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ABSTRACT

Music Emotion Recognition (MER) refers to automatically

extracting emotional information from music and predict-

ing its perceived emotions, and it has social and psycholog-

ical applications. This paper proposes a Dual Attention-

based Multi-scale Feature Fusion (DAMFF) method and

a newly developed dataset named MER1101 for Dy-

namic Music Emotion Recognition (DMER). Specifical-

ly, multi-scale features are first extracted from the log

Mel-spectrogram by multiple parallel convolutional block-

s. Then, a Dual Attention Feature Fusion (DAFF) module

is utilized to achieve multi-scale context fusion and cap-

ture emotion-critical features in both spatial and channel

dimensions. Finally, a BiLSTM-based sequence learning

model is employed for dynamic music emotion prediction.

To enrich existing music emotion datasets, we develope-

d a high-quality dataset, MER1101, which has a balanced

emotional distribution, covering over 10 genres, at least

four languages, and more than a thousand song snippets.

We demonstrate the effectiveness of our proposed DAMF-

F approach on both the developed MER1101 dataset, as

well as on the established DEAM2015 dataset. Compared

with other models, our model achieves a higher Consisten-

cy Correlation Coefficient (CCC), and has strong predic-

tive power in arousal with comparable results in valence.

1. INTRODUCTION

With the rising demand for music consumption and the ex-

plosive growth of music content, Music Emotion Recog-

nition (MER) demonstrates its critical position in music

understanding and applications. It has been widely used

in personalized music recommendation [1], music thera-

py [2], music education [3], music generation [4], etc.

To portray human emotions, two main types of models

were differentiated in the past [5]: discrete emotion mod-

el [6, 7] and dimensional emotion model [8–11]. The dis-

crete emotion model describes human emotion as categor-
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ical adjectives, such as happiness, anger, sadness, joy, etc.

However, limited words cannot adequately describe human

emotions, different emotions are better described on a con-

tinuous scale than as a set of discrete values. In Russel-

l’s two-dimensional valence-arousal (V-A) emotional mod-

el [12], emotions are described as points on the plane that

is spanned by the arousal and valence axes. This turns the

problem of emotion prediction into a two-dimensional re-

gression issue based on Russell’s emotion model. This pa-

per is focused on the study of Dynamic Music Emotion

Recognition (DMER), which predicts the emotion of mu-

sic using continuous V-A values at a short interval.

Among the existing studies, Long Short-Term Memory

(LSTM) has received extensive attention in the DMER due

to its superiority in sequence modeling [8, 13–15]. Convo-

lutional Neural Network (CNN) is used to extract features

in many fields. Researchers have recently focused on im-

proving emotion recognition accuracy using a combination

of CNN and Recurrent Neural Network (RNN) [9,16–18].

However, LSTM-based models still use handcrafted fea-

tures as input, and some widely used handcrafted feature

operations will lose high-level features. The CNN-RNN-

based model mainly uses a fixed-scale CNN. Due to its

fixed receptive field, the learned CNN features are limit-

ed, and the emotional crucial features of different fields of

view are not extracted. Moreover, various problems exist

in existing music emotion datasets, which also hinder the

progress of DMER.

This paper proposes a novel Dual Attention-based

Multi-scale Feature Fusion (DAMFF) model and devel-

ops the music emotion dataset MER1101 for DMER. On

the one hand, our model first utilizes multi-scale convo-

lution to extract features at different temporal-frequency

spans from the log Mel-spectrogram. Then, we propose

a Dual Attention Feature Fusion (DAFF) module for fus-

ing multi-scale context features from spatial and channel

dimensions to enhance the expressive ability of CNN. Fi-

nally, the BiLSTM model processes these features and pre-

dicts V-A emotional labels. On the other hand, we develop

a high-quality dataset named MER1101. Compared with

the existing publicly available datasets in the MER domain,

MER1101 contains 1101 music snippets from 16 genres

with richer languages, more extensive size, and more bal-

anced emotion label distribution. We evaluate our method

using the MER1101 dataset and DEAM2015 [19] dataset.
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log Mel-spectrogram
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Figure 1. DAMFF model architecture. The input is 2D spectrogram. The architecture combines temporal-frequency multi-

scale feature extraction, dual attention feature fusion, and sequence learning to achieve dynamic emotion prediction for

music.

On the MER1101 dataset, we achieve a Consistency Corre-

lation Coefficient (CCC) of 0.4223 for arousal and 0.1115

for valence. On the DEAM2015 dataset, we achieve a C-

CC of 0.4203 for arousal and 0.0151 for valence. Exper-

imental results show our method outperforming a number

of baseline and SOTA models in DMER, by means of an

improved CCC metric.

2. RELATED WORK

Researchers have made many efforts in the DMER in the

past few years. In the early days, RNN made a break-

through in this field due to their advantages in sequence

processing. In the “Emotion in Music” task at MediaEval

from 2013 to 2015, LSTM-based methods achieved state-

of-the-art performance [20]. Li et al. [8] pointed out that in

music composition, performance, and annotation, the emo-

tion in music is related to the previous and future contexts.

Therefore, they chose Bidirectional LSTM (BiLSTM) as

the regression model and proposed a multi-scale fusion

method based on an Extreme Learning Machine (ELM)

to improve the performance of the BiLSTM model. But

the LSTM-based models mentioned above use suboptimal

hand-crafted features as input, making it difficult to im-

prove emotion recognition.

Later, researchers began to employ CNN for high-level

invariant features extracted from raw music data [21–23].

Pons et al. [24] discussed how convolution filters with dif-

ferent shapes are suitable for specific musical concepts and

experimentally proved that the size of CNN filters can be

interpreted in both the temporal and frequency dimensions

of the spectrogram. Researchers have combined CNN and

RNN to improve the accuracy of emotion recognition, Ma-

lik et al. [16] proposed a two-dimensional V-A space con-

tinuous emotion prediction method composed of stacked

convolution and recurrent neural network. Compared to

using BiLSTM [15] only, this method achieved better re-

sults with fewer parameters; Dong et al. [9] replaced the

connection between the input layer and the hidden layer of

the RNN with a CNN to adaptively learn the sequential-

information-included affect-salient features from the spec-

trogram; Zhang et al. [25] extracted MFCCs and Cochlea-

grams from raw music data as input features, and adopted

an audio feature fusion method based on the combination

of CNN and BiLSTM to predict the emotional V-A values

in music. However, CNN-RNN-based models still have

problems with limited convolutional receptive fields. For

MER, due to the limited size of the convolution kernel, the

convolution is mainly biased towards learning local infor-

mation, which is insufficient for learning the correlation

between the spatial and channel axes.

Various attention mechanisms are devised to solve the

above problem in speech emotion recognition [21, 26, 27].

Guo et al. [26] proposed a representation learning method

with spectral-temporal channel (STC) attention, which was

integrated with CNN to improve representation learning a-

bility; Zhang et al. [21] applied multi-scale region attention

in deep convolutional neural networks to focus on emo-

tional features at different granularities; Zhang et al. [27]

implemented an attention layer on the arousal, valence,

and dominance tasks and completed multi-task prediction-

s to capture the contribution of different parts of each

task. Nonetheless, the attention mechanism is currently

not widely applied in the field of DMER.

In this paper, we propose a novel attention module, the

Spatial Channel Attention Module (SCAM), which consid-

ers spatial and channel dimensions to capture the relative

importance of features and integrates multi-scale convo-

lutions for enhanced representation learning. We aim to

build an attention mechanism that extracts salient informa-

tion from multiple dimensions and can fuse contextual in-

formation.

J. S. Gómez-Cañón et al. [28] summarized existing

MER datasets. But they have some problems, for exam-

ple, some datasets have insufficient number of music, and

some datasets have no dimension labels. After our com-
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prehensive comparison, the three datasets CH818 [29], P-

MEmo [30] and DEAM [19] are relatively suitable for the

DMER task. However, all three datasets have some dis-

advantages. The songs in the CH818 dataset only contain

Chinese pop songs and are not public, while PMEmo only

Western pop songs; The annotators and annotating times

of the training set and evaluation set in the DEAM2015

dataset are different, resulting in a discrepancy in perfor-

mance [19]. To enrich existing musical emotion datasets,

we develop a high-quality dataset, MER1101. MER1101

contains 1101 music snippets, which is better than most

datasets in the MER domain in terms of genre, language,

number of music, and has more balanced distributed emo-

tion annotations.

3. METHODOLOGY

The proposed DMER processing method consists of three

phases. Firstly, we build a Temporal-Frequency Multi-

scale Convolution network using three different shapes of

convolutional filters. Secondly, we propose a Dual Atten-

tion Feature Fusion network to focus more on the channel

and spatial with important information and fuse multi-scale

convolutional features in different dimensions. And finally,

we employ BiLTSM, building a map from emotion-crucial

features to emotional space. The specifics are as follows.

3.1 Temporal-Frequency Multi-scale Convolution

CNN has been proven effective at tackling various visu-

al tasks [31, 32]. In vision tasks, the filter dimension has

spatial meaning, and the audio spectrogram filter dimen-

sion corresponds to temporal and frequency [24]. We de-

sign a temporal-frequency multi-scale convolution module

with three types of filters to capture various musical fea-

tures. From the musical point of view, the temporal filter

(1-by-n) can learn temporal dependence in music; the fre-

quency filter (m-by-1) can learn pitch and timbre, and the

square filter (m-by-n) can learn different musical features

according to the size of m and n. As shown in Figure 1,

we extract features through three layers of parallel con-

volutional blocks in the Temporal-Frequency Multi-scale

Convolution module.

Firstly, we take the 30-second log Mel-spectrogram as

input and perform distinct convolution operations on each

0.5-second segment to keep the individual properties at

each moment. Secondly, the first layer introduces 3×1 and

1×5 filters to capture features along the temporal and fre-

quency axes, and their outputs are concatenated along the

time dimension. Finally, the concatenated results of the

first layer are put into consecutive parallel convolutional

layers with kernel sizes 3×3 and 5×5. The output of the

second layer is concatenated along the channel dimension,

while the output of the third layer is fed into a dual atten-

tion feature fusion module for feature fusion. After each

convolutional layer, batch normalization [33], the ReLU

function [34] and max pooling are applied.
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Figure 2. SCAM model architecture.

3.2 Dual Attention Feature Fusion

To further enhance the representation ability of CNN and

capture the important information, we design a Dual Atten-

tion Feature Fusion (DAFF) module to focus more on the

channel and spatial with important information for fusing

multi-scale convolutional features. As shown in Figure 1,

the DAFF module includes the Spatial Channel Attention

Module (SCAM). By element-wise summing the output-

s of 3×3 and 5×5 convolutions, we get a feature map

X ∈ RC×H×W as input to SCAM, which is then fed into

the spatial and channel attention modules, respectively. In

Sections 3.2.1 and 3.2.2, we describe the proposed SCAM

in detail.

3.2.1 Channel Attention Module

We convert a single channel into 64 channels through the

Temporal-Frequency Multi-scale Convolution, strengthen-

ing the temporal correlation between distinct channels. In

this case, we use the channel attention mechanism, which

focuses on what the essential features are. While tradi-

tional attention mechanisms only focus on temporal struc-

tures, channel attention can learn the importance of differ-

ent channels to deactivate features that do not contribute

much to emotion. Figure 2 shows the channel attention

module, similar to the Squeeze-and-Excitation block [35].

The module is mainly divided into two parts: squeeze and

excitation operations. Specifically, given an input feature

X ∈ RC×H×W , we first use Global Average Pooling in-

dependently for each channel to aggregate spatial informa-

tion and generate a channel attention map C ∈ RC×1×1.

Next, we perform an excitation operation using two point-

wise convolutions to enable cross-channel interaction. Fi-

nally, the channel attention map C ∈ RC×1×1 is obtained.

In short, the channel attention map is calculated as follows:

C = β(Conv2d2(δ(β(Conv2d1(Pool2d(X)))))) (1)

where δ and β denote the ReLU function and batch nor-

malization, respectively, and Pool2d and Conv2d repre-

sent the global average pooling2d and point-wise convolu-

tion2d, respectively.

3.2.2 Spatial Attention Module

We propose the spatial attention model, which exploits the

spatial relationship between features to generate a spatial
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attention map. Spatial attention focuses on where the im-

portant features are and supplements channel attention.

The spatial attention module obtains the spatial atten-

tion map in four phases. First, the input feature through

view operation is converted into a spatial feature map

S′ ∈ R(H×W )×C . Second, a global pooling operation is

applied along the channel axis to compress the channels

to obtain spatial-level features. Third, we use two point-

wise convolutions to execute excitation operations and get

feature weights at distinct positions. Finally, the resulting

spatial attention map is translated into S ∈ R1×H×W . In

short, the spatial attention map is calculated as follows:

S = β(Conv1d2(δ(β(Conv1d1(Pool1d(X)))))) (2)

where δ and β denote the ReLU function and batch nor-

malization, respectively, and Pool1d and Conv1d repre-

sent the global average pooling1d and point-wise convolu-

tion1d, respectively.

After that, we perform an element-wise sum opera-

tion on the output of the dual attention and through the

sigmoid function to obtain a new attention weight map

X ′ ∈ RH×W×C .

X ′ = Sigmoid(S ⊕ C) (3)

3.2.3 Feature Fusion Strategy

In order to effectively aggregate multi-scale context infor-

mation, we introduce the fusion strategy in [36], as shown

by Dual Attention Feature Fusion in Figure 1. The output

of SCAM is represented as X ′, 1−X ′ by the solid line and

dotted line, respectively. Based on the SCAM, the multi-

scale feature fusion can be expressed as:

Z = X ′
⊗A+ (1−X ′)⊗B (4)

where A and B represent the outputs of 3×3 and 5×5 con-

volutions respectively, Z ∈ RC×H×W is the fused feature.

3.3 Sequence Learning

Through the DAFF module, we get emotion-crucial fea-

tures from multi-scale convolutional features. After reduc-

ing dimension, the features of the entire 30s of music snip-

pet are input into the Bidirectional LSTM (BiLSTM) for

long-term sequence learning. Finally, the emotional fea-

tures are mapped to the emotional space with the help of a

fully connected layer.

4. EXPERIMENTS

4.1 Dataset

We conduct our experiments on the DEAM2015 [19]

dataset and our newly developed dataset MER1101. The

details of each dataset are given below.

DEAM: This dataset was developed in the “Emotion

in Music” (EiM) task [37] of the MediaEval benchmark.

We utilized the DEAM2015 dataset, with the training set

consisting of 431 30-second samples and the evaluation

set consisting of 58 full-length songs. This dataset is the

most commonly used benchmark in dynamic music emo-

tion recognition, but Cronbach’s α of the evaluation set

is 0.29±0.94 for valence, which is relatively low [19].

Furthermore, due to the different spatio-temporal environ-

ments and annotators of the emotion annotation process

of the training set and the evaluation set [19], the perfor-

mance derived from the training and evaluation set shows

a non-negligible discrepancy, especially in the valence di-

mension.

MER1101 1 : Similar with DEAM, MER1101 is also

based on Russell’s valence-arousal emotion model. It con-

tains 1101 music snippets gathered from the internet, with

each ranging in duration from 16.5 seconds to 125.5 sec-

onds. The dataset has both discrete and dimensional label-

s. Every song in the dataset has been annotated by three

music experts and ten college students. The annotators lis-

tened to the song once and annotated the emotional adjec-

tives of the song. After they were familiar with the song,

they listened to it twice and annotated the V-A values. An-

notators were only paid the full fee after their work had

been reviewed. Student-labeled Cronbach’s α arousal is

0.6295 ± 0.3574, 0.5624 ± 0.3766 for the valence. Expert-

labeled Cronbach’s α arousal is 0.3556 ± 0.3442, 0.2420

± 0.3148 for the valence.

Compared with other music datasets, the MER1101

dataset has the following four advantages: 1) The dataset

contains more genres (16 genres), including pop, DJ dance,

chinoiserie, electronic, hip-hop, etc.; 2) It contains richer

language, meeting the ratio of nearly 5:3:1:1 for Chinese,

English, Japanese and Korean, and other languages; 3) The

samples in our dataset distribute more balanced in the emo-

tional quadrants and there are no more than three songs by

the same artist in each V-A quadrant; 4) The size of our

dataset is relatively larger than the current music datasets.

Our dataset can be used for a variety of music tasks,

such as music genre classification, music generation with

emotion, music emotion recognition, etc.

4.2 Evaluation Metrics

We use the Concordance Correlation Coefficient (CCC),

Pearson Correlation Coefficient (PCC), and Root Mean

Square Error (RMSE) as evaluation metrics. Each metric

is computed by the ground-truth and predicted V-A values

for each song and averaged across songs. The CCC com-

bines the characteristics of PCC and RMSE to evaluate not

only the trend of emotional changes but also the dispari-

ty between predictions and ground-truth. As a result, we

consider CCC to be the most important evaluation metric.

4.3 Experimental Setup

Since DEAM2015 predefines the training and evaluation

set configuration, we only describe the dataset division for

MER1101 here. Firstly, we choose 925 songs lasting more

than 30 seconds from the MER1101 dataset and randomly

split them into a training set (80% of the data) and an eval-

uation set (20% of the data). Then, we split each song in

1 See https://ismir-2023.github.io/MER1101/ for details.
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(a) A-value CCC (b) A-value PCC (c) A-value RMSE (d) V-value CCC (e) V-value PCC (f) V-value RMSE

Figure 3. The CCC, PCC, and RMSE of arousal and valence with different hop sizes on the MER1101 dataset.

the training set into 30-second segments and kept complete

songs for the evaluation set. The final training set contain-

s 1526 30-second music snippets, and the evaluation set

contains 185 complete songs. The DEAM dataset uses the

official training and evaluation sets. To obtain a more ac-

curate comparison and minimize accidental errors, we use

5-fold cross-validation on both datasets.

The log Mel-spectrogram is extracted using librosa

[38], where the Mel band is 128, the sampling rate is

44100Hz, and the window size and hop size are 60 ms

and 10 ms, respectively. The size of the convolution k-

ernel is shown in Figure 1. We utilize the Adam optimizer

for training, with learning rate of 0.0003, training epoch

of 100, and batch size of 32. To prevent overfitting, we

adopt the early stopping strategy. In addition, we use C-

CC and RMSE as loss functions for arousal and valence,

respectively.

4.4 Experimental Results

4.4.1 Hop Size Selection of Sliding Window

For the MER1101 dataset, we train the model with music

snippets of fixed duration, while the durations of the mu-

sic snippets are variable during the test. Thus, we could

not directly predict the emotion of the whole music. We

propose a sliding window-based testing scheme to address

this issue and ensure the continuity of the predicted V-A

curves. During testing, we utilize the window size of T

seconds and the hop size of t seconds. Each T second of

audio in the window is input to the model, and the corre-

sponding T seconds V-A curves are predicted. The first

window takes the prediction result of T seconds, and each

subsequent window only takes the result of the last t sec-

onds.

We investigate the impact of hop size on the results of

music emotion recognition on the MER1101 dataset. We

set the window size to 30s, the same as the training set

sample duration. Figure 3 shows the experimental results,

CCC and PCC change significantly and show a downward

trend with increasing hop size, and the change in RMSE

is not obvious. We observe that with the increase of the

hop size, the emotion prediction effect decreased signif-

icantly, demonstrating that the shorter hop size performs

better. During listening to music, the user’s emotion at a

certain moment is an accumulation of previous music con-

tent. Therefore, providing the model with as much con-

text as possible benefits emotion recognition. A shorter

hop size can provide more context for the model to pre-

dict the current musical mood. In the experiments on the

MER1101 dataset below, we adopt hop sizes of 2.5s and

0.5s for arousal and valence, respectively.
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Figure 4. Five CNN architectures.

Model
Arousal Valence

CCC ↑ PCC∗↑ RMSE∗↓ CCC ↑ PCC ↑ RMSE ↓

Hybrid CNN 0.4223 0.6856 0.1494 0.1115 0.2004 0.2595

T-F CNN 0.4120 0.6787 0.1478 0.0846 0.1363 0.2684

Square CNN 0.4130 0.6894 0.1439 0.0732 0.1343 0.2703

T-S CNN 0.4090 0.6881 0.1458 0.1085 0.1959 0.2542

F-S CNN 0.4150 0.6804 0.1562 0.1046 0.1640 0.2800

* The result of the significance test (Student’s t test) show that there is
no significant difference between the results of this metric.

Table 1. Experimental results of different CNN architec-

tures on the MER1101 dataset.

4.4.2 Impact of CNN filters

In this section, we compare the influence of different CNN

architectures on the experimental results of the MER1101

dataset. In this paper, we adapt three types of convolu-

tion: temporal filters (1-by-n), frequency filters (m-by-1),

and squared filters (m-by-n). Convolution filters of dif-

ferent shapes have different musical concepts. We com-

bined them into five architectures. In Figure 4(a), the CN-

N architecture used here is a “Hybrid CNN” architecture.

Figure 4(b) uses the temporal filters and frequency filter-

s, and we call it the “T-F CNN” architecture. Figure 4(c)

only uses a square filter, so we call it “Square CNN” archi-

tecture. Figure 4(d) and Figure 4(e) are referred to as “T-S

CNN” and “F-S CNN”, respectively. The experimental re-

sults are shown in Table 1, which show that the “Hybrid C-

NN” architecture has better expressiveness on the DMER
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MER1101 dataset DEAM2015 dataset

Model
Arousal Valence Arousal Valence

CCC ↑ PCC ↑ RMSE ↓ CCC ↑ PCC↑ RMSE ↓ CCC ↑ PCC ↑ RMSE ↓ CCC ↑ PCC↑ RMSE ↓

CRNN [16] 0.2798 0.5177 0.1625 0.0573 0.1033 0.2721 0.3488 0.5885 0.2197 0.0053 -0.0292 0.3542

BCRSN [9] 0.1741 0.3770 0.3063 0.0660 -0.0647 0.4143 0.3168 0.5148 0.2397 0.0125 -0.0171 0.2914

DNN [17] 0.0529 0.0903 0.2372 0.0118 0.0017 0.2734 0.2757 0.4282 0.2483 0.0075 0.0031 0.3353

MCRNN [18] 0.0564 0.0918 0.2401 0.0155 0.0028 0.2752 0.2700 0.4396 0.2428 0.0137 0.0126 0.3135

DAMFF 0.4223 0.6856 0.1494 0.1115 0.2004 0.2595 0.4203 0.6866 0.2401 0.0151 0.0366 0.3403

Table 2. Compared with the existing results.

task. It is shown that extracting them simultaneously is

beneficial to obtain music emotion information from dif-

ferent perspectives, and the PCC and RMSE changes of

Arousal are not significant.

4.4.3 Comparison with the Existing Models

We compare the DAMFF to other DMER methods [9, 16–

18] published in recent years. They differ from us in that

[18] takes DEAM2014 [39] as the dataset, which consists

of 744 songs. [16–18] take RMSE as the evaluation met-

rics, and [9] translates numerical-type V-A values to binary

representation and independently predict emotion for each

0.5s.

In this paper, we reproduce the models mentioned above

on the DEAM2015 and MER1101 datasets. All models’

performance is evaluated with the same experimental con-

figurations, i.e., the same dataset, evaluation metrics, and

metric calculation method. Table 2 shows the results of the

experiments. On the MER1101 dataset, our model is supe-

rior to the others in all three metrics. On the DEAM2015

dataset, our model shows powerful recognition ability for

arousal, but the valence slightly outperforms the previous

models, which may stem from the less consistent valence

annotations [15]. We believe predicted valence values on

the DEAM2015 dataset are relatively incapable of evaluat-

ing DMER since the predicted CCC value number in va-

lence driven from all models is near zero. Experiments

show that our model can perform well in emotion recogni-

tion on different datasets, especially in the arousal dimen-

sion. Overall, valence values are more impoverished in

both datasets than arousal values, indicating that predict-

ing valence is more challenging. This is also consistent

with the conclusions of most works.

Model
Arousal Valence

CCC ↑ PCC∗↑ RMSE∗↓ CCC ↑ PCC ↑ RMSE ↓

DAMFF 0.4223 0.6856 0.1494 0.1115 0.2004 0.2595

w/o Fusion Strategy 0.4097 0.6869 0.1563 0.1074 0.1722 0.2707

w/o Channel Attention 0.4061 0.6740 0.1494 0.1071 0.1904 0.2650

w/o Spatial Attention 0.4177 0.6819 0.1518 0.1009 0.1874 0.2720

w/o DAFF 0.3982 0.6813 0.1562 0.0977 0.1693 0.2670

* The result of the significance test (Student’s t test) show that there is
no significant difference between the results of this metric.

Table 3. Ablation experiments of arousal and valence on

the MER1101 dataset.

4.4.4 Ablation Study

To investigate the role of various modules, we construct-

ed four ablation modules. Among them, “w/o Fusion S-

trategy” directly inputs the result of the SCAM module

into BiLSTM, which explores the role of fusion strate-

gy. In addition, the influence of dual attention is studied

using “w/o Channel Attention”, “w/o Spatial Attention”,

and “w/o DAFF”. Table 3 shows the experimental results

on the MER1011 datasets. The results show that: 1) the

non-linear fusion strategy of the attention mechanism bet-

ter aggregates the multi-scale context and performs better;

2) the attention mechanism increases the weights of emo-

tional features, which is helpful for emotion recognition.

At the same time, dual attention is better than single at-

tention, indicating that spatial and channel attention mech-

anisms learn and emphasize what and where affect-salient

features, effectively improving CNN features. In summary,

we conclude that fusing multi-scale convolutional features

from spatial and channel dimensions is more conducive to

capturing key emotional features, which is more evident on

the CCC metric.

5. CONCLUSION

This paper proposes a novel Dual Attention-based Multi-

scale Feature Fusion (DAMFF) network, which extracts

multi-scale convolutional features from spectrograms and

exploits the dual-attention mechanism to capture impor-

tant channel and spatial information. The network adopt-

s the fusion mechanism that aggregates multi-scale con-

text information, effectively improving CNN features’ ex-

pressive ability. The music emotion dataset MER1101 we

developed contains 1101 music audio with 16 genres, 5

languages and a balanced distribution of emotion labels.

Experimental results show that our model outperforms the

comparison methods on the CCC metric on both MER1101

and DEAM2015 datasets. Furthermore, our model has

substantial prediction capabilities in terms of arousal and

comparable results in terms of valence.

The prediction of the valence dimension is still chal-

lenging in DMER. In the future, we will focus on develop-

ing more effective techniques, such as pre-training audio

features for improving the recognition performance of va-

lence.
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