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ABSTRACT

Intra-opus repeated pattern discovery in polyphonic sym-

bolic music data has challenges in both algorithm design

and data annotation. To solve these challenges, we pro-

pose BPS-motif, a new symbolic music dataset contain-

ing the note-level annotation of motives and occurrences

in Beethoven’s piano sonatas. The size of the proposed

dataset is larger than previous symbolic datasets for re-

peated pattern discovery. We report the process of dataset

annotation, specifically a peer review process and discus-

sion phase to improve the annotation quality. Finally, we

propose a motif discovery method which is shown outper-

forming baseline methods on repeated pattern discovery.

1. INTRODUCTION

Repetition is ubiquitous in music. Computational discov-

ery of repeated patterns in music data has been long dis-

cussed in the field of music information retrieval (MIR).

Aside from its importance in music analysis [1], the role

of repeated pattern discovery has also been noticed in mu-

sic classification [2,3] and generation [4,5]. The definition

of a pattern is multi-fold. Generally speaking, a pattern

refers to a group of notes that serves a musically impor-

tant role and occurs multiple times in a piece of music.

Repeated patterns are known by various names, such as

motifs, themes, phrases and sections, depending on their

specific musical function. The goal of the repeated pattern

discovery problem is then to find the relevant patterns (de-

pending on the intended task) and all of their occurrences

within the provided musical data.

Compared to other music analysis tasks (e.g., harmony

analysis) on polyphonic symbolic music data, repeated pat-

tern discovery is relatively less discussed due to mainly

two challenges. First, searching for all the possible can-

didates of repeated patterns is costly and redundant [6].

The computational complexity of the algorithm is high,

while the discovered patterns often have little musical sig-

nificance [7]. Second, repetition is a non-exact attribute

of music. A large pattern can be potentially divided into
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small ones; whether a note group constitutes a meaningful

repeated pattern also depends on the subjective views re-

garding repetition, similarity, and musical importance. As

a result, human-annotated datasets that comprehensively

identify all the available patterns and all of their occur-

rences remains in a quite limited scale.

In this paper, we propose a new dataset, BPS-motif,

to improve the scalability of music pattern discovery re-

search. The BPS-motif dataset contains the note-level an-

notation of motives and their occurrences in the first move-

ments of Beethoven’s Piano Sonatas (BPS). This is an ex-

tension of the many previous musical annotations on BPS,

such as the functional harmony, phrase and section anno-

tation provided in the Beethoven Piano Sonata Functional

Harmony (BPS-FH) dataset [8]. We are specifically inter-

ested in annotating the motivic units in the melody parts

of each piece of music, which could be complementary to

the more thematic annotation (e.g., phrases and sections)

provided in the BPS-FH dataset. We expect that the pro-

posed dataset can enrich not only multi-task MIR research

but also novel computational music analysis tasks.

Besides, as another contribution of this paper, we also

propose a simple yet effective algorithm for repeated pat-

tern discovery. Different from previous works which em-

phasized the equal translations among notes, we empha-

size the contextual relationships among short segments

of notes. We demonstrate that the proposed algorithm

not only outperform several baselines on the BPS-motif

dataset, but also on the JKU-PDD dataset [9], the most

widely used dataset for the discovery of repeated themes

and sections. In other words, the proposed algorithm is

competitive for finding both motivic and thematic patterns.

The rest of this paper is organized as follows. Section

2 gives a background introduction and a survey of previ-

ous works on the datasets and methods for repeated pattern

discovery. In Section 3, we introduce the dataset and our

proposed annotation process. In Section 4, we introduce

the proposed motif discovery algorithm and demonstrate

its evaluation results. Conclusions are made in Section 5.

2. RELATED WORK

2.1 Repeated pattern discovery datasets

The datasets for repeated pattern discovery are built mostly

for the interest in computational music analysis research.

Complete annotation of repeated patterns should incorpo-

rate all the note groups (each note in pitch-onset part) that
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constitute 1) the patterns of interest and 2) the occurrences

of each pattern. Usually, a music piece contains more

than one pattern, and each pattern should repeat (i.e., oc-

cur more than twice). The occurrences of a pattern may

not be the same; one occurrence can be an exact copy of,

or a variation from another occurrence that belongs to the

same pattern. The music data can be either monophonic or

polyphonic, and can be in either symbolic or audio format.

The annotation can be either intra-opus or inter-opus [10].

In the former case, the analysis focuses on how a piece of

music is broken down into pattern occurrences by having

occurrences of a pattern within one music piece [7, 10].

In the latter case, the analysis focuses on the evolution of

common elements in a corpus, by having occurrences of a

pattern in different pieces of music. It should be noted that

the annotation in inter-opus datasets can be limited to only

a small set of patterns, while intra-opus datasets need a

comprehensive set of patterns and occurrences and is hard

to build; see Table 1 and the discussion below.

Table 1 presents the datasets for both inter-opus and

intra-opus pattern discovery. In the Saraga dataset, Srini-

vasamurthy et al. annotated 4,571 temporal occurrences

from 1,067 characteristic melodic phrases, a musical unit

related to the rāga, over 170 audio recordings [11]. Krause

et al. performed large-scale leitmotif classification in au-

dio recordings by annotating the time intervals of 10 leit-

motifs in Richard Wagner’s four-opera cycle Der Ring des

Nibelungen and achieve a large scale of occurrence over 16

versions of recordings [12]. 1 In the MTC-ANN dataset,

Kranenburg et al. categorized 93 patterns in 360 mono-

phonic folk tunes and annotated 1,657 occurrences [13].

Finkensiep et al. considered 20 types of schemata and

annotated 244 events in Mozart’s piano sonatas [14]. In

the MIREX campaign of Discovery of Repeated Patterns

and Themes, Collins et al. firstly compiled an organized,

open-source intra-opus pattern discovery dataset contain-

ing 165 occurrences in five pieces and this dataset has

been widely discussed in the follow-up research works. It

should be noted that, among these datasets, only the JKU-

PDD dataset is for intra-opus pattern discovery but its size

is smallest among all (only five pieces of music).

Aside from the above-mentioned datasets, it is still

worth mentioning the datasets for pattern matching [15],

such as the Dig That Lick dataset for Jazz music [16] and

the Theme Finder for Classical music [17]. These datasets

support pattern retrieval tasks with known query, but they

neither support pattern discovery research nor provide the

annotation of pattern occurrences explicitly.

2.2 Repeated pattern discovery methods

For symbolic music data, there are three major approaches

to implementing the repeated pattern discovery algorithms:

1) string-based approach which represents music data as

one-dimensional pitch sequence and finds repeated pat-

terns with sub-string matching [18, 19]; 2) geometry-

based approach which represents music data as multi-

dimensional point sets (usually onset-pitch pairs in two-

1 There are in total 38,448 occurrences if counting the 16 versions.

format usage #ps #ptns #ocrs

[11] poly audio inter 170 1,067 4,571

[12] poly audio inter 11 10 2,403

[13] mono symbolic inter 360 93 1,657

[14] poly symbolic inter 54 20 244

[9] poly symbolic intra 5 32 165

Ours poly symbolic intra 32 263 4,944

Table 1: Comparison of several open-source musical re-

peated pattern datasets including the saraga dataset [11],

The Ring (one performance version) [12], MTC-ANN

[13], Schemata [14], JKU-PDD [9], and BPS-motif (ours).

The number of pieces (#ps), the number of individual pat-

terns (#ptns), and the number of occurrences (#ocrs) are

listed. The data formats can be monophonic (mono) or

polyphonic (poly), audio or symbolic. The type of annota-

tion can be inter-opus (inter) or intra-opus (intra).

dimensional space) and retrieves the translatable subsets

(see discussion below) as repeated patterns [20–22]; 3)

feature-based approach which extracts or learns features

from music data, and retrieves patterns with clustering or

classification of the features [14, 23–25].

While the string-based approach falls limited in repre-

senting polyphonic music [22], research efforts on pattern

discovery have been more emphasized on the geometry-

based approach. In the geometry-based approach, we con-

sider a music piece D with N notes and d denotes a note.

We have D := {di}
N
i=1

, where di := (oi, pi) denotes the

ith note, and oi, pi denote its onset and pitch value, re-

spectively. In the discussion of the structure induction al-

gorithm with translational equivalence classes (SIATEC)

[20], two subsets (i.e., two patterns) m and n in D are

translatable (denoted as n ≡ m) if there exists a vector v

such that the translation function f(d,v) : m → n;d 7→
d+v is bijective. All the patterns translatable with respect

to m form a translational equivalence class (TEC) of m in

D, that means

TEC(m,D) := {n : n ≡m,n ⊆ D} . (1)

A maximal translatable pattern (MTP) is the largest

pattern translatable by a translatable vector v [20]:

MTP(v,D) := max
|d|
{d : d ∈ D and d+ v ∈ D} , (2)

where |d| is the number of notes in d. SIATEC is then an

algorithm which finds all the TEC of the available MTPs in

D. A survey and comparative study can be found in [26].

In the feature-based approach, machine learning tech-

niques are usually applied; features are processed by clus-

tering for the pattern discovery task (when a query is not

given), and by classification for the pattern matching task

(when a query is given) [15]. For example, in [23], ag-

glomerative clustering over the wavelet transform of the

pitch sequence data was used for pattern discovery in

melodies. In [14], music schema recognition was per-

formed by extracting the schema candidates using a skip-

gram model and then a binary classification on the rhythm
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and pitch features over the candidates. It is also noted that

the feature-based approach has also been widely discussed

in the repeated pattern discovery of audio. In [24], Nuttall

et al. adopted matrix profile, a time-series-based motif dis-

covery method [27], on the predominant pitch contours to

extract the characteristic melodic phrases from audio [11].

Krause et al. utilized recurrent neural networks (RNN) to

classify over 30,000 leitmotifs over differnt performances

of Der Ring des Nibelungen [25].

3. DATASET

3.1 Overview

The BPS-motif dataset contains the annotation of motives

in the first movements of Beethoven’s 32 piano sonatas.

An annotation unit contains a group of motif notes and

the corresponding motif label. The motif labels are sorted

in alphabetical order: the motif that occurs first in the

music piece is labeled as A, the secondly occurred mo-

tif is labeled as B, the thirdly occurred one is C, and

so on. The group of notes which are the jth occurrence

of the motif A in D is annotated as mA,j , mA,j ⊂ D,

j ∈ Z≥0. All the occurrences of this motif are anno-

tated with A. Further information, such as the start time

and end time of each motif occurrence, and the non-motif

notes (i.e., the notes which do not belong to any motif) can

be directly derived. The dataset is available at: https:

//github.com/Wiilly07/Beethoven_motif.

Over the 32 music pieces, we labeled 263 distinct mo-

tives with 4,944 occurrences in total (see Table 1). These

occurrences contain 36,652 notes, which is 28.87% of the

total number of 126,943 notes. For each piece of music,

the number of motives ranges from 2 to 13 (average 8.22

motives), and the number of occurrences ranges from 41 to

290 (average 154.5 occurrences). On average, a motif con-

tains 7.41 notes and spans 5.30 crochet beats. The pitch

ranges of the motives are mostly within two octaves.

To facilitate the annotation process, we only consider

the repeated patterns in melodic notes; that means, all the

annotated motives are constrained to be a monophonic note

sequence. For example, in Figure 1a, although the first beat

of the first measure contains three notes (i.e., B3, D4, G4),

only G4 is included in the the annotated motif A0. How-

ever, there can be multiple motives which are fully or partly

overlapped in time; see the demonstration in Figure 1c (the

red and blue boxes represent two overlapped motives).

3.2 Data format

We basically followed the data format adopted in the BPS-

FH dataset. First, all the articulation symbols and grace

notes were omitted (see Figure 1a). Second, pickup was

filled when needed (see Figure 1b and the following dis-

cussion). Repeat signs are also unfolded when needed.

We take a crotchet beat as the unit time step (i.e., the

duration of a crotchet is 1 in our note annotation and is

1 second in MIDI) to represent the data. Two types of

timestamps are recorded. The score time takes the pickup

measure as negative while the MIDI time fills the pickup

(a) Grace note removal/ taking the monophonic motif

(b) Filling the pickup measure

(c) Annotating overlapped motives

Figure 1: Examples of annotated motives. From (a) to

(c), the three demonstrated excerpts are from Beethoven’s

Piano Sonata No. 20, No. 1, and No. 5, respectively. The

notes bounded by a colored box form a motif occurrence.

measure and defines the beginning of the measure as 0.

For example, in Figure 1b, the score time of the C4 note

at the beginning is -1 while the MIDI time is 3. Both the

score time and the MIDI time unfolds the repeat signs so

the timestamps increase monotonically. Similarly, at the

measure level, the score measure number is the measure

number counted on the score sheet (the pickup measure

is measure 0, with repeat signs), while the MIDI measure

number takes the pickup measure (if there is) as measure

1 and unfolds the repeat signs. Two types of pitch number

are recorded: the MIDI pitch (in MIDI number) and the

morphetic pitch number [28].

For each piece of music, we provide annotation data in

different formats for users to retrieve the motif events in

different ways. The file formats include:

1. A multi-track MIDI file that records the motif notes.

Temporally overlapped motives are recorded in dif-

ferent tracks. There are at most four tracks in our

annotation of this dataset.

2. A list of all the notes. Each note has the labels of

1) onset time (in score time), 2) MIDI pitch num-

ber, 3) morphetic pitch number, 4) note duration (in
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Figure 2: Motives and occurrences labeled in Beethoven’s Piano Sonata No.1 in F minor. From top to bottom shows the

annotation of section intervals, subsection intervals, phrase intervals, the time when a new motif occurs (with motif labels),

and the piano roll of the music piece marked with motif and non-motif notes. In the bottom subfigure, different motives are

specified by different colors. Motif occurrences are marked with a black bounding box. Non-motif notes are in gray color.

Figure 3: Assessment results (Q1 to Q4) regarding the data

annotation from the seven reviewers. The results were col-

lected before the discussion phase.

crotchet beats), 5) staff number (integers from zero

for the top staff), 6) MIDI measure number, and 7)

motif (e.g., a note is annotated as A if it is part of A).

The notes without motif labels are non-motif notes.

3. Individual note lists of each motif occurrence. These

lists are provided for users to better retrieve each oc-

currence. The labels in these lists are the same as the

ones in the list of all notes.

4. A list describing the properties of motif occurrences.

Each motif occurrence has the labels of 1) the start

time and end time (in both score time and MIDI

time), 2) the duration of the occurrence, 3) the mea-

sure number where the motif start (in both score

measure and MIDI measure), 4) the “start beat” of

the motif start, and 5) time signature.

We also provide the PDF scoresheets with the annota-

tor’s manual annotations and notes. These scoresheets are

for reference only because they are the raw annotations and

may not be the same as the annotation of our final version;

see Section 3.3 for more details about the annotation pro-

cess. The note lists and the score time are compatible with

the BPS-FH dataset, therefore annotation of more thematic

units (e.g., theme, sub-section and phrase) can be retrieved

from the BPS-FH dataset. To better see our annotation re-

sult, Figure 2 illustrates the hierarchical musical structures

with motives of Beethoven’s Piano Sonata No. 1, combin-

ing the section, subsection and phrase labels in BPS-FH,

and the motif labels in BPS-motif. 2

3.3 Annotation process

There are a few challenges in the data annotation process.

First, as mentioned, identifying of musical motifs and their

repetitions or variations in a piece of music is not straight-

forward. Ambiguity arises from multiple factors. For ex-

ample, some repeated patterns may not be considered as

valid musical motifs, a motif may not always be the small-

est unit of a repeated pattern, and the similarity or differ-

ence between two such sequences can also be subject to hu-

man interpretation. Besides, while experienced musicians

can read the scoresheet and mark the motives directly by

hand on it, converting such hand-drawing annotations into

database formats still requires lots of efforts.

Our proposed approach to build the BPF-motif dataset

incorporates three parts: annotation, review, and score typ-

ing. First, two annotators (the first and the second authors)

manually annotate the motives on the scoresheet. Each

piece is annotated by one annotator. Then, we invite ex-

ternal reviewers to review annotated scoresheets. Also, the

reviewer helps us digitize the manual annotation. In the re-

view process, we design a review form to let the reviewers

assess the overall quality of annotation and also provide

their suggested annotation if they hold different opinions.

The review form contains the following questions:

1. (Q1) Are the annotations reasonable? (3: totally rea-

sonable; 2: mostly reasonable; 1: unreasonable)

2. (Q2) Are the annotations coherent with your opin-

ion? That means, if you were the annotator, will you

2 It should be noted that there are still some annotation inconsistency
between the BPS-FH and BPS-motif datasets. For example, in Figure 2,
the phrase c is constructed only with the motif D, while the phrase c′′′ is
constructed only with the motif H . This means that while the annotator
of BPS-FH considered c′′′ as simply a variation of c, the annotator of
BPS-motif considered them being different (and are thereon constructed
with different motives).
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Figure 4: Two segments (light gray and light purple re-

gions) and their common structure. The crosses indicate

notes, and the set of vectors in a segment represents its

structure. Blue vectors denote the common structure which

exists in both segments. The dashed gray arrows represents

non-motivic notes within the two segments.

also have the same annotations as ours? (3: totally

coherent; 2: mostly coherent; 1: incoherent)

3. (Q3) Are the annotations consistent (i.e., did we hold

consistent criteria annotating the data)? (3: totally

consistent; 2: mostly consistent; 1: inconsistent)

4. (Q4) In which way your opinions are different from

ours? (a: we took multiple motives into one (un-

dersegmentation); b: we divided a motif into many

(oversegmentation); c: we took some non-motif

patterns as motives (overlabeling); d: we omitted

some musically important motives (underlabeling))

Choose one even you totally agree to our annotation.

5. (Q5) If you hold different opinions on our annotation

and think we should revise them, leave your com-

ments explicitly. Your comments can be, for exam-

ple, “the motif E in Sonata No. x should be further

divided into F and G” (describe what F and G are);

“the motif H in Sonata No. y can be considered as a

variation of B and should be merged,” etc.

Seven reviewers were invited to review the annotations.

The reviewers are all from composition background and

are good at using computer scorewriters. Each reviewer

was assigned from 3 to 7 pieces (according to the length

of the music piece) for review, then they answered the

above questions and provided their suggested annotations

on a co-edited document. During the review and discus-

sion phase, the reviewers also need to convert the manual

annotation on the score into the symbolic form using the

scorewriter MuseScore. This confirms that they had care-

fully read the annotation, and also speed up the process of

building the dataset. After the reviewers typed the scores of

the annotated motives, we can directly convert it to MIDI

and the final annotation data.

The reviewer’s assessment results are shown in Fig. 3.

From Q1 to Q3, it is shown that no reviewer reported our

annotation as unreasonable, incoherent to their thoughts,

or self-inconsistent. However, over half of the review-

ers did point out a few annotation they considered prob-

lematic. We discussed with the reviewers regarding those

issues and revised them such that all the annotations are

Algorithm 1 Find Common Structure

1: function COMMON STRUCTURE(D,∆t)

2: S← ∅
3: for i← 1 to N − 1 do

4: Ci ← ∅
5: for j ← i+ 1 to N do

6: if oj − oi < ∆t then

7: add dj to Ci

8: end if

9: end for

10: Si ← {dj − di, dj ∈ Ci}
11: add Si to S

12: end for

13:

14: M← ∅
15: for i← 1 to N − 1 do

16: Ŝ← ∅
17: for j ← i+ 1 to N do

18: add {Si ∩ Sj} to Ŝ

19: end for

20: add MOST_COMMON(Ŝ) to M

21: end for

22: return M

23: end function

acceptable for the reviewer. The result of Q4 shows that

reviewers tend to say our annotations are oversegmented.

This however fits our needs because doing this provides ex-

tra flexibility to the dataset; researchers who are interested

in longer repeated patterns can simply merge our annota-

tions. On the other hand, it is hard to retrieve short motivic

patterns from undersegmented annotation.

4. MOTIF DISCOVERY

4.1 Algorithm

We regard a motif as a short pattern recurring with little

change in its structure. In other words, the relative posi-

tions of the notes in a motif will be almost fixed. We there-

fore find motifs by detecting common structures in short

musical segments. The idea of the proposed algorithm is

presented in Figure 4 and Algorithm 1. Formally, let ∆t

denote a threshold of time interval, and D := {di}
N
i=1

a

musical piece composed of N notes sorted in ascending

order, with di = (oi, pi) being a two-dimensional vector

indicating the onset and pitch number of the ith note. For

di, we first aggregate its context Ci and create a segment

Si. The derived segments are then compared pairwisely to

obtain common structures. By representing a segment as a

set of vectors (see Figure 4 and Line 3–12 in Algorithm 1),

the common structure of any two segments (i.e., the blue

arrows in Figure 4) can be obtained by collecting vectors

which exist in both segments (Line 18).

As the pairwise comparisons between segments (Line

15-19) will result in various types of common structures,

we retrieve a representative pattern and all its occurrences

by finding the “most common” structure (i.e., the com-
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Algorithm Pest Rest Fest Pocc Rocc Focc Pthr Rthr Fthr Runtime

SIATEC 0.1804 0.6444 0.2803 0.2102 0.2771 0.2235 0.0408 0.2994 0.0713 28.5082

COSIATEC 0.2118 0.4557 0.2863 0.2769 0.1282 0.1548 0.0489 0.1601 0.0743 208.4119

SIATECCompress 0.2136 0.4326 0.2835 0.1430 0.1121 0.1103 0.0579 0.1703 0.0856 636.6930

Proposed 0.5709 0.8339 0.6733 0.1491 0.4174 0.2002 0.1222 0.2644 0.1646 119.5330

(a) Motif discovery on the proposed dataset

Algorithm Pest Rest Fest Pocc Rocc Focc Pthr Rthr Fthr Runtime

SIATEC 0.1238 0.4630 0.1920 0.5248 0.3970 0.4437 0.0706 0.4006 0.1176 1.5099

COSIATEC 0.1140 0.2530 0.1491 0.1305 0.0870 0.1044 0.0740 0.2042 0.1027 6.0167

SIATECCompress 0.1807 0.2849 0.2181 0.1778 0.0889 0.1185 0.1117 0.2202 0.1470 34.6371

Proposed 0.2649 0.5002 0.3406 0.4208 0.5105 0.3948 0.1096 0.3003 0.1561 4.0546

(b) Repeated pattern discovery on the JKU-PDD dataset

Table 2: Evaluation of pattern discovery algorithms. The subscripts est, occ, and thr indicate the establishment, occurrence,

and three-layer measurements, respectively. The averaged runtime is in minutes.

mon structure that occurs the most times) in Ŝ with the

MOST_COMMON operation (Line 20). Finally, motifs

are acquired by filtering out non-motivic patterns in M

heuristically. In this work, we set ∆t = 12 crotchet beats.

The proposed algorithm differs from the SIA family in

two aspects. First, the SIA family aggregates notes of a

pattern by detecting equal translations among notes, while

our algorithm finds patterns by identifying common struc-

tures, or contextual relationships, among small segments.

Second, the SIA family computes maximal translatable

patterns (MTP) and subsequently find their occurrences,

whereas our algorithm establishes a small pattern and all

its occurrences at the same time. Our approach is promis-

ing in that the contextual comparisons between segments

help identify motifs which are small and recurring. The

code of the proposed algorithm is available at https://

github.com/Tsung-Ping/motif_discovery.

4.2 Evaluation

We evaluate the motif discovery algorithm on the proposed

dataset (with an averaged number of 3937 notes per piece)

as well as the JKU-PDD dataset (1284 notes in average) [9]

using standard metrics for pattern discovery. The estab-

lishment measurement (est) shows the capability of an al-

gorithm to recognize patterns rather than to find all occur-

rences of a pattern. The occurrence measurement (occ), on

the contrary, emphasizes the ability to find all occurrences

of a pattern. The three-layer measurement (thr) is a com-

prehensive evaluation combining aspects of both the estab-

lishment and occurrence measurements. Each of the three

measurements are specified in terms of precision, recall,

and F1 score. 3 The averaged runtime on each dataset will

also be measured to give a rough sketch of the time com-

plexity. We compare the proposed algorithm with three

methods from the SIA family, i.e., SIATEC [20], COSI-

3 For more detailed definitions of the three evaluation measure-
ments, refer to https://www.music-ir.org/mirex/wiki/

2017:Discovery_of_Repeated_Themes_\%26_Sections.

ATEC [21], and SIATECCompress [21]. 4 All algorithms

were implemented in Python programming language.

The evaluation results are summarized in Table 2. Gen-

erally, our algorithm performs consistently across datasets

despite that the two datasets are composed of distinct types

of musical patterns, i.e., motivic (the proposed) versus the-

matic (the JKU-PDD), which differ with each other mainly

in the size. Our algorithm is superior to the baselines in

all the three establishment measures, indicating that our

method can identify more existences of the ground-truth

patterns than the other algorithms. Besides, our algorithm

is competent in the other two measurements, with at least

one best performance in each measurement. Specifically,

the Rocc measure shows that the patterns retrieved by our

algorithm are more complete (i.e., discovering more occur-

rences of a pattern) with respect to the ground-truth pat-

terns, and the Fthr measure suggests that our method has

better capability to recognize salient patterns in music, es-

pecially the motivic ones. Finally, the runtime measure-

ment indicates that our algorithm can achieve a better per-

formance on the pattern discovery tasks at a moderate com-

putational cost, which is 4.2 (resp. 2.7) times slower than

the SIATEC on the proposed (reps. JKU-PDD) dataset.

5. CONCLUSION

We have demonstrated a dataset for repeated pattern dis-

covery of polyphonic symbolic data and a motif discovery

algorithm. Our data annotation clearly demonstrates the

hierarchical structure of music. The proposed motif dis-

covery algorithm has been shown outperforming the base-

line methods on various repeated pattern discovery prob-

lems. These findings suggest a direction for developing re-

peated pattern discovery algorithms, and also evoke further

investigation on music structure analysis, novelty analysis,

and repeated pattern discovery algorithms.

4 For the three baseline algorithms, we use the implementa-
tions available at https://github.com/wsgan001/repeated_
pattern_discovery.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

286



6. ACKNOWLEDGEMENT

The contribution of each author is as follows. Yo-Wei

Hsiao performed data annotation and compiled the whole

dataset. Tzu-Yun Hung performed data annotation and

the data review process. Tsung-Ping Chen developed the

motif discovery algorithm. Lastly, Li Su contributed in

project supervision and paper writing. Also, the authors

would like to thank Li-Rong Huang, Hsing-Chen Lin, Yu-

Fang Hsu, Po-Hsuan Huang, Joseph-On-King Lau, Pei-

Ling Kuo, and Chia-Han Li from the Department of Mu-

sic, National Taiwan Normal University, for their efforts in

reviewing and digitizing our data annotation.

7. REFERENCES

[1] D. Meredith, Ed., Computational music analysis.

Springer Cham, 2016.

[2] P. Boot, A. Volk, and W. B. de Haas, “Evaluating the

role of repeated patterns in folk song classification and

compression,” Journal of New Music Research, vol. 45,

no. 3, pp. 223–238, 2016.

[3] C. Louboutin and D. Meredith, “Using general-

purpose compression algorithms for music analysis,”

Journal of New Music Research, vol. 45, no. 1, pp. 1–

16, 2016.

[4] Y.-J. Shih, S.-L. Wu, F. Zalkow, M. Müller, and Y.-H.

Yang, “Theme transformer: Symbolic music genera-

tion with theme-conditioned transformer,” IEEE Trans-

actions on Multimedia, March 2022.

[5] Z. Hu, X. Ma, Y. Liu, G. Chen, and Y. Liu, “The

beauty of repetition in machine composition scenar-

ios,” in Proceedings of the 30th ACM International

Conference on Multimedia, Lisboa, Portugala, 2022,

pp. 1223–1231.

[6] D. Meredith, “RECURSIA-RRT: Recursive translat-

able point-set pattern discovery with removal of re-

dundant translators,” in International Workshops of

the European Conference on Machine Learning and

Principles and Practice of Knowledge Discovery in

Databases (ECML PKDD) 2019, Würzburg, Germany,

2019, pp. 485–493.

[7] O. Björklund, “Siatec-c: Computationally efficient re-

peated pattern discovery in polyphonic music,” in Pro-

ceedings of the 23rd International Society for Music

Information Retrieval Conference (ISMIR), Bengaluru,

India, 2022, pp. 59–66.

[8] T.-P. Chen and L. Su, “Functional harmony recogni-

tion of symbolic music data with multi-task recurrent

neural networks,” in Proceedings of the 19th Interna-

tional Society for Music Information Retrieval Confer-

ence (ISMIR), Paris, France, 2018, pp. 90–97.

[9] T. Collins. 2013:Discovery of Repeated

Themes & Sections. [Online]. Avail-

able: https://www.music-ir.org/mirex/wiki/2013:

Discovery_of_Repeated_Themes_%26_Sections

[10] D. Conklin and C. Anagnostopoulou, “Representation

and discovery of multiple viewpoint patterns,” in Pro-

ceedings of the 2001 International Computer Music

Conference (ICMC), Havana, Cuba, 2001, pp. 479–

485.

[11] A. Srinivasamurthy, S. Gulati, R. C. Repetto, and

X. Serra, “Saraga: Open datasets for research on in-

dian art music,” Empirical Musicology Review, vol. 16,

no. 1, pp. 85–98, December 2021.

[12] M. Krause, F. Zalkow, J. Zalkow, C. Weiß, and

M. Müller, “Classifying leitmotifs in recordings of op-

eras by Richard Wagner,” in Proceedings of the Inter-

national Society for Music Information Retrieval Con-

ference (ISMIR), Montréal, Canada, 2020, pp. 473–

480.

[13] P. van Kranenburg, B. Janssen, and A. Volk, “The

meertens tune collections: The annotated corpus (mtc-

ann) versions 1.1 and 2.0.1,” Meertens Online Reports,

vol. 2016, no. 1, 2016.

[14] C. Finkensiep, K. Déguernel, M. Neuwirth, and

M. Rohrmeier, “Voice-leading schema recognition us-

ing rhythm and pitch features,” in Proceedings of the

21st International Society for Music Information Re-

trieval Conference (ISMIR), Montreal, Canada, 2020,

pp. 520–526.

[15] B. Janssen, W. B. De Haas, A. Volk, and P. Van Kra-

nenburg, “Finding repeated patterns in music: State of

knowledge, challenges, perspectives,” in Sound, Mu-

sic, and Motion: 10th International Symposium on

Computer Music Multidisciplinary Research (CMMR),

Marseille, France, 2014, pp. 277–297.

[16] K. Frieler, F. Höger, M. Pfleiderer, and S. Dixon, “Two

web applications for exploring melodic patterns in jazz

solos,” in Proceedings of the 19th International Society

for Music Information Retrieval Conference (ISMIR),

Paris, France, 2018, pp. 777–783.

[17] D. Huron. Theme finder. [Online]. Available: http:

//www.themefinder.org/

[18] J.-L. Hsu, A. L. Chen, and C.-C. Liu, “Efficient repeat-

ing pattern finding in music databases,” in Proceedings

of the 7th international conference on Information and

knowledge management, Maryland, USA, 1998, pp.

281–288.

[19] E. Cambouropoulos, M. Crochemore, C. Iliopoulos,

L. Mouchard, and Y. Pinzon, “Algorithms for comput-

ing approximate repetitions in musical sequences,” In-

ternational Journal of Computer Mathematics, vol. 79,

no. 11, pp. 1135–1148, 2002.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

287



[20] D. Meredith, K. Lemström, and G. A. Wiggins, “Algo-

rithms for discovering repeated patterns in multidimen-

sional representations of polyphonic music,” Journal

of New Music Research, vol. 31, no. 4, pp. 321–345,

2002.

[21] D. Meredith, “COSIATEC and SIATECCompress:

Pattern discovery by geometric compression,” in Music

Information Retrieval Evaluation eXchange (MIREX),

Curitiba, Brazil, 2013.

[22] ——, “Point-set algorithms for pattern discovery

and pattern matching in music,” in Dagstuhl Semi-

nar Proceedings on Content-Based Retrieval, Schloss

Dagstuhl, Germany, 2006.

[23] G. Velarde, D. Meredith, and T. Weyde, “A wavelet-

based approach to pattern discovery in melodies,”

D. Meredith, Ed. Springer Cham, 2016, pp. 303–333.

[24] T. Nuttall, G. Plaja, L. Pearson, and X. Serra, “The

matrix profile for motif discovery in audio-an exam-

ple application in carnatic music,” in Proceedings of

the 15th International Symposium on Computer Mu-

sic Multidisciplinary Research (CMMR), Online, 2021,

pp. 109–118.

[25] M. Krause, F. Zalkow, J. Zalkow, C. Weiß, and

M. Müller, “Classifying leitmotifs in recordings of op-

eras by richard wagner,” in Proceedings of the 21st

International Society for Music Information Retrieval

Conference (ISMIR), Montreal, Canada, 2020, pp.

473–480.

[26] I. Ren, A. Volk, W. Swierstra, and R. C. Veltkamp, “A

computational evaluation of musical pattern discovery

algorithms,” arXiv preprint arXiv:2010.12325, 2020.

[27] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding,

H. A. Dau, D. F. Silva, A. Mueen, and E. Keogh,

“Matrix profile i: all pairs similarity joins for time se-

ries: a unifying view that includes motifs, discords and

shapelets,” in 2016 IEEE 16th international conference

on data mining (ICDM), Barcelona, Spain, 2016, pp.

1317–1322.

[28] D. Meredith, “Computing pitch names in tonal music:

a comparative analysis of pitch spelling algorithms,”

Ph.D. dissertation, St. Anne’s College, University of

Oxford, 2007.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

288


