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ABSTRACT

We propose multiple methods for effectively training

a sequence-to-sequence automatic guitar transcription

model that uses tokenized music representation as an out-

put. Our proposed method mainly consists of 1) a hybrid

CTC-Attention model for sequence-to-sequence automatic

guitar transcription that uses tokenized music representa-

tion, and 2) two data augmentation methods for training the

model. Our proposed model is a generic encoder-decoder

Transformer model but adopts multi-task learning with

CTC from the encoder to speed up learning alignments be-

tween the output tokens and acoustic features. Our pro-

posed data augmentation methods scale up the amount of

training data by 1) creating bar overlap when splitting an

excerpt to be used for network input, and 2) by utilizing

MIDI-only data to synthetically create audio-MIDI pair

data. We confirmed that 1) the proposed data augmentation

methods were highly effective for training generic Trans-

former models that generate tokenized outputs, 2) our pro-

posed hybrid CTC-Attention model outperforms conven-

tional methods that transcribe guitar performance with to-

kens, and 3) the addition of multi-task learning with CTC

in our proposed model is especially effective when there is

an insufficient amount of training data.

1. INTRODUCTION

Automatic guitar transcription is a challenging task that

has gained significant attention in the field of music infor-

mation retrieval due to its potential applications in music

analysis, performance evaluation, and transcription of mu-

sic compositions. Despite recent advancements in the field,

there are still several challenges that need to be addressed.

One of the major challenges in automatic guitar transcrip-

tion is the difficulty in extracting relevant features from the

audio signal. The variations in timbre, pitch, and playing

style make it difficult to distinguish individual notes accu-

rately [1, 2].

Multiple methods exist for representing musical nota-

tion suitable for employment in a DNN framework. Two
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Figure 1. Examples of a pianoroll (upper) and tokenized

music representation (lower).

of the popular methods are pianoroll and tokenized musical

representation. Figure 1 shows a visualization of the differ-

ences between pianoroll and tokenized music representa-

tions. Note that each can be converted from one to another.

Pianoroll is a visual representation of music that uses a

grid-like structure to display the timing, pitch, and dura-

tion of notes in a piece. Tokenized music representation is

a type of symbolic music representation that breaks down

a music signal into small, discrete tokens, which can be

analyzed and processed as a sequence of tokens to extract

relevant musical features such as pitch, duration, and tim-

ing. Recent studies have shown that using tokenized music

representation over pianoroll can better learn the tempo-

ral dependency between different musical events [3]. Us-

ing tokenized music representation along with sequence-

to-sequence models is particularly effective and have the

potential to improve the performance of automatic music

transcription model [1,4]. However, these models also face

several challenges such as the lack of training data [1].

The field of automatic speech recognition (ASR) has

provided inspiration for improving automatic music tran-

scription models, as both face similar challenges, includ-

ing the need to extract relevant features and handle com-

plex temporal and frequency relationships [5]. In the field

of ASR, various techniques and models, such as connec-

tionist temporal classification (CTC) [6], Transformer [7]

models, data augmentation, transfer learning, and multi-

task learning, have shown promising results [8, 9] and can

potentially aid the performance of an automatic guitar tran-

scription system.

CTC and attention are two popular techniques used in

sequence-to-sequence models for various tasks. CTC is
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an efficient method for training models with an unknown

alignment between input and output sequences. It can han-

dle variable-length input and output sequences. However,

it does not explicitly model dependencies between input

and output sequences [10]. Attention, on the other hand,

allows the model to selectively focus on different parts of

the input sequence, improving the accuracy of the model

on tasks that require complex dependencies. However, at-

tention mechanism is too flexible in the sense that it allows

extremely non-sequential alignments, making it relatively

difficult to train [8].

In an attempt to improve the performance of an ASR

system, researchers have also explored hybrid models that

combine CTC and attention mechanisms [8]. The authors

reported that the addition of CTC solves the misalignment

issues and improves robustness and achieves fast conver-

gence.

Although models such as Conformer-Transformer have

been successful in ASR tasks [11], these were not used

in guitar transcription mainly due to a lack of training data

available. To resolve this issue, we propose data augmenta-

tion techniques and a hybrid CTC-Attention model suited

for a guitar transcription system 1 that utilizes tokenized

music representation and show the effectiveness of the pro-

posed methods. Our contributions are summarized as fol-

lows.

• We propose two data augmentation methods for

training a sequence-to-sequence model that utilizes

tokenized music representation.

• We propose a hybrid CTC-Attention model for auto-

matic guitar transcription.

• We conduct experimental evaluations to confirm the

effectiveness of our proposed methods and prove

that both the data augmentation techniques and the

proposed model enhance guitar transcription perfor-

mance.

2. RELATED WORK

2.1 Automatic guitar transcription

There have been many successful automatic guitar tran-

scription systems [1, 12–15]. Some of them are based

on audio signal processing to estimate the tablature score

from a guitar sound signal [12]. Also, approaches that em-

ploy probabilistic models have been proposed in some au-

tomatic guitar transcription tasks. In [14, 15], a two-step

method was employed, where the first step involves de-

termining the pitch of each played note, and the second

step involves computing the optimal finger positioning by

combining the estimated pitch with physical limitations of

feasible fingerings. Since this approach processes informa-

tion in a sequential manner, information cannot flow from

downstream components to upstream ones, making it dif-

ficult to be jointly optimized [16].

1 Source code available:
https://github.com/KimSehun725/seq2seqGuitarTranscription

Most of the recent state-of-the-art systems were mainly

based on end-to-end deep neural network (DNN) models

since end-to-end DNN models have the advantage of the

ability to jointly optimize the whole model, showing better

results compared to multi-step approaches [13]. Wiggins

et al. proposed a convolutional neural network (CNN)-

based model architecture [13] that estimates the frame-

wise fingering position of a guitar performance. In our

previous work [17], a self-attention mechanism was in-

troduced along with CNN to better capture long-term re-

lations and estimate the fingering position in both frame-

level and note-level. We proved the effectiveness of the

self-attention mechanism used in the guitar transcription

model. However, since the proposed systems in [13] and

[17] do not detect onset, the output can not be interpreted

into reproducible forms such as music score or MIDI.

2.2 Automatic music transcription using tokens

Recently, the use of generic encoder-decoder Transformer

architecture has shown its potential in automatic music

transcription tasks. Howthorne et al. proposed a generic

Transformer architecture for an automatic piano transcrip-

tion [4]. The proposed method takes mel-spectrogram of

audio and autoregressively generates a token sequence.

The tokenization method used in this work is similar to

how MIDI file stores its note sequences. The vocabulary

consists of note, velocity, and time tokens, with the

addition of an end-of-sentence (EOS) token for ending the

sequence. In this tokenization method, the timing of each

note is represented with absolute time location within the

segment, quantized into 10 ms bins. This kind of tokeniza-

tion method which represents the time of a note in location

as opposed to the time shift from the previous note was

reported to work better [18].

Chen et al. proposed a multi-objective generic Trans-

former model that not only predicts token sequences but

also frame-level onsets, offsets, and pitch activation [1].

In the original paper of [1], the authors report that al-

though the proposed model is a generic Transformer model

that generates a sequence of tokens, introducing multi-task

learning with frame-level labels, i.e., the pianoroll repre-

sentation, lowers the performance of the token-wise pre-

diction from the decoder, but improves frame-level estima-

tion performance compared to frame-level guitar transcrip-

tion model proposed in [19]. The authors also mentioned

that the lower performance of the model without multi-task

learning (that only predicts token sequence) could be at-

tributed to the insufficient size of the training set to learn a

dependable language model for the decoder.

3. PROPOSED METHOD

3.1 Hybrid CTC-Attention model for tokenized guitar

transcription

3.1.1 Tokenization

As for the tokenization method, we use a slightly modified

version of revamped MIDI-derived events (REMI) [20].
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Figure 2. Overview of our proposed model architecture.

Since our main interest is to accurately transcribe a per-

formance with pitch and timing information, we excluded

velocity tokens and chord tokens from the original

REMI. Excluding these tokens makes the total sequence

shorter, making it easier to pass the restriction of CTC (to-

ken sequence length must be shorter than input sequence

length), and easier to train. The tokenization method we

used in our proposed approach includes the following vo-

cabulary:

Blank [1 category] Used to represent the blank token

when using CTC. This token gets dropped when de-

coding the final prediction when applying CTC.

Position [16 categories] Indicates the location in a bar

quantized into 16th note. This token is placed to

indicate the start position of a note.

Pitch [45 categories] Each class represents the pitch rang-

ing from E1 to C5. This token is placed after the

Position token to indicate the pitch of a note.

Duration [16 categories] Represents the duration ranging

from the 16th note to a bar in 16th note increments.

This token is placed after the Pitch token to indi-

cate the duration of a note.

Bar [1 category] Token used to denote the start of a bar.

SOS, EOS [2 categories] Used to represent the start and

end of a token sequence. These tokens are used

for training and inferencing with the Transformer

decoder.

3.1.2 Encoder

Figure 2 shows the overview of the proposed model ar-

chitecture. We will refer to the left side of the figure as

encoder and the right side as decoder from here on out.

The structure of the encoder of our proposed model is

largely inspired by our previous automatic guitar transcrip-

tion model proposed in [17], with some modifications for

generating a token sequence and conditioning with BPM

information. The encoder structure can be divided into

three main parts: a convolution stack, a Conformer en-

coder, and an output layer for generating a token sequence

to which CTC can be applied later.

The convolution stack has 2D convolution, max pool-

ing, dropout layers, and a linear layer. Input features

go through two convolution blocks with 2D convolution,

batch normalization, and an activation function. Latent

features are then subsampled by max pooling and re-

fined by another convolution block and max pooling layer.

Lastly, a linear layer is added to reduce dimension. Three

dropout layers prevent overfitting after max pooling and

the final linear layer.

The Conformer encoder closely follows the Conformer

block architecture proposed in [21]. The Conformer en-

coder mainly consists of self-attention modules, convolu-

tion modules, and feed-forward modules. For the input

to the Conformer encoder, first, we concatenate the output

from the convolution stack and the given BPM informa-

tion of the input segment. Then, the concatenated feature

goes through a linear transformation layer, which is omit-

ted from Figure 2 for simplicity. We concatenate BPM in-

formation to the output of the convolution stack because

the problem formulation of our method is estimating a se-

quence of tokens based on both acoustic features and BPM

information.

Finally, the output layer is a simple linear transforma-

tion layer with softmax function at the end for generat-

ing CTC token outputs. Unlike the model that predicts

frame-level activation probability (pianoroll) from the en-

coder [1], the encoder of our proposed model generates

the probability of token sequence, which we can directly

calculate the loss between the output and the ground truth

token sequence by calculating CTC loss [6].

During inference, we first apply argmax to the en-

coder outputs, then repeating tokens get merged. Then,

the blank token gets removed to obtain the final output.

3.1.3 Decoder

The structure of the decoder in our proposed model is

roughly the same as the ones used in ASR tasks or other

symbolic music transcription tasks such as in [1, 4]. The

decoder consists of multiple Transformer decoder blocks

stacked in serial. The Transformer decoder block consists

of a masked self-attention module, a cross-attention mod-

ule, and a feed-forward module.

The decoder is trained and validated with a teacher forc-

ing scheme where the token is predicted one step ahead

without self-attention looking ahead by masking the self-

attention with a diagonal mask in a non-autoregressive

manner. During inference, we only give a start-of-sentence

(SOS) token at first, and autoregressively generate the fol-

lowing tokens by selecting the most probable tokens at

each timestep. The generation stops when the decoder gen-
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erates an end-of-sentence (EOS) token.

3.1.4 Multi-task learning

Our proposed method is a multi-objective model with both

the CTC output from the encoder and the output from the

decoder. Therefore, we define a custom loss function for

backpropagation.

First, we define the CTC loss LCTC as

LCTC = −
∑

y∈B

log p(y|x), (1)

where B is the set of all possible output sequences includ-

ing blank symbols, x is the input sequence, and p(y|x) is

the probability of generating the output sequence y from

the encoder given the input sequence x. The CTC loss is

calculated by summing the negative log probabilities of all

possible output sequences y that can be generated from

the ground truth sequence. The loss encourages the model

to learn to generate the correct output sequence while ac-

counting for possible alignment errors between the input

and output sequences.

Next, we define the cross-entropy loss as

LCE = −
1

N

N∑

i=1

C∑

j=1

yij log (ŷij) , (2)

where N is the number of samples, C is the number of

classes, yij is a binary indicator of whether sample i be-

longs to class j, and ŷij is the predicted probability from

the decoder of sample i belonging to class j.

The total loss function of our system Ltotal can be ex-

pressed as

Ltotal = αLCTC + LCE, (3)

where α is the hyperparameter for controlling the weight

of LCTC.

3.2 Data augmentation

When using a tokenization method whose time resolution

is in units of musical lengths, training a model to gener-

ate a sequence of tokens requires a large amount of data to

properly model the language structure of the tokenization

method and the concept of musical length. However, un-

like musical instruments such as the piano, which have a

significant amount of publicly available training data, the

guitar lacks sufficient data for training. The goal of the pro-

posed data augmentation methods is to scale up the amount

of data used in the training process.

3.2.1 Bar overlap

In the field of automatic music transcription, splitting a

musical excerpt into multiple segments is common, espe-

cially with the models that use the attention mechanism

since the attention mechanism has a space complexity of

O(n2) with respect to sequence length n. There have been

many attempts to train a network by cutting musical pieces

into exact lengths in seconds. However, there have been

only a few attempts to handle music pieces by cutting them

into the same musical length, e.g., 4 bars [17]. When cut-

ting a musical piece into segments whose length is in units

of bars, the most naive way of cutting it would be to cut

without overlap so that the timing of the start of a segment

is the end of the previous one. This results in obtaining

lexcerpt/lsegment segments, assuming that lexcerpt is devidable

by lsegment, where lexcerpt denotes the bar length of a musi-

cal excerpt, and lsegment denotes the bar length of a segment.

This method was done in our previous work [17].

We propose a method that creates more segments when

cutting musical excerpts, by overlapping segments, i.e.

sliding a window with a hop length shorter than the win-

dow length. This results in obtaining lexcerpt/loverlap −
(lsegment − 1) where loverlap denotes the bar length of the

overlap.

3.2.2 Synthetic audio-MIDI pair

With the goal of training a model to properly learn how

to generate the token sequence by reliably training the

language model for the decoder with a large amount of

data, we propose a method that can synthetically create an

audio-MIDI pair dataset from MIDI-only data. We gener-

ate synthetic audio data by utilizing an oscillator such as a

sinusoidal oscillator or a square wave oscillator. This re-

sults in obtaining an audio-MIDI pair with its audio being

perfectly aligned with the matching MIDI, yet with unnat-

ural timbre. With the synthetically generated audio-MIDI

pair dataset, we pretrain the model before training with

real-world data. This results in the decoder being trained as

a reliable language model for tokenization method, and the

model having preliminary knowledge regarding extracting

pitch and timing information.

It is possible to use the method to produce an endless

amount of data theoretically, by applying it to either a

publicly available MIDI dataset or automatically generated

MIDI from an automatic symbolic music generation model

such as [20,22,23] since the method generates audio-MIDI

pair data solely from MIDI.

3.3 Implementation details

Regarding the network settings for the encoder and de-

coder of our proposed model, we set the number of atten-

tion heads and the number of sequential Conformer blocks

to 8 and 6 respectively. For the Transformer decoder, the

number of attention heads and the number of sequential

blocks are set to 4 and 4 respectively. The dimension of

both the Conformer encoder and the Transformer decoder

is set to 128. We implement the Conformer encoder us-

ing the ESPNet2 framework [11]. We use the leaky ReLU

activation function [24] throughout the encoder, except for

the activation functions in the Conformer encoder and the

final output layer.

For the implementation of tokenization, we use Midi-

Tok [25], but slightly modify the original implementation

as mentioned in Section 3.1.1. As for the learning rate, we

use a cyclic learning rate scheme [26]. The base learning

rate is set to 1e-5, the max learning rate is set to 0.001, the

number of training iterations in the increasing half of a cy-
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Encoder output Decoder output

Method F1 TER F1 TER

No data augmentation 0.363±0.159 0.469±0.185 0.526±0.154 0.713±0.219

Bar overlap (BO) 0.555±0.125 0.388±0.090 0.630±0.196 0.497±0.176

Pretrain (PT) 0.512±0.043 0.365±0.029 0.699±0.017 0.441±0.011

Proposed (BO+PT) 0.666±0.047 0.307±0.025 0.804±0.015 0.336±0.021

Table 1. Estimation metrics for evaluating the proposed data augmentation methods. For all metrics, we report the mean

and standard deviation over the entire dataset. All the experiments were done with the proposed model.

Encoder output Decoder output

Model F1 TER F1 TER

Baseline [1] 0.767±0.026 - 0.603±0.026 0.589±0.017

Attention only - - 0.784±0.014 0.345±0.021

Proposed 0.666±0.047 0.307±0.025 0.804±0.015 0.336±0.021

Table 2. Estimation metrics for our proposed model, compared with a baseline model and a model without multi-task

learning with CTC. For all metrics, we report the mean and standard deviation over the entire dataset. All the experiments

were done by applying both of the proposed data augmentation methods. Note that the baseline model does not have TER

from the encoder output because the encoder output is pianoroll-like frame-level annotation, not tokens.

Decoder output

Model F1 TER

Attention only + BO 0.114±0.046 1.520±0.378

Proposed + BO 0.630±0.196 0.497±0.176

Table 3. Estimation metrics for simulating the situation

where only a small amount of training data is available by

not pretraining with synthetic audio-MIDI pair data. We

only show the results of the output from the decoder for

simplicity.

cle is set to 4 epochs, and the same for the decreasing half.

We made the peak learning rate decreases by a rate of 0.9

after each cycle. For the optimizer, we employ Rectified

Adam (RAdam) [27]. Finally, we set the weight α which

is used in the loss function, to 0.2.

4. EXPERIMENTAL EVALUATION

4.1 Experimental conditions

As for the MIDI data used in the pretraining phase, we

used data from Classical Guitar MIDI Archives [28]. We

filtered out the data that did not have the properties that we

want such as having a time signature other than 4/4 beat

or changing tempo over time. As a result, we obtained a

total of 1232 minutes of data. We used square wave oscil-

lator to make the synthetic audio, and split the dataset for

training/validation/testing with a ratio of 0.9:0.05:0.05.

For the data used in the finetuning phase, we used the

GuitarSet [29]. GuitarSet is a dataset for guitar transcrip-

tion research containing 360 audio recordings, totaling ap-

proximately 3 hours. Since the dataset was recorded by

six players, we left the recordings of one player for testing

and used the rest of the data for training and validation. We

rotated the test player to evaluate the methods with a six-

fold cross-validation method. For both the pretraining data

and finetuning data, we cut the tracks into segments with 4

bars, with 1 bar hop length.

Regarding the input of the network, first, we resampled

the audio to 22050 Hz, then we converted the audio to a

constant-Q transform (CQT) [30] with a hop length of 256

points, 24 bins per octave spanning over 8 octaves, result-

ing in a total of 192 frequency bins.

We evaluated the proposed methods in three points: 1)

the effectiveness of data augmentation methods, 2) the

performance of the model, 3) the effectiveness of intro-

ducing CTC in the proposed model when there is only a

small amount of training data available. For the experi-

ment measuring the effectiveness of the data augmentation

techniques, we compared the metrics of 1) using GuitarSet

only and not using bar overlap, 2) only applying bar over-

lap, 3) pretraining the model with synthetic audio-MIDI

pair dataset without bar overlapping, and 4) using both bar

overlapping and pretraining.

For the model comparison, we compared our proposed

model with 1) the model proposed in [1] which refer to as

baseline hereafter, 2) our proposed model without the use

of CTC (Ltotal = LCE) which we refer to as attention only

model from here on out, and 3) our proposed model.

Regarding the network settings of the baseline model

[1], we followed the settings described in the original pa-

per, except we input a 4-bar-long acoustic feature to the

network and use the same tokenization method as our pro-

posed method.

4.2 Evaluation metrics

Since the output of our proposed model is a sequence of to-

kens that can be converted into pianoroll, we used different

evaluation metrics for pianoroll domain and token domain.

In the pianoroll domain, we used precision, recall, and

F1 score. If the output is a sequence of tokens, we decode

the token sequence to pianoroll to calculate precision, re-

call, and F1 score. In the token domain, we used token er-
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Figure 3. Comparison of the speed in learning align-

ments between acoustic features (horizontal axis) and to-

kens (vertical axis). The training was done using only the

GuitarSet.

ror rate (TER), which is calculated similarly to word error

rate (WER) which is a widely used metric in the research

field of ASR and natural language processing (NLP). The

only difference is that every element is a token index in-

stead of a word in WER. The TER can be calculated as

TER =
S +D + I

S +D + C
, (4)

where S is the number of substitutions, D is the number

of deletions, I is the number of insertions, and C is the

number of correct tokens.

The reason why we introduce TER as an evaluation

metric is that we want to compensate for the mismatch

between the metrics used in pianoroll domain and human

perception. For instance, if we only evaluate the system

in the pianoroll domain, the outputs with the notes that are

shifted for a consistent amount of time will have very low

scores. However in the same case, if we use TER as an

evaluation metric, only the position tokens will lower

the metric, not penalizing for the shifted notes as much.

4.3 Results

The result of the experiment comparing the effectiveness of

the data augmentation methods is shown in Table 1. The

result shows that both data augmentation methods are ef-

fective in raising the estimation performance of the pro-

posed model. By comparing the effectiveness of bar over-

lapping and pretraining, pretraining shows slightly better

results in the output from the decoder but worse in the out-

put of the encoder.

The result of the experiment comparing the perfor-

mance of the models mentioned in Section 4.1 is shown in

Table 2. The result shows that our proposed model outper-

formed the baseline model and the proposed model without

utilizing CTC (attention only) in both F1 score and TER.

Upon comparing the estimation results of the attention-

only model with the proposed model, it is evident that the

latter produced superior results, thereby indicating that the

Figure 4. A sample of transcription result from our pro-

posed model. TP, FP, and FN denote true positive, false

positive, and false negative respectively.

inclusion of CTC considerably improves transcription per-

formance.

The result of the experiment simulating a situation with

a small amount of training data available is shown in Ta-

ble 3. We simulated this situation by only using the Gui-

tarSet for training. The result shows that the model with

attention only performed very poorly when there is only

a small amount of data. However, our proposed model

which utilizes multitask learning with CTC outputs from

the encoder performs better compared to attention only

model. This indicates that employing multi-task learn-

ing with CTC is highly effective when there is an insuf-

ficient amount of data. Figure 3 shows the attention align-

ments between acoustic features and tokens. We observed

that despite being trained for 64 epochs, the attention only

model failed to acquire a reasonable alignment, whereas

the suggested model achieved to acquire the desired align-

ments early on in the training process. The performance

difference between the attention only model and the pro-

posed model is likely to be attributed to the difference in

the difficulty of learning the correct alignments.

While we did not include the outcomes of using solely

synthetic audio-MIDI pair data for both training and test-

ing in any of the tables, it is worth stating that during the

pretraining phase of the experiment utilizing the proposed

model and data augmentation methods, the output of the

decoder with the test data yielded an F1 score of 0.959 and

TER of 0.029. This indicates that the amount of data used

in the pretraining was sufficient enough to train a reliable

language model for the decoder.

5. CONCLUSION

In this paper, we proposed two data augmentation methods

for training sequence-to-sequence networks that used tok-

enized music representation as output, and a hybrid CTC-

Attention model for automatic guitar transcription. We

confirmed that 1) both of the data augmentation methods

are highly effective in training the sequence-to-sequence

models when there is an insufficient amount of data, 2) our

proposed hybrid CTC-Attention model outperforms con-

ventional methods that transcribe guitar performance with

tokens, and 3) the addition of multi-task learning with CTC

in our proposed model is especially effective when there is

an insufficient amount of training data.
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