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ABSTRACT

This paper describes a data-driven framework to parse mu-

sical sequences into dependency trees, which are hierarchi-

cal structures used in music cognition research and music

analysis. The parsing involves two steps. First, the input

sequence is passed through a transformer encoder to enrich

it with contextual information. Then, a classifier filters the

graph of all possible dependency arcs to produce the depen-

dency tree. One major benefit of this system is that it can

be easily integrated into modern deep-learning pipelines.

Moreover, since it does not rely on any particular symbolic

grammar, it can consider multiple musical features simulta-

neously, make use of sequential context information, and

produce partial results for noisy inputs. We test our ap-

proach on two datasets of musical trees – time-span trees

of monophonic note sequences and harmonic trees of jazz

chord sequences – and show that our approach outperforms

previous methods. 1

1. INTRODUCTION

Tree-like representations are a powerful tool in many ap-

proaches to music analysis, such as Schenkerian Theory

and the Generative Theory of Tonal Music (GTTM). In

the Music Information Retrieval (MIR) literature, we find

tree models of melodies [1–4], chord progressions [5–8],

and rhythm [9–13]. Parallels between aspects of music and

language are often drawn, as these have similar hierarchical

properties and their underlying cognitive mechanisms could

be closely related [14]. However, with a few exceptions,

such as instrument grouping and metrical information in

scores, music is generally encoded sequentially without

explicit information about its hierarchical organisation. The

task of creating such hierarchies from a sequential represen-

tation is called parsing and it is an active object of study in

the MIR community [3, 7, 11, 15].

1 All our code and data are publicly available at https://github.
com/fosfrancesco/musicparser
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Current parsing approaches are based on generative

grammars, typically context-free-grammars (CFG) or simi-

lar related mechanisms, which can be fundamentally seen as

a set of expansion rules generating a tree from the top (the

root) to the elements that compose the sequence (the leaves).

Grammar rules can be enriched with a probability model

that permits the ranking of different parses by plausibility.

When a grammar is available, parsing can be achieved with

grammar-based parsing algorithms, typically variants of

the Cocke–Younger–Kasami (CYK) algorithm [16]. While

the grammar rules are most often built by hand, by rely-

ing on musicologists’ knowledge, the probabilities can be

learnt from data if sufficient amounts of musical sequences

with ground-truth tree annotations are available. The gram-

mar approach has the strong advantage of leveraging an

interpretable and cognitively plausible mechanism. Still, it

has the following limitations: it is hard to achieve robust-

ness against noisy data, which can cause a complete failure

with no output in case the sequence cannot be produced

by the grammar rules; it requires a high degree of domain

knowledge; it is challenging to account for multiple musical

dimensions in a single grammar rule; and parsing is usually

so slow for long sequences that heavy pruning is necessary

(CYK-parsing complexity is cubic in the length of the se-

quence, parallelisation does not help much, and there is no

active research in developing dedicated hardware).

Inspired by recent research in the field of natural lan-

guage processing (NLP), we propose a novel, grammar-less

approach that requires little domain knowledge (only for the

feature extraction phase), can easily consider multiple mu-

sical features and sequential information, produces partial

results for noisy input, and is potentially scalable to longer

sequences and larger datasets (since its components are

proven to succeed in such scenarios). Our system works by

predicting dependency trees which consist of dependency

arcs between the input sequence elements. Such a struc-

ture can be used as-is or later be converted into constituent

trees which are typically used to model music hierarchies

(see Figure 1). The probability of each dependency arc is

predicted in parallel (i.e., without considering other depen-

dencies during prediction) by leveraging the rich contextual

information produced by a transformer encoding of the in-

put sequence. This set of probabilities is then run through

a post-processing algorithm to ensure a valid tree structure

(i.e., no cycles of dependency arcs).

We pair our Music Dependency Parser MuDeP with a
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Figure 1. The tree harmonic analysis of the A Section of

“Take the A Train” in three different representations. Top:

dependency tree, Left: GTTM-style constituent tree. Right:

CFG-style constituent tree.

procedure that enables its usage from constituent trees, and

test it on two tree datasets: the time-span treebank from

the GTTM database [17], which expresses subordinate rela-

tions between notes in monophonic melodies; and the Jazz

Harmony Treebank (JHT), a set of harmonic analyses for

chord sequences [18]. We compare the results of our system

with the best-performing available approaches and obtain

new state-of-the-art results.

2. RELATED WORK

Music Trees and Music Parsing. Trees of musical

sequences have traditionally been notated as constituent

trees [1–3, 5–13, 19], with few exceptions, such as the us-

age of a dependency-based evaluation metric [20], and the

computation of pairwise voice dependencies [4, 21].

A system for parsing jazz chord sequences into harmonic

analyses has been proposed by Harasim et al. [7] and later

evaluated on a larger dataset [20]. We compare our results

to this approach below. Automatic grammar-based parsing

of time-span GTTM trees has been attempted by Hamanaka

et al. [22, 23] and Nakamura et al. [2]. The latter obtained

comparable results with an approach that doesn’t require

manual parameter tuning, and we compare our system with

it. More recently, deep-learning-based approaches were

also proposed [3, 24, 25] but the first two focus only on

GTTM metrical and grouping information, and the latter

focus mainly on evaluating the usage of time-span trees for

melodic morphing and we could not reproduce their results.

Natural Language Parsing. Our model architecture is

inspired by the graph-based dependency parser of Dozat

and Manning [26, 27]. This model, extended with second-

order dependency predictions [28] and pretrained language

models [29], is still the state of the art for NLP sentence

parsing [30]. Still, we make some substantial changes: the

embedding layer is adapted to work from musical input, the

encoder is a transformer instead of an LSTM, and, instead

of the bilinear layer for arc prediction, we use a linear layer.

All these choices are motivated by ablation studies.

3. TREE FORMATS FOR MUSIC ANALYSES

In this section, we detail the types of tree used in this pa-

per, highlight their differences, and propose algorithms to

translate between them.

Figure 2. A dependency tree with double-sided dependen-

cies (left). It corresponds to two possible constituent trees

(middle and right).

3.1 Constituent vs Dependency Trees

A tree can be defined recursively as a node with an arbitrary

number (including 0) of children that are also trees. The

node that is not a child of another node in the tree is called

root, the nodes that do not have children are called leaves,

and the remaining nodes are called internal nodes. When

a tree is used to model some relations of the elements of a

sequence there are two possible configurations: dependency

trees, where each node (leaf, internal, and root) represents

one and only one element of the sequence; and constituent

trees where all elements of the sequence are represented

in the leaves, and root and internal nodes represent nested

groupings of such elements.

Among the constituent trees there exist different repre-

sentations. The bottom part of Figure 1 shows the two kinds

we consider in this paper: the one introduced by Lerdahl

and Jackendoff [31] in their Generative Theory of Tonal

Music (GTTM), and the one built from the Context-Free-

Grammar (CFG) of jazz harmony by Harasim et al. [7]. The

two representations convey almost the same information:

they are both binary trees (i.e., every node has either 0 or

2 children), the internal nodes are denoted by line intersec-

tions on the first, and by explicit labels on the second; they

both specify an order of importance among the children

(i.e., the choice of a primary and secondary child) by the

straight line continuation, or by labelling the node with the

label of the primary child. However, this latter mechanism

cannot differentiate between primary and secondary when

both children have the same label; therefore, the GTTM

representation is slightly more informative.

Our approach does not directly treat constituent trees

but considers dependency trees. Each child in such a tree

is called dependent, and the node of which it is a child

is called the head. Dependency trees can represent the

same information as the binary constituent trees described

above. Indeed, a dependent-head arc is equivalent to a head-

labelled constituent node with two children: the primary is

again the head, and the secondary is the dependent. There

is only one ambiguity: the dependency tree does not encode

a splitting order in the case of double-sided dependencies,

a configuration in which one head has dependents on both

sides. This makes the dependency-to-constituent transfor-

mation not unique (see Figure 2). This configuration is

never present in our datasets (i.e., the root is always the

left-most or right-most element in the sequence) thus we

don’t handle it. For more general datasets, one could add a

binary classifier that predicts the splitting order.

The dependency trees built from the constituent trees
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are projective, i.e., for all their arcs xdep → xhead, there is a

path from the head to every element x that lies between the

head and the dependent in the sentence [32]. This means

that there are no “crossing arcs”, e.g., x1 −→ x3, x2 −→ x4.

Before proceeding with the paper, we introduce some

notation we will use in the next sections. We denote

the sequence that constitutes the input of our system as

x = [x1, . . . , xλ], where λ is the sequence’s length. We

represent the dependency tree over x as the set of dependent-

head 2 indices that corresponds to each arc xdep → xhead:

y = {(dep, head) | dep, head ∈ [1, . . . , λ]} (1)

3.2 Tree Conversion Algorithms

Since the ground-truth annotations in our datasets are con-

stituent trees, we translate them into dependency trees for

training. We also translate tree predictions back to con-

stituent trees to run constituent-based evaluation metrics,

and when we are interested in using such a representation

as input for further applications. We assume our constituent

trees to be binary trees and not contain double-sided depen-

dencies. For simplicity, we consider CFG-style constituent

trees with labels in their internal nodes.

3.2.1 Dependency to Constituent Tree

Existing NLP implementations of this transformation are

unnecessarily complicated for our scenario because they

consider compound node labels and double-sided depen-

dencies [33]. Instead, we present a recursive top-down

algorithm which yields a unique constituent solution for

every single-sided dependency tree.

The algorithm takes a fully formed dependency tree and

starts with the root of the (to-be-built) constituent tree. At

each step, it removes one dependency and adds two new

constituent nodes. The recursive function takes as input

a dependency tree node and a constituent tree node, both

labelled with the same sequence element. The constituent

node gets assigned two children: the primary is labelled

with the element of the input nodes, and the secondary

is labelled with the dependent that is further away in the

sequence. The choice of which is the left and the right child

respects their label position in the sequence. The considered

dependency is removed from the tree and the recursive

function is called two times, once for each constituent child

(with the corresponding dependency node). The process

stops when the dependency tree node has no dependents.

3.2.2 Constituent to Dependency Tree

This algorithm was used in the literature (e.g., [18]). It starts

from a fully formed constituent tree and a dependency tree

without any dependency arcs, consisting only of the nodes

labelled with sequence elements. The algorithm groups all

internal tree nodes with their primary child (which all have

the same label) and uses all secondary child relations origi-

nating from each group to create dependency arcs between

the group label and the secondary child label.

2 We indicate dependency arcs as arrows pointing in the direction of the
head. Note that in other (NLP) papers, the opposite convention is used.

4. PARSING TECHNIQUE

Our goal is to predict a dependency tree y for a given mu-

sical sequence x. Our pipeline consists of three steps: fea-

ture extraction from x; prediction of dependency relations;

and postprocessing to ensure that the output is a valid tree

structure. In the training phase, the output (before postpro-

cessing) is compared with the ground truth dependency tree

and a loss is computed to update the model parameters via

backpropagation.

4.1 Feature Extraction

For each input element, xi ∈ x, we produce three groups

of features. The first is a “static” description of the element

(i.e., without any temporal information), the second encodes

the element’s duration, and the third encodes the element’s

metrical position, i.e., its position in the measure relative

to the hierarchy induced by the time signature. The static

description is built differently for chords and notes, while

the other two are independent of the input type. Note that,

due to our model architecture (see next section), we need

categorical features and it is not primarily important to keep

their number small or to have them ordered.

For note sequences, the static description of each ele-

ment is a single integer corresponding to either the MIDI

pitch of the element in [0, . . . , 127] if it is a note or with the

value 128 if the element is a rest. For chord sequences, we

use three integers. The first in [0, . . . , 11] encodes the pitch-

class of the chord root. The second in [0, . . . , 5] specifies

the basic form of the chord among major, minor, augmented,

half-diminished, diminished, and suspended (sus). The last

in [0, 1, 2] denotes a chord extension among 6, minor 7, or

major 7. The chord labels were simplified by the author of

the dataset to only include these extensions, but in a more

general scenario, a larger set of integers could be used. The

chord sequences do not contain rests.

We represent the durations of the elements with discrete

values normalised by the duration of the measure. We pre-

collect the list of all durations occurring in the dataset and

encode each element’s duration as an index on that list. For

the GTTM dataset, this would be an integer in [0, . . . , 44],
while for the JHB dataset, it is an integer in [0, . . . , 5]. The

number of possibilities is very different, since the tempo-

ral position of chords follows much simpler rules, mostly

occurring only at the beginning or in the middle of a bar

for simple time signatures and at three bar positions for

compound time signatures. For tied notes, we consider a

single note with the total duration, and notes can last more

than one measure. This is different from the annotations in

the JHT in which each measure opens a new chord symbol,

even if the same chord is repeated in consecutive measures.

To represent the metrical position, we use an inverse

measure of metrical strength, encoded with a single integer

in [0, . . . , 5]. This integer is computed as a function of the

normalised temporal position in the measure t ∈ [0, 1[, and

the time signature numerator. Each time-signature numer-

ator is associated with a template of metrical divisions m,

as proposed by Foscarin [10] and here extended to more

time signatures. For example, a time signature with a nu-
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Figure 3. Left: metrical divisions m for different time

signature numerators. Right: visualisation of metrical divi-

sions for a measure with time signature 12/8.

merator 12 (e.g., 12/8 or 12/4) will have metrical divisions

m = [1, 2, 2, 3, 2], i.e., the whole measure at level 0 is di-

vided into two parts at level 1, each resulting part is divided

in 2 at level 2, then 3 at level 3, and 2 at level 4. Table 3

reports metrical divisions for all numerators we consider.

Each level l in the metrical division defines a temporal

grid with step δl = 1/
∏l

l=0 ml, and the inverse metrical

strength is defined as the lowest level for which the note

position falls on the temporal grid, minl(l | t/δl ∈ N).
For example, a time signature 6/8 defines grids with steps

[1, 1
2 ,

1
6 ,

1
12 ,

1
24 ], and the notes of the measure | ˇ “ ˇ “( ˇ “‰ | will

have normalised temporal position [0, 2
6 ,

1
2 ] and inverse

metrical strength [0, 2, 1]. If the note doesn’t align with

any temporal grid, then its inverse metrical strength is the

maximum, 5 in our settings. Using metrical strength as in-

put to our system may seem overly complicated. However,

given the small size of our datasets and the high variety of

time signatures, we need a mechanism to encode metrical

information generalisable across different time signatures.

It is to be expected that with a larger dataset size, this fea-

ture could be discarded, as the model could learn similar

information from the list of notes with duration.

The feature extraction process lets us build the input

matrix X ∈ Nλ×φ where λ is the sequence length, and φ is

the number of features for each element: 3 for the GTTM

dataset, and 5 for the JHT dataset. Before moving on, it

has to be noted that there exist other more general ways

of transforming symbolic music into convenient inputs for

deep learning models, notably the tokenisation techniques,

e.g., [34, 35] inspired by NLP research. However, given

the small dimension of our dataset and the fact that our

melodies are strictly monophonic, we prefer to use a more

compact, ad-hoc input representation. Our parsing frame-

work remains general and usable with other techniques.

4.2 Model

Our model consists of two parts: an encoder and an arc

predictor (see Figure 4). The goal of the encoder is to

enrich the input features X with contextual information.

The arc predictor uses the enriched sequence features to

predict whether each possible pair of elements in the input

sequence should be connected by a dependency arc.

The first part of the encoder is an embedding layer, a

learnable look-up table which maps our collection of cat-

egorical features (each integer) to points in a continuous

multidimensional space. Specifically, we use φ embedding

Figure 4. Architecture of our model. The input displayed is

an example of a chord sequence, but the same architecture

is used for note sequences.

layers (one for each input feature), which work indepen-

dently, and map all values that the feature can have to a

vector of a fixed embedding dimension. All vectors are

then summed together to obtain a unique representation

while keeping the input size small (see [36] for an explana-

tion of why summing is better than concatenating). After

the embedding layer, we have the encoder part of a trans-

former [37] with relative position representations [38]. It

outputs a matrix with the same number of rows as the in-

put matrix X (one for each sequence element) but with a

(possibly) different number of hidden-feature columns h.

Onto this, we concatenate a new learnable single row that

acts as the head of the root node. The result is a new matrix

H ∈ Q(λ+1)×h.

The arc predictor part of our model is a multilayer per-

ceptron (MLP) that performs the binary classification task

of deciding whether each pair (xhead, xdep) in the Carte-

sian product of the input elements, i.e., {(head, dep) |
∀ head, dep ∈ [1, . . . , λ]}, should be connected by a de-

pendency arc. Depending on the input representation and

the specific task we are targeting, there may be some pairs

that are not connectable by a dependency arc, for example,

pairs where head = dep. For the GTTM input, pairs for

which at least one element is a rest are also not connectable.

Therefore, the binary classification is performed only on a

subset of all pairs Λ that we call potential arcs. For every po-

tential arc (xdep, xhead), we predict the probability ŷdep,head

of a dependency arc by concatenating the two rows of H
that correspond to the head’s and the dependent’s index into

a single vector of length 2h and giving it as input to the

MLP. We concatenate the two inputs instead of summing or

multiplying them because our arcs are directed, so we need

to preserve the order when aggregating the two embeddings.

Moreover, despite the bilinear layer being a major selling
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point of Dozat’s paper [26], we find that the concatenation

approach yields better results. We can collect the output for

all potential arcs into a weighted graph-adjacency matrix

Ŷ , which is a λ× λ matrix with entries ŷhead,dep at the cor-

responding indices. We assign a probability 0 to the matrix

entries that correspond to arcs /∈ Λ.

4.3 Training Loss

In the training phase, we use the sum of the binary-cross-

entropy (BCE) loss and the (multiclass) cross-entropy (CE)

loss. The BCE loss is computed independently for each po-

tential arc and measures the difference between the ground-

truth label (0 or 1) and the predicted probability. We also

use the CE loss because our problem can be framed as a

multiclass classification problem where for each element we

predict his head among λ+ 1 possibilities (each sequence

element plus a dummy element for the root and rests ele-

ments). The CE loss is therefore applied column-wise to

the adjacency matrix Ŷ predicted by our model.

In NLP, the BCE loss was used by [27] while the CE

loss is used more generally, for example, by [26, 39]. We

experimentally found that the sum of the two losses yields

the best results.

4.4 Postprocessing

Since the prediction of our model is made independently

for each potential arc, simply taking the row-wise maxi-

mum of the weighted adjacency matrix to select which head

to assign to each element of the sequence could produce

dependency cycles and, therefore, not yield a tree struc-

ture. We use a maximum-spanning-tree algorithm to find

the tree over Ŷ with the highest weight. Since our depen-

dency trees are projective, we use the Eisner algorithm [40]

which solves this problem using bottom–up dynamic pro-

gramming with a time complexity of O(λ3). For applica-

tions involving non-projective trees other post-processing

approaches such as Chu-Liu/Edmonds [41, 42] (O(λ2)) are

implemented in our framework.

5. EXPERIMENTS

Below, we describe the datasets, evaluation metrics, and

experimental settings for the two kinds of trees we consider.

5.1 Datasets and preprocessing

We obtain the melodic time-span trees from the GTTM

database [17], which contains MusicXML encodings of

monophonic scores and a dedicated XML-based encoding

of the constituent time-span trees (among other trees that we

don’t consider in this paper). We extract the note features

with the Python library Partitura [43]. Some pieces have two

different trees, and we keep only the first. We also discard

4 pieces that we could not import due to inconsistencies in

the XML file encoding. In total, we have 296 melodies of

lengths between 10 and 127 (notes + rests). For training,

we augment the dataset by considering all transpositions

between one octave higher and one octave lower.

We obtain the chord analyses from the Jazz Harmony

Treebank (JHT) [9], which encodes both chord labels and

harmonic analyses as constituent trees, in JSON format. As

discussed in Section 3 this format does not distinguish be-

tween the primary and the secondary child when both have

the same chord label. In this case, we assume by default

that the right is the primary. The dataset contains two kinds

of trees: open and complete constituents. We use the former

for comparison reasons since the results are reported only

for those [20]. In total, we have 150 sequences of lengths

between 11 and 38 chords. For training, we augment the

dataset by considering all 12 possible transpositions of the

chord roots.

5.2 Evaluation metrics

The papers we compare use different metrics, and we im-

plement all of them. The work of Harasim [20] uses two

metrics, one more relevant for dependency trees and the

other for constituent trees. The first is the arc accuracy,

i.e., the normalised cardinality of the intersection between

the set of predicted arcs and the ground truth arcs. The

second is the span accuracy, computed as the normalised

cardinality of the intersection between all the spans of the

predicted constituent tree (i.e., the pair of the leftmost and

rightmost leaf that is part of the subtree rooted at any non-

leaf node) and the spans of the ground truth tree (see [20]

for a more detailed explanation). Nakamura et al. [2] use

the node accuracy metric, i.e., the normalised cardinality of

the intersection between nodes in the predicted and ground

truth trees, where two nodes are considered equal if the

labels of the parent and children (or a dummy label if the

node have no parent or children) are equal.

We also report another metric, the head accuracy, com-

puted as the multiclass classification accuracy on the in-

dices of the predicted heads, ordered by their dependent.

For example for the dependency tree of Figure 1, this would

correspond to the accuracy computed on the sequence

[4, 2, 3, 4,−1], where −1 indicates the root (which has no

head). This is similar to the arc accuracy but enforces the

presence of a dependency head for each sequence element

(which may not be the case for a generic system), and gives

more weight to the correct root prediction. It is also faster

to compute and commonly used in NLP, so we include it

to set a metric for future research. Note that all metrics

presented above don’t consider the nodes corresponding to

rests, since they are only part of the input sequence, but not

part of the tree.

5.3 Results

For our experiments, we set the hyperparameters of our en-

coder to an embedding size of 96, and 2 transformer layers

of hidden size 64. The arc predictor (MLP) has 2 linear

layers with the same hidden size. We use the GeLU activa-

tion [44] and the AdamW optimiser [45], with a learning

rate of 0.0004 and weight decay of 0.05. We train with

learning rate warm-up [46] of 50 steps and cosine annealing

to limit the problem of high variance in the initial and final

stages of training. The latter was particularly important
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Figure 5. Boxplots of three accuracy metrics (higher is

better) computed with leave-one-out cross-validation and

their average. For Nakamura et al. [2], we report the average

from their paper, so there is no deviation information.

since we did not use a validation set to perform early stop-

ping due to the small size of our datasets. We train for 60

and 20 epochs for the JHT and GTTM datasets, respectively,

since the latter is bigger and the data augmentation yields

twice as many pieces in total). The training time is roughly

the same, around 1 hour on a GPU RTX 1080.

We compare the results of our MuDeP on the JHT with

Harasim [20] and on the GTTM with Nakamura et al. [2].

We use leave-one-out cross-validation, i.e., for a dataset

with N pieces, we run our system N times, by training on

N − 1 pieces and evaluating with the remaining one. As

shown in Figure 5, MuDeP outperforms previous methods.

By comparing the head accuracy between JHT and

GTTM (79.2% vs 57.9%), it is clear that time-span pre-

diction is a much harder problem than the chord analysis

problem, despite the dataset being bigger. Another inter-

esting result is that the span accuracy is lower than head

accuracy for the JHT dataset (63.1%), but higher for the

GTTM(64.8%). Apparently, the main problem for JHT is

to select which two chords to connect, but the arc direction

(i.e., which is the head and which is the dependent) is al-

most always correctly inferred; conversely, for the GTTM

dataset, the system often connects the correct notes, but

in the wrong direction. And this type of misprediction is

punished in the head accuracy, but not in the span accuracy.

The full piece-wise statistics on all metrics, a graphical

rendering of all our predicted trees, and the qualitative

evaluation of some examples are available in our repository.

5.4 Ablation study

We report the difference in head accuracy averaged over 10

runs with 90/10 random train/test split for the JHT dataset.

Regarding the loss, sole usage of the (multiclass) CE loss

reduced the accuracy by 0.3%, and only using the binary

CE loss reduced the accuracy by 4.1%. The use of a bilinear

layer in the decoder reduced the accuracy by 1.2%. The ab-

sence of post-processing did not reduce the accuracy (when

the network is fully trained, otherwise the reduction is very

evident). This is promising but it does not automatically

implies that the network is producing correctly formed trees

since dependency loops could still be present in the output.

There are also cases when the postprocessing is reducing

the accuracy, by incorrectly deciding which arc to remove

in a dependency loop.

6. CONCLUSION AND FUTURE WORK

We presented MuDeP, a system for the dependency parsing

of music sequences, and a procedure to make it applicable to

constituent trees. MuDeP improves upon previous methods,

by incorporating the ability to consider multiple musical

features simultaneously, taking advantage of sequential con-

text, and handling noisy inputs robustly. Moreover, since it

is based on widely researched deep learning components,

it has the potential to scale to large datasets and longer

sequences. The bottleneck for such scalability is the post-

processing algorithm with cubic complexity. Two solutions

exist to this problem: if one is interested in non-projective

trees, algorithms with a square complexity are available.

Apart from that, our system is already having good accu-

racy without the postprocessing phase, as highlighted in

the ablation study. Therefore, a faster heuristic may suf-

fice to correct the few problematic dependencies without

decreasing the performance.

Since our deep learning model is a black box, it is no-

tably complicated to find a human-understandable expla-

nation of its functioning. Although work in this direction

exists [47, 48], it is still very limited [49]. Therefore, our

model is mainly intended for scenarios in which one is

only interested in obtaining the parsing trees, for example,

to use them as input for another MIR task. Conversely,

this paper might have limited utility if one’s goal is to

model music understanding and interpretation by humans.

Grammar-based models are much more suitable for this

goal, although there is a (somewhat speculative) possibility

that the dependency-arc probabilities in our approach relate

to first-guess heuristics.

As research on the deep learning components we use

is rapidly evolving, any new discovery is likely to benefit

our system. Self-supervised pretraining on larger datasets

of monophonic music or chord sequences, for example by

predicting next or masked tokens, could also improve the

performance, as already proved for language parsing. While

the goal of this paper was to present a general framework,

we can also think about several domain-specific improve-

ments, for example, training the GTTM time-span parser

with a multi-target approach to predict at the same time

the metrical, time-span, and prolongation structure. We

hope that this work will motivate the development of more

datasets of hierarchical music analyses, including datasets

of dependency trees, which may be a valid alternative to

constituent structures, and even open up more possibili-

ties due to the missing projectivity constraints. Finally, we

intend to explore in future research how the knowledge

encoded in our model could be reused to guide other tasks,

for example, automatic chord recognition from audio files.
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