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ABSTRACT

We introduce CLaMP: Contrastive Language-Music Pre-

training, which learns cross-modal representations be-

tween natural language and symbolic music using a mu-

sic encoder and a text encoder trained jointly with a con-

trastive loss. To pre-train CLaMP, we collected a large

dataset of 1.4 million music-text pairs. It employed text

dropout as a data augmentation technique and bar patch-

ing to efficiently represent music data which reduces se-

quence length to less than 10%. In addition, we devel-

oped a masked music model pre-training objective to en-

hance the music encoder’s comprehension of musical con-

text and structure. CLaMP integrates textual information

to enable semantic search and zero-shot classification for

symbolic music, surpassing the capabilities of previous

models. To support the evaluation of semantic search and

music classification, we publicly release WikiMusicText

(WikiMT), a dataset of 1010 lead sheets in ABC notation,

each accompanied by a title, artist, genre, and description.

In comparison to state-of-the-art models that require fine-

tuning, zero-shot CLaMP demonstrated comparable or su-

perior performance on score-oriented datasets. Our mod-

els and code are available at https://github.com/

microsoft/muzic/tree/main/clamp.

1. INTRODUCTION

Symbolic Music Information Retrieval (MIR) is a field that

deals with the automatic analysis and retrieval of music

based on symbolic representations such as sheet music or

MIDI files. Symbolic MIR has numerous practical appli-

cations, including music genre classification [1, 2], auto-

matic music transcription [3, 4], and music recommenda-

tion systems [5]. However, traditional symbolic MIR ap-

proaches based on handcrafted features are often limited in

their ability to capture the complex nature of music.

Deep learning has become increasingly popular in sym-

bolic MIR [6–9] due to its ability to extract complex and

© S. Wu, D. Yu, X. Tan, and M. Sun. Licensed under a

Creative Commons Attribution 4.0 International License (CC BY 4.0).

Attribution: S. Wu, D. Yu, X. Tan, and M. Sun, “CLaMP: Contrastive

Language-Music Pre-training for Cross-Modal Symbolic Music Informa-

tion Retrieval”, in Proc. of the 24th Int. Society for Music Information

Retrieval Conf., Milan, Italy, 2023.

𝑀1𝑀2𝑀3

𝑀𝑁

…

…

…

…

… … … …

…

RoBERTa

Text

Encoder

M3

Music 

Encoder

Text Features

Music

Features

…

Text 

Descriptions

Sheet Music

Figure 1. The architecture of CLaMP, including two en-

coders - one for music and one for text - trained jointly with

a contrastive loss to learn cross-modal representations.

abstract music features from large datasets. However, ob-

taining sufficient labelled data can be costly and time-

consuming, as most labelled symbolic music datasets are

small in size [10–12]. To address this issue, semantic

search and zero-shot classification techniques can be used

to retrieve and label extensive unlabelled data. These tech-

niques enable the search for music by a given open-domain

query (e.g., "upbeat music with a fast tempo"), or the auto-

matic identification of music characteristics based on cus-

tomized labels without the need for training data.

To enable semantic search and zero-shot classifica-

tion for symbolic music, it is necessary to establish a

connection between music and language. This can be

achieved through the use of contrastive learning [13–17]

and pre-training [18–20]. Contrastive learning trains mod-

els to learn a feature space where similar sample pairs

are grouped and dissimilar pairs are separated, while pre-

training involves training a model on a large dataset that

can be fine-tuned or directly applied to a specific task.

In this paper, we introduce a solution for cross-modal

symbolic MIR that utilizes contrastive learning and pre-

training. The proposed approach, CLaMP: Contrastive

Language-Music Pre-training, is inspired by the success

of vision-language models [13]. Unlike prior models that

rely solely on symbolic music [9, 12, 21], CLaMP learns

semantically rich representations of musical concepts from

both sheet music and natural language. The contributions

of this paper are as follows:
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Figure 2. Text dropout is a data augmentation technique that involves a process in which candidate texts are shuffled

randomly and then selected to form a concatenated text. In this example, three candidate texts were randomly selected and

concatenated to produce the input text.

• CLaMP is a cross-modal model for symbolic MIR,

which is pre-trained on WebMusicText (WebMT), a

dataset of 1.4 million music-text pairs. To the best of

our knowledge, this is the first model of its kind and

it achieves comparable or better performance than

existing state-of-the-art models without training.

• We propose multiple techniques to improve con-

trastive language-music pre-training. Our proposed

techniques include applying text dropout as a data

augmentation method, utilizing bar patching for ef-

ficient music representation, and implementing the

masked music model pre-training objective.

• The cross-modal pre-training empowers CLaMP to

perform tasks beyond the capabilities of unimodal

models. It possesses unique features such as seman-

tic search for desired music using open-domain text

queries and zero-shot classification for new music.

• To facilitate the evaluation of semantic search and

music classification, we release the WikiMusicText

(WikiMT) dataset, which consists of 1010 music-

text pairs sourced from Wikifonia and Wikipedia.

2. METHODOLOGY

This section presents CLaMP and its cross-modal sym-

bolic MIR abilities. Additionally, we describe the WebMT

dataset, which we created to pre-train our model.

2.1 Model Design

2.1.1 Contrastive Learning Objective

CLaMP jointly trains music and text encoders to represent

the structural and semantic aspects of both modalities in a

shared feature space. This is achieved using a batch con-

struction method and objective [22, 23], as illustrated in

Fig. 1, whereby the correct pairings of a batch of N music-

text pairs are predicted. The music and text encoders em-

ploy global average pooling to obtain corresponding fea-

tures from the last hidden states.

The objective of CLaMP is to minimize the distance be-

tween N paired music-text examples while maximizing the

distance between N2−N unpaired examples. We denote a

batch of N music-text pairs as (mi, ti)
N

i=1
, where mi and ti

represent the i-th music and text inputs, respectively. The

music and text encoders are represented as fm and ft. The

contrastive loss for (mi, ti)
N

i=1
is defined as follows:

LCL = −
1

2N

N∑

i=1

(log
exp(fm(mi) · ft(ti)/τ)∑N

j=1
⊮i ̸=j exp(fm(mi) · ft(tj)/τ)

+

log
exp(fm(mi) · ft(ti)/τ)∑N

j=1
⊮i ̸=j exp(fm(mj) · ft(ti)/τ)

),

(1)

where τ is a temperature hyper-parameter that controls the

sharpness of the softmax distribution, and ⊮i ̸=j is an in-

dicator function that equals 1 if i ̸= j, and 0 otherwise.

The two terms in Eq. 1 consider either music-to-text or

text-to-music logits.

2.1.2 Text Encoder

CLaMP includes a text encoder to extract musically rele-

vant features from the input text. To achieve optimal per-

formance, a pre-trained language model is used to initialize

the text encoder. Furthermore, text dropout is employed as

a data augmentation technique to prevent overfitting and

improve the generalization ability of the text encoder.

Pre-trained Language Model RoBERTa [24] is a

transformer-based language model pre-trained on a large

corpus of English text using the Masked Language Mod-

eling (MLM) objective [18]. This model is designed to be

fine-tuned on downstream tasks and has demonstrated ex-

cellent performance as a text encoder for the contrastive

language-audio pre-training [25]. To improve training

efficiency, we used DistilRoBERTa [26] instead, which

has fewer parameters (82M) compared to RoBERTa-base

(125M) while achieving comparable performance.

Text Dropout Text dropout is a data augmentation

technique that encourages models to learn robust features

from input texts. This technique involves using a dataset

consisting of multiple paired candidate texts from various

sources for each musical composition. Similar to [27], for

a given composition with L candidates, text dropout shuf-

fles the set of candidate texts and randomly selects K texts,

where K is uniformly and randomly sampled from integers

ranging from 1 to L. These selected texts are concatenated

to form a single input text for the text encoder, as shown in
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Table 1. The average number of tokens per lead sheet in

the WikiMT dataset with different encoding methods.

Encoding Bar Patching ABC Notation OctupleMIDI [9]

Tokens 47.07±21.60 749.16±379.56 469.09±256.43

Fig. 2. Text dropout offers a wider range of possible text

combinations and allows the model to learn more complex

and diverse textual features.

2.1.3 Music Encoder

The CLaMP music encoder is designed to understand the

complex musical structure and context within ABC nota-

tion. As a text-based format for symbolic music, ABC no-

tation incorporates a wide range of musical symbols com-

monly used in sheet music. To keep all musical informa-

tion while shortening sequence length, the encoding pro-

cess utilizes the bar patching technique. To optimize per-

formance, the music encoder is specifically designed for

symbolic music understanding based on bar patching.

Bar Patching The bar in musical notation groups

phrases by defining a fixed number of beats and each bar

can be read and played as a single unit. It is separated by

vertical lines, providing reference points for locating posi-

tions within a score.

Previous models [28–31] for ABC notation utilized

character-based tokenization, resulting in sequences that

are too lengthy to process efficiently. On the other hand,

MeasureVAE [32] demonstrated the feasibility of encoding

scores at the bar-level for music generation. To improve

the efficiency of processing, we proposed bar patching, in-

spired by patch-based techniques in computer vision [33].

Bar patching divides a score into several small segments

corresponding to bars or headers (i.e. meta-information)

in ABC notation. In our implementation, each patch is as-

signed a maximum of 64 characters, covering 98.8% of

the headers or bars in the pre-training dataset. We add an

[END] token at the end of each patch to indicate the end

of the sequence. Patches with fewer than 64 are padded

with [PAD] tokens, while those with over 64 characters

are truncated. For the vocabulary, 95 ASCII printable char-

acters and three special tokens (i.e., [PAD], [MASK], and

[END]) are considered, resulting in a total of 98 tokens.

Thus, each patch can be represented as a 64×98 matrix.

These patches are then flattened and projected into 768 di-

mensions embeddings and used as input tokens, as illus-

trated in Fig. 3.

Bar patching effectively reduces the average sequence

length of the encoded music to less than 10% of the origi-

nal ABC notation, as shown in Table 1. This technique im-

proves the efficiency of representing music and facilitates

faster computation while preserving all musical informa-

tion in the notation.

Masked Music Model The Masked Music Model

(M3) is a self-supervised model for symbolic MIR based

on bar patching representation. The primary concept of M3

is to introduce random noise to certain patches of the in-

put music, and then reconstruct the characters in the noise-

| : SP F SP

| : SP F SP |

L:1/8  M:4/4   K:Emin  |: F | CGGC G2 CG | G2 FG BGFE |]

L:1/8 M:4/4      K:Emin       F :| | CGGC G2 CG |        G2 FG BGFE |]

ABC Notation

Noise-added 

Bar Patches

0

Patch-level Transformer Encoder

Character-level Transformer Decoder

Position +

Patch Embeds

Patch Features

Shifted Outputs

Output Chars

L : 1 / 8

L : 1 / 8 END

|

END

Linear Projection of Flattened Bar Patches

1 2 3 4 5

Figure 3. The masked music model architecture, where

the encoder takes in a sequence of patches, and the decoder

reconstructs character information of noise-added patches.

added bar patches based on the context. This pre-training

enables M3 to learn from unlabelled musical data, making

it useful for initializing the CLaMP music encoder.

M3 is based on an asymmetric encoder-decoder archi-

tecture, similar to MAE [34], as shown in Fig. 3. It uses

an encoder to extract contextualized features of individual

patches, along with a decoder, which is lightweight and

autoregressively reconstructs the characters for each patch.

After pre-training, the decoder is discarded and the encoder

is used to initialize the music encoder of CLaMP.

The pre-training objective is inspired by MLM [18]. We

first randomly select M% of the bar patches in the input

music, and then the noise is added in three different ways:

• Masking: 80% of the selected bar patches are re-

placed with a special patch filled with [MASK] to-

kens. This encourages the model to learn to fill in

missing information and understand the relationship

between different musical elements.

• Shuffling: 10% of the selected bar patches are ran-

domly shuffled internally. For example, a bar patch

"|: F |" may be randomly shuffled to "F :|

|" as shown in Fig. 3. This forces the model to

learn the patterns and structures within bar patches.

• Unchanged: 10% of the selected bar patches are left

unchanged. This can narrow down the gap between

pre-training and fine-tuning.

M3 is trained to predict the original characters in the

noise-added bar patches based on contextualized patch fea-

tures. The model is optimized using the cross-entropy loss,

which compares the predicted characters with the ground

truth characters. The final objective is to minimize the

average loss over all the noise-added bar patches in the

training set. By denoising these bar patches, M3 learns to

capture the dependencies and relationships between differ-

ent musical elements and structures, allowing it to extract

meaningful features from ABC notation.
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Figure 4. The processes of CLaMP performing cross-modal symbolic MIR tasks, including semantic search and zero-shot

classification for symbolic music, without requiring task-specific training data.

2.2 Cross-Modal Symbolic MIR

CLaMP is capable of aligning symbolic music and natural

language, which can be used for various cross-modal re-

trieval tasks, including semantic search and zero-shot clas-

sification for symbolic music.

Semantic search is a technique for retrieving music

by open-domain queries, which differs from traditional

keyword-based searches that depend on exact matches or

meta-information. This involves two steps: 1) extracting

music features from all scores in the library, and 2) trans-

forming the query into a text feature. By calculating the

similarities between the text feature and the music fea-

tures, it can efficiently locate the score that best matches

the user’s query in the library.

Zero-shot classification refers to the classification of

new items into any desired label without the need for

training data. It involves using a prompt template

to provide context for the text encoder. For exam-

ple, a prompt such as "This piece of music is

composed by {composer}." is utilized to form in-

put texts based on the names of candidate composers. The

text encoder then outputs text features based on these in-

put texts. Meanwhile, the music encoder extracts the mu-

sic feature from the unlabelled target symbolic music. By

calculating the similarity between each candidate text fea-

ture and the target music feature, the label with the highest

similarity is chosen as the predicted one.

2.3 WebMusicText Dataset

To facilitate the learning of relationships between natu-

ral language and symbolic music, we developed a dataset

named WebMusicText (WebMT) by crawling an extensive

collection of music-text pairs from the web. Our dataset

comprises 1,448,750 pairs of music-text data, where all

music files are in score-oriented formats (e.g., MusicXML,

LilyPond, and ABC notation). To reduce the disparity be-

tween scores in different notations, we first converted all

music files to MusicXML and then to ABC notation 1 . In

addition, to avoid information leakage, we removed any

natural language (e.g., titles, composers, and lyrics) in

ABC notation. The text parts of each pair were obtained

1 https://wim.vree.org/svgParse/xml2abc.html

from corresponding meta-information (e.g., title and com-

poser) or user comments, and are all in English. WebMT

features diverse musical compositions, from monophonic

folk music to polyphonic orchestral music, which enables

the model to learn a wide range of musical information.

3. EXPERIMENTS

3.1 Settings

3.1.1 Models

• MusicBERT [9]: This model combines unsu-

pervised pre-training with supervised fine-tuning,

which achieved state-of-the-art results. MusicBERT

is available in two settings: MusicBERT-S/1024

(MusicBERTsmall), and MusicBERT-B/1024

(MusicBERTbase). MusicBERT-S/1024 consists

of 4 layers and was pre-trained on the small-scale

Lakh MIDI Dataset (LMD, 148,403 pieces) [35],

while MusicBERT-B/1024 has 12 layers and was

pre-trained on the large-scale Million MIDI Dataset

(MMD, 1,524,557 pieces). Both models have a max-

imum length of 1024.

• M3: Our proposed music encoder is used to com-

pare the performances of unimodal and multimodal

models trained on the same dataset (i.e., WebMT).

M3 comes with two settings: M3-S/512 and

M3-S/1024, with maximum lengths of 512 and

1024, respectively. In the following experiments,

both settings use the 6 encoder layers only.

• CLaMP: Several variants were tested to verify

the effectiveness of the proposed techniques for

improving contrastive language-music pre-training.

These include CLaMP-S/512 which is the full

model, CLaMP-S/512 (w/o TD) which re-

moves text dropout, CLaMP-S/512 (w/o M3)

which has a randomly initialized music encoder,

and CLaMP-S/512 (w/o M3, BP) which re-

moves both M3 and bar patching, and uses char-level

tokenization to encode raw ABC notation instead.

CLaMP-S/1024 was included to verify the effec-

tiveness of an extended maximum length.
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3.1.2 Pre-training

The text encoder was initialized using DistilRoBERTa

[26], with a maximum length of 128, and the music en-

coder was initialized using two settings: M3-S/512 and

M3-S/1024. A length of 512 resulted in truncating 17.29%

of compositions in WebMT, while a length of 1024 re-

duced truncation to 7.7%. Both models were trained for

40 epochs with 6 encoder layers and 3 decoder layers, an

embedding size of 768, and a noise ratio of 45%. Based

on these two M3 encoders, we developed CLaMP-S/512

and CLaMP-S/1024. Both of them were trained for 20

epochs, using the AdamW optimizer [36] with β1 = 0.9,

β2 = 0.999, ϵ = 10−8, and a weight decay coefficient

of 0.01. The batch size is set to 640, and the temperature

τ = 0.2. The training process was accelerated and mem-

ory was saved by using mixed precision [37].

3.1.3 Evaluation Datasets

We introduce WikiMusicText (WikiMT) 2 , a new dataset

for the evaluation of semantic search and music classifi-

cation. It includes 1010 lead sheets (melodies with har-

monies) in ABC notation sourced from Wikifonia, each

accompanied by a title, artist, genre, and description. The

title and artist information is extracted from the score,

whereas the genre labels are obtained by matching key-

words from the Wikipedia entries and assigned to one of

the 8 classes that loosely mimic the GTZAN genres [38].

The description is obtained by utilizing BART-large [39]

to summarize and clean the corresponding Wikipedia en-

try. Additionally, following WebMT, the natural language

information within the ABC notation is removed.

In addition to WikiMT, we use two other datasets to

evaluate music classification: VGMIDI and Pianist8. VG-

MIDI [11] includes 204 score-oriented MIDI arrange-

ments that were classified according to the valence-arousal

model. Pianist8 [12] contains symbolic piano perfor-

mances of 411 pieces from 8 composers with distinct

styles, which were automatically transcribed from audio

using a model presented in [8].

3.1.4 Metrics

We use the following three metrics to evaluate the effec-

tiveness of models in various downstream tasks:

• Mean Reciprocal Rank (MRR) is used to evaluate

ranking systems. This metric calculates the average

of the reciprocal ranks of the correct answers, which

measures the effectiveness of the ranking.

• Hit Ratio at K (HR@K) measures the accuracy of

the model by checking if the correct item is among

the top K recommendations, which is often used in

recommendation systems.

• F1-macro score is a metric that assesses the overall

effectiveness of a classification model. It is com-

puted using the arithmetic mean (i.e., unweighted

mean) of all the per-class F1 scores.

2 https://huggingface.co/datasets/sander-wood/

wikimt

Table 2. Semantic search performance of CLaMP on

WikiMT (1010 music-text pairs) under different settings.

Setting MRR HR@1 HR@10 HR@100

S/512 0.2561 0.1931 0.3693 0.7020

S/1024 0.2016 0.1436 0.3109 0.6554

S/512 (w/o TD) 0.1841 0.1248 0.2911 0.6188

S/512 (w/o M3) 0.1262 0.0802 0.1960 0.5119

S/512 (w/o M3, BP) 0.0931 0.0525 0.1584 0.4426

3.2 Results

3.2.1 Semantic Search

In the semantic search evaluation, we assessed different

versions of CLaMP for semantic search, aiming to test the

efficacy of contrastive language-music pre-training tech-

niques. The pre-training dataset WebMT and the evalu-

ation dataset WikiMT have no overlap, thus guaranteeing

the validity of our evaluation results. In addition, as seman-

tic search requires no additional training for this dataset, it

demonstrates the generalizability of CLaMP.

Table 2 shows that our full model (CLaMP-S/512) out-

performs all other models across all metrics. Interest-

ingly, we discovered that increasing the maximum se-

quence length to 1024 (CLaMP-S/1024) did not lead to

an improvement in performance. We attribute this to the

fact that all lead sheets in the WikiMT dataset, once en-

coded with bar patching, have a length smaller than 512,

which limits the potential advantages of the longer se-

quence length of CLaMP-S/1024. We also observed that

the removal of the proposed techniques from CLaMP had

a considerable negative impact on semantic search perfor-

mance. Notably, the removal of M3 pre-training had the

greatest effect on model performance, followed by text

dropout and bar patching.

In conclusion, our evaluation of CLaMP on WikiMT

shows that CLaMP-S/512 with all proposed contrastive

language-music pre-training techniques is the most effec-

tive for the semantic search task. This highlights the impor-

tance of these techniques for effective pre-training and se-

mantic search tasks. Additionally, increasing the sequence

length (CLaMP-S/1024) did not improve the model’s per-

formance. These results emphasize the significance of us-

ing appropriate pre-training techniques in language-music

models and suggest that a longer sequence length may not

necessarily result in better outcomes.

3.2.2 Music Classification

The goal of the classification evaluation is to assess how

well the zero-shot CLaMP models perform compared to

other fine-tuned models. In addition, to evaluate pre-

trained models, linear probes are used to train a linear clas-

sifier for the classification based on the features from pre-

trained models. Despite being less powerful and relying on

pre-trained model features, linear classifiers offer a valu-

able means of quantitatively assessing feature quality [40].
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Table 3. Classification performance of different models on three datasets: WikiMT (1010 pieces, 8 genres), VGMIDI (204

pieces, 4 emotions), and Pianist8 (411 pieces, 8 composers).

Model
WikiMT VGMIDI [11] Pianist8 [12]

F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy

Linear Probe MusicBERT-S/1024 0.2401 0.3507 0.4662 0.5350 0.8047 0.8102

Linear Probe MusicBERT-B/1024 0.1746 0.3219 0.5127 0.5850 0.8379 0.8413

Zero-shot CLaMP-S/512 0.2660 0.3248 0.5217 0.6176 0.2180 0.2512

Zero-shot CLaMP-S/1024 0.2248 0.3406 0.4678 0.5049 0.1509 0.2390

Linear Probe M3-S/512 0.2832 0.3990 0.5991 0.6667 0.6773 0.6909

Linear Probe M3-S/1024 0.3079 0.4020 0.5966 0.6522 0.6844 0.6958

Linear Probe CLaMP-S/512 0.3452 0.4267 0.6453 0.6866 0.7067 0.7152

Linear Probe CLaMP-S/1024 0.3449 0.4416 0.6345 0.6720 0.7271 0.7298

WikiMT was converted into the MIDI format using mu-

sic21 [41] to be compatible with MusicBERT. In contrast,

for VGMIDI and Pianist8, we employed MuseScore3’s

batch conversion tool 3 to convert the scores into the Mu-

sicXML format, which were then converted into ABC no-

tation for use with M3 and CLaMP.

We conducted 5-fold cross-validation with the same

folds to assess all linear probe models, using identical fine-

tuning settings and a batch size of 10 to ensure consistency,

given the limited size of the evaluation datasets. The linear

probe CLaMP models used the music encoder only, while

the text encoder was discarded. In the zero-shot classifi-

cation setting, CLaMP had no previous exposure to these

evaluation datasets during pre-training. We utilized manu-

ally designed prompts for the zero-shot CLaMP models.

The top half of Table 3 presents the comparison of the

performance between linear probe MusicBERT and zero-

shot CLaMP. The results found that the zero-shot CLaMP

models demonstrated comparable or even superior perfor-

mance compared to the linear probe MusicBERT mod-

els on WikiMT and VGMIDI datasets. Interestingly, the

smaller zero-shot CLaMP-S/512 outperformed the larger

linear probe MusicBERT-B/1024, indicating that the pre-

training of CLaMP has enabled it to learn more gener-

alizable features that are useful for zero-shot music clas-

sification. However, this trend was not observed on Pi-

anist8, where MusicBERT models performed much better

than zero-shot CLaMP models. This difference in perfor-

mance can be attributed to the source of the datasets, as

WikiMT and VGMIDI primarily focus on score informa-

tion, whereas Pianist8 contains performance MIDI data de-

rived from audio. Since both CLaMP and M3 were trained

exclusively on score information, they lack knowledge of

performance MIDI. However, we noticed that the perfor-

mances of linear probe CLaMP models on Pianist8 signif-

icantly improved after fine-tuning compared to the zero-

shot ones. This suggests that incorporating ABC notation

from performance MIDI into the pre-training of CLaMP

may enhance its ability to comprehend such data.

3 https://musescore.org/en/project/

batch-convert

The linear probe CLaMP models show better perfor-

mance compared to the linear probe M3 models, as in-

dicated in the bottom half of Table 3, despite being pre-

trained on the same dataset with the same architecture.

This is attributed to the use of contrastive learning, which

aligns the music encoder of CLaMP with the text modality,

thus implicitly introducing textual information to the mu-

sic encoder. Furthermore, we found that CLaMP-S/1024

performed better on Pianist8 than CLaMP-S/512, suggest-

ing that a larger maximum length is beneficial for models

to learn performance MIDI.

In summary, our evaluation demonstrates that zero-shot

CLaMP performs comparably to state-of-the-art models

in music classification. Furthermore, the incorporation of

contrastive learning and textual information enhances the

music encoder’s performance, resulting in better classifica-

tion accuracy when compared to M3 which employed the

same architecture. These results highlight the potential of

CLaMP as a pre-training framework for symbolic MIR.

4. CONCLUSIONS

This paper introduces CLaMP, a pre-trained model that

utilizes contrastive language-music pre-training techniques

to build cross-modal representations between natural lan-

guage and symbolic music. The model was trained on

a dataset containing 1.4 million music-text pairs and has

demonstrated unique abilities of semantic search and zero-

shot classification for symbolic music. Compared to

state-of-the-art models that require fine-tuning, zero-shot

CLaMP exhibits comparable or superior performance in

score-oriented music classification tasks without any train-

ing. However, the current version of CLaMP has limited

comprehension of performance MIDI, and still has room

for improvement. Future research will aim to expand its

capabilities by scaling it up and pre-training it on larger

datasets that incorporate a wider range of symbolic mu-

sic formats beyond score-oriented ones. We expect that its

cross-modal representations will facilitate research on new

topics in music analysis, retrieval, and generation, and pro-

vide a foundation for the development of innovative sys-

tems and applications that integrate music and language.
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