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ABSTRACT

Optical Music Recognition (OMR) has become a popu-

lar technology to retrieve information present in musical

scores in conjunction with the increasing improvement of

Deep Learning techniques, which represent the state-of-

the-art in the field. However, its effectiveness is limited

to cases where the target collection is similar in musical

context and graphical appearance to the available train-

ing examples. To address this limitation, researchers have

resorted to labeling examples for specific neural models,

which is time-consuming and raises questions about us-

ability. In this study, we propose a holistic and comprehen-

sive study for dealing with new music collections in OMR,

including extensive experiments to identify key aspects to

have in mind that lead to better performance ratios. We

resort to collections written in Mensural notation as a spe-

cific use case, comprising 5 different corpora of training

domains and up to 15 test collections. Our experiments

report many interesting insights that will be important to

create a manual of best practices when dealing with new

collections in OMR systems.

1. INTRODUCTION

Manual sheet music transcription is a tedious process,

prone to errors, and generally requires professionals with

precise knowledge of the type of notation and/or music at

issue. The alternative to this manual digitization of con-

tent is to resort to cutting-edge technology based on artifi-

cial intelligence, which performs an automated reading of

documents. This technology is known as Optical Music

Recognition (OMR).

OMR has been an active research area for decades [1],

although the field progressed slowly [2]. Recently, the

use of modern machine learning techniques, namely Deep

Learning, has led to a paradigm shift that has partially un-

locked this situation [3, 4]. Indeed, it has been shown that
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current OMR technologies, despite the fact that they are

not yet fully mature, are usually a better alternative than

performing the entire transcription by hand [5].

Concerning the machine learning methods, the related

literature reports that the models provide sufficient preci-

sion when the collections to be transcribed are from the

same graphic and content domain as the corpus used to

train them. This, however, makes it difficult to transfer

technology to new collections, since it is not always possi-

ble, desirable, or efficient to invest resources in annotating

a small portion of the target collection. Although it is naive

to assume the availability of training sets from the same

domain as a given target collection, in the current data era

we can assume to have at least a series of labeled collec-

tions, even with different graphic and musical character-

istics. This, of course, can and should be used to improve

the efficiency of fitting OMR models to new collections for

which we do not have specific training sets.

In this paper, we report on a case study focused on Men-

sural notation to answer questions about the transferability

of OMR models to new music collections. To our best

knowledge, this work constitutes the first to analyze this

issue in the field. We consider Mensural notation as the

structuring experimental body because the OMR technol-

ogy can be considered mature for this notation. Also, we

have a significant number of labeled and unlabeled collec-

tions in this notation, which allows us to carry out an ex-

haustive study that is expected to lead to more generaliz-

able conclusions. Specifically, we consider 5 labeled col-

lections that will be used as training sets, along with their

possible combinations, and up to 15 unlabeled collections

as target.

The rest of the paper is structured as it follows: in Sec-

tion 2, we provide some background to the topic; in Sec-

tion 3, we present our methodology to analyze the question

at issue; the experimental setup is described in Section 4,

while the results and analysis are given in Section 5; fi-

nally, we conclude the paper in Section 6, while pointing

out some interesting avenues for future work.

2. BACKGROUND

Recent advances in artificial intelligence, with extensive

use of Deep Learning (DL) technologies, resulted in about

successful approaches to OMR. Specifically, a holistic ap-
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proach, also known as end-to-end formulation, which has

been dominating the state of the art in other applications

such as text or speech recognition [6, 7], is currently con-

sidered the reference model in OMR. The related literature

includes many successful solutions of this type [8–10]. In

this work, we resort to this approach as representative of

the state of the art based on DL.

However, as introduced above, there is still no computa-

tional approach for creating a universal OMR system; i.e,

one that is capable of dealing with any kind of collection.

The underlying issue is an overly unsolved challenge in

artificial intelligence [11]: DL works well if the problem

is statistically regular and there is abundant training data

to adequately and representatively learn such regularity.

This is, unfortunately, quite difficult to expect when deal-

ing with ancient documents. Instead of trying to solve the

underlying problem of machine learning, we take a more

practical path to provide a series of best practices to tackle

the situation of target collections in the absence of specific

training data successfully.

It is important to highlight that, in the OMR literature,

there are very few works dedicated to studying the prac-

tical aspects of the technology. Pugin and Crawford [12]

estimated through a quantitative evaluation the suitability

of using the Aruspix machine-learning-based OMR sys-

tem on a real collection. Furthermore, Alfaro-Contreras et

al. [5] analyzed the benefits of using OMR in cases where

the accuracy of the system was not perfect. Our work fur-

ther contributes to this barely explored line of practical as-

pects for the application of OMR to real-world scenarios

from the perspective of the available training data.

3. METHODOLOGY

The focus of the work is essentially experimental. We

want to be able to answer specific questions about how

to approach the generation of generalizable OMR mod-

els. Our objective is to reduce the uncertainty when facing

the recognition of collections for which there is no specific

training set.

To answer these questions, we will consider as a starting

point the availability of N training sets that, even depict-

ing the same musical notation (Mensural notation), differ

in graphic characteristics. This will allow drawing more

interesting conclusions about the synergy of using a het-

erogeneous set of training collections. To cover all possi-

bilities, we create models from all possible combinations

of these sets (2N − 1 possibilities). Each of these possibil-

ities will be directly evaluated on M test sets (not seen in

any training case), also showing heterogeneous character-

istics.

As previously mentioned, we will consider a deep end-

to-end model as representative of the state of the art in

OMR. Below we explain in more detail how this model

works.

3.1 Learning framework

For the task, a Convolutional Recurrent Neural Network

(CRNN) scheme is proposed for the end-to-end optical

music transcription pipeline. The CRNN architecture con-

sists of a block of convolutional layers that learns the rele-

vant features from the input image (single staff), followed

by a group of recurrent stages that model the temporal de-

pendencies of the feature-learning block. Finally, a fully-

connected network with a softmax activation is used to re-

trieve the posteriogram, which is decoded to obtain the pre-

dicted musical symbols. 1

The Connectionist Temporal Classification (CTC) [13]

training procedure is used to train the CRNN model using

unsegmented sequential data. The training set T consists

of pairs of single musical staff images xi and their corre-

sponding symbol sequence zi in a symbol vocabulary Σ,

with 261 units corresponding to the number of different

symbols among the training sets. To use CTC as an end-

to-end sequence labeling framework, an additional "blank"

symbol is included in the vocabulary Σ′.

Formally, let T ⊂ X × Σ∗ be a set of data where an

image xi ∈ X of a single staff is related to symbol se-

quence zi =
(

zi1, zi2, . . . , zi|zi|

)

∈ Σ∗, where Σ repre-

sents the symbol vocabulary used for encoding the music

score. Note that the use of CTC to model the transcrip-

tion task as an end-to-end sequence labeling framework

requires the inclusion of an additional “blank” symbol in

the Σ vocabulary, i.e., Σ′ = Σ ∪ {blank}.

At prediction, for a given musical staff image input

xi ∈ X , the model outputs a posteriogram pi ∈ R
|Σ′|×K ,

where K represents the number of frames given by the

recurrent stage. Finally, the predicted sequence ẑi is ob-

tained resorting to a greedy policy that retrieves the most

probable symbol per frame in pi, later a subsequent map-

ping function merges consecutive repeated symbols and re-

moves blank labels.

4. EXPERIMENTAL SETUP

In this section, we present our choices for the experimental

design. First, we describe the considered evaluation met-

ric. Then, we give more implementation details of the deep

learning model. Finally, we present and describe the col-

lections selected as train and target sets.

4.1 Evaluation

To evaluate the performance of the OMR model, we resort

to the Symbol Error Rate (SER). This is computed as the

average number of elementary editing operations (inser-

tions, deletions, or substitutions) required to convert pre-

diction ẑi into reference zi, normalized by the length of

the latter.

In general, we are interested in computing the amount

of effort it would take for a person to correct the remaining

errors in the system. Since computing this human effort

1 Understanding musical symbol as the conjunction of
glyph:position, i.e., note_half:L2 (a glyph note_half

present in the second staff line).
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does not scale well in practice (it consumes huge amounts

of resources), we believe that this metric is suitable to mea-

sure the transcription correctness. In addition, it is a metric

that has been commonly applied in previous works on this

subject (cf. Section 2).

4.2 Neural model configuration

The CRNN topology is based on the one used in the re-

search [14], where the authors adopt a 4 convolutional

layer block with batch normalization, Leaky ReLu activa-

tion, and max-pooling down-sampling. The feature maps

extracted from the convolutional block are fed into two

Bidirectional Long Short-Time Memory layers with 256

hidden units each and a dropout value of d = 50% fol-

lowed by a fully-connected network with |Σ′| units.

The models were trained with a batch size of 16

elements—note that in experiments where multiple train-

ing sets were used all the generated batches in the train-

ing process were balanced so the net didn’t adjust to a

certain corpus. The ADAM optimizer [15] was consid-

ered and a fixed learning rate of 10−3. We iterate for 300

epochs, keeping the weights that minimize the SER met-

ric in the validation partition with an early stopping policy

of 30 epochs. Finally, all experiments were run using the

Python language (v. 3.8.13) with the PyTorch framework

(v. 1.13.0) on a single NVIDIA GeForce RTX 4090 card

with 24GB of GPU memory.

4.3 Datasets

A set of 20 different white Mensural notation works has

been collected for this work, consisting of pairs of staff

images and their transcription into sequences of musical

symbols. The pieces have been selected looking for diverse

cases concerning printers or copyists, layouts, authors, the

period in history, and extension. 2

4.3.1 Training Datasets

For training, 4 different datasets were chosen from real col-

lections, trying to cover as much variability as possible.

When facing a new transcription project, it is usual that

no training collection is similar or big enough for build-

ing a model to obtain reliable results from the automatic

recognition process. In this scenario, the creation of syn-

thetic training data from scratch is a valid alternative that

will be evaluated in the work with the PRIMENS dataset.

Therefore, we will add this synthetic collection to the set

of training sets, resulting in 5 different collections. These

training collections are described below.

• CAPITAN. The Capitan dataset contains 100 handwrit-

ten pages of ca. 17th-century manuscripts in late white

Mensural notation extracted from the work with signa-

ture B59.850 in the Catedral del Pilar in Zaragoza [16].

• SEILS. The SEILS dataset contains 151 printed pages

of the “Il Lauro Secco” collection corresponding to an

2 The whole set, along with a comprehensive description of
the contents, can be found at https://grfia.dlsi.ua.es/

polifonia/ismir2023.html.

anthology of 16th-century Italian madrigals in white

Mensural notation [17].

• GUATEMALA. The Guatemala dataset presents 383

handwritten pages from a polyphonic choir book, part

of a larger collection held at the “Archivo Histórico Ar-

quidiocesano de Guatemala” [18].

• MOTTECTA. This dataset corresponds to the work

“Mottecta (Mottecta Francisci Guerreri, que partim

quaternis partim quinis alia senis alia octonis concinun-

tur vocibus, liber secundus dataset)”, authored by Fran-

cisco Guerrero in the 16th-century and edited by Gi-

acomo Vincenti in the 17th-century. This 297-printed

mensural pages corpus has been obtained from the col-

lection of mensural books of the Biblioteca Digital His-

pánica. 3

• PRIMENS. The Printed Images of Mensural Staves

(PrIMenS) dataset is a synthetic corpus that tries to

resemble low-quality real scans of printed mensural

sources. It has been built from works composed by Agri-

cola, Frye, and Ockeghem available in the Josquin Re-

search Project 4 . Given polyphonic scores encoded in

**kern [19] format, each voice is separated into a single

file. In order to increase the variability, the original clefs

are modified according to the instrument annotation in

the voice. To obtain single staves, the whole work has

been divided into a random number of measures from

3 to 18, and the resulting files have been converted into

**mens [20] format. The corresponding agnostic encod-

ing has been generated following the method described

in [17]. The images have been obtained using the digi-

tal engraver Verovio [21] by applying random values to

all the options in the allowed ranges. Finally, those im-

ages have been distorted to simulate real printed image

scans by using a random sequence of graphical filters

with the GraphicsMagick Image Processing. Addition-

ally, this real-image simulation process has been com-

plemented by composing randomly damaged old paper

textures with distorted images.

To better understand the differences that might appear

among these corpora, we provide a staff example from

each corpus in Fig. 1.

4.3.2 Target Datasets

For the task of testing the suitability of each model, 15

datasets have been chosen. These corpora have been care-

fully and specifically labeled for this work, and are sum-

marized in Table 1 and Fig. 2.

The printed sets have been extracted from the publicly

available collection of Mensural books in the Biblioteca

Digital Hispánica. 5 The handwritten collections are ob-

tained from archive of Catedral del Pilar in Zaragoza [16].

3 bdh.bne.es/bnesearch/detalle/bdh0000008932
4 https://josquin.stanford.edu/ (accessed September

1st, 2022).
5 https://www.bne.es/es/catalogos/

biblioteca-digital-hispanica (accessed March 7th, 2023)
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(a) CAPITAN

(b) SEILS

(c) GUATEMALA

(d) MOTTECTA

(e) PRIMENS

Figure 1: Samples of staves of the different training

datasets employed.

Name (ID) Number of staves Printer

Amorosa (Amo) 224 H. of G. Scoto

Chansons (Cha) 173 A. Le Roy, R. Ballard

Dolci (Dol) 170 H. of G. Scoto

Lamentationes (Lam) 528 G. G. Carlino

Madrigali (Mad) 201 G. Scotto

Magnificat (Mag) 1361 Antonio Gardano

Missarum (Mis) 489 H. of G. Scoto

MusicaNova (Mus) 874 Antonio Gardano

Orlande (Orl) 259 A. Le Roy, R. Ballard

Responsoria (Res) 666 G. G. Carlino

Sacrarum (Sac) 460 Antonio Gardano

Villanelle (Vil) 59 G. G. Carlino

B3.28 (B3) 60 Handwritten

B50.747 (B50) 80 Handwritten

B53.781 (B53) 32 Handwritten

Table 1: Features of the different target collections consid-

ered in this work.

5. RESULTS

Given the number of training corpora (5), the test datasets

(15), and the number of experiments (31), we are able to

report up to 465 different SER results. This enables us to

properly summarize the experimentation, extracting mean-

ingful learnings that will be used to state the best practices

to deal with training data on new projects. The analysis of

the results follows. The extended raw results of each exper-

iment are attached to this document in the supplementary

material.

5.1 Importance of size and variability

In order to understand which is the best training set selec-

tion strategy when facing a new unseen collection, all the

possible combinations of the datasets available for training

have been evaluated against the different target sets.

Figure 2: Image examples from the selected corpora as

test partition. The images follow a left-right-top-bottom

order concerning the list order from Table 1.

The more training sets we include in the combination

the greater the number of staves of that combined training

set will be. To evaluate which factor is more important, ei-

ther the variability, given by the number of different train-

ing sets included in each combination, or the size as the

total number of staves to train, we have plotted in Fig. 3

the summary statistics of the SER obtained by each trained

model over all the target collections.

In general, the best behavior has been obtained when

merging all the available training corpora. This first out-

come may seem obvious, but due to the variability of the

training datasets and some of the test works, it was not il-

logical to expect otherwise. From this result, the fact to

be explained is why it performs the best, either due to the

size of the training set in terms of the number of staves or

the generality the model encompasses due to the training

corpora of different natures included.

The plot shows that, although adding more training cor-

pus does not worsen the results, it is not a determining fac-

tor. In general, good results are generally obtained with

combinations of at least 3 training sets. However, a com-

bination of just two corpora (i.e. CS) yields a good per-

formance both in mean and dispersion that denotes its ro-

bustness. These two corpora are complementary from the

graphical point of view and seem to be representative of

both printed sources (SEILS) and handwritten manuscripts

(Capitan). When applying 3-corpora training set combi-

nations, the results are equivalent: CGS experiment com-

pared with the GMP, wherein the combination of the first

two handwritten corpora and one printed appear compared

to the collection of one handwritten and two printed train-

ing sets. From these evidences, it can be deduced that the

variability of training sets is relevant for better overall per-

formance.

If we focus on the size of the training collection, i.e.,

the total number of staves used for training, the plot shows

that it is not as important as the variability for the final

performance. For example, experiment CMS, having less

than 4 000 staves, brings better results than experiment GP

with over 8 000 samples for training.

To confirm the size is not all that matters, Fig. 4 illus-

trates the results reported by calculating the number of ex-

periments where the SER is minimized in any of the target

datasets, taking into account the number of datasets used
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to train. It can be noticed that trained experiments with

sizes 3, 4, and 5 report a value of 31.2%. Aside from the

value itself, what this aspect exposes is that the size of your

dataset at a given point is no longer a critical factor for the

transcription quality.

5.2 The complexity of a corpus

The average SER values for all experiments on each target

dataset are plotted in Fig. 5. The main noticeable aspect is

the difference between Q1 and Q3 (the colored box ends)

in the diverse corpora. This substantial contrast in disper-

sion is what we named “The complexity of a corpus”. The

plot shows that, as expected, the performance depends on

the precise selection of the combination of training corpora

to use. The maximum SER values are obtained when the

training data is built from just one dataset.

In general, the worst results in the graph are obtained

for handwritten target works (those named with the prefix

“B”) because, intrinsically, they are more difficult to deal

with and need a higher variability in the number of training

corpora of handwritten works.
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Figure 5: The boxplot shows different statistical SER fig-

ures over all experiments made in each one of the testing

corpora.

5.3 The importance of leveraging the availability of

training corpora

Figure 6 shows the results of the experiments that use each

specific training corpus compared to the experiments that

do not use it. The image presents the casuistry when hav-

ing to choose either adding new samples from a different

dataset or continue increasing the size of existing labeled

samples. As the image reveals, every dataset available for

the train, no matter the type—printed or handwritten, real

or synthetic—should be included. It is worth mentioning,

that the relevance of adding a new corpus is more notice-

able than others. For example, referring to the Capitan cor-

pus, if we compare the experiments CMP – MP, CPS – PS,
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Figure 6: Comparison between all experiments containing (green) and not containing (blue) each training set.

and CMS – MS, we can observe this phenomenon: because

of the variability that Capitan adds to the training set, the

improvement is noticeable. Therefore, a new corpus seems

to generally improve the model performance, as outlined in

Fig. 5.

But not only adding a different corpus helps to improve,

as the key is to be aware of what is missing in terms of

graphical variability in the available training data to build

a more robust model. An interesting piece of evidence in

the plot that shows how to proceed when this happens is

to notice that even a synthetic corpus helps in improving

the overall results when it complements the available orig-

inal training data. Note the reduction in SER when adding

PrIMenS, that synthetically simulates printed sources, to

complement two other handwritten datasets (Capitan and

Guatemala).

5.4 Lessons learned

In order to summarize and establish a set of best practices

to improve the generalization performance of OMR sys-

tems in the absence of specific training data, we will intro-

duce some questions and answers related to the knowledge

acquired from the experimental outcomes.

• Which is the best choice to transcribe a new collec-

tion? In general, one must use all the available training

corpora even if some of them are quite different from the

target collection.

• Is it better to have fewer collections with a high num-

ber of samples or more collections with fewer sam-

ples each? It is preferable to have more variability even

at the cost of a smaller sample set.

• How important is it to be aware of the collection to

transcribe for selecting the right corpora to train the

model? It is indeed relevant, and depending on the diffi-

culty (for example, whether or not it is handwritten) the

differences in performance can be very varied.

• Does the introduction of a synthetic corpus improve

the performance? Yes, the introduction of a reliable

synthetic collection adds size and variability to the train-

ing data, enabling better performance rates.

We consider that these answers can be used as general

rules of thumbs, although of course in certain cases they

may not hold.

6. CONCLUSIONS

OMR promises to make written music collections more ac-

cessible and browsable by automatically recognizing the

symbolic content from their images. However, modern

technologies are based on machine learning with deep neu-

ral networks, which typically causes unpredictable perfor-

mance when processing a collection for which no specific

training data is available. In this work, we have studied

this issue using a large number of training and test col-

lections depicting Mensural notation. This extensive study

has been developed considering a state-of-the-art model as

representative of the ability to transfer knowledge between

collections with dissimilar characteristics.

Our experiments allowed us to analyze various phenom-

ena related to the synergies created between different train-

ing collections, the importance of choosing a good recog-

nition trained model to alleviate the uncertainty about per-

formance in a new collection, as well as a series of gen-

eral good practices on how to proceed for training general

OMR models.

As future work, we want to keep on in this line of inves-

tigating practical aspects of OMR systems that have a di-

rect impact on particular use cases. For example, we want

to extend the case study to the scenario of transfer learning

and fine-tuning, where a (limited) amount of training data

from a new collection can be assumed. Also, it is interest-

ing to analyze the nature of the errors made by the different

OMR models, as well as to have a more precise estimate

of the impact of the different errors on the amount of effort

required during the post-editing correction process.
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