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ABSTRACT

Supervised music source separation systems using deep

learning are trained by minimizing a loss function be-

tween pairs of predicted separations and ground-truth iso-

lated sources. However, open datasets comprising isolated

sources are few, small, and restricted to a few music styles.

At the same time, multi-track datasets with source bleeding

are usually found larger in size, and are easier to compile.

In this work, we address the task of singing voice separa-

tion when the ground-truth signals have bleeding and only

the target vocals and the corresponding mixture are avail-

able. We train a cold diffusion model on the frequency

domain to iteratively transform a mixture into the corre-

sponding vocals with bleeding. Next, we build the final

separation masks by clustering spectrogram bins accord-

ing to their evolution along the transformation steps. We

test our approach on a Carnatic music scenario for which

solely datasets with bleeding exist, while current research

on this repertoire commonly uses source separation models

trained solely with Western commercial music. Our evalu-

ation on a Carnatic test set shows that our system improves

Spleeter on interference removal and it is competitive in

terms of signal distortion. Code is open sourced. 1

1. INTRODUCTION

Music source separation (MSS) is a core task in the field

of music information retrieval (MIR) in which the aim is

to automatically separate the different sources in a musical

mixture. In this work, we focus on separating the singing

voice. In recent years, impressive performance for this dif-

ficult and highly undetermined problem has been achieved

through the use of deep learning (DL) approaches [1]. Tra-

ditionally, MSS models operate on time-frequency repre-

sentations [1–3], and more recently on waveforms [4, 5],

however, the latter are prone to introduce artifacts to the

estimated sources. While the combination of both domains

1 https://github.com/MTG/carnatic-separation-ismir23
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has also shown impressive performance [6, 7], these mod-

els tend to be large in size and require extensive amounts

of computational power, especially for the training stage.

Supervised MSS approaches, which currently lead the

field, require fully-isolated multi-track recordings for the

target sources. Data of this kind are scarce and constrained

to few musical repertoires [8] because recording these at

high quality without bleeding is expensive. One solution

is to synthesize the signals [8–10], however, these datasets

may not be fully realistic and may produce domain mis-

match. On the other hand, multi-track datasets with source

bleeding, where the track corresponding to a source is con-

taminated by the leakage from other sources, are easier to

build, since these may be compiled through a less com-

plex process, and can be recorded in live performances.

We observe large multi-track datasets with bleeding for

diverse domains in the literature [11–14], therefore, dedi-

cated MSS systems to be trained with these would be bene-

ficial. In fact, MSS in the presence of bleeding has recently

gained interest: a dedicated leaderboard for this problem –

albeit in a slightly different context than here – has been

included in the Music Demixing Challenge 2023 [15].

In this work, we propose to address the MSS problem

for a repertoire that lacks clean isolated tracks: Carnatic

Music (CM). The computational analysis of CM has re-

ceived growing attention in recent years [16]. MSS is a

useful pre-processing step in many computational research

pipelines on CM. However, researchers use the available

models in the literature, typically the pip-installable ver-

sion of Spleeter [3] – some examples being [17–22] –,

which is trained on a large private dataset, presumably in-

cluding few or no CM examples. Despite not having in-

formation on that latter matter, we make the assumption

because the 4/5-stem Spleeter models target an instrument

arrangement not applicable to CM (vocals, bass, drum, pi-

ano, and other), and CM is rarely recorded stem-by-stem

in a studio. The domain mismatch between repertories

here may hinder the generalization given the unseen in-

struments and playing/singing techniques. That may also

produce a negative effect on the analysis of the separated

sources, as well as on further processes such as melody es-

timation or pattern recognition. Existing works focusing

on CM have pointed out the domain mismatch problem for

related tasks currently lead by data-driven models [23].

We propose an MSS model to be trained using the

Saraga dataset [11] which is, to the best of our knowledge,
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the largest open dataset for the computational analysis of

Indian Art Music (IAM). Saraga comprises multi-track au-

dio data recorded in live performances and is larger in size

(≈ 36h) than the rest of the real-audio MSS datasets in

the literature. However, in all multi-track audio signals in

Saraga, there is bleeding from the rest of the sources. Our

goal is to use the real-world data with bleeding in Saraga

to train an MSS model for this domain, while proposing

a strategy to output clean isolated signals, even though no

bleeding-free signals are available for development.

To achieve so, we train a cold diffusion model, followed

by unsupervised clustering on the resulting output. Cold

diffusion has shown promising results in recovering data

samples from a given distribution that have been iteratively

perturbed, in T steps, using a deterministic signal [24–26].

We apply said process to iteratively convert the amplitude

spectrogram of a mixture to that of a target source with

bleeding. This yields a separation as good as the target

source with bleeding in the training data. To address this

issue, we take advantage of all the intermediary cold dif-

fusion steps to further improve the output. In doing so, we

rely on the fact that the energy of the target source, which is

predominant, will evolve differently throughout the trans-

formation than the energy of the source bleeding. Note that

this process is cumbersome in a single-step non-diffusion

separation system, given the overlapping between vocal

and accompaniment at various time-frequency bins.

The key contribution of this study is an MSS system that

can be developed solely using data with bleeding. With

regards to that, solely the mixture and the target source

containing bleeding from other instruments are required.

Given its relevance to the repertoire, we focus on sep-

arating the singing voice. Also, the proposed model is

adaptable: the user may choose to be more restrictive with

interferences – at the expense of loss of vocal quality –

or vice versa. We put special emphasis on being able

to characterize the ubiquitous instruments in CM, to re-

liably remove the interferences from the singing voice. In

a computational musicology context, that would improve

the musicologically-relevant research done on the sepa-

rated vocal signal.

2. METHOD

Our separation pipeline assumes the existence of m, the au-

dio signal of the mixture, and the target source with bleed-

ing sb which is contained in the mixture, while we may not

have the remaining sources at hand. In our case, sb is the

singing voice with source bleeding. We present a two-step

method to estimate the isolated source ŝ by only having m

and sb during training, and solely m during inference.

(1) Cold diffusion process: we aim at running a cold

diffusion process to recursively convert the magni-

tude spectrogram of a mixture M into the magnitude

spectrogram of the singing voice with bleeding Ŝb.

(2) Unsupervised mask estimation: Note that step (1)

can only yield estimations as good as the source with

bleeding Sb used as ground truth. Toward refining

Figure 1. The spectrogram cold diffusion transforms, in

T steps, a mixture M into a target source with bleeding Sb.

these estimations, we build the final estimation mask

by clustering the frequency bins using the entire cold

diffusion process to understand how the energy of

each bin is evolving during the transformation.

2.1 Feature extraction

2.1.1 Spectrogram cold diffusion

We propose an approach inspired by diffusion models, a

class of generative models that define a Markov chain of

T steps to iteratively convert samples from a given data

distribution into Gaussian noise while learning to conduct

the reverse process [27]. The model learns to generate a

sample of the given input data distribution from a random

sample of noise. Recently, deterministic signals have been

successfully used in place of Gaussian noise for the diffu-

sion process [24–26], a technique known as cold diffusion.

In [25], the authors apply a transformative cold diffu-

sion process for SVS, using the mixture as the perturba-

tion signal to gradually convert a singing voice to the cor-

responding mixture, while learning to conduct the reverse

process, yielding improved separations for the evaluated

model. The process operates in the waveform domain.

Here, we propose an updated version of the cold diffusion

paradigm in [25] to apply it in time-frequency domain. The

cold diffusion process begins at X0 which is the target data

point at inference, in our case Sb, and ends at XT , in our

case M . Let αt be the perturbation schedule to control the

amount of perturbation added at each step and therefore

determining the intermediate states of the variable Xt, be-

ing t the cold diffusion step. We define αt as a 1D vector

of linearly spaced values from 1 to 0, and of length T . We

compute any step in the cold diffusion process as:

qt(Xt|M,X0) = αtX0 + (1−√
αt)M (1)

The process is depicted in Figure 1. In other words, the

proposed cold diffusion process gradually converts the am-

plitude spectrogram of the singing voice with source bleed-

ing into the corresponding mixture, while at inference we

aim at reverting said transformation. The use of cold diffu-

sion is motivated by the successful attempts to iteratively

transform two-dimensional signals using a diffusion pro-

cess through a U-Net [24], a well-known network for

source separation [2, 3]. Moreover, we can train the model

in a supervised fashion, which may lead to more consistent

performance than unsupervised procedures. Approaches to
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extract features from the spectrogams for clustering [28]

are a problem on its own, which in this context may be

hindered by source bleeding and the musical and spectral

characteristics of CM instruments, e.g. violin or tanpura.

Note that given Eq. 1, the singing voice stays predom-

inant, while the accompaniment gradually increases – in

the direction of the cold diffusion process – or decreases –

in the direction of the inference process–. This equation is

also aimed at amplifying the energy difference throughout

the steps between the singing voice and accompaniment

frequency bins, and that explains why X0 and M have dif-

ferent trajectories assigned. The weighting (1 −√
αt) ap-

plied to the mixture M ensures larger steps at the start of

the inference process, while more fine-grained estimations

are performed at the latter steps [27], aiming at obtaining

more refined separation outputs. Note also that the ex-

pected inference input of a singing voice extraction model

– in our case corresponding to XT – is a mixture. Given

the expressions in Eq. 1, the perturbation M ensures that

XT = M , otherwise the said condition is not given.

2.1.2 Reverse process

The reverse process iteratively removes the deterministic

perturbation, aiming at reaching Sb receiving the corre-

sponding mixture M as input. We directly chain the model

estimations, so that the model input at a particular step t is

the raw prediction of the model at the previous step t + 1
(note that the reverse process begins from step T to reach

step 1). Therefore, given a trained model D with parame-

ters θ, the reverse process can be defined as follows:

rt(X̂t−1|Xt) = Dθ(Xt, t) (2)

This process is iteratively performed for t = [T, T −
1..., 1], using M as input corresponding to XT .

2.1.3 Training algorithm

We aim at training a model that learns a mask Kt for each

diffusion step t so that Xt∗Kt = X̂t−1. For each t, we pre-

dict a different mask that transforms the signal into the next

step in the reverse process until we reach X̂0, which ideally

is as close as possible to Sb. Given Eq. 1, we effectively

optimize the model using the following objective [27]:

L(θ) = ∥Xt−1 −Dθ(qt(Xt|M,X0), t)∥2 (3)

where Xt−1 is the known next step in the reverse process

computed following qt(Xt|M,X0), whereas the model Dθ

predicts the next step X̂t−1 based on qt(Xt|M,X0), the

step t, the mixture M , and the input of the cold diffusion

process X0, corresponding to Sb.

We employ a U-Net to learn the reverse process, which

has been shown useful for the problem of MSS [2]. We

use a U-Net with 7 levels of depth and 4 residual blocks

at each level. Both frequency and time dimensions are en-

coded and then expanded by a factor of 2. The last layer is

a sigmoid in order to output the mask Kt of values ∈ [0, 1],
which is multiplied by the input Xt to get X̂t−1. We esti-

mate masks instead of spectrograms to obtain a more con-

sistent and linear evolution of the bins energy. Estimating

spectrograms may lead to unstable removal of accompa-

niment, which adds complexity to the proposed approach.

To inform the network about the current diffusion step t

in the reverse process, we encode it using a 16-dimension

sinusoidal positional vector [29]. Said embedding is pro-

cessed through two dense layers of 64 units. Next, the em-

bedded t is projected to the corresponding channel size at

each level of depth of the U-Net and added to the input of

each residual block. We inject the time-step embedding to

all residual blocks in the encoder, decoder, and bottleneck.

2.1.4 Inference

In standard diffusion models, the output of the last step

is considered to be the cleanest signal. We argue that we

can achieve better separation by studying how the time-

frequency bins evolve throughout the inference process.

We run inference using the trained Dθ to automatically

convert an input M to a predicted Ŝb while capturing and

stacking all intermediate representations, in order, in a fea-

ture matrix X̂T,...,0. These features are sized I × J × T ,

where I is time size, J number of frequency bins, and T

is the number of cold diffusion steps, and represent how

the iterative transformation of the magnitude spectrogram

of M changes over the cold diffusion steps until reaching

predicted Ŝb. We normalize the features by dividing all

X̂
(i,j)
T,...,0 – being (i, j) the coordinates of a given frequency

bin in X̂T,...,0 – by max(X̂
(i,j)
T,...,0). Therefore, the energy

vectors are studied on the same scale.

2.2 Unsupervised mask estimation

The final mask estimation is performed on top of the cold

diffusion feature matrix X̂T,...,0, as seen in Figure 2. Exist-

ing works use diffusion models to generate features or em-

beddings for downstream tasks [30], however, to our best

knowledge, this is the first attempt to use an entire diffu-

sion process rather than relying only on the output signal.

Note that in the proposed cold diffusion paradigm,

we iteratively convert the accompaniment into bleeding –

much lower in presence but not removed –, while preserv-

ing the cleanest possible voice. Therefore, the energy of

the time-frequency bins X̂
(i,j)
T,...,0 across the diffusion steps

fluctuates less for the voice than for the accompaniment,

which is iteratively lowered by the model. To this end, we

propose to cluster the frequency bins based on the evolu-

tion of these in X̂T,...,0. Clustering techniques have been

previously used in a separation context [28,31,32], aiming

at grouping the components belonging to the same source.

We use K-means clustering to automatically create

groups of frequency bins associated with sources, given

the computed features X̂T,...,0. For example, if a binary

separation mask is desired, one may use two clusters and

multiply by 0 the clustered bins belonging to the accompa-

niment, while leaving the rest unchanged. For a soft mask,

we consider more than two clusters, and the bins classified

in the middle clusters may be shared between the singing

voice and other sources, as seen in Figure 2, where we use

three clusters. In our case, ideally, the cold diffusion pro-

cess iteratively reduces the energy of accompaniment bins

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023
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Figure 2. The unsupervised mask estimation step clusters the frequency bins given vector X̂T,...,0, which stores the

evolution from mixture M to the predicted source with bleeding Ŝb. The example in this figure uses C = 3, being C

the number of clusters. The cluster with centroid with lower value is considered the accompaniment cluster and assigned

0 in the mask and removed, while the furthest cluster to that is the vocal cluster and assigned value 1, so values are

left untouched. The bins in the shared clusters (we have more than one shared cluster for C > 3) are weighted given

wF . Therefore, the user can navigate, given parameter F , through the interference/artifacts trade-off. Using larger C (i.e.

considering more clusters) delivers a more granular masking.

while preserving the singing voice. Therefore, the features

per bin X̂
(i,j)
T,...,0 have higher values for those corresponding

to the singing voice. In this case, the centroid of the closest

cluster to the voice centroid has the largest L1 norm. We

can then sort the clusters by the L1 norm of the centroid.

Having the clusters ordered, a weight ∈ [0, 1] must be

assigned to each cluster to create the soft mask. Rather

than normalizing the cluster centroids, we discover that

it is desirable to assign a balanced weighting to the clus-

ters. Thus, we define w, a 1D array linearly spaced values

∈ [0, 1] of length C, which is the number of clusters. Note

that 0 and 1 are both included to directly give a weight of

0 to the accompaniment cluster and 1 to the vocal clus-

ter, which are the two furthest clusters. Now let F be an

integer representing weight factor that is used to control

how restrictive we want to be with the intermediate clus-

ters. Given w and F , we compute the final cluster weight

array as wF . For an F > 1, we are being more restrictive,

especially with the clusters closer to the accompaniment

one, and the bigger we set F , the more restrictive we are.

When evaluating the clustering, we experiment with vari-

ous parameter configurations. However, C and F may also

be given by the users to control the trade-off between inter-

ference and artifacts depending on their needs. Intuitively,

the more clusters are considered and removed, we obtain

an output with less interference from other sources, at the

expense of a loss of quality from the target source.

To take advantage of the first separation run given by the

cold diffusion process, we multiply the final mask with the

last step of the inference process X̂0, or Ŝb. Preliminary

results confirmed that this is beneficial over masking the

input mixture, and it does not imply added computational

expense since X̂0 is contained in the features X̂T,...,0.

Note that the use of the cold diffusion process allows

the development of differentiable operations for estimating

the final separation mask in the context of bleeding. We

observed that clustering is not feasible when using a one-

step prediction, e.g. two spectrograms do not yield enough

information to study the energy change between a vocal

and an accompaniment frequency bin.

3. EXPERIMENTS

3.1 Experimental setup

We perform our experimentation using qt(Xt|M,X0) with

T = 8. Generative diffusion typically uses larger T , e.g.

1000 [27]. Using large values for T in this context pro-

duces two consecutive steps in the process practically iden-

tical, and the optimization of the model becomes extremely

complex. We compute the STFT of m and sb with window

size 1024 and hop 256, at a sampling rate of 22050Hz. We

use ADAM optimizer with a learning rate of 2−4 and batch

size of 8, and we run the training process for 1M steps.

The larger in time the input mixture spectrograms are,

the more bins to cluster for the final mask estimation.

While using an oversized spectrogram may lead to a com-

plex clustering problem given the variations in playing in-

tensity, few points may hinder the estimation of the clus-

ters. Given the improvisatory nature of CM, we propose to

use chunks of 3 seconds in order to be robust to the recur-

rent changes in intensity and dynamics of the performers.

Since we operate on magnitude spectrograms, we re-

quire the phase information to reconstruct the estimated

audio signals. Here we reuse the phase from m, which is

not ideal but it is fast and broadly used in the MSS [2].

3.1.1 Objective evaluation

We evaluate the models on a real-audio test set we record

for the purpose of this work. It includes ≈ 2h of music

and two different singers (male and female). Bleeding-free

tracks for violin, mridangam, and tanpura are also avail-

able. We split the tracks into chunks of 30s, slightly mod-
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ifying the mixing parameters to enrich the diversity in the

dataset. The tracks are mixed with the assistance of an

audio engineer. The testing set is made available for repro-

ducibility and further MSS research.

MSS is commonly evaluated objectively using the

BSS_Eval metrics [33]: (1) SDR: overall quality, (2)

SIR: intrusiveness of the other sources in the estimated

source, and (3) SAR: quality of the estimated source. For

particular music genres SDR may not correlate with per-

ceptual quality [34–37]. Thus, we run a subjective evalua-

tion in which we contrast the two dimensions captured by

the objective evaluation: interference removal (SIR) and

signal quality (SAR). This is a common experimental setup

in perceptual evaluation of MSS [38]. Therefore, we put

more emphasis on these metrics on our objective evalua-

tion as well, rather than comparing solely SDR. Note that

our method allows for selecting the desired level of inter-

ference at the expense of signal artifacts. Therefore, we

aim at covering two scenarios: creative tasks e.g. practic-

ing or mixing, and analysis tasks, e.g. melody estimation.

In a first experiment we compare our system using

three different configurations with a baseline U-Net model

trained with raw Saraga as regular MSS models are. A sec-

ond experiment is intended to compare our system with:

(1) our cold diffusion model skipping the unsupervised

clustering mask estimation, and (2) Spleeter [3], a widely

used model in the literature, also in computational analy-

sis works for CM. We include this comparison considering

that Spleeter is trained using a much larger dataset with

an unknown distribution. To the best of our knowledge,

no Carnatic-specific separation models are available in the

literature. In the latter experiment we report the absolute

SIR and SAR difference of our models w.r.t. the alterna-

tives aiming at providing an intuitive comparison in terms

of interference removal and vocal signal quality. We com-

pute the global MSS metrics [15] for all testing samples

using the latest museval version [39], and we compute

the median to be robust to extreme cases in the testing set.

3.1.2 Perceptual evaluation

Despite the efforts to enhance the variety within our test-

ing set, it is restricted in size and all recordings are ob-

tained from the same source. This is added to the fact that

the objective metrics in [40] may not always correlate with

the perceptual quality of MSS estimations [34]. For these

reasons, we run a perceptual test with subjects including

samples from the non-multi-track recordings in Saraga (≈
17h) – which were not included in the training set for our

models, and ensuring there are no overlapping artists – and

from the private collection of the Dunya database [41]. We

first randomly sample 50 recordings from the said data col-

lections, and we extract the singing voice from a randomly

selected 30s chunk for each recording. Using the mix-

ture as reference, we manually collect 6 examples from the

batch of separations ensuring that the test includes differ-

ent audio qualities, gender balance, and tonic diversity.

We design an online survey based on the MUSHRA

framework [42]. We request the participants to rate, from 1

C F SDR SIR SAR

Baseline - - 6.10 10.71 8.16

Ours 3 1 5.88 13.69 6.72

Ours 4 2 5.12 14.94 5.57

Ours 5 3 4.56 15.84 4.68

Table 1. Comparison of the baseline with three configura-

tions for our system. C is no. of clusters and F the weight

factor. Results are given in dB.

to 5, the vocal quality and the intrusiveness of other sources

separately. The participants are shown the mixture as a ref-

erence and two stimuli: our system with C = 5 and F = 4,

and Spleeter. The test includes a tutorial stage with exam-

ples – these are not shown during the actual test and are

not passed through any of the evaluated models – to make

sure the participants have the difference between distortion

and intrusiveness from other sources clear. We randomize

the order of the stimuli at each example, to prevent the or-

der from having an impact on the ratings. The proposed

subjective evaluation follows closely the ITU-T P.835. We

include a short survey in the test to collect information on

the expertise of the subjects on MSS and CM.

For each testing example, we compute the mean and

standard deviation of all rankings. We finally report the

mean and standard deviation over the 6 excerpts. The devi-

ation serves as an indicator of the sparsity of the opinions.

3.2 Results

3.2.1 Objective results

We first compare, on our testing set, our system with T = 8
and three different cluster configurations with the baseline

U-Net separation model. Results are shown in Table 1.

The baseline system is more prone to leak other sources in

the estimated vocals given the source bleeding in the train-

ing data, while it better preserves the quality of the target

source. On the other hand, our system further eliminates

the CM instrumentation from the input signal. However,

additional masking comes with a drawback and especially

in the case of CM where all instruments are pitched and

tuned in the same tonic. That produces an important over-

lap, especially between vocals and violin. Therefore, by

removing more interference, we are penalizing the quality

of the singing voice.

Related to the latter observation, we confirm the adapt-

ability of our system. The more clusters we consider and

remove, we achieve better interference removal at the ex-

pense of a loss of vocal quality. However, as seen in Ta-

ble 1, this is translated into worse SDR values. In the per-

ceptual evaluation we study how these metrics correlate

with the perceived quality of the estimations.

In Table 2 we report the difference in SIR and SAR

(denoted, respectively, SIRd and SARd), first between two

versions of our system (with and without clustering), and

second between our system and Spleeter. Using roughly all

tested configurations, our system is able to outperform the
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No clustering Spleeter [3]

SIR SAR SIR SAR

9.39 10.28 14.21 10.95

Comparison of our system with T=8

Config vs. No clustering vs. Spleeter [3]

C F SIRd SARd SIRd SARd

2 1 +4.70 -3.43 +0.14 -4.09

3 1 +4.31 -3.56 +0.52 -4.22

3 2 +5.46 -4.49 +0.64 -5.16

4 2 +5.55 -4.71 +0.72 -5.38

4 3 +6.41 -5.53 +1.60 -6.20

5 2 +5.61 -4.69 +0.78 -5.35

5 3 +6.45 -5.59 +1.63 -6.26

5 4 +7.14 -6.25 +2.32 -6.91

Table 2. SIR and SAR difference of our full system with

(1) our system with no unsup. mask estimation and (2)

Spleeter. Results given in dB, + indicate that we improve.

On top, we provide the absolute metrics of the alternatives

for reference. C is no. of clusters and F weight factor.

alternatives in terms of interference removal, better charac-

terizing and cleaning the Carnatic accompaniment from the

singing voice, suggesting that we are taking advantage of

the in-domain data despite the bleeding. Note also the SIR

improvement – more than 4dB in the worst case – that the

unsupervised masking provides on top of the last step of

the cold diffusion model, which can only estimate, at most,

the vocals with bleeding. That is the problem of using data

with bleeding for training supervised MSS systems.

However, our system tends to perform worse in signal

quality. This may be given by frequency components of

the singing voice that are being removed while performing

the unsupervised mask estimation, especially those living

in the bins shared with other sources. On the other hand,

Spleeter maintains a more complete singing voice despite

being more prone to interference. We perceptually note

that our estimations are dryer, while Spleeter is able to bet-

ter capture components such as reverb and high-frequency

details. This may be explained by the much larger train-

ing dataset comprising several different vocal styles and

effects. In our case, given the proposed schedule and dif-

fusion steps, these components may be partially living on

the shared clusters and therefore negatively affected as we

use a more restrictive parametrization.

Note the small difference in SAR between our system

with no clustering-based masking and Spleeter. Said ob-

servation suggests that the cold diffusion process preserves

the vocal quality roughly as Spleeter achieves so. That may

also explain why masking the last cold diffusion step X̂0

provides an improved output over masking the mixture M .

3.2.2 Perceptual results

We run the MUSHRA test on 25 subjects. From the pop-

ulation, ≈ 44% of the subjects have mid-to-high expertise

Mean Opinion Scores (MOS)

Vocal quality Vocal isolation

Ours (C=5, F=4) 2.80 ± 0.29 3.72 ± 0.31

Spleeter [3] 3.73 ± 0.17 1.97 ± 0.19

Table 3. Comparison between our system and Spleeter [3]

on a perceptual test. Min=1 / Max=5, the higher the better.

in MSS, while ≈ 48% have listened CM at least once.

The results of the MUSHRA test (see Table 3) on the

intrusiveness of other sources – or how well the vocals are

isolated – present a notable correlation with the SIRd in

Table 2, suggesting that our model is able to better elim-

inate the Carnatic instruments from the separated singing

voice. Another relevant aspect that we observe is that while

Spleeter is still leading on source quality, the scores are

more balanced between both models than what the SARd

metrics in Table 2 suggest. That may be an indicator that

the singing voice components erroneously removed by our

model – which notably penalize metrics-wise – are not no-

tably perceivable to the naked ear. All deviations of partic-

ipant rankings per example are < 1, suggesting that gener-

ally there is a disagreement of 1 point at most. Addition-

ally, we run the Wilcoxon signed-rank test for paired data

on each example, observing for all cases a p-value < 0.05,

indicating that the subject ratings were not given randomly.

4. CONCLUSIONS

We present a system that uses an entire cold diffusion pro-

cess as features to perform singing voice separation when

no isolated ground-truth sources are available, and we

solely have the mixture and the target source with bleed-

ing at hand for training. The cold diffusion process, which

iteratively transforms a mixture into the target source with

bleeding, allows for unsupervised clustering to build the fi-

nal separation masks. We run our approach on the Saraga

dataset, a large Carnatic collection of multi-track audio

with bleeding. Despite being trained solely using these

data, our model is able to better eliminate the Carnatic in-

struments from the singing voice than Spleeter, the most

commonly used model in computational research for this

repertoire, which is trained on a much larger private dataset

of clean signals. Albeit the source separation metrics sug-

gest that our system performs worse in terms of vocal dis-

tortion, perceptual tests on a dedicated test set suggest that

the proposed system trained with noisy and considerably

fewer data than Spleeter is competitive with the said sys-

tem. This will allow to scale up our system since new in-

domain data with bleeding are easier to compile than clean

data, especially for under-represented music cultures.

As further research, we propose to investigate different

schedules, while exploring more sophisticated clustering

techniques, aiming at improving source distortion. We also

aim at running the proposed pipeline for the other available

instrument tracks in Saraga: violin and mridangam.
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