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ABSTRACT

Music classification has been one of the most popular tasks

in the field of music information retrieval. With the devel-

opment of deep learning models, the last decade has seen

impressive improvements in a wide range of classification

tasks. However, the increasing model complexity makes

both training and inference computationally expensive. In

this paper, we integrate the ideas of transfer learning and

feature-based knowledge distillation and systematically in-

vestigate using pre-trained audio embeddings as teachers to

guide the training of low-complexity student networks. By

regularizing the feature space of the student networks with

the pre-trained embeddings, the knowledge in the teacher

embeddings can be transferred to the students. We use

various pre-trained audio embeddings and test the effec-

tiveness of the method on the tasks of musical instrument

classification and music auto-tagging. Results show that

our method significantly improves the results in comparison

to the identical model trained without the teacher’s knowl-

edge. This technique can also be combined with classical

knowledge distillation approaches to further improve the

model’s performance.

1. INTRODUCTION

The classification of music has always been a widely popu-

lar task in the field of Music Information Retrieval (MIR).

Music classification serves as an umbrella term for a variety

of tasks, including music genre classification [1], musical

instrument classification [2], and music auto-tagging [3].

The last decade has seen dramatic improvements in a wide

range of such music classification tasks due to the increas-

ing use of artificial neural networks [4–7].

One major contributing factor to these impressive ac-

complishments is the increased algorithmic complexity of

the machine learning models which also means that the

training process requires an increased amount of data. As

not all tasks have this abundance of annotated data, trans-

fer learning has been widely and successfully applied to

various music classification tasks [8]. In transfer learning,

a model is first pre-trained on a large-scale dataset for a
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(source) task that is somewhat related to the (target) task

and then fine-tuned with a comparably smaller dataset of

the target task [9]. This enables knowledge to be transferred

across datasets and tasks. Transfer learning has been repeat-

edly shown to result in state-of-the-art performance for a

multitude of MIR tasks [10–12].

Another side effect of the increasing model complex-

ity is the slow inference speed. One way to address this

issue is model compression by means of knowledge distilla-

tion. Here, a low-complexity (student) model is trained

while leveraging the knowledge in the high-complexity

(teacher) model [13, 14]. The teacher-student paradigm

has met with considerable success in reducing the model

complexity while minimizing performance decay [15, 16].

In this study, we integrate ideas and approaches from

both transfer learning and knowledge distillation and apply

them to the training of low-complexity networks to show the

effectiveness of knowledge transfer for music classification

tasks. More specifically, we utilize pre-trained audio em-

beddings as teachers to regularize the feature space of low-

complexity student networks during the training process.

Thus, the main contributions of this paper are a systematic

study of

• the effectiveness of various audio embeddings as

teachers for knowledge transfer,

• different ways to apply the knowledge transfer from

teachers to students, and

• the impact of data availability on the performance of

the investigated systems.

The models and experiments are publicly available as open-

source code. 1

2. RELATED WORK

This section first briefly introduces transfer learning and

knowledge distillation, which are both often used to transfer

knowledge between tasks and models, respectively, and then

surveys the application of feature space regularization in

the training of neural networks.

2.1 Transfer Learning

In transfer learning approaches, a model is pre-trained on a

source task with a large dataset and subsequently fine-tuned

on a (different but related) target task with a (typically

1 https://github.com/suncerock/

EAsT-music-classification. Last accessed on June 21,
2023.
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smaller) dataset [9]. By utilizing the knowledge learned

from the source task, models trained following the trans-

fer learning paradigm can often achieve significantly better

results than the same models trained directly on the target

task [17]; this is especially the case if these models have a

large number of parameters and the training data for the tar-

get task is limited. In the case where fine-tuning the whole

model might be too computationally expensive, another

way to do transfer learning is to use the pre-trained embed-

dings and train only the classification head. This allows for

a separation of the tasks of computing the embeddings and

the classification itself.

Transfer learning has been successfully applied to a wide

variety of areas ranging from computer vision [18, 19] to

natural language processing [20]. In MIR, transfer learning

has been used for a multitude of target tasks [8, 10, 11, 21].

Besides fine-tuning the whole model, pre-trained embed-

dings such as VGGish [22] and Jukebox [23] have also

shown good performance on many tasks including auto-

tagging [12,24], instrument classification [4,12], and music

emotion recognition [12, 24–26].

One disadvantage of transfer learning is the slow infer-

ence speed. In most cases, the model has a large number of

parameters, which means that both fine-tuning (if done on

the whole model) and inference potentially lead to a high

computational workload.

2.2 Knowledge Distillation

Approaches for knowledge distillation aim at model com-

pression, i.e., reducing the complexity of the network.

The knowledge of a (usually high-complexity) pre-trained

network (the teacher) is transferred to a different (low-

complexity) network (the student) during the training phase,

in which the student not only learns from the ground truth la-

bels but also from the teacher predictions. This is achieved

by adding a “distillation loss” term to the student’s loss

function to learn from the teacher’s prediction [13, 14].

The most popular distillation loss is the Kullback-Leibler

divergence between the logits of the student and the teacher,

with a hyperparameter called temperature to soften the

probability distribution of the teacher’s prediction over

classes [13]. The soft target provides more “dark” knowl-

edge than the ground truth hard label [27, 28]. The Pearson

correlation coefficient has also been proposed as a distance

measure between the logits as an alternative to the Kullback-

Leibler divergence [29].

Besides learning from logits, the student network can

also try to learn from the feature map from the intermedi-

ate layers of the teacher network [30–32]. As the feature

maps of the student and teacher do not necessarily share

the same dimension and the same size, a variety of ways to

match the feature space of the student and the teacher have

been proposed [31, 33, 34]. Therefore, feature-based knowl-

edge distillation has more flexibility than the logits-based

traditional approach, which, at the same time, also makes

it more challenging to find the best way of matching the

feature space [35, 36].

2.3 Feature Space Regularization

Feature-based knowledge distillation is a technique of reg-

ularizing the feature space of the network during training.

Besides knowledge distillation, there exists a wide vari-

ety of other ways to implement regularization. One exam-

ple is contrastive learning, which aims at contrasting the

features of instances with positive labels against negative

labels [37, 38]. Contrastive learning has been shown to

improve the performance of neural networks on music auto-

tagging [39, 40] and music performance assessment [41].

Regularizing the feature space using pre-trained audio

embeddings has also been reported to be effective in music

classification [42] and music source separation [43], where

Hung and Lerch proposed to use pre-trained embeddings

to help structure the latent space during training. This tech-

nique is similar to but different from both transfer learning

and knowledge distillation. In transfer learning, the same

model is used on two different datasets, and a typical setting

is that knowledge from the large dataset will be transferred

to the small dataset. In knowledge distillation, only one

dataset is used and the typical setting is that the knowledge

will be transferred from a large model to a small model. In

comparison, regularizing the feature space using embed-

dings requires neither the dataset nor the model to be the

same, yet still allows to transfer knowledge learned by the

teacher model from a large dataset to the low-complexity

student network for a different (small) dataset.

3. METHODS

Inspired by the promising preliminary results of prior work

[42], we integrate the idea of transfer learning and knowl-

edge distillation by using pre-trained audio embeddings

as teachers to regularize the feature space of the student

network during training. The overall pipeline is illustrated

in Figure 1.

3.1 Loss Function

Similar to knowledge distillation [13], we rewrite our loss

function as

L = (1− λ)Lpred + λLreg (1)

where Lpred is the loss function for conventional neural

network training, Lreg is the loss function that measures

the distance between the student network’s feature map and

the pre-trained embeddings, and λ ∈ [0, 1] is a weighting

hyper-parameter.

3.2 Regularization Location

Different stages in a neural network output different fea-

ture maps, and the optimal location to apply regularization

continues to be controversially discussed in feature-based

knowledge distillation [36]. In this study, we investigate

either regularizing only the final feature map before the

classification head as shown in Figure 1 or regularizing the

feature maps at all stages of the student network.
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Figure 1: Overall pipeline of training a model by using pre-trained embeddings as teachers. The training loss is a weighted

sum (weighting factor omitted in the figure) of prediction loss and regularization loss. The regularization loss measures the

distance between pre-trained embedding and the output feature map after the feature alignment. During inference, only the

bottom part with the blue background is used.

3.3 Feature Alignment

To measure the distance between the student feature map

l ∈ R
Ts×Cs and the pre-trained teacher embeddings v ∈

R
Tt×Ct which might have different numbers of time frames

(i.e., Ts ̸= Tt), we first align the intermediate feature map

with the pre-trained embeddings in time by repeating the

one with fewer time frames, then compute the distance for

each frame and finally average them along the time axis.

3.4 Distance Measure

Considering that pre-trained embeddings and feature maps

have often different dimensionalities, the use of distance

measures that are independent of dimensionality allows for

easier application.

3.4.1 Cosine Distance Difference

Cosine distance difference 2 as proposed in previous work

[42, 43] measures the difference in the cosine distance

between pairs of samples. Given n pairs of samples of

single-time-frame features l1, l2, ..., ln and pre-trained em-

beddings v1, v2, ..., vn, the cosine distance difference for

one pair is

Dij = |dcos(li, lj)− dcos(vi, vj)|, (2)

and the distance for this time frame is averaged among all

pairs.

3.4.2 Distance Correlation

Distance correlation was proposed as a generalization of

classical correlation to measure the independence between

two random vectors in arbitrary dimensions [44]. It is

capable of handling features of different dimensionality;

furthermore, correlation-based distance measures have been

2 has been referred to in previous work as Distance-based Regulariza-
tion (Dis-Reg) [42, 43].

shown to be effective in knowledge distillation [29, 32].

Using the same notation as above, we define

aij = ∥li − lj∥, (3)

āi. =
1

n

n
∑

j=1

aij , ā.j =
1

n

n
∑

i=1

aij , ā.. =
1

n2

∑

i,j=1

aij

(4)

Aij = aij − āi. − ā.j + ā.. (5)

where i, j ∈ {1, 2, ..., n}, and similarly, bij = ∥vi − vj∥
and Bij = bij − b̄i. − b̄.j + b̄...

3 The distance for the time

frame is then

Lreg = 1−R2
n(l, v) = 1−

V2
n(l, v)

√

V2
n(l, l)V

2
n(v, v)

(6)

where

V2
n(l, l) =

1

n2

n
∑

i,j=1

A2
ij , V2

n(v, v) =
1

n2

n
∑

i,j=1

B2
ij ,

V2
n(l, v) =

1

n2

n
∑

i,j=1

AijBij .

Note that V2
n(l, l) and V2

n(v, v) will be 0 if and only if

all the n samples of features (or embeddings) within one

batch are identical [44], which we assume not to occur here.

To optimize both distance measures during training,

block stochastic gradient iteration is used, which means

that the distance is computed over mini-batches instead of

the whole dataset [45, 46]. With stochastic approximation,

the computational complexity of the distance measure for n

samples is reduced from O(n2) to O(mn) where m is the

batch size.

It is worth mentioning that both distance measures en-

sure that if the distance is zero, the feature maps would

3 Eq. (3) uses 2-norm following the implementation in https:

//github.com/zhenxingjian/Partial_Distance_

Correlation.
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differ from the pre-trained embeddings by only an orthogo-

nal linear transformation, which can be modeled in a single

linear layer. Therefore, if the regularization loss is zero, the

student would have the same performance as the teacher in

classification.

4. EXPERIMENTAL SETUP

We test the effectiveness of using pre-trained embeddings

as teachers on two different tasks, datasets, and models with

four different pre-trained embeddings as follows.

4.1 Tasks, Datasets, Models, and Metrics

4.1.1 Musical Instrument Classification with OpenMIC

Musical instrument classification is a multi-label classifi-

cation problem. We use the OpenMIC dataset [2], which

provides weakly labeled audio snippets of length 10 s. Fol-

lowing prior work [4, 49], we use the suggested test set and

randomly split 15% of the training data as the validation set,

resulting in 12,692 training observations, 2,223 validation

observations, and 5085 test observations. To ensure a con-

sistent sample rate, the audio is resampled to 32 kHz [5,49].

As the dataset is not completely labeled, i.e., parts of the

labels are missing and not labeled as positive or negative,

the missing labels are masked out when computing the loss

function as suggested in previous work [5, 10, 49].

We use receptive field regularized ResNet (CP-ResNet)

[5] for this task, as it reaches state-of-the-art performance

when trained only on the OpenMIC dataset (i.e., neither

trained with transfer learning nor trained with any knowl-

edge distillation). CP-ResNet has a ResNet-like struc-

ture [19] with an added hyper-parameter ρ to control the

maximum receptive field of the ResNet. We set ρ = 7
to match the setting which provides the best results in the

original work [5].

The results are reported with the metrics mean Average

Precision (mAP) and F1-score. The F1-score is calculated

in a macro fashion, which means that for each instrument,

the F1-score is computed for both the positive labels and the

negative labels and then averaged, and the final F1-score is

the mean of the F1-scores of all instruments. The detection

threshold for the prediction is set to 0.4 following previous

work [5].

4.1.2 Music Auto-Tagging with MagnaTagATune

Similar to musical instrument classification, music auto-

tagging is also a multi-label classification problem. We

use the MagnaTagATune dataset [3] for this task, which

comes with audio clips of approximately 29.1 s. Following

previous work, we use only the top 50 labels and exclude all

the songs without any positive label from the dataset [7,50].

For comparability, the data split is adopted from previous

work, with audio files in the directories ’0’ to ’b’ being

the training set, ’c’ being the validation set, and ’e’ and ’f’

being the test set [48, 51], resulting in 15,247 training clips,

1,529 validation clips, and 4,332 test clips.

We apply a modified fully convolutional neural network

(FCN) [6] to this task. It is the simplest model among the

benchmark models for the MagnaTagATune dataset [48]

and consists of several convolution and max-pooling layers.

To further reduce the complexity of the model, we apply

the MobileNet-like modification [52] to the network by

breaking the 3× 3 convolutions into depth-wise separable

convolutions and 1× 1 convolutions.

The results are evaluated with mAP and ROC-AUC.

4.2 Pre-trained Embeddings

4.2.1 VGGish

VGGish [22] is a widely used embedding in MIR, with

a VGG network [53] being trained on a large number of

Youtube videos. The open-source PyTorch implementation

is used to extract VGGish features 4 which by default ex-

tracts 128 principle components and then quantizes them to

8 bit. The time resolution is 960 ms.

4.2.2 OpenL3

The OpenL3 embedding [54,55] is trained on a music subset

of AudioSet [56] in a self-supervised paradigm. The audio

embeddings are extracted using the open-source Python

package OpenL3 5 with the dimensionality being 512. To

keep consistent with VGGish, the time resolution is set to

960 ms.

4.2.3 PaSST

PaSST [10] is a 7-layer transformer trained on AudioSet

for acoustic event detection. It applies the structure of a

vision transformer [16, 57] and proposes the technique of

Patchout to make the training efficient. We use the open-

source code 6 released by the authors to extract the 768-

dimensional embeddings. The time resolution is also set to

960 ms.

4.2.4 PANNs

PANNs [11] include several convolutional neural networks

and are also trained on AudioSet for acoustic event detec-

tion. We use the default CNN14 model from the official

repository 7 . The embedding dimensionality is 2048. Dif-

ferent from other embeddings, PANNs provide only one

global embedding for each clip of audio. Pilot experiments

have shown that extracting the embeddings for short seg-

ments and concatenating them does not improve perfor-

mance.

4.3 Systems Overview

The following systems are evaluated for comparison:

• Baseline: CP ResNet (on OpenMIC) and Mobile

FCN (on MagnaTagATune) trained without any extra

regularization loss.

4 https://github.com/harritaylor/torchvggish.
Last accessed on April 4, 2023.

5 https://github.com/marl/openl3/tree/main. Last
accessed on April 4, 2023

6 https://github.com/kkoutini/PaSST/tree/main.
Last accessed on April 4, 2023.

7 https://github.com/qiuqiangkong/audioset_

tagging_cnn. Last accessed on April 4, 2023.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

582



OpenMIC
None VGGish OpenL3 PaSST PANNs

mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

CP ResNet* [5] .819 .809 - - - - - - - -

SS CP ResNet* [5] .831 .822 - - - - - - - -

TeacherLR - - .803 .799 .803 .798 .858 .837 .853 .834

KD (w/ mask) ** - - .829 .820 .823 .813 .851 .834 .848 .823

EAsTCos-Diff - - .838 .824 .838 .820 .837 .822 .836 .814

EAsTFinal - - .842 .828 .835 .822 .847 .830 .849 .828

EAsTAll - - .836 .823 .835 .822 .845 .827 .845 .827

EAsTKD - - .836 .825 .836 .821 .852 .834 .857 .831

MagnaTagATune
None VGGish OpenL3 PaSST PANNs

mAP AUC mAP AUC mAP AUC mAP AUC mAP AUC

FCN† [6] .429 .900 - - - - - - - -

Mobile FCN .437 .905 - - - - - - - -

TeacherLR - - .433 .903 .403 .890 .473 .917 .460 .911

KD - - .447 .911 .439 .907 .454 .912 .448 .909

EAsTCos-Diff - - .446 .906 .438 .907 .453 .912 .453 .911

EAsTFinal - - .454 .912 .447 .910 .459 .912 .449 .909

EAsTAll - - .455 .911 .452 .911 .458 .913 .457 .911

EAsTKD - - .441 .908 .437 .904 .461 .915 .459 .912

Table 1: Results on OpenMIC (above) and MagnaTagATune (below) dataset for different models regularized with different

pre-trained embeddings. Best performances are in bold, and best results excluding the teachers are underlined. *Reported

results [5], SS means being trained with shake-shake regularization [47]. **When using KD, the missing labels in OpenMIC

were masked to avoid potentially adding more training data. †Results from the open-source re-implementation [48].

• TeacherLR: logistic regression on the pre-trained em-

beddings (averaged along the time axis), which can

be seen as one way to do transfer learning by freezing

the whole model except for the classification head.

• KD: classical knowledge distillation where the soft

targets are generated by the logistic regression.

• EAsTCos-Diff (for Embeddings-As-Teachers): feature

space regularization as proposed by Hung and Lerch

that uses cosine distance difference and regularizes

only the final feature map [42].

• EAsTFinal and EAsTAll: proposed systems based on

distance correlation as the distance measure, either

regularizing only at the final stage or at all stages,

respectively.

• EAsTKD: a combination of classical knowledge distil-

lation and our method of using embeddings to regular-

ize the feature space. The feature space regularization

is done only at the final stage.

We perform a search of λ for each of the EasT systems and

choose the best-performing value on the validation set. 8

5. RESULTS

This section presents the results of different systems and

their performance in the case of limited training data.

8 For all the hyperparameters, please refer to the config files in our
GitHub.

5.1 Results on OpenMIC and MagnaTagATune

Table 1 shows the results on the OpenMIC and the Mag-

naTagATune datasets.

We can observe that the models trained with the extra reg-

ularization loss consistently outperform the non-regularized

ones on both datasets, with all features, and all regular-

ization methods. This means that the knowledge in the

embeddings is successfully transferred to the student net-

works and consistently enhances the performance.

Although EAsTFinal appears to give better results on the

OpenMIC dataset while EAsTAll seems to have slightly

better performance on the MagnaTagATune dataset, the dif-

ference between them is very small, meaning that the model

does not benefit significantly from being regularized by pre-

trained embeddings at earlier stages where the feature maps

are still relatively low-level.

The results for the teacher systems show that the older

VGGish and OpenL3 embeddings are clearly outperformed

by the more recently proposed embeddings PaSST and

PANNs. In fact, the teacher systems for the newer em-

beddings perform so strongly that the students can rarely

outperform them, while the student systems trained with

VGGish and OpenL3 provide better results than the corre-

sponding teachers. We can see that whether the teachers

themselves have an excellent performance or not, students

benefit from learning the additional knowledge from these

embeddings, and the students’ upper limit is not bounded

by the performance of teachers.

Comparing KD and the EAsTFinal or EAsTAll systems,
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Model Parameters (M) Iteration / s

VGGish 72.1 172.2

OpenL3 4.69 117.9

PaSST 86.1 18.7

PANNs 79.7 70.6

Mobile FCN 0.34 319.3

CP ResNet 5.52 205.3

Table 2: Comparison of the model complexity.

we can see that with VGGish and OpenL3 embeddings,

regularizing the feature space provides better results than

simply using the teachers’ soft targets. On the other hand,

for the PaSST and PANNs embeddings, classical knowl-

edge distillation provides competitive results. The possible

reason is that the soft targets given by “weak” teachers

might have provided too much incorrect information to the

students while the high-quality soft targets generated by the

“strong” teachers provide good guidance for the students’

training.

The combination system EAsTKD gives us better results

with PaSST and PANNs embeddings (with the exception

of no noteworthy improvement with the PaSST embedding

on the OpenMIC dataset) while for VGGish and OpenL3

embeddings, the performance is not as good as EAsTFinal or

EAsTAll in most cases. This observation is in accordance

with our speculation that traditional knowledge distillation

performs best with a “strong” teacher. While learning from

audio embeddings benefits a student network even more in

the presence of a “strong” teacher, learning from “weak”

embeddings can still improve the model’s performance.

5.2 Comparison of Model Complexity

Table 2 lists the number of parameters as well as rough

inference speed measurements 9 of the models.

The numbers of parameters only take the backbone struc-

ture (i.e., excluding the final classification head) into ac-

count so that it does not vary across datasets with different

numbers of classes. Iterations per second are tested with

128×1000 input spectrograms.

We can see that Mobile FCN and CP ResNet are much

faster in inference than pre-trained models.

5.3 Limited Training Data

To investigate the impact of limited training data on our

methods, we present the system performances for reduced

training data, i.e., for 25%, 50%, and 75% of the original

training data. The results are shown in Figure 2. We use

VGGish and PaSST as the pre-trained embeddings.

We can observe that limiting the training data has the

greatest impact on the baseline systems, which show the

biggest performance drop.

On the OpenMIC dataset, EAsTCos-Diff and EAsTFinal

have similar decreases in mAP, and the KD system is less

9 reference GPU: NVIDIA 2070 Super
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Figure 2: Results with limited training data on two datasets.

affected. An interesting finding is that when the VGGish

embedding is used, KD shows better performance for lim-

ited data amounts while it is outperformed by EAsTCos-Diff

and EAsTFinal when the whole OpenMIC dataset is avail-

able. This means using embeddings as teachers might still

require a sufficient amount of data to have good guidance

on the student models.

On the MagnaTagATune dataset, however, the

EAsTCos-Diff and EAsTFinal systems show less performance

decay than either KD or the baseline when the training data

is limited. This suggests that in our training settings, there

is no certain answer to which method is least affected by the

lack of training data, and the answer might be dependent

on specific tasks, models, and data.

6. CONCLUSION AND FUTURE WORK

In this paper, we explored the use of audio embeddings as

teachers to regularize the feature space of low-complexity

student networks during training. We investigated several

different ways of implementing the regularization and tested

its effectiveness on the OpenMIC and MagnaTagATune

datasets. Results show that using embeddings as teachers

enhances the performance of the low-complexity student

models, and the results can be further improved by com-

bining our method with a traditional knowledge distillation

approach.

Future work will investigate the performance of our

method on a wider variety of downstream tasks and embed-

dings. Moreover, as there have been a wide variety of mod-

els to extract audio and music embeddings, we speculate

that using an ensemble of different pre-trained embeddings

also has considerable potential. Finally, the flexibility of

feature-based knowledge distillation offers a wide range of

possible algorithmic modifications. Our focus will be on

evaluating different distance measures and regularizing the

network using features from different stages of the teacher

network instead of using only the output embeddings.
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