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ABSTRACT

In this paper, we propose four different approaches to

quantify similarities of compositional texture in symbol-

ically encoded piano music. A melodic contour or har-

monic progression can be shaped into a wide variety of

different rhythms, densities, or combinations of layers. In-

stead of describing these textural organizations only lo-

cally, using existing formalisms, we question how these

parameters may evolve throughout a musical piece, and

more specifically how much they change. Hence, we de-

fine several distance functions to compare texture between

two musical bars, based either on textural labels annotated

with a dedicated syntax, or directly on symbolic scores.

We propose an evaluation methodology based on textural

heterogeneity and contrasts in classical Thema and Vari-

ations using the TAVERN dataset. Finally, we illustrate

use cases of these tools to analyze long-term structure, and

discuss the impact of these results on the understanding of

musical texture.

1. INTRODUCTION

The term texture is used at various levels of description in

the music domain. Initially related to the description of

sound features, it is also used in symbolic representations

of music to describe musical streams through a variety of

concepts characterizing the volume and the organization

of basic score elements such as notes and voices, which

encompass high-level concepts such as monophony and

polyphony 1 [1–4]. Between these two extremes, elements

of musical texture include layers, voices, melodic or rhyth-

mic patterns, articulation and instrumentation [2,5]. Huron

interestingly summarizes it in three main ideas [3]: (1) the

density of musical elements, (2) the diversity or inhomo-

geneity of elements, and (3) the overall sonic activity. The

first two can be included in the notion of compositional

1 Polyphony, as a type of texture, has a stronger meaning than “the
simultaneous presence of possibly more than one note”. Here, it implies
“two or more lines moving independently” [1]. Similarly, monophonic
texture is not restricted to single melodies, but designates the presence of
a unique musical line – possibly with note doubling or parallel motions.
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texture, as opposed to orchestral (or timbral) texture [6].

Compositional texture, which is the object of study of the

present work, is mostly embedded in the symbolic score.

It is worth noting that some models of texture only focus

on a particular musical dimension. Nordgren’s categoriza-

tion for instance deals with the vertical dimension only,

with note doubling and spacing [7]. Conversely, other ap-

proaches focus on the time dimension, as a complement

to harmony, as in [8], or [9] for style-transfer. Figure 1

shows multiple versions of the same musical theme, which

is shaped into different compositional textures.

We aim at quantifying the differences of compositional

texture in piano music. Previous studies provided local de-

scriptions of texture [10–12]. Here, we question how textu-

ral dimensions may evolve through a whole piece of music.

This objective requires the elaboration of dedicated tools to

compare textures, more precisely to assess the distance, or

dissimilarity, between two given textural configurations.

A number of Music Information Retrieval (MIR) tasks

involve the search of similarities at various scales, from

pattern detection [13, 14] to genre classification [15, 16].

In the audio domain, music similarity lies at the center

of content-based recommender systems [17, 18]. At the

level of the musical score, music similarity has also been

extensively studied on specific musical notions such as

melody [13–15,19–22], rhythmic pattern [23,24], or chord

and harmonic progressions [25–27]. Classical approaches

for computing similarities include edit-distance on string-

based representation, or geometric distance on pianoroll-

like representations [28]. New latent embeddings of music

also emerged from development of deep neural networks,

as well as metric learning methods, like [29]. Although

measures of music similarity may ultimately reflect some

similarities in the perception of music [30,31], we compare

textural information based on symbolic music scores only.

In particular, we focus here on studying different represen-

tations of texture in order to build interpretable dissimilar-

ity measures.

In this work, we propose distance functions to quan-

tify textural dissimilarity between musical bars from piano

scores. We first detail four types of textural distance (Sec-

tion 2). Then, we introduce estimators of textural hetero-

geneity and contrast, for longer musical extracts, and pro-

pose a dedicated methodology to evaluate our distances,

using a dataset of Thema and Variations (Section 3). Fi-

nally, we provide use cases of such distances, especially in

the context of form or structure analysis (Section 4).
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Figure 1: Examples of different textures from Ten Variations in G on ‘Unsere dummer Pöbel meint’ by W. A. Mozart

(K. 455, 1784). A textural annotation, following the syntax defined in [10], is provided for each example. The melodic

contour (circled in red) is shared among the variations, but the overall compositional texture changes. a. The theme is

introduced in monophonic texture: three voices merge into a single musical idea, in parallel octave motions; b. There

are now only two notes sounding at the same time: the vertical density decreases. But horizontal density is increased by

sixteenth notes; c. A more homophonic texture: three or four threads, mostly synchronous; d. Here, we identify two layers

of melody and accompaniment. In these last three bars, the harmony changes, but compositional texture is exactly the same.

2. DEFINING DISTANCES FOR

COMPOSITIONAL TEXTURE

The distances that are designed in this paper aim at com-

paring compositional texture at the scale of individual mu-

sical bars. We focus on (polyphonic) piano scores of the

Western Classical repertoire, with no voice separation.

2.1 Distances based on textural labels

Textural annotations have been produced in [6] for piano

music, on Mozart’s sonatas. For each annotated bar, a la-

bel enclose two levels of textural information: on the one

hand, a set of keywords that indicate the presence of certain

properties of the overall textural configuration, or in one of

its layer (like parallelism, melodic or harmonic roles...);

on the other hand, a vertical structuration of the musical

content into main textural layers and sublayers [10]. We

propose two distance functions based on this information.

2.1.1 Distance between textural elements

The first distance is based on a set of binary textural ele-

ments which have been defined in [6, section 3.2]. These

indicators express the presence of atomic textural charac-

teristics in a musical bar. They include specific functions

of the musical layers: melodic (M), harmonic (H), or static

(S), relationships between voices: homorhythmy (h), par-

allel (p) or octave (o) motions, as well as characteristic

musical figures such as sustained (t) or repeated (r) notes,

scale motives (s), oscillations (b), sparse horizontal den-

sity (_) and neat changes of texture in the bar (,).

A musical bar a is therefore abstractly represented by

a vector texel(a) which comprised of the 12 textural ele-

ments from its label. The distance function dtexelreturns

the Hamming distance between the vectors. It is an inte-

ger between zero and 12 that corresponds to the number of

textural elements that differ between two bar annotations:

dtexel(a, b) =
12
∑

i=1

|texeli(a)− texeli(b)|

where a and b are two musical bars, and texeli(·) the binary

value of the ith textural element of a given bar.

2.1.2 Textural diversity and density

At a higher level of description, textural annotation of pi-

ano scores mainly focus on grouping threads 2 of notes

into distinct musical layers. Examples 1.a and 1.d both

have three threads, but they are organized differently. In

1.a, they merge into a single layer. On the contrary, in 1.d,

the threads are divided in 2 main textural layers: its texture

is more diverse than 1.a without being thicker.

This grouping of threads is formalized in [10] under

the terms of density (number of threads, of simultaneous

sounding notes; the thickness or density-number in [2])

and diversity (number of distinct layers). These two di-

mensions allow to embed any textural label in the planar

textural space represented in Figure 2 (left).

The density-Diversity distance ddD separating two bars

is defined as the Euclidean distance between their labels in

this space. In previous examples, the first bar of 1.a and

1.d respectively have density-diversity coordinates of (3,1)

and (3,2), resulting in a distance of 1.

Note that this distance only takes into account the verti-

cal dimension of compositional texture (as in [7]). A draw-

back of restricting textural analysis to only two dimensions

is that it is less sensitive to small textural fluctuation: as an

example, the 1164 labels released by [6] only use 17 dis-

tinct combinations of density and diversity values. Never-

theless, this condensed description allows an interpretable

2 The term ‘thread’ designates the most atomic elements that can be
combined into musical ‘layers’ [5, p.65].
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Figure 2: Schematic representations of textural spaces

proposed respectively by Couturier et al. [6] (left) and

Huron [3] (right). In both case, areas of the space are

matched to main types of texture [1, 4]. The boundaries

are not strict, though. The four examples of Figure 1 are

also represented in these spaces.

approach for high-level analysis, as it reflects main textural

strategies (see Figure 2).

2.2 Score-based distances

The distances defined in Section 2.1 are based on

manually-annotated textural labels. Such textural annota-

tions are however rarely available as their production re-

quires substantial time and expert knowledge. In contrast,

this section presents two distance functions that can sys-

tematically be computed on encoded musical scores.

2.2.1 Adapting Huron’s textural space

Another two-dimensional textural space has been proposed

by Huron in [3]. It is used in this article to catego-

rize full musical pieces among main types of texture (see

also [1]): polyphony, monophony, homophony and het-

erophony, represented on Figure 2. Instead of analyzing

the quantity and grouping of musical threads (see Section

2.1.2), it relies on the relationships between them: the pro-

portions of onset synchronization and semblant motions.

The original study used a pre-existing separation of

voices in the pieces (such as Bach’s Inventions and Sin-

fonias) to compute these features. For both of them, we

provide an estimation of the value in the interleaved poly-

phonic case – i.e. without separation of voices. Note that

it is not always possible to find a valid and unique voice

separation in piano scores [32]. The details of the imple-

mentation, out of the scope of the article, can be found in

the dedicated repository 1 . They are:

• The ratio of onset synchrony quantifies the degree

of homorhythmy of the note onsets. A value of 1

indicates a perfect synchronization of note onsets,

which is the case in monophonic (see Figure 1.a)

or homophonic (chordal or hymnal) textures. This

value decreases if note onsets happens while other

notes are sustained. For example, 1.b has a value of

0.25: in this case, only one onset over four is fully

synchronous.

1 Available at http://algomus.fr/code.

• The ratio of semblant motions estimates to what

extent the directions of pitch motions are similar.

These feature has its maximal value in the case of

monophony, once again, whereas the presence of

multiple concurrent layers with opposite motions

will reduce its value.

We use these dimensions to build a new distance

dhuron(the Huron distance) between two bars, which is ob-

tained by summing their differences of onset synchrony

values and semblant motions values, using our implemen-

tation in the polyphonic interleaved case. This corresponds

to the Manhattan distance between their respective coordi-

nates in this textural space.

2.2.2 Features of density

We present a last set of three distances based on low-level

textural features, focusing on vertical and horizontal den-

sity. On the one hand, vertical density refers to the thick-

ness of the texture, the number of simultaneous notes –

similarly to the density evoked in Section 2.1.2. On the

other hand, horizontal density describes the volume of suc-

cessive notes, and their position in time. For both dimen-

sions, we use a value of volume and a value of dispersion:

• vert_avg: average thickness, in number of notes.

After slicing the bar into successive pitch sets, we

count the number of pitches in each slice, weighted

by their duration.

• vert_std: standard deviation of the number of

pitches in each onset of one or more notes.

• horiz_avg: average number of onsets per beat.

The duration of one beat is inferred from the bar time

signature.

• horiz_std: standard deviation of the regularity

of onsets, i.e. around the average duration between

successive onsets.

We use Manhattan distance to compare two vectors of

features, computed on two target bars. We define and test

three variants of this distance: based on the two horizontal

features only (dh), on the two vertical ones (dv), or on all

the four (dhv).

2.3 Implemention details and release

The features are extracted from the musical scores using

intermediate Tab-Separated Values (TSV) files, which con-

tain a list of notes (see [33]). The code 1 , in Python,

includes a converter to this format from both Hum-

drum **kern [34] and musicXML formats, using music21

Python library [35].

3. EVALUATING TEXTURAL DISTANCES

3.1 Dataset

To evaluate the relevance of the distances proposed in

the previous section, we use bars from classical Thema
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and variations. [36] emphasizes the links between musical

variations in general, and musical similarity. In the genre

of Thema and variations, a theme is reproduced in short

sections with various changes of (textural) parameters, but

in a way that allow to recognize the original melodic con-

tour and/or harmony; as in Figure 1. This structure has the

advantage of providing both dissimilar examples (in dis-

tinct variations), and similar examples (in the same varia-

tion).

Although no explicit mention of textural homogene-

ity within variations has been found in musicological lit-

erature, authors more often insist on the higher contrast

between distinct variations [37, p.570]. The genre of

Thema and variations provides “the largest esthetic spec-

trum” [38], and this variety of content is valuable in our

case. We rely on this fundamental assumption for the rest

of the paper: on average, a musical bar is more similar –

in texture – to a bar from the same musical phrase, than to

any other bar in another variation or piece.

We use the TAVERN dataset [39], which consists in 27

sets of thema and variations by Mozart (10) and Beethoven

(17). The variations are already segmented into structural

phrases, totalling 1060 of them in the whole dataset. We

take those phrases as structural units in which we use the

score-based distances defined in section 2.2. Further anno-

tations of texture would be required to apply label-based

distances on this dataset.

Remark. The texture of phrases can vary within the

same variation, to a lesser extent – this is generally the

case in bipartite or tripartite variations, which is a common

structure in this context [37, 38]. Changes of mode (ma-

jor/minor) often occur, in general at least once per set of

variations. This change is not considered as textural, but it

is often accompanied by changes of other musical param-

eters that are in the scope of texture, so it would still add

valuable information.

3.2 Heterogeneity and contrast

To evaluate textural dissimilarities on full musical extracts,

we introduce two indicators:

• heterogeneity: the heterogenity (hd) within a single

set of bars corresponds to the average distance be-

tween pairs of distinct bars from the set, for a given

distance function d.

• contrast: the contrast (cd) between two sets of bars is

defined as the average distance value between pairs

of bars from the two extracts, for a given distance

function d.

More formally, we have:

hd(S) = avg
∀(mi,mj)∈S2,i ̸=j

d(mi,mj)

cd(S1, S2) = avg
∀mi∈S1,∀mj∈S2

d(mi,mj)

where avg is the arithmetic mean operator, S, S1 and S2

are sets of bars, and mi, mj denote bars/measures in those

sets.

Figure 3: Schematic representation of the computation of

heterogeneity of a specific phrase (arcs above) and contrast

(links between the bars of phrase P and all the other bars

outside P, in the corpus T). Our evaluation metric is the

average value of this ratio for all the phrases of the corpus.

The heterogeneity is a measure of dispersion: a lower

value means that samples in the extract are more similar

between each other (given a distance d). We specifically

ignore the comparisons of a bar with itself to reduce the

influence of the size of S.

Let us illustrate those two indicators for the descriptor-

based distance dhv (Section 2.2.2) using examples Fig-

ure 1.a and Figure 1.d. We note Sa = {bars of Fig-

ure 1.a} = {a1, a2} and Sd = {bars of Figure 1.d} =
{d1, d2, d3}. In Sa, the heterogeneity is simply equal to

the distance between its two bars: small differences occur

in horizontal density, but not in vertical density. We ob-

tain a value of 0.6. To compute the heterogeneity in Sd,

we have three possible unordered pairs of bars to com-

pare ({d1, d2}, {d1, d3} and {d2, d3}); however, the tex-

ture in these bars is precisely the same regarding dhv , re-

sulting a in value of zero of heterogeneity. The inequality

hd(Sa) > hd(Sd) can be interpreted as “Sa is more tex-

turally heterogeneous than Sd, with regards to distance d”.

The contrast cd between Sa and Sd is 1.825. In general,

the inequality hd(Sa) < cd(Sa, Sd) means that a bar in Sa

is, on average, more similar to other bars in Sa than bars in

Sd.

3.3 Evaluation methodology

We evaluate how heterogeneous the texture is within each

phrases of the TAVERN dataset, compared to the rest of

the corpus. Under the assumption exposed in Section 3.1,

we assess the quality of a textural distance d by looking

for the lowest average Relative Heterogeneity on TAVERN

phrases (T):

aRHT (d) = avg
∀Pi∈T

(

hd(Pi)
cd(Pi, T \Pi)

)

where T is the set of all the phrases in TAVERN dataset, Pi

is the ith phrase of the dataset, and d is a textural distance

function between individual musical bars.

This process is schematized in Figure 3. For a given

phrase, if the ratio between intra-phrase heterogeneity and

inter-phrases contrast is very low, it means that the extract

is rather homogeneous, and that this texture – or whatever

the distance d represents – is rather specific to this extract

compared to the rest of the corpus. If this ratio is above 1, it

means that the bars in this phrase are more similar to other
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Distance d aRHT (d)

Horiz. and Vert. density features dhv 0.51

Horizontal density features dh 0.39

Vertical density features dv 0.64

Huron’s textural space dhuron 0.72

Comparison: Pitch class content dpc 0.80

Table 1: Evaluation of textural distances using the Average

Relative Heterogenity on phrases of the TAVERN dataset

(aRHT (d)), to minimize.

bars outside the phrases than between themselves. Put dif-

ferently: a value below 1 show that intra-phrase distances

(heterogeneity) are smaller than inter-phrases comparison

(contrast with the corpus). The value of aRHT (d) is the

average of this ratio on all the phrases of the corpus.

Remarks. We could directly compute values of contrast

or heterogeneity on reference data, using different textural

distance di and opt for the most convincing values. How-

ever, these values are not directly comparable if they are

based on different distances: they are average values of

specific distances, and thus follow their respective – and

possibly very different – order of magnitude. Also note

that the contrast is not a distance function (or metric) be-

cause the contrast between the same set of bars could be

different from zero – if its bars that are not all the same.

The functions presented in Section 2 are metrics, applied

to different representations of texture in a musical bar.

3.4 Results

The results, for all score-based distances, are shown in

Table 1. Using the distance based on all density features

(dhv), the aRHT of 0.51 indicates that a musical bar is, on

average, a twice more similar to bars in the same phrase

than to the rest of the corpus. The use of horizontal density

features alone (dh) improves this value (0.39), highlight-

ing the importance of the time dimension to discriminate

between textures.

For comparison, we integrate an additional distance

(dpc) that describe not textural but harmonic content – com-

puting Euclidean distance between pitch-classes profile.

Its aRHT of 0.80 is still below 1, which means that intra-

phrase dpcvalues (heterogeneity) are smaller than inter-

phrase comparison (contrast with the corpus); this is not

surprising in tonal music. But most importantly, this eval-

uation metric value is higher than for all other textural dis-

tances. This gap contributes to validate the use of Thema

and Variations as a source of empiric ground truth exam-

ples of textural similarities.

3.5 Links between distances

In Table 2, we display correlations between all the dis-

tances defined in Section 2. They are computed on all dis-

dhv dh dv dhuron ddD dtexel

dhv 1.00 " " " " "

dh 0.95 1.00 " " " "

dv 0.33 0.05 1.00 " " "

dhuron 0.10 0.10 0.05 1.00 " "

ddD 0.19 0.03 0.53 0.03 1.00

dtexel 0.10 0.06 0.14 0.01 0.20 1.00

Table 2: Spearman correlation between textural distances

as defined in Section 2, evaluated on all pair of bars in three

Mozart piano sonatas (K. 279, K. 280, K. 283).

dhv dh dv dhuron ddD dtexel

Horizontal density
(time dimension)

× × ×

Vertical density
(thickness)

× × × ×

Semblant motions,
parallelism

× ×

Roles of layers
(melody, acc. ...)

×

Main types of
texture (see Fig.2)

× ×

Computed on
symbolic scores

× × × ×

Computed on
annotated labels

× ×

Table 3: Summary of the distances defined in Section 2,

and the different dimensions of compositional texture that

they take into account.

tinct pairs of bars among 1160 from Mozart piano sonatas

(K. 279, K. 280, K. 283), for which we have both textural

annotations [6] and encoded scores [33]. We use Spearman

correlation, that depicts similarities of rankings of these

values.

Huron-space distance (dhuron) and texel distance (dtexel)

seem independant from other distances. We explain it by

the fact that our distances focus on different dimensions of

texture, summarized in Table 3. In particular, dtexelcovers a

wide range of abstract concept and is the only function that

deals with the roles of layers, which is difficult to approxi-

mate using low-level features. Otherwise, we find that us-

ing horizontal density features only (dh) gives a very simi-

lar behavior than using all four density features (dhv) – with

a correlation of 0.95. Although Density-Diversity distance

(ddD) and vertical-feature distance (dv) deal with very dif-

ferent level of abstraction, they correlates positively (0.53),

as they both focus on the vertical dimension of texture.
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Figure 4: Textural dissimilarities between the phrases of

Ten Variations in G on ‘Unsere dummer Pöbel meint’

by W. A. Mozart (K. 455, 1784). Intersections are col-

ored according to contrast values using dhvdistance (Sec-

tion 2.2.2), and heterogeneity of phrases on the diagonal

(Section 3.2). The phrases are scaled according to their

size in number of bars (totalling 338 in the whole piece).

The most similar extracts are shown in dark blue, whereas

light green indicates higher dissimilarity. – We identify

blocks of consecutive similar variations, such as (1,2,3) or

(5,6,7); inner structure of varations may reveal contrasting

segments in the case of Variation 4; Variation 9 is very con-

trasted due to the alternation between chordal texture and

fast melodic lines; the penultimate phrase comes back to

the original texture of the Thema.

4. USE CASES FOR STRUCTURE ANALYSES

4.1 Long-term textural dissimilarities

The contrast defined in Section 3.2 can be used as a dissim-

ilarity measure between any sets of bars, from individual

pieces to entire corpora. It may also emphasize the rela-

tionships between sections, or phrases, of a given piece of

music. Figure 4 shows an example of self-similarity ma-

trix based on textural contrast between phrases of a piece

in Thema and Variations form. Beyond the case of Thema

and Variations, the contrast measure gives an overview of

the piece macrostructure, and may even link thematic ma-

terial up to transposition, such as recapitulation parts in

sonata form. More generally, the proposed distances can

lead to promising and original approaches for automatic

structure segmentation.

4.2 Short-term textural changes

In this paper, we assume lower textural heterogeneity

within phrases of thema and variations. But in the gen-

eral case, changes of textures may occur in the middle

of a phrase. Following the intuition that in-phrase texture

changes mostly occur in openings and endings of phrases

in the TAVERN dataset, we evaluate dhvusing the same

methodology as in Section 3.3, but systematically ignore

the last bar of each phrase of the corpus. We find that

aRHT (dhv) decreases from 0.51 to 0.42. When removing

each first bar instead, it drops to 0.34. In comparison, re-

moving the second or third bar of the phrases increases the

original value of aRHT (dhv) to respectively 0.55 and 0.54.

This shows that the ‘core’ of phrases have slightly more

textural homogeneity, and most importantly that openings

and endings are less similar to the middle of phrases. Typ-

ical examples are transitional melodies and final chords

in cadences – which often constrast with the rest of the

phrase. We believe that our distance can be used to study

more precisely these local changes of texture within short

sections.

5. CONCLUSION AND FURTHER WORKS

The textural distances proposed in this paper give promis-

ing perspectives for the computation of multi-level simi-

larities in symbolic music. On the one hand, comparing

textural labels allows to rely on expert data, which is al-

ready known as texturally meaningful. This information

already carries a lot of abstraction, but it is costly to pro-

duce in practice and can lead to a certain amount of sub-

jectivity [40]. Moreover, the low amount of available an-

notations hinders our ability to evaluate the quality of these

distances. On the other hand, using symbolic features that

can be computed automatically is more practical, and also

more objective. In further work, we plan to investigate the

best features to use at a more global scale, as well as their

relative contibution.

Although the proposed distances are drawn at the level

of musical bars, we elaborated a more global dissimilar-

ity measure to compare sets of several bars, and highlight

textural contrast between and within structural sections of

musical pieces. This measure made possible a quantitative

evaluation of textural distances on a corpus of Thema and

Variations, based on the assumption that texture is more

dissimilar between two distinct variations, and more ho-

mogeneous within single variations.

Our distances capture different facets of compositional

texture, at different levels of abstraction (see Table 3). Fo-

cusing on more atomic and independant textural aspects

can enhance the precision and the interpretability of our

analyses. However, ensuring a proper disentanglement of

such dimensions remains a major challenge. Integrating

Thema and variations in the evaluation methodology is a

step further to link theoratical models of texture to con-

crete, and somewhat intuitive, examples. It contributes to

a better understanding of some models of texture, but also

of musical texture itself.

A potential continuation of this work is to broaden the

scope of our experiments to other repertoires. We believe

that the tools introduced in this paper are easily extendable

to other styles of written polyphonic music, or to other in-

struments. In the meantime, the present experiments on

Western classical piano music already offer promising op-

portunities of quantitative analyses of texture with regards

to genre, style, form or harmony.
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