
ALGORITHMIC HARMONIZATION OF TONAL MELODIES USING
WEIGHTED PITCH CONTEXT VECTORS

Peter van Kranenburg

Meertens Institute, Utrecht University

peter.van.kranenburg@meertens.knaw.nl

Eoin Kearns

Meertens Institute

eoin.kearns@meertens.knaw.nl

ABSTRACT

Most melodies from the Western common practice period

have a harmonic background, i.e., a succession of chords

that fit the melody. In this paper we provide a novel ap-

proach to infer this harmonic background from the score

notation of a melody. We first construct a pitch context

vector for each note in the melody. This vector summarises

the pitches that are in the preceding and following contexts

of the note. Next, we use these pitch context vectors to gen-

erate a list of candidate chords for each note. The candidate

chords fit the pitch context of a given note each with a com-

puted strength. Finally, we find an optimal path through

the chord candidates, employing a score function for the

fitness of a given candidate chord. The algorithm chooses

one chord for each note, optimizing the total score. A set

of heuristics is incorporated in the score function. The sys-

tem is heavily parameterised, extremely flexible, and does

not need training. This creates a framework to experiment

with harmonization of melodies. The output is evaluated

by an expert survey, which yields convincing and positive

results.

1. INTRODUCTION

One of the essential aspects of Western folk music is that

it is in oral circulation among practitioners regardless of

formal music training. As such, the transmitted music is

expected to conform to melodic patterns which belong to

Western music traditions. This is most tangible in the per-

ception of rules of tonality, including the perception of sta-

ble scale tones, modes, and key centres [1]. These factors

dictate the implied harmonic movement within the melody.

Detecting this implied harmony is an integral part of the

accompaniment of folk music. With this knowledge, it is

possible to create musically meaningful harmonic progres-

sions, using symbolic chord representations to accompany

a melody.

In this paper, our aim is to explicitly design a model

of how to generate a sequence of accompanying chords

for a given melody, such that e.g., a guitarist could play

© P. van Kranenburg and E. Kearns. Licensed under a Cre-

ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-

bution: P. van Kranenburg and E. Kearns, “Algorithmic Harmonization

of Tonal Melodies using Weighted Pitch Context Vectors”, in Proc. of

the 24th Int. Society for Music Information Retrieval Conf., Milan, Italy,

2023.

along. Most of the recent work on this task involves ma-

chine learning in which a model is trained on a set of ex-

amples. In contrast, an essential aspect of our approach is

to explicitly incorporate musical expert knowledge into the

model. Our model is heavily parameterized. This has the

advantage of allowing the user to have full control over the

process. A disadvantage could be that the resulting model

lacks the flexibility to handle various situations, which of-

ten is a reason to train a neural network instead of hand-

crafting a model. Our results show, however, that our cur-

rent model is capable of generating convincing chord se-

quences for a given melody.

The model can be employed in a wide range of appli-

cations. It allows a musician to quickly obtain a suitable

accompaniment for a given melody. This can be accom-

plished by using the default parameter settings that are es-

tablished in this paper, but the model also allows to tune

the parameters to get a certain desired effect. In Section 5

of this paper we provide an example in which the number

of generated chords greatly varies, while each generated

chord sequence is acceptable to accompany the melody.

Thus, the generated harmony can be adjusted to various

levels of mastering an instrument.

From a music theory perspective, our model can be

considered an experimental framework to explore general

principles of harmonization. In this approach, the model is

used to better understand these principles. It is extremely

instructive to add a heuristic to the model, or to adjust a

parameter, and to examine the cases in which this leads to

strong chord sequences, but even more so to examine the

cases that are not acceptable. These are conditions under

which the general rule apparently fails. In the current pa-

per, we do not elaborate on this use of our model, but it

is an important affordance that we do not want to be left

unmentioned.

We also can imagine the system being used in an artis-

tic way, rather than to just generate an accompaniment for

practical use. In the current implementation, we incorpo-

rate well-established principles of harmonization, but it is

very well possible to include other heuristics that generate

chord sequences that, although not adhering to the general

principles of Western tonality, could be considered an artis-

tic contribution, or an inspiration for a new composition.

Finally, we mention the possible educational use of the

model. By exploring the generated chord sequences, stu-

dents can get ideas to improve or enrich their own compo-

sitions or improvisation.

391



2. RELATED WORK

Multiple approaches have been taken for the task of au-

tomatic harmonization [2]. Early applications of formal

grammars and rule-based algorithms for automatic harmo-

nization [3, 4] mainly sought to compose chorales in the

style of Bach. This was achieved by harmonizing the so-

prano melody line using a set of rules to ascertain harmonic

choices. These rules and heuristics are informed by obser-

vation of chorales, and enhanced by rules found in trea-

tises. The resulting systems output successful harmoniza-

tions of existing melodies, as well as new compositions.

Context free grammars have found use for this task.

Koops [5] adopts this approach in his HarmTrace and

FHarm models to derive the harmonic function of a chord

in its tonal context according to a set of predefined rules.

Temperley [6] proposed a rule-based algorithm to har-

monize a melody by dividing the piece temporally into seg-

ments (chord spans). All possible roots are then assigned

a score according to a set of four rules. The model prefers

root relations which best conform to the circle of fifths.

The model also predominantly chooses chord spans which

begin on the metrical downbeat, and identifies and prefers

ornamental dissonances which can be resolved in the sub-

sequent chord span. While approach is related to Temper-

ley’s algorithm, it is more flexible as it does not hard-code

one musical model, but instead allows basically any kind of

musical preference by redefining the chord transition scor-

ing function. Our approach is also more practical since it

not only generates a sequence of root notes, but also the

chord qualities.

Most of the more recent approaches are based on some

form of machine learning, sometimes explicitly stating

the aim to include a “minimal use of music knowledge”

[7]. These approaches include Statistical Grammar learn-

ing [7], Hidden Markov Models [8–10], and neural net-

works [11, 12]. [13] presents a hybrid approach based on

Markov chains, combining a music theoretic framework

with learning from data. Our approach is distinct in that

it does not require learning at all, and thus allows for full

control over the process of generating the sequences.

3. DATA

The algorithm is evaluated using MTC-FS-INST-2.0,

which forms part of the Meertens Tune Collections [14].

The data set consists of c. eighteen thousand melodies,

both vocal and instrumental, collected from Dutch sources.

The melodies have a variety of time signatures and

modes. We use the pre-computed features as distributed

in MTCFeatures. 1 Since our model relies on notated me-

ter, we only use the melodies with a meter.

3.1 Music Representation

We represent the melodies as sequences of feature val-

ues, one value per note. In this paper, we use three fea-

tures as provided by MTCFeatures, namely pitch40,

1 https://zenodo.org/record/3551003

�� � 68
-1/3beatinsong

0.25beatstrength

8pitch40

� �

0

1.0

25

�

2/3

0.25

37

�

5/6

0.125

37

�

1

0.5

37

�

4/3

0.25

37

�

5/3

0.25

37

�

2

1.0

31

�

8/3

0.25

8

� �

3

0.5

8

�

11/3

0.25

2

� �

4

1.0

37

� � �

17/3

0.25

31

�

� �4

�

6

1.0

25

�

20/3

0.25

37

�

41/6

0.125

37

�

7

0.5

37

�

22/3

0.25

37

�

23/3

0.25

37

�

8

1.0

31

�

26/3

0.25

8

� �

9

0.5

8

�

29/3

0.25

2

� �

10

1.0

37

� � �

35/3

0.25

8

�

� �7 �

12

1.0

8

�

38/3

0.25

8

�

77/6

0.125

8

�

13

0.5

8

�

40/3

0.25

2

�

41/3

0.25

37

�

14

1.0

2

�

44/3

0.25

14

� �

15

0.5

14

�

47/3

0.25

2

� �

16

1.0

37

�

50/3

0.25

37

�
�

17

0.5

8

� �

35/2

0.125

2

�

53/3

0.25

37

� �10 �

18

1.0

31

�

56/3

0.25

31

� �

19

0.5

31

�

59/3

0.25

2

� �

20

1.0

37

�

62/3

0.25

37

� �

21

0.5

2

�

65/3

0.25

2

�
�

22

1.0

8

� �

23

0.5

14

� �

24

1.0

8

�

74/3

0.25

8

� �

25

0.5

2

�

76/3

0.25

37

�

77/3

0.25

31

�

26

1.0

25

� �

Figure 1. Example melody with the values for pitch40,

beatstrength, and beatinsong per note.

beatstrength, and beatinsong, which gives on-

set times in units of the beat. The base-40 representation

of pitch preserves the pitch spelling [15]. It includes 40

values per octave representing 40 possible pitches starting

with C♭♭ and ending with B×. We map all pitch values into

one octave. We use the encoding as designed by Hewlett

with one adaptation: we give the first pitch (C♭♭) index 0

instead of index 1, which has a practical advantage when

doing the implementation in Python.

We use the beatstrength as computed by the music21

meter model [16, 17]. Music21 is a Python library for pro-

cessing symbolic musical scores. We heavily use this li-

brary. In the meter model of music21, a beatstrength is

computed for each note, which indicates the metric weight

at the moment of onset of the note. The main accent in the

measure gets value 1.0, secondary accents get value 0.5,

lower metric positions get 0.25, 0.125, etc. Figure 1 shows

an example.

4. METHOD

Our approach to generate a sequence of chords for a given

melody consists of three stages: First, we construct for

each note a vector summarising the pitch context of that

note. Second, we generate for each note a list of poten-

tial chords from the pitch context vector. Each chord gets

a score indicating the extent to which it fits the pitch con-

text. Finally, for each note, we choose one of the candi-

date chords, based on its score, and on a chord transition

score, such that the sum of all transition scores across the

sequence of chords is maximized.

The evaluation also consists of several steps. First, we

tune the various parameters on a randomly chosen set of

melodies. Next, we use the best parameter setting to gen-

erate chord sequences for an independent, disjoint set of

melodies. We then provide six music experts with the re-

sults and to provide us with a rating of each harmonization

on a five-level rating scale. Finally, we use statistics to ex-

plore and summarise the responses.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

392



In the following of this section, we will explain each of

these steps in detail.

4.1 Weighted Pitch Context Vectors

For a given note, which we indicate as the focus note, we

consider both a preceding and a following context. These

consist of the sequences of notes that are preceding, and

respectively following the focus note. For both the pre-

ceding and the following context we construct a weighted

pitch context vector. Each of these vectors has 40 elements

corresponding to the 40 pitches in base-40 representation.

The value of each of the elements represents the “amount”

of the corresponding pitch that is present in the context of

the focus note. The full context vector is a 80-dimensional

vector which is the concatenation of the preceding and fol-

lowing context vectors.

4.1.1 Length of Contexts

Choosing the length of the contexts is not straightforward.

It is, in fact, an important parameter in our model. The

music21 meter model provides metric information for each

note, notably concerning the beat and the beatstrength of

a note (as explained in Section 3.1). This allows us to ex-

press the length of the context as a number of beats. This

seems a good approach since the beat is a perceptually

meaningful unit. Alternatives would be a fixed number of

notes or a certain amount of score time. We did not explore

these for the current study.

We experimented with different values for the context

length, as well as with a variable context length based on

the beatstrengths of the surrounding notes. We found that

the latter approach, with variable length, yielded the best

results in terms of acceptable chord sequences. In our re-

sulting implementation the context length is computed as

follows. We start with the focus note. For the preceding

context, we consider the notes before the focus note in re-

versed order, starting with the note directly before the fo-

cus note, and we keep adding the notes to the context until

(and including) we reach a note with beatstrength 1.0. For

the following context, the same procedure is followed, ex-

cept that the first encountered note with beatstrength of 1.0

is not included in the context. In our implementation, there

is also a parameter whether to include the focus note itself

into the context or not. Since the current aim is to generate

a chord for the focus note, we always add the focus note to

the contexts.

The consequence of this procedure is that for a note on

the main accent of the measure (i.e., the first note), the pre-

ceding context is the entire previous measure, and the fol-

lowing context is the remainder of the measure of the focus

note. In contrast, for notes that are not on the main ac-

cent, the preceding context includes all the previous notes

in the same measure, while the following context includes

the remaining notes in the measure. To a certain extent,

this accounts for harmonic progression at different metric

levels.

4.1.2 Weighting of Context Notes

The contribution of each context note to the value of

the corresponding pitch in the pitch context vector is de-

termined by two components: the metric weight (beat-

strength) of the context note, and the distance to the focus

note.

Intuitively, the duration of a context note has an impact

on its importance in the context of the corresponding focus

note. Therefore, we do not simply take the beatstrength

of the moment of onset of the context note as weighting

factor. Instead, we compute a metric grid, which is a suc-

cession of evenly spaced moments in score time. The basic

unit of the grid, i.e., the distance between two subsequent

positions in the grid, is the greatest common divisor of all

note durations. Therefore, each note of the melody starts

at a position in the grid, and the “span” of the note mostly

includes several grid positions. The metric weighting fac-

tor of a context note is the sum of metric weights (beat-

strengths) of all positions of the metric grid that are in the

“span” of the note. Thus, the duration of the note, as well

as the metric importance of the note are incorporated in the

weighting. This approach also accounts for syncopation.

During the span of a syncopated note, a grid-position with

higher metric weight than the metric weight at the start of

the note occurs. This is included in the sum.

Also intuitively, the further a note is away from the fo-

cus note, the lower the importance in the context of the fo-

cus note. In our model, we use a linearly decreasing win-

dowing function. The metric weighting factor of a given

context note is multiplied by the value of this window func-

tion at the position of the onset of the context note. The

value of the window function during the span of the focus

note is 1.0, and is linearly decreasing towards the end of

the context. The value at the end of the context is a pa-

rameter in our model. We set this to a value slightly higher

than 0.0 in order to have some influence from the notes that

are at the outer boundaries of the contexts.

4.2 Generating Candidate Chords

Once we have computed a pitch context vector consisting

of a preceding and following pitch context for each of the

notes in a melody, we use these vectors to generate a set of

candidate chords for each of the notes in a melody.

In our current implementation, we consider four types

of chords: diminished triad, minor triad, major triad, and

dominant seventh chord, and we consider three types of

context: preceding context, following context, and full

context. The full context just is a superposition, i.e., an

element-wise sum, of the preceding and following con-

texts. Discerning these three types of contexts is a crucial

element in our model. It allows the method to determine

the position of a chord change. If the set of chords that

is implied by the preceding context is sufficiently differ-

ent from the set of chords that is implied by the following

context, a chord change is likely, while the presence of a

chord that sufficiently fits the full context likely results in

a continuation.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

393



!
del

!
brug

!
het

!
von

!!
gie liep

!
het

!
meis

" !# $
Toen odaar

!! !
ver

!
je

Preceding context Following context

focus

C♭♭ C♭ C C♯ C♯♯ G♭ G A B B♯ B♯♯

⇢ ⇢ ⇢

⇢ ⇢ ⇢

C♭♭ C♭ C C♯ C♯♯ D E E♯ B B♯ B♯♯

wpcpre

wpcpost

Figure 2. Example of a Pitch Context Vector. The vector consists of two parts, wpcpre and wpcpost, which represent

respectively the preceding and the following context. The full Pitch Context Vector is a concatenation of the two parts.

Each element in the vector gets a value representing the ‘amount’ of the corresponding pitch that is present in the context.

Thus, considering 40 possible root notes, we have 160

(40*4) possible chords for each of the preceding, follow-

ing, and full contexts.

4.2.1 Candidate Chord Score and Strength

For each focus note, we construct a 120*4 matrix, con-

taining a score for each possible chord in each possible

context.

The score of a chord with respect to a context vector is

determined by two factors: first, the extent to which the

chord pitches match the pitches in the context vector, and,

second, whether the root note of the chord is present in

the local scale. We will explain these two factors in the

following.

For each chord quality (diminished, minor, major, and

dominant), a chord mask is defined. This is a 40-

dimensional binary vector with ones at the positions of the

corresponding chord tones. E.g., for a major chord on C♭♭

the positions 0, 12, and 23, corresponding with C♭♭, E♭♭ and

G♭♭ are assigned value 1, while other positions get value 0.

To compute the score of this chord for a given context, we

multiply the mask element-wise with the pitch context vec-

tor, and we sum the resulting values. The resulting value

represents the overlap between the context and the chord.

To compute the scores for all possible root notes, we

subsequently rotate the mask over all possible 40 shifts,

and compute for each shift the sum of products. We do

this for the preceding context vector, the following context

vector, and the full context vector. For the repertoire we

have, we do not perform all 40 shifts, we only take into

account natural root notes, root notes with one flat, and

root notes with one sharp.

Next to these scores, we also compute a strength value

for each of the possible chords. The strength takes a value

between 0 and 1, and is computed as the ratio of the sum of

the pitch context values for the chord tones (as determined

by the mask) and the sum of all pitch context values. E.g, if

a pitch context vector has some weight for C, E, G, and A, a

C major chord would get a high score, but a strength lower

than 1.0, because there is also weight for the A, which is

not a chord tone.

To obtain a single score for each chord candidate, we

simply multiply the score with the corresponding strength.

This implies a penalty for non-chord tones within the pitch

context.

We normalize the score matrix for a given focus note

by dividing all scores by the highest score. Thus, the best

fitting candidate always has a score of 1.0.

4.2.2 Local Scale

A second factor that determines the possible candidate

chords is the local scale. As with the chord mask, we de-

fine a scale as a 40-dimensional binary vector. The ele-

ments with value 1 are the scale tones. For each note in the

melody we derive a local scale vector. This records the al-

terations of the stemtones that are ‘in use’ at that position in

the melody. For each stemtone ∈ {A,B,C,D,E, F,G},
we look for the occurrence closest to the focus note, ac-

cepting all possible alterations, and we record the alter-

ation in the scale vector. This accounts for modulations.

E.g., if in a melody in D major a G♯ occurs, which is even-

tually cancelled back to a G, the notes that are closer to

the G♯ have a 1 at position 26 in the local scale vector (the

base40 representation of G♯) while the notes closer to the

G have a 1 at position 25.

One problem is posed if a stemtone is missing alto-

gether in a melody. For example, the melody in Figure 1

lacks the note F. The key signature suggests a F♯, but that

is not available to our algorithm. In these cases, we add

the tone with the most likely alteration to the scale vector.

For sharps, we find this by following the circle of fifths

upwards from the missing tone and check the alteration of

the next tone. For example, if a C♯ is present in the local

scale, we infer that the scale should have a F♯, and not a F

natural. For flats, we do the same, but we inspect the circle

of fifths in reversed order. For edge cases, we include both

the natural and altered tone in the scale. E.g., if stemtone G

is missing throughout the melody, and the scale does have

a C♯ and a D natural, we include both the G natural and the

G♯ as possible scale tones in the local scale vector.

We use the local scale for a given focus note to elimi-

nate those chord candidates that have a root which is not in

the scale, by setting its score to 0.0. E.g., a C♯ diminished

chord fits a context vector with weight for pitches E and

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

394



G, but we eliminate this candidate for a melody in C ma-

jor because C♯ is not in the scale (except when sometime

during the melody the C is temporarily raised).

4.3 The Chord Transition Score

The result of the procedure as described in the previous

section is a sequence of matrices, one for each melody

note, containing a score for each possible chord for that

melody note. The next challenge is to choose one chord

for each melody note out of these 120*4 possibilities. For

that, we employ a chord transition scoring function (TRS),

which computes a score for a given succession of chords,

c1 and c2 for two subsequent melody notes, n1 and n2.

This transition scoring function can be considered a

model of what would be a good chord transition. We im-

plement this function as a series of heuristics, each penal-

izing the score if an aspect of the transition is undesired.

We discern two kinds of penalty which could be described

as a “total ban” and a “discouragement” respectively. For

a total ban, we assign a very low score (-10 in our imple-

mentation), which forbids the transition in almost all cases.

For a discouragement, we multiply the score by multiplier

∈ [0, 1]. The lower the multiplier, the higher the penalty for

the undesired aspect of the chord transition. In our model

we include the following heuristics.

• The initial transition score is the candidate score of c2
for note n2, as computed in the previous step.

• If the root note of c2 differs from the root of c1, multiply

with 0.8. This stimulates continuation of a chord.

• If the root notes of both chords are the same, but the

chord qualities differ, multiply with 0.1. Except for a

change from major to dominant.

• For a root movement other than a prime, a fourth, or a

fifth, multiply by 0.75. Root movements of fourths and

fifths generally account for good harmonic progression.

• If c1 is a dominant chord and the root of c2 is not a

fourth higher, multiply by 0.1. We strongly want a V-I

relation after a dominant chord.

• If the root of c2 is a fourth up, and c1 is not major or

dominant, multiply by 0.8.

• If c1 is diminished, and the root of c2 is not a semitone

up, multiply by 0.1. We strongly want a VII-I relation

after a diminished chord.

• If the beatstrength of n2 is below a threshold, do not

allow a chord change (score -10), except for a transi-

tion from major to dominant with the same root. The

threshold is determined by the meter. For 2/4, 2/8, and

2/2 meter we take 0.25, for all other meters 0.5.

• Do not allow a chord change (score -10) if n2 is not a

chord tone in c2, and if the beatstrength of n2 is 0.5 or

higher. The seventh of a dominant chord is not consid-

ered a chord tone. On strong metric positions, we want

chord tones in the melody.

• As an exception to the previous rule, do always allow a

chord change to c2 if the next note after n2 is a chord

tone of c2, and has a lower beatstrength than n2. This

allows for appoggiaturas.

• Do not allow (score -10) a chord that starts at a low

beatstrength (<1.0) to continue past a note with higher

beatstrength. Except for a chord that starts on an up-

beat. This prevents chord syncopation.

• If the final root change is not a fourth up, or a fifth down,

multiply with 0.1.

• If the final root change is a fifth up (a plagal cadence),

multiply with 0.8.

• Only allow the root or the third of c2 as melody note if

n2 is the final note of the melody. If this is not the case

assign score -10. If the final note is the third, multiply

with 0.75.

4.4 Finding the Optimal Sequence

We designed an algorithm that optimizes the score for a se-

quence of chord transitions. It takes the sequence of chord

score matrices as input and uses the chord transition scor-

ing function. Algorithm 1 shows the pseudo code of our

algorithm. We fill a matrix, Score, which contains for each

note, and for each possible chord, the total score of the

chord sequence up until that note and that chord. In paral-

lel, we fill a traceback matrix, Trace, which for each note,

and for each chord, points to the chord of the previous note

which is the previous chord in the sequence (i.e., max-

imises the total score of the chord sequence). After both

the Score and Trace matrices are filled, we find the chord

sequence by finding the chord with the maximal score for

the final note, and following the trace back according to

the pointers in the Trace matrix.

Algorithm 1 Algorithm to find the optimal sequence of

chord transitions, in which l is the length of the melody in

number of notes, Cand is the sequence of matrices with

scores for the chord candidates, and TRS is the Chord

Transition Scoring Function as defined in Section 4.3.

Require: Cand : ARRAY[l][120][4] of float

function HARMSCORE(Cand)

declare Score : ARRAY[l][120][4] of float

declare Trace : ARRAY[l][120][4][2] of int

Score[0]← Cand[0]

for n in {1, 2, . . . , l − 1} do

ixs1← indices of cells in Cand[n− 1] > 0

ixs2← indices of cells in Cand[n] >0

for (p2, c2) in ixs2 do

declare S : ARRAY[120][4] of float

for (p1, c1) in ixs1 do

trs← TRS(Cand, p1, c1, p2, c2)

S[p1][c1]← Score[n− 1][p1][c1] +trs

end for

(pm, cm)← argmax(S)

Score[n][p2][c2]← max(S)

Trace[n][p2][c2]← (pm, cm)
end for

end for

return Score, Trace

end function

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

395



�� � �

F

F

F

�
Bb

�
F

� �
C

C

� � � �
C

� � � �
F

F

� � � �

C7

Gm

Bb

� �
F

�
C

�

F

Dm

F

� �
C

�
F

� �7

�
C

C

� � �
F

�
C

� �
F

F

� � �
Gm

Bb

� �
F

�
C

�
Dm

F

� �
C

�
F

�
C

C

� � �
F

�
C

� �
F

F

� �

.

.

.

Figure 3. Example of harmonic progressions at various

levels of abstraction.

4.5 Evaluation

To evaluate our algorithm, we first tuned the various pa-

rameters ourselves by inspecting the parameter space and

chose settings which seemed to yield good results. The

values as reported in Section 4.3 are the result of this pro-

cess.

Next, we randomly chose another unrelated set of 50

melodies and computed chord sequences for these using

the parameter values from the previous step. We then asked

six music experts to evaluate each harmonization. All eval-

uators are practicing musicians on a professional level, and

have extensive experience in musical analysis. They were

given a five level scale and a set of directions in order to

rate the harmonizations:

1. Bad. Numerous basic mistakes.

2. Somethings are good but contains a number of in-

correct chord choices.

3. Largely okay, small number of incorrect chord

choices.

4. Acceptable harmonization.

5. Excellent harmonization. No improvements to be

made.

Evaluators were also given a set of directions on how to

rate the harmonizations. They were asked to judge to what

extent the chords fit the melody, with an emphasis on the

correctness of chords with regards to the local context, as

opposed to creativity. They were not to take voice leading

into consideration for the chord correctness, as the bass

line is not modelled in this version of the algorithm.

We then use these ratings to compute inter-rater agree-

ment and explore the extremes.

5. RESULTS

5.1 Parameter Exploration

Exploring the parameter space of our model is an interest-

ing endeavor which appears meaningful in itself. It allows

a better understanding of general textbook rules for harmo-

nizing melodies. By implementing and manipulating these

principles in our scoring function we can observe the im-

pact of the rigorous application of these principles.

As an example, there are various ways to influence the

change rate of chords. Figure 3 shows three sequences of

chords at different levels of abstraction. For the middle

sequence we used the default parameters as established in

1 2 3 4 50

20

40

60

80

100

Fr
eq

ue
nc
y

Figure 4. Distribution of ratings.

the previous sections. The other sequences have been ob-

tained by changing the following parameters with respect

to the defaults. The top sequence is generated by tolerating

chord changes at every metric level, and by not penalizing

root changes. For the bottom sequence we set the context

lengths to the length of the entire melody, i.e., all preceding

notes are in the preceding context and all following notes

are in the following context of a given note. These three

sequences show which harmonies are implied by the same

melody at different time scales. This could be employed

in a hierarchic strategy of harmonization, by e.g. first gen-

erating a sequence on a high level to find modulations and

extended harmonic sections, and subsequently using that

high level sequence as a background for the selection of

more fine-grained chord sequences.

5.2 Expert Ratings

Figure 4 shows the distribution of the ratings of the ex-

perts. The average over all ratings is 3.52 and the standard

deviation is 1.05. It can be observed that only a minority

of the harmonizations got a rating lower than 3. Only one

harmonization (no. 48) has a highest rating of 2 across the

raters, and only six have a highest rating of 3. All 45 others

got a 4 or 5 as highest rating. 22 sequences got a 1 or 2 as

lowest rating, and 28 sequences 3 or higher. It appears that

our algorithm produces an acceptable output, but there are

still some issues to address. Some problems we observed

are related to tonality, e.g., starting and ending in a differ-

ent key (mostly the parallel), or including a leading tone

at inappropriate places. Also, a low harmonic movement

might be unsatisfactory.

6. CONCLUDING REMARKS

We presented a successful approach to generate a sequence

of chords to accompany a folk-like melody by leveraging

musical expert knowledge and a dynamic programming al-

gorithm to find an optimal trace through the chord space. 2

There are many directions to further build on the current

model. We plan to address the observed shortcomings in a

next version. Our framework can be used to explore theory

on harmonization or to model implied harmony. It also

can serve as tool in educational settings, and of course to

generate a accompaniment for a performance.

2 The full code of our implementation as well as the test set, the ex-
pert ratings, and a demo are available at: https://github.com/

pvankranenburg/ismir2023.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

396



7. ACKNOWLEDGEMENTS

This work has been enabled by the H2020 Project Poli-

fonia: a digital harmoniser for musical heritage knowl-

edge funded by the European Commission Grant number

101004746.

8. REFERENCES

[1] J. Bharucha, “Anchoring effects in music: The reso-

lution of dissonance,” Cognitive Psychology, vol. 16,

no. 4, pp. 485–518, 1984.

[2] D. Makris, I. Karydis, and S. Sioutas, “Automatic

melodic harmonization: An overview, challenges and

future directions,” in Trends in Music Information

Seeking, Behavior, and Retrieval for Creativity. IGI

Global, 06 2016, pp. 146–165.

[3] M. Baroni and C. Jacoboni, “Computer generation of

melodies: Further proposals,” Computers and the Hu-

manities, pp. 1–18, 1983.

[4] K. Ebcioğlu, “An expert system for harmonizing four-

part chorales,” Computer Music Journal, vol. 12, no. 3,

pp. 43–51, 1988.

[5] H. V. Koops, J. P. Magalhães, and W. B. de Haas, “A

functional approach to automatic melody harmonisa-

tion,” in Proceedings of the First ACM SIGPLAN Work-

shop on Functional Art, Music, Modeling amp; De-

sign. New York, NY, USA: Association for Comput-

ing Machinery, 2013, pp. 47–58.

[6] D. Temperley, “An algorithm for harmonic analy-

sis,” Music Perception: An Interdisciplinary Journal,

vol. 15, no. 1, pp. 31–68, 1997.

[7] D. Ponsford, G. Wiggins, and C. Mellish, “Statistical

learning of harmonic movement,” Journal of New Mu-

sic Research, vol. 28, no. 2, pp. 150–177, 1999.

[8] J.-F. Paiement, D. Eck, and S. Bengio, “Probabilistic

melodic harmonization,” in Canadian Conference on

AI, 2006.

[9] I. Simon, D. Morris, and S. Basu, “Mysong: automatic

accompaniment generation for vocal melodies,” in CHI

’08: Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, 2008, pp. 735–

734.

[10] S. A. Raczyński, S. Fukayama, and E. Vincent,

“Melody harmonization with interpolated probabilis-

tic models,” Journal of New Music Research, vol. 42,

no. 3, pp. 223–235, 2013.

[11] H. Lim, S. Ryu, and K. Lee, “Chord generation from

symbolic melody using blstm networks,” in 18th Inter-

national Society for Music Information Retrieval Con-

ference, 2017, pp. 621–627.

[12] Y.-C. Yeh, W.-Y. Hsiao, S. Fukayama, T. Kita-

hara, B. Genchel, H.-M. Liu, H.-W. Dong, Y. Chen,

T. Leong, and Y.-H. Yang, “Automatic melody harmo-

nization with triad chords: A comparative study,” Jour-

nal of New Music Research, vol. 50, no. 1, pp. 37–51,

2021.

[13] C.-H. Chuan and E. Chew, “Generating and evaluating

musical harmonizations that emulate style,” Computer

Music Journal, vol. 35, no. 4, pp. 64–82, 2011.

[14] P. Van Kranenburg and M. De Bruin, “The meertens

tune collections: Mtc-fs-inst 2.0,” Meertens Institute,

Amsterdam, Meertens Online Reports 2019-1, 2019.

[15] W. B. Hewlett, “A base-40 number-line representation

of musical pitch,” Musikometrika, vol. 4, pp. 1–14,

1992.

[16] M. S. Cuthbert and C. Ariza, “Music21: A toolkit for

computer-aided musicology and symbolic music data,”

in Proceedings of the 11th International Conference on

Music Information Retrieval (ISMIR 2010), 2010, pp.

637–642.

[17] C. Ariza and M. S. Cuthbert, “Modeling beats,

accents, beams, and time signatures hierarchically

with music21 meter objects,” in Proceedings of

the International Computer Music Conference, New

York, 2010, pp. 216–223. [Online]. Available: http:

//mit.edu/music21/papers/2010MeterObjects.pdf

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

397


