error ↓ Correlation ↑ Error ↓ Correlation ↑

Tempo IOI OD PD IOI OD PD IOI OD PD Vel IOI OD PD Vel

Bar 0.092 0.002 0.026 0.770 0.953 0.954 0.140 0.012 0.063 2.354 0.650 0.361 0.837 0.940

Beat 0.084 0.002 0.027 0.836 0.971 0.958 0.116 0.009 0.066 2.627 0.727 0.406 0.854 0.932

Onset 0.019 0.001 0.006 0.921 0.977 0.982 0.124 0.011 0.056 2.856 0.709 0.339 0.890 0.932

Window 0.028 0.001 0.011 0.963 0.985 0.979 0.090 0.008 0.048 2.583 0.901 0.538 0.907 0.943

Table 1. Encoding evaluation on decoded performances and performances generated with unaltered style embeddings from

the performance encoder. IOI – inter-onset interval, OD – onset deviation, PD – performed duration, Vel – velocity.

G B b o z IOI OD PD Vel

32 20 8 4 64 0.901 0.538 0.907 0.943

32 20 12 ✗ 64 0.464 0.194 0.739 0.861

32 32 ✗ ✗ 64 0.417 0.067 0.722 0.812

64 ✗ ✗ ✗ 64 0.327 0.066 0.658 0.576

✗ 32 ✗ ✗ 32 0.410 0.069 0.702 0.792

✗ ✗ 12 ✗ 12 0.384 0.066 0.711 0.767

✗ ✗ ✗ 4 4 0.590 0.063 0.735 0.748

32 20 8 ✗ 60 0.410 0.065 0.764 0.847

32 20 ✗ 4 56 0.842 0.224 0.881 0.857

32 ✗ 8 4 44 0.863 0.386 0.886 0.913

✗ 20 8 4 32 0.890 0.485 0.904 0.939

Table 2. Correlation with ground truth performances for

samples generated by models trained with different com-

binations of latent hierarchies. G – global, B – bar, b –

beat, o – onset, and z – total latent dimensions.

timing more efficiently than bar, beat and onset tempos.

These findings are supported by the generation results. The

model trained with local window tempo tokens renders

samples with smaller errors and closer to the ground truth

than the models trained with bar, beat, or onset tempo to-

kens. In particular, it shows more consistency in modeling

local tempo changes and note timing. For future work, the

encoding could be further improved by incorporating ped-

als, an essential element of piano performance [49].

6.2 Style Embedding Hierarchies

Table 2 shows the impact of different learned style em-

bedding hierarchy combinations in ScorePerformer on the

quality of performance rendering. Replacing lower-level

latents with higher-level ones, using only a single level,

or omitting any level of the hierarchy leads to a decrease

in quality for all musical features. The lower-level onset

latents account for most of the variation in performance

features, while the higher-level latents provide the missing

performance timing, articulation, and dynamics informa-

tion at the beat, bar, and global levels. The results suggest

that a hierarchical style representation is advantageous for

modeling global and local changes in music performance.

The search for an optimal configuration of latent dimen-

sions is beyond the scope of this study.

IOI OD PD Vel

ScorePerformer 0.901 0.538 0.907 0.943

w/o Score Encoder 0.885 0.526 0.889 0.951

w/o input seq. ms 0.844 0.422 0.895 0.925

w/o SALN 0.871 0.469 0.920 0.930

w/o in-out emb. tie 0.901 0.459 0.873 0.951

w/o Continuous Tokens 0.576 0.116 0.747 0.561

Table 3. Evaluation of model configurations using the cor-

relation between ground truth and generated performances.

6.3 Ablation Study

The ablation study on the ScorePerformer model is sum-

marized in Table 3. Removing any of the proposed design

choices degrades the quality for all features in almost all

cases. The score encoder adds a local future score context

to the decoder and contributes to a slight quality improve-

ment. The same is true for the additional decoder input

sequence ms, which explicitly highlights the currently ren-

dered score notes. Without style-adaptive layer normaliza-

tion or input-output embedding weight sharing, the corre-

lation for timing features decreases. The most noticeable

quality degradation occurs after using only discrete tokens

without continuous input tokens, demonstrating the posi-

tive impact of value-aware inputs on model predictions.

6.4 Performance Embeddings Analysis

We explore the learned performance style spaces using the

trained performance direction marking classifiers. We take

the style embeddings z for note onsets in the dataset and

project them into two dimensions using principal compo-

nent analysis [50]. Figure 3 shows the projected embed-

dings labeled by the selected dynamics, tempo, and ar-

ticulation markings classifiers and their ground truth la-

bels. We can see the gradient moving from the light col-

ors (high probabilities) to the darker colors (low probabil-

ities). Despite the class imbalances and low representation

of some labels in the dataset, the positive classifier predic-

tions match the areas of the ground truth labels shown in

the right plots for each marking. This suggests that the vec-

tors for moving the performance toward the markings exist

in the original latent style space and can be used to attempt

to control the performance rendering through the model.
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Figure 2. Pianorolls and performance features (inter-onset tempo, articulation, and velocity) for the first 12 musical bars of

Bach’s “Prelude and Fugue No.19”, rendered by ScorePerformer with unconditional or conditional style control. The title

of each plot indicates the form of the control input. Colored areas highlight the regions with the applied control.

Figure 3. Projected style embeddings classified by chosen

direction marking classifiers. The left and right plots for

each marking highlight predicted and ground truth labels.

The direction classifiers can also be used to analyze

performance practices. For example, take all performance

contexts with a given notated performance direction mark-

ing and sort them by the classification scores using the as-

sociated direction classifier. Further analysis of the score

contexts can provide insight into the reasons why musi-

cians follow or interpret differently certain markings.

6.5 Performance Rendering Control

For performance rendering control, we add control embed-

dings ∆z to the encoded style embeddings and pass them

to the decoder. We analyze both uncontrolled generation

with sampled control embeddings and direction-based con-

trol using the computed delta latents for markings.

Figure 2 shows examples of music performance render-

ing for a composition from the evaluation set. The sample

(a) shows the successful reconstruction of the performance

variations from the encoded style embeddings. When gen-

erated using sampled delta latents (b), the added noise is

transferred to higher variations in tempo than in articula-

tion and dynamics. In our observations, small amounts of

delta noise can result in both pleasant and diverse samples.

From the evaluation of the performance direction based

control, we can see that in most cases the model follows

the musical meaning of the marking. Example (c) shows

that piano and forte delta embeddings lead to the expected

decrease and increase in dynamics. The più mosso (more

movement, faster) and largo (slowly and broadly) in the

example (d) lead to the expected changes in tempo, ar-

ticulation and dynamics. An interesting behaviour can be

found in example (e), where the model values one mark-

ing over the other. During the alternation of crescendo and

diminuendo, the model follows diminuendo more and falls

on the path of slow and quiet performance. The last exam-

ple (f) shows that the control can also be applied effectively

to individual notes. As the definitions suggest, the staccato

on higher pitched notes makes them more abrupt, and the

fermata on other notes holds the notes a bit longer.

Despite the positive examples of piano performance

rendering control, the model has some limitations. The

proposed marking delta embeddings encode the highest

learned deviations between performance styles and lead to

immediate changes in performance, which can sound un-

natural. One solution is to scale or interpolate the control

inputs for smoother performance changes. Another issue

to be addressed is disentangling the learned latent space

across direction classes for a more controllable generation.

Finally, the study was limited by low performance varia-

tion for some markings and compositions in the dataset.

We believe that the proposed approach has a high potential

for both analytical and musical creativity applications that

could be fulfilled with orders of magnitude larger datasets.

7. CONCLUSION

We presented ScorePerformer, an encoder-decoder trans-

former with hierarchical MMD-VAE style encoding heads

for fine-grained controllable expressive rendering of pi-

ano music performances. We also introduced performance

direction classifiers, trained on performance style embed-

dings, to map notated direction markings and natural lan-

guage inputs to model control inputs. Evaluation showed

that the model captures performance style variations and

follows control intents. Future work will focus on improv-

ing the diversity of training data to enable large-scale anal-

ysis, and may include in-depth subjective evaluation of the

proposed and existing performance rendering models.
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