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ABSTRACT

Music structure analysis is a core topic in Music Infor-

mation Retrieval and could be advanced through the in-

clusion of new data modalities. In this study we consider

neural correlates of music structure processing using pop-

ular music—specifically choruses of Bollywood songs—

and the NMED-H electroencephalographic (EEG) dataset.

Motivated by recent findings that listeners’ EEG responses

correlate when hearing a shared music stimulus, we inves-

tigate whether responses correlate not only within single

choruses but across pairs of chorus instances as well. We

find statistically significant correlations within and across

several chorus instances, suggesting that brain responses

synchronize across structurally matched music segments

even if they are not contextually or acoustically identi-

cal. Correlations were only occasionally higher within

than across choruses. Our findings advance the state of the

art of naturalistic music neuroscience, while also highlight-

ing a novel approach for further studies of music structure

analysis and audio understanding more broadly.

1. INTRODUCTION

Music structure analysis (MSA)—the task of dividing and

labelling songs into perceptually salient segments [1]—is

a core topic of Music Information Retrieval (MIR) and has

been approached through a variety of data types including

audio representations, lyrics, and perceptual annotations.

For example, choruses of popular songs are often easily

recognizable by music listeners, and can be detected from

audio due to both their placement throughout a song and

their intrinsic features [2]. While much progress has been

made in this area, there may be new approaches and data

modalities that could advance it even further.

MIR studies have come to involve brain data, partic-

ularly electroencephalography (EEG) [3]. EEG has been

used to predict stimulus labels, decode musical attributes

such as beat and tempo, and even reconstruct music. EEG

inter-subject correlation (ISC), which captures neural syn-

chronization of audience members experiencing a com-
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plex, real-world stimulus [4], has also advanced music neu-

roscience research. We leverage and extend this approach

to investigate MSA.

We focus on responses to four Bollywood songs writ-

ten in the popular form—specifically their choruses, due

to their salience and tendency to repeat with a high de-

gree of similarity. Importantly, while past EEG-ISC stud-

ies have considered responses among listeners experienc-

ing the same stimulus (e.g., one chorus instance), we ask

for the first time whether neural responses also synchronize

across instances of structurally similar content (i.e., pairs

of choruses). Moreover, by using a dataset containing two

response trials from each participant, we can investigate

correlations both across and within participants. In sum,

we address the following research questions:

RQ 1 Does music structure similarity translate to measur-

able similarity among responses? In other words, do brain

responses synchronize across structurally matched musi-

cal segments, even when those segments are contextually

unique (in their placement within the song) and also of-

ten acoustically unique from one another? Here we ex-

pect structural similarity to produce statistically significant

EEG correlations both within and across a song’s choruses.

RQ 2 Even if responses are similar across chorus in-

stances, are individual choruses still uniquely experi-

enced? This question extends RQ1 to investigate whether

EEG responses are more correlated within, versus across,

chorus instances. We predict that within-chorus EEG cor-

relations will be higher than across-chorus correlations.

RQ 3 Are a listener’s neural responses more similar to

themselves than to responses from other listeners? Under-

standing whether reliable measures of music structure sim-

ilarity can be obtained from single listeners can motivate

the design of future studies. We expect EEG correlation

with one’s own data will be higher than correlation with

the data of other listeners, due to individual differences in

perception and EEG characteristics.

We report small but often significant correlations

that align with previous published research. Moreover,

within-chorus correlations do not systematically outper-

form across-chorus correlations. While preliminary, our

findings suggest that this novel application of EEG corre-

lation may capture structural similarity during music lis-

tening, which may motivate future MSA studies.
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2. RELATED WORK

2.1 MSA and Chorus Analysis

MSA involves recognizing and labelling non-overlapping

musical segments based on musical similarity [1]. Over

the years, MSA has come to involve specific features, sim-

ilarity representations, and algorithms [5]. One sub-topic

of MSA is chorus identification; here, choruses have often

been identified based on repetition and contextual cues us-

ing measures of similarity [6] and Markov models [7], as

well as chroma features and image processing filters [8].

Some systems have also used segment length and position-

ing to identify choruses [6, 8]. Independently of context,

Van Balen et al. looked at intrinsic content features that

might distinguish choruses [2]. Their “Chorusness” vari-

able, a probability measure of how likely a segment may

be labelled as a chorus by an independent annotator, high-

lights audio features (e.g., higher loudness and roughness)

that qualify the particular salience of choruses.

MSA remains a challenging task due, for example, to

ambiguities around defining similarity as well as subjec-

tivity and interpretation of annotations [1,9]. In their 2020

overview article, Nieto et al. called for “richer human la-

bels in upcoming MSA datasets” [1]; we propose that brain

data may fit this call.

2.2 MIR and EEG

The growing use of decoding and signal-based approaches

and complex, naturalistic (real-world) stimuli in neuro-

science has increased that field’s relevance to the more ap-

plied field of MIR. Kaneshiro & Dmochowski have sug-

gested that MIR and neuroscience researchers might aug-

ment their gains through collaboration, highlighting EEG

as a particularly relevant response type for MIR due to its

high temporal resolution, non-invasiveness, whole-brain

coverage, and relative portability and low cost [3].

EEG studies addressing MIR topics include using clas-

sification to predict which stimulus elicited an EEG re-

sponse [10, 11] or which stream a listener attended to

in a polyphonic stimulus [12–15]. Other tasks include

EEG-based tempo detection/classification [16–18], on-

set detection [19], and music reconstruction [20]. EEG

has been mapped to time-varying music or audio fea-

tures using Canonical Correlation Analysis (CCA) [21] or

deep-CCA [22]; by correlating EEG with semantic mu-

sic vectors [23]; or using MEG—the magnetic analogue

of EEG—and temporal response functions to decode sur-

prisal [24]. In recent studies, Ofner and Stober exam-

ined EEG responses at automated segmentation bound-

aries [25], and Sangnark et al. performed music preference

classification on EEG responses to choruses with and with-

out lyrics [26]. However, we know of no study to date that

has assessed similarity among EEG responses to repeated

structural segments.

2.3 Neural Correlation

A particularly relevant approach for the current study in-

volves the correlation of neural responses to a shared stim-

ulus, often termed inter-subject correlation (ISC). Has-

son et al.’s 2004 seminal functional magnetic resonance

imaging study showed that real-world stimuli (e.g., movie

excerpts) can synchronize neural responses across audi-

ence members, and that the timing and location of syn-

chronized activity identifies stimulus-evoked brain activ-

ity [27]. This data-driven approach, reducing the need for

controlled stimuli and a priori event markers, facilitated

the use of complex stimuli in neuroscience. In 2012, Dmo-

chowski et al. introduced an EEG implementation which

first optimizes the data for ISC [4]. Often referred to as

“Correlated Components Analysis (CorrCA)” [4] or “Re-

liable Components Analysis (RCA)” [28], this optimiza-

tion applies a relative eigenvalue decomposition to com-

pute multiple spatial filters in which across-trials variance

relative to within-trials variance (i.e., ISC) is maximized.

Recent studies involving music have shown that EEG-

ISC is modulated by listener expertise [29], musical

tempo [30], temporal stimulus manipulations [30, 31], and

salient musical events [31]. Auditory studies have reported

small but significant group-mean ISC (0.01 < r < 0.02)

in RC1, the maximally reliable spatial component. Rep-

etition, explored through repeated listens of full excerpts,

sometimes but not always results in lower ISC on repeated

listens [29, 30]. However, the topic of repeating structural

elements within a song has not yet been addressed.

2.4 Music-EEG Datasets

The acquisition and preparation of EEG data for analy-

sis requires specialized expertise and sizeable investments

in recording apparatus [3]. A key factor supporting MIR-

EEG research is the growing number of open EEG datasets

released with the intent for re-use by other researchers.

Datasets vary in stimuli, stimulus manipulations, partic-

ipant samples, listening tasks, additional response types,

and EEG platforms used. Shorter stimuli are used in

the MIIR dataset, comprising perceived and imagined re-

sponses to 12 excerpts 6.9–16.0 seconds in length [32] and

the MAD-EEG dataset involving 78 solo, duet, or trio stim-

uli, each around six seconds long [14]. Datasets involving

slightly longer excerpts include the DEAP dataset, with 40

one-minute excerpts from music videos [33]; MUSIN-G,

with 12 excerpts, 100–132 seconds in length, from var-

ious genres [34]; and NMED-M, containing five-minute

excerpts of various versions of a minimalist work [31].

Finally, a few datasets use complete musical works as

stimuli: NMED-H includes four Bollywood songs [35],

NMED-T uses 10 EDM-style songs [36], and NMED-E

includes a cello concerto movement [37].

3. METHODS

3.1 EEG Dataset and Stimuli

Among the available datasets, we chose to work with

NMED-H (Naturalistic Music EEG Dataset—Hindi) [35]

as it used full-length pop (Bollywood) songs with repeat-

ing choruses as stimuli. Specifically, we work with the four

“Intact” songs of the dataset: “Ainvayi Ainvayi”, “Daaru
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Figure 1. Analysis overview. The NMED-H dataset contains EEG responses recorded while 48 participants listened to

four full-length Bollywood songs. We used RCA to compute a spatial EEG component in which ISC was maximized, and

used the stimulus audio and lyrics to identify chorus segmentation boundaries to further epoch the EEG. For each song,

correlations were performed within and across choruses, as well as between choruses and segments epoched at random.

Desi”, “Haule Haule”, and “Malang”. Each song is around

4 min 30 sec in length and contains between 3 and 5 cho-

ruses as illustrated in color in Fig. 1. The stimuli were

assumed to be new to the participants, who did not un-

derstand the Hindi-dialect song lyrics. We used the pre-

processed, 125-channel EEG data sampled at 125 Hz with

average reference; each song contained 24 trials from 12

unique participants (48 participants total) as each partici-

pant had listened to their assigned song twice.

3.2 EEG Analyses

To analyze the EEG, we followed an established proce-

dure of spatial filtering followed by correlation calcula-

tions (Fig. 1). We used a publicly available RCA imple-

mentation 1 to compute a single spatial filter across all four

songs. We computed RCA across entire song durations and

not just chorus segments, as our permutation testing pro-

cedure involved segments sampled from throughout each

song (see § 3.3). We then analyzed the vectorized form of

single EEG trials from only the maximally reliable com-

ponent RC1, as previous studies have shown that that com-

ponent explains most of the ISC in EEG responses to mu-

sic [30, 31]. Thus, the response data for each song was a

time-by-trial matrix, with 24 trials from 12 participants for

each song and a variable number of time samples per song.

To identify and segment song choruses, we first iden-

tified structural segment boundaries at the measure level

using lyrics. 2 Next, we used a publicly available beat-

tracking algorithm [38] to identify audio sample indices

of the boundaries and converted those time stamps to the

sampling rate of the EEG to segment the EEG accordingly.

Correlations were performed on a per-song basis, in

two broad categories. Within-chorus correlations involved

pairwise correlations among response trials from a sin-

gle chorus instance, producing a symmetric matrix whose

diagonal (being 1) was excluded from further analysis.

Across-chorus correlations involved the cross-correlation

of two matrices, each representing a different chorus in-

stance. These correlations produced asymmetric matrices,

since no response vector was ever correlated with itself.

1 https://github.com/dmochow/rca
2 https://gaana.com/, https://www.jiosaavn.com/

Each correlation also involved both intra-subject correla-

tions (IaSC) of non-identical trials from the same partici-

pant and inter-subject correlations (ISC) of trials from dif-

ferent participants. As illustrated in Fig. 2, with 24 trials

per song comprising two listens from each of 12 partic-

ipants, within-chorus correlations produced for each par-

ticipant one IaSC value (first listen and second listen) and

22 ISC values, excluding the diagonal. Across-chorus cor-

relations produced for each participant four IaSC values

(reflecting two distinct chorus instances × two distinct lis-

tens) and 88 ISC values. For each calculation, we com-

puted mean correlations at the participant as well as the

group level.

3.3 Statistical Analyses

We assessed statistical significance over distributions of

per-participant results (N = 12). For RQ1 we used per-

mutation testing: Each analysis was performed over 1000

pairs of segments of the same length as the true chorus

segments, but with one segment epoched from a random

start time in the song. The 1000 results served as the

null distribution against which we compared the true re-

sult to compute the p-value. For RQ2 and RQ3 we used

nonparametric Wilcoxon signed-rank tests to account for

variable standard deviations of the sampling distributions

caused by the discrepancy in the number of samples in

each group (i.e., IaSC versus ISC; within- versus across-

chorus). We performed one-sided tests in accordance with

our expected results (RQ2 H1: within > across; RQ3

H1: IaSC > ISC). We corrected for multiple compar-

isons using False Discovery Rate [39] on a per-song basis

for RQ1 and RQ3 and on a per-song, per-condition basis

for RQ2. We report statistically significant results (‘***’,

‘**’) and also indicate but do not summarize marginally

significant results (‘*’) for this first exploratory analysis.

4. RESULTS

4.1 Individual Correlations

We correlated vectors of spatially filtered, single-trial EEG

on a per-song basis, both among responses to single cho-

ruses as well as across pairs of different choruses. The re-
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Figure 2. Illustration of IaSC and ISC matrix elements for

Participant 1 of 12; each participant heard their assigned

stimulus twice. Top: Within-chorus correlation produces a

symmetric 24×24 matrix. The same IaSC correlation ap-

pears twice (purple), along with 22 unique ISC correlations

(yellow). Bottom: Across-chorus correlation produces an

asymmetric matrix with four unique IaSC correlations (2

choruses × 2 listens) and 88 unique ISC correlations.

sulting correlation matrices could then be partitioned into

correlations from the same participant (IaSC) and differ-

ent participants (ISC). Results are visualized in Fig. 3 and

provided numerically in Tab. 1. After multiple compari-

son correction, 10 of 15 within-chorus IaSC and 2 of 22

across-chorus IaSC were statistically significant (‘**’ or

‘***’). For ISC, 14 of 15 within-chorus calculations and

12 of 22 across-chorus correlations were significant. IaSC

distributions tended to have larger variance than ISC dis-

tributions, both at the participant level for single analyses

(Fig. 3) and across the group means (Tab. 1).

4.2 Within- versus Across-Section Correlations

We assessed whether within-chorus correlations—

involving identical musical content and context—were

higher than across-chorus correlations, which are struc-

turally similar but not identical. Tab. 2 summarizes

the statistical significance of each comparison. After

correcting for multiple comparisons, within-chorus IaSC

was found to exceed across-chorus IaSC 7 times, while

within-chorus ISC was higher than across-chorus ISC 4

times. Significant (and marginally significant) results most

often implicated the first chorus of a song.

4.3 Intra- versus Inter-Subject Correlation

For our last analysis, we assessed whether IaSC—being

computed from the same listener’s data—would exceed

ISC. Contrary to our expectations, one-sided Wilcoxon

signed-rank tests revealed that after multiple comparison

correction, IaSC did not exceed ISC for any within- or

across-chorus correlation.

5. DISCUSSION

MSA has leveraged various representations—e.g., audio,

lyrics, human annotations—to model human perception

of musical structure. In this study we have answered the

call for new forms of human response data to inform this

task [1] and explored perception of repeated structure seg-

ments using brain data. Specifically, we assessed whether

EEG responses to repeating choruses of four Bollywood

songs were significantly correlated.

We found that EEG responses within and across cho-

ruses of a song were often significantly correlated, particu-

larly for ISC. While small, these ISCs are on par with those

reported in previous auditory EEG studies [30,31,40]. Cor-

relating across choruses contrasts with past ISC research,

which considered correlation only among responses to a

single stimulus. That precedent may be due to those stud-

ies using predominantly narrative stimuli, such as movies

or speeches, which generally do not include repeated seg-

ments. But for music, repetition is often integral to

structure, from brief melodic motifs to large-scale ele-

ments [41]. The present use of ISC to assess music struc-

ture similarity is also a departure from its previous ap-

plication to index brain states of attention and “engage-

ment” in relation to attributes of stimuli (e.g., narrative ten-

sion, temporal coherence) [4, 30, 31] or participants (e.g.,

trained versus untrained musicians) [29]. Future research

could consider data from spatial components beyond RC1

and further explore relationships between EEG correlation,

music structure, and repetition to index both content simi-

larity and listener engagement with repeated content.

We found that within-chorus correlation occasionally

but not consistently exceeded across-chorus correlation;

future research is needed to elucidate the role of acous-

tical or contextual differences across chorus instances in

this result. Notably, within-chorus correlation most often

exceeded across-chorus correlation in a song’s first cho-

rus. Past studies have shown that EEG-ISC often drops

upon repeated exposures to full stimuli [4, 29, 30], and

music-discovery engagement has been shown to be highest

for first choruses compared to subsequent instances [42].

While this might lead one to expect higher ISC during
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Figure 3. EEG correlations within and across choruses of four Bollywood songs. Each plot shows a distribution of intra-

(IaSC) and inter- (ISC) subject correlation values across the 12 participants assigned to that song. Statistical significance

of each correlation is denoted as p = 0 *** 0.01 ** 0.05 * 0.10 for FDR-corrected p-values.

the first chorus, current results do not suggest that within-

chorus correlation drops as a song progresses. However, it

may be that listeners have a unique perceptual experience

of first choruses relative to other choruses.

Our expectation that IaSC would exceed ISC was not

supported by the data. The large variance of IaSC rel-

ative to ISC, and greater number of significant ISC re-

sults despite lower group means, suggests that ISC ulti-

mately provided a more stable estimate of neural correla-

tion. Whether this is due to IaSC comprising fewer cor-

relations, or an advantage of correlating across a hetero-

geneous sample of listeners, can be further investigated to

inform future study designs.

This study contributes a first step toward using EEG

data for MSA. While we focused on establishing similar-

ity of neural responses among pre-identified repeating seg-

ments, and not detection of repeated segments or segment

boundaries, our findings lay a foundation for multiple av-

enues of future work. For instance, a multimodal MSA

framework could incorporate EEG measures of similarity

alongside music content representations and human anno-

tations. Other EEG-ISC analysis configurations may also

prove useful for MSA: For instance, Dauer et al.’s finding

that ISC computed over short time windows peaked during

salient musical events including structural segment bound-

aries [31] is worth exploring further. Returning, too, to es-

tablished connections between ISC and engagement, using

ISC to identify highly engaging portions of songs could in-

form audio thumbnailing. Finally, while the present work

leveraged an existing dataset, future studies could be de-
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IaSC ISC
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

S
o

n
g

1

C1 0.069** 0.017***
C2 0.020* 0.016 0.004 0.016**
C3 0.021* 0.041** 0.083** 0.008* 0.017*** 0.017***
C4 -0.006 0.019 0.005 0.028* 0.010** 0.014** 0.013*** 0.026***

S
o

n
g

2

C1 0.082*** 0.019***
C2 0.013 0.046** 0.019*** 0.001
C3 0.004 -0.003 0.013 0.010 0.007 0.010**
C4 0.018 0.014 0.044*** 0.053** 0.010 0.006 0.011** 0.020***
C5 0.015 0.021 0.001 0.010 0.024 0.013* 0.006 0.001 0.016*** 0.023***

S
o

n
g

3 C1 0.059** 0.020***
C2 0.007 0.030** 0.003 0.005**
C3 -0.003 0.000 0.026** 0.010** 0.008*** 0.007**

S
o

n
g

4 C1 0.036** 0.017***
C2 0.012 0.012 0.015*** 0.017***
C3 0.017* 0.019* 0.045** 0.013*** 0.012*** 0.014***

Table 1. Intra- and inter-subject correlation coefficients within and across choruses of four Bollywood songs. Statistical

significance of correlations (FDR-corrected p-values) is denoted as p = 0 *** 0.01 ** 0.05 * 0.10.

IaSC ISC
C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

S
o

n
g

1

C1 - * * * - ** ** *
C2 ns - ns ns ns - ns ns
C3 ns ns - ** ns ns - ns
C4 ns ns ns - * * ns -

S
o

n
g

2

C1 - ** ** ** ** - ns ns ns ns
C2 ns - ns ns ns ns - ns ns ns
C3 ns ns - ns ns ns ns - ns ns
C4 ns ns ns - ns ns ns ns - ns
C5 ns ns ns ns - ns * * ns -

S
o

n
g

3 C1 - *** *** - *** **
C2 ns - * ns - ns
C3 ns ns - ns ns -

S
o

n
g

4 C1 - ns ns - ns ns
C2 ns - ns ns - ns
C3 ns ns - ns ns -

Table 2. Results of one-sided Wilcoxon signed-rank

tests assessing whether within-chorus correlation exceeds

across-chorus correlation. Statistical significance of corre-

lations (FDR-corrected p-values) is denoted as p = 0 ***

0.01 ** 0.05 * 0.10; ‘ns’ denotes non-significance.

signed to address specific MSA questions with newly col-

lected EEG data. In all, we do not propose that EEG

should or could replace existing data modalities for MSA,

but rather highlight potential insights from EEG that may

complement other existing approaches and inputs.

5.1 Limitations

We acknowledge limitations of this work. First, while we

report multiple significant results, they do not imply gener-

alizability: The correlations are small, and our findings—

while promising—are not conclusive across all calcula-

tions. Next, we chose NMED-H as a ready-to-use EEG

dataset of responses to popular songs containing repeated

choruses. But the small stimulus set of four songs also hin-

ders generalization, and future confirmatory studies should

utilize a larger song set. We note that the original design of

NMED-H specified that participants not be familiar with

the songs or the language of their lyrics [35]. This too may

limit generalizability, as more familiar or lyrically under-

standable songs may result in different EEG correlations.

Another main limitation is that while the song choruses

crucially elicited the EEG data, they were only treated as

repeating segments, and we did not consider nuances of

placement or content attributes of individual choruses. Yet

such features are known to impact perceptual and neural

responses to choruses [26]. Thus, future research should

consider finer-grained characterizations of music segments

treated as structurally similar. One concrete next step could

involve cross-modal comparisons of music similarity—for

instance, whether similarity measures derived from audio,

lyrics, or human annotations predict neural similarity.

Lastly, we trained RCA once over all available tri-

als. Future work should incorporate cross-validation—

iteratively optimizing the RCA spatial filter on training

data and then applying it to holdout test trials—into the

analysis pipeline to avoid overfitting.

6. CONCLUSION

MSA is an MIR topic with rich applications in audio

thumbnailing, motif-finding, music summarization, music

recommendation, and automatic music generation. Aim-

ing to expand the scope of data modalities that may in-

form this task, we have contributed a first look at structural

repetition using brain data. We used a publicly available

EEG dataset and analyzed single-trial responses to cho-

ruses from four Bollywood pop songs by computing intra-

and inter-subject correlations within and across choruses.

We find that neural responses do often synchronize to a

significant extent, which suggests that similarity among re-

peated choruses may translate to neural similarity. These

findings motivate future studies of music similarity percep-

tion and highlight EEG data as a promising input to multi-

modal MSA systems.
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