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ABSTRACT

Optical Music Recognition (OMR) is a well-established

research field focused on the task of reading musical no-

tation from images of music scores. In the standard OMR

workflow, layout analysis is a critical component for iden-

tifying relevant parts of the image, such as staff lines, text,

or notes. State-of-the-art approaches to this task are based

on machine learning, which entails having to label a train-

ing corpus, an error-prone, laborious, and expensive task

that must be performed by experts. In this paper, we pro-

pose a novel few-shot strategy for building robust mod-

els by utilizing only partial annotations, therefore requiring

minimal human effort. Specifically, we introduce a mask-

ing layer and an oversampling technique to train models

using a small set of annotated patches from the training

images. Our proposal enables achieving high performance

even with scarce training data, as demonstrated by exper-

iments on four benchmark datasets. The results indicate

that this approach achieves performance values compara-

ble to models trained with a fully annotated corpus, but,

in this case, requiring the annotation of only between 20%

and 39% of this data.

1. INTRODUCTION

Optical Music Recognition (OMR) is a research field ded-

icated to developing computational methods for transcrib-

ing musical notation from document images into digital

formats [1]. While this task could be accomplished man-

ually, the vast number and heterogeneity of music docu-

ments make this approach tedious, costly, and error-prone.

The development of OMR systems has the potential to

enhance music heritage accessibility and preservation, as

well as enable the application of analysis algorithms to in-

crease knowledge about this cultural legacy.

OMR typically follows a sequential workflow, which

divides the transcription process into simpler tasks. The

initial task is called Document Image Analysis (DIA),

which is itself a research field that studies how to obtain
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a segmented version of the image by isolating the differ-

ent layers of interest, such as staves, lyrics, instructions,

ornaments, etc [2]. In the literature, multiple strategies

can be found to perform this layout analysis, ranging from

heuristic approaches that exploit specific features of the

images to deep learning techniques. Although heuristic

approaches achieve high performance in controlled scenar-

ios, these solutions are poorly generalizable. To obtain bet-

ter and generalizable results, the current trend is to rely on

machine learning and, more specifically, on neural network

architectures [3].

The application of deep learning in layout analysis has

been extensively studied, as evidenced by several state-of-

the-art works [4, 5]. However, a major drawback of these

methods is the requirement for a large amount of annotated

data for their training. This is particularly problematic for

the layout analysis of music scores since their high vari-

ability in appearance and styles makes necessary the an-

notation of each new application domain in order to train

robust models. Despite the importance of this issue, it has

been overlooked in the OMR literature, with domain adap-

tation being the only explored solution [6]. Nevertheless,

this technique also requires full annotations (even if it is

from a different domain) and the performance obtained is

not good or robust enough, which also makes it an imprac-

tical solution.

In this work, we propose a novel few-shot strategy for

building robust models for layout analysis by utilizing only

partial annotations, therefore requiring minimal human ef-

fort. Specifically, we introduce a masking layer and an

oversampling technique to train models using a small set of

annotated patches from the training images. Our approach

aims to drastically reduce the manual workload without

compromising performance, making it of particular inter-

est to real-world applications. Experiments on four bench-

mark datasets indicate that this approach achieves perfor-

mance comparable to models trained on a fully annotated

corpus—but requiring the annotation of only between 20%

and 39% of this data depending on the layer—thus making

it a highly efficient and effective strategy.

2. RELATED WORK

Traditional OMR workflows relied on a combination of

heuristic strategies to perform pixel-wise layout analysis

and classify each pixel of the image according to a set
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of categories [2]. A binarization process was commonly

applied to simplify the complexity of the image to de-

tect the ink pixels, either using generic approaches [7, 8]

or other particular ones proposed for the musical con-

text [9, 10]. The recognition and isolation of the staff

and the lyrics were then carried out using also heuristic

techniques [11, 12]. From these detected staves, the mu-

sical symbols were finally processed, sometimes carry-

ing out another step to remove the staff lines, as can be

seen in the review by Dalitz et al. [13] or in more recent

works [14–16].

More recently, all these steps were combined by means

of machine learning techniques. Calvo-Zaragoza et al. [17]

proposed a Convolutional Neural Network (CNN) to di-

rectly classify each pixel of the image—performing a

pixel-wise layout analysis—which was later improved us-

ing a U-net-like architecture—referred to as Selectional

Auto-Encoder (SAE)—to more efficiently classify the im-

age by patches [18]. This later work, on which our pro-

posal is based, trained a set of SAE specialized in the

detection of each layer of information—staff lines, notes,

text, or background.

The main challenge with layout analysis approaches

that rely on supervised learning is the large amount of an-

notated data needed to train the models [19, 20]. This re-

quires the annotation at the pixel level of a reference set of

images, which has to be done by hand, so it is not a scalable

solution given the high level of detail of these annotations

and heterogeneity in music documents. In addition, when

this constraint cannot be fulfilled, these learning-based ar-

chitectures fail to converge to obtain a suitable model for

the task at hand.

In the literature, we can find different proposals that

seek to alleviate this issue [21], two of the most common

being the use of regularization strategies [22] and data aug-

mentation processes [23]. We can also find more specific

proposals for cases of remarkable data scarcity, i.e., with

a considerably fewer number of annotated training sam-

ples. These scenarios are known as few-shot learning [24]

and typically employ specific neural architectures to es-

timate the similarity of the data [25]. Some of the most

typical examples of these techniques are Siamese Neural

Networks [26], Matching Networks [27], Prototypical Net-

works [28], and Relation Networks [29]. For a comprehen-

sive review of these strategies, the reader is referred to the

work by Jadon [30].

Our proposal follows a few-shot learning approach, but

instead of using a specific few-shot architecture, a state-

of-the-art layout analysis model—the previously described

SAE network—is modified to integrate a masking layer

that enables training with very little data. This layer is

complemented by an oversampling proposal used during

the training process to draw samples at random positions

around the chunks with annotated data. A mask is applied

to these pieces and used by the added layer to avoid pro-

cessing the non-annotated parts, which will randomly ap-

pear in different positions in each iteration, thus forcing the

architecture to generalize the learned weights.

In the related literature, masks have been used for dif-

ferent purposes. For example, Medhat et al. [31] proposed

the use of binary masks for sound classification to filter

out certain frequency bands. It has also been explored for

image classification, specifically, Suresh et al. [32] studied

the use of masks as a pre-processing task to filter the back-

ground of images with hand gestures, making the model

focus only on the gestures to be classified. However, as far

as we know, masks have not been used either in binariza-

tion tasks or for few-shot learning cases, so that the model

does not use the unlabeled areas.

3. METHODOLOGY

Our approach aims to build a robust few-shot learning

model for layout analysis of music score images that classi-

fies each pixel of an input image into one of the following

categories: staff, notes, text, and background.

In our context, the few-shot scenario can be represented as

a manual annotation of a limited number n of portions or

patches from a set of images I, with n ≪ N , where N is

the total number of possible patches that could be sequen-

tially extracted without overlapping from I. Therefore,

when n is small, less human effort and cost are required

to annotate the training set.

Note that labeling only part of the image makes the rest

of it uninformative, even if there are ink pixels. In a typical

training process, only the annotated patches would be used.

However, when the amount of data is limited, this would

lead to overfitting of the model. Although data augmenta-

tion may help mitigate this problem, in a few-shot learning

scenario, it is not very useful due to the little information

to be altered.

Our proposal introduces a novel approach to extract

a larger—and more varied—number of samples from the

scarce labeled information. Specifically, it is proposed

to extract random patches around the annotated areas—

keeping a minimum λ% of labeled information—to obtain

more varied samples, thus generating variations in the po-

sition of the elements and their labeling. Since some parts

of the extracted patches will fall outside the annotated area,

it is proposed to mark those parts with a special label (−1)

so that they are not used during training. This approach al-

lows us to control the number of samples to be drawn from

the images and get enough variability in the data to train

the model, as we will demonstrate in the experiments.

Formally, let X ∈ R
w×h be a collection of patches

of size w × h drawn from the input set of im-

ages I, and Y ∈ {0, 1}w×h be the corresponding

pixel-level annotation matrices extracted from the an-

notation set Ll for the layer to be processed l ∈
{staff,notes,text,background}, where 1 is used

to label the ink of that layer and 0 the rest, either back-

ground or information from another layer. Additionally,

let S = {(xi,yi) : xi ∈ X ,yi ∈ Y}
|S|
i=1

represent an an-

notated collection of data where each datum xi is related

to label yi by an underlying function f l : X → Y , that rep-

resents the objective function to be learned for each layer

l, and for which the SAE state-of-the-art architecture will
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be used. Note also that x∗ will be used to refer to the input

patches after applying the mask, which may contain values

in the range [0, 255], for the original pixels of the image,

but also the value −1 as a mask to mark the parts without

annotated information. This mask is therefore applied to

the input data in X and will be used by the masking layer

(described below) added to the networks f l to ignore those

parts during the training process.

Algorithm 1 describes the oversampling method pro-

posed to obtain the set S previously described. This

method receives as input the set of images I, the set with

the annotated data L, the layer l to be processed, the λ%
of minimum patch information, the total size of sampling

to perform, and the setM that contains the list of patches

annotated with their coordinates in the input images. The

algorithm first iterates through the number of patches an-

notated inM (line 3) and for each one obtains the in-

dex j of the image it corresponds to (line 4). It then

iterates for the number of samples that have to be extracted

for that annotated patch (line 5) and, for each one, per-

forms the following steps: 1) randomly selects the sam-

ple coordinates p using the mask of that patch and taking

into account the minimum λ% of annotated pixels allowed

(line 6); 2) extracts the patch x from Ij using the coor-

dinates p (line 7); 3) applies the mask to set a constant

value (−1) in those pixels that are not part of the annotated

area (line 8); 4) retrieves the layout annotations y for

that sample (line 9); and 5) both x
∗ and y are added to

the set S . The algorithm repeats this process until reaching

the requested size, finally returning the set S obtained.

Algorithm 1 Random masking patches generator.

1: function SAMPLEGENERATION(I,L,M, l, λ, size)

2: S ← ∅
3: for i← 1 to |Ml| do

4: j ← getPatchIndex(Ml
i)

5: for k ← 1 to size
|Ml|

do

6: p← getRandomPosition(Ml
i, λ)

7: x← getWindow(Ij , p)

8: x
∗ ← applyMask(x,Ml

i, p)

9: y ← getWindow(Ll
j , p)

10: S ← S ∪ (x∗,y)
11: end for

12: end for

13: return S
14: end function

Note that the getWindow(·) function may apply addi-

tional data augmentation to the sample in order to further

increase its variability.

This oversampling process is complemented by the pro-

posal of a masking layer that is added to the network archi-

tecture f l to ignore the pixels that are not annotated. This

layer, as indicated in Section 2, has been previously used

in other proposals to skip time steps in sequence processes

and to mask the background in classification tasks. In this

proposal, we adapt it to ignore the parts of the input with

this mask and also propagate the mask to the following

layers so that the non-annotated parts are not taken into ac-

count during the training process. Intuitively, the masking

layer acts as a regularizer and data augmentation process.

Given that the annotated and non-annotated parts will vary

in position and size across iterations, the network is forced

to generalize the weights learned during training by hav-

ing to use different connections of the network and non-

annotated pixels will not be used.

4. EXPERIMENTAL SETUP

This section describes the corpora and metrics considered

for evaluation and the implementation details of the neural

architecture. 1

4.1 Corpora

For the experiments, we considered the following 4

datasets with manual pixel-wise annotations of 4 layers of

information (staff, notes, text, and background).

Figure 1 shows some examples for each manuscript and

Table 1 includes a summary with their details.

• EIN: 9 high-resolution scanned pages of neumatic

notation belonging to the Einsiedeln, Stiftsbiblio-

thek, Codex 611(89), from 1314. 2

• SAL: A set of 10 high-resolution images of pages

from the Salzinnes Antiphonal manuscript (CDM-

Hsmu M2149.14), in neumatic notation. It is avail-

able in the Cantus Ultimus platform. 3

• MS73: Selection of 10 pages of square music nota-

tion from the miscellaneous choir book ‘Dominican,

CDN-Mlr MS Medieval 0073’ from Northern Italy,

written between 13th and 15th centuries. This cor-

pus is stored in the McGill Library collection, and it

is online available through Cantus Ultimus. 4

• CAP: A compilation of mensural notation

manuscripts from the 17-18th centuries belonging

to the ‘Cathedral of Our Lady of the Pillar’ in

Zaragoza (Spain), introduced for OMR purposes

by Calvo-Zaragoza et al. [33]. We use a subset of

the corpus, with 10 manually pixel-wise annotated

pages.

In all the cases, we used 4 images for training, 2 im-

ages for validation, and the remaining for testing. After

preliminary experiments and also based on previous pro-

posals, we selected a patch size of 256 × 256 pixels to

extract from these images. To be fair and more realistic,

we use the same number of samples for the validation set

as for the training partition. This is because, in a real case,

it would be necessary to annotate the validation partition

as well, so it is not fair to use the entire pages to validate

the models in a few-shot scenario. This does not apply to

the test set, for which we use all available data.

1 https://github.com/fjcastellanos/

FewShotLayoutAnalysisMusic.git
2 http://www.e-codices.unifr.ch/en/sbe/0611/
3 https://cantus.simssa.ca/manuscript/133/
4 https://cantus.simssa.ca/manuscript/35/
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(a) EIN (input). (b) EIN (ground truth). (c) SAL (input). (d) SAL (ground truth).

(e) MS73 (input). (f) MS73 (ground truth). (g) CAP (input). (h) CAP (ground truth).

Figure 1: Examples of images extracted from the corpora described in Table 1. In the ground truth images: red pixels

represent the staff lines annotation, black is used for music symbols, blue for text, and white for the background.

Corpus # imgs Resol.
Layers (%)

BG St No Te

EIN 9 6 496 × 4 872 87.9 3.5 2.7 5.9

SAL 10 5 847 × 3 818 87.6 2.4 2.5 7.5

MS73 10 6 990 × 4 797 93.4 1.8 1.8 3.0

CAP 10 2 126 × 3 065 85.7 6.6 5.1 2.6

Table 1: Details of the corpora considered including the

number of images (# imgs), the average resolution and the

proportion of pixels for each layer of interest, with BG for

background, St for staff lines, No for notes, and Te for text.

4.2 Metrics

To evaluate the performance of our few-shot approach, we

resorted to the F-score (F1) figure of merit to avoid pos-

sible biases toward any particular class given the inherent

label imbalance in the datasets considered (see Table 1).

Assuming a binary classification scenario, this metric is

defined as

F1 =
2 · TP

2 · TP + FP + FN
, (1)

where TP, FP, and FN denote the True Positives, False Pos-

itives, and False Negatives, respectively.

Finally, given the non-binary nature of the task at hand,

we considered the use of the macro-averaged F-score (Fm
1

)

as the average of the F1 values computed for each layer.

Mathematically, this metric is defined as

Fm
1
=

∑|L|
l=1

Fl
1

|L|
, (2)

where Fl
1

is the F1 calculated for the layer l assuming a

one-versus-all evaluation framework and |L| represents the

total number of layers of information (in our case 4).

4.3 Implementation details

The architecture considered is based on a previous

work [18], in which a framework consisting of a series

of SAE models—one for each layer to be predicted—was

proposed. SAE follows a U-net architecture, in which an

image of size w × h (in our case a 256×256 pixels patch)

is given as input, and the output is a matrix of the same

size that contains the confidence value of pixels belonging

to the layer of interest. In our case, we have four layers to

be predicted, so we will have four SAE models, each one

specialized in one particular layer.

For the experimentation, we resort to the same archi-

tecture proposed in the original work. An encoder with

four blocks composed of a convolutional layer of 32 filters

of 3 × 3, a sub-sampling of 2 × 2, a batch normalization,

a Rectified Linear Unit (ReLU) activation, and a dropout

of 0.4. On the decoder side, the blocks follow the same

scheme except for the sub-sampling, which is replaced by

an oversampling of the same rate. The last layer of the de-

coder is connected to a convolution with one 3 × 3 filter

and a sigmoid activation to obtain the result of the predic-

tion with values between 0 and 1. This architecture was

only changed to add the masking layer after the input.

Note that each SAE was trained using the binary cross-

entropy loss for up to 200 epochs with a batch size of 16,

and an early stopping criterion of 20 epochs of no improve-

ment on the validation set. Adam optimizer [34] was used

with a learning rate of 0.001.

Furthermore, to favor the convergence of the model,

the input images were normalized in the range [0, 1]. The

mask was applied over this result, so the inputs can actu-

ally contain the values {−1} ∪ [0, 1]. For the extraction of

patches, a value of λ of 2.5% was used, since it allowed

obtaining chunks with sufficient information. In addition,

we also considered standard data augmentation to increase

data variability by applying random rotations between -45º

and 45º, zoom variations between 0.8x and 1.2x, and hori-

zontal and vertical flips.
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5. RESULTS

This section presents and discusses the results obtained

with the proposed method.

First, a preliminary experiment was carried out to an-

alyze the influence of the amount of oversampling. For

this, starting from a single annotated patch, we studied the

result obtained by increasing the number of randomly ex-

tracted samples around the annotated patch using the pro-

posed technique. Fig. 2 shows the average results of this

experiment in the validation set for all layers and consid-

ering both the application and non-application of data aug-

mentation. For a small number of randomly extracted sam-

ples, the proposal achieves approximately 30% of Fm
1

. The

average result is improved as the number of samples ex-

tracted increases, reaching over 70% of Fm
1

for 512 sam-

ples and barely improving for the case of 1 024 samples.

Additional data augmentation does not help to improve

the results, only for cases of sample size equal to or less

than 128. This may be because the proposed oversampling

method can be considered as a data augmentation process,

so that, from a given amount of sampling, there is enough

variability and other techniques of data augmentation may

not be necessary.

 0
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 0  200  400  600  800  1000

F
1m

  
(%

)

Number of extracted samples

Not augmented Augmented

Figure 2: Preliminary experiment to study the influence

of the number of samples drawn randomly from one an-

notated patch of 256 × 256 pixels. The result obtained in

terms of Fm
1

(%) in the validation partition is shown, con-

sidering both the application and the non-application of ad-

ditional data augmentation.

Based on these results, the sampling size is set to 512

for the following experiments. Also, since standard data

augmentation seems detrimental in combination with our

proposal, we decided not to use it.

The selected configuration was evaluated using the test

set, carrying out an analysis of the influence of the number

of patches annotated (from 1 to 32) and the influence of

these being extracted from the same page or from several

(up to 4, which would generate more variability). Fig. 3

shows these results compared to two baselines: an up-

per one representing the state-of-the-art model [18] trained

with all available information (if the entire training set was

annotated) and a lower bound training this model with only

one annotated patch (in both cases without applying the

proposed masking layer). One initial observation is that the

three case studies (with 1, 2, or 4 pages) demonstrate com-

parable trends. The results, as expected, show an increas-

ing trend with the number of annotated samples, from an

average Fm
1

of 40% when training with one annotated sam-

ple to ∼62% when using 32 annotated patches, and stabi-

lizing (or improving less) from 16 to 32 annotated patches.

If these results are compared with the baselines, it can

be seen how the proposal exceeds the lower bound by 16%

when training with one annotated sample and that it equals

or even improves the upper baseline in the cases with 1

and 2 pages from 16 annotated samples. Also, it is only

7% worse than the state of the art for the 4-page case but

with a much lower annotated data requirement (32 sam-

ples, which represents 39% of the total information).

Layer Annotated samples Baseline

Corpus 1 2 4 8 16 32 Bt Up

(1%) (2%) (5%) (10%) (20%) (39%) (1%) (100%)

staff

EIN 10.5 39.8 64.1 62.1 83.9 78.1 0.0 87.3

SAL 72.0 75.4 75.7 75.7 74.8 87.4 0.0 90.8

MS73 11.3 13.9 17.7 12.9 92.8 94.1 0.0 91.4

CAP 66.2 75.6 75.2 79.0 79.9 82.5 0.0 47.0

Avg. 40.0 51.2 58.3 57.4 82.9 85.5 0.0 79.1

note

EIN 19.0 16.7 20.7 0.0 20.4 26.3 0.0 77.8

SAL 35.3 3.3 21.2 4.1 38.6 50.2 0.0 4.1

MS73 0.2 3.2 6.7 7.3 7.1 7.3 0.0 2.7

CAP 66.7 69.7 73.0 77.9 81.2 82.6 0.3 8.3

Avg. 30.3 23.2 30.4 22.3 36.8 41.6 0.1 23.2

text

EIN 22.9 15.1 17.2 67.3 31.7 37.0 11.3 11.3

SAL 67.6 15.5 46.1 32.3 71.7 73.4 0.0 78.5

MS73 6.3 9.4 26.2 16.7 15.3 14.3 0.0 13.5

CAP 3.6 0.0 15.1 37.0 45.4 16.7 3.6 12.7

Avg. 25.1 10.0 26.2 38.3 41.0 35.4 3.7 29.0

background

EIN 93.9 93.8 93.8 93.8 93.8 93.7 93.7 93.7

SAL 93.2 93.2 93.2 93.2 97.9 99.1 93.2 98.5

MS73 40.0 36.8 46.6 49.2 87.4 96.8 96.8 96.8

CAP 93.6 93.6 93.7 93.6 93.6 93.6 93.6 93.6

Avg. 80.2 79.4 81.8 82.5 93.2 95.8 94.2 95.7

Table 2: Average results in terms of F1 (%) for each layer

considering 1 page in a few-shot evaluation. The percent-

age of annotated information is indicated between paren-

theses. Bt represents the bottom baseline, which is the

state-of-the-art model trained with 1 annotated sample per

page, and Up is the upper baseline, with full pages used

for training. Both baselines do not apply any masking.

From these results, we now analyze in detail the case of

a single page, since it represents the most extreme case as

it has less variability available for the annotation. Table 2

shows a summary of the results obtained individually for

each dataset and layer considered, including the baselines

and the percentage of the image used in each case. As

in the previous results, it is observed that the performance

of our approach improves as more annotated samples are

used. In this case, we can analyze how the results vary

according to the layer and the corpus evaluated. In general,

the proposal improves the bottom baseline, in some cases,

such as staff, notes, and text, by a wide margin.

However, note that this baseline fails to converge on most

layers, except for the background one. In this case, on

average, the proposal only improves the baseline by using

32 samples—39% of the image. This is due to the fact

that for fewer annotated samples, poor overall results are

obtained for the MS73 dataset. This may be because this

dataset presents a greater variability of backgrounds. In
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(a) 1 training page.
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(b) 2 training pages.
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(c) 4 training pages.

Figure 3: Average results in terms of Fm
1

(%) with respect to the number of annotated samples (from 1 to 32) and the

number of pages (from 1 to 4). Dashed lines represent baseline results for reference. The upper reference line indicates the

results of the state-of-the-art model trained with fully annotated pages, while the lower reference line represents the results

obtained when only one sample is annotated. Note that both baselines do not use the proposed masking method.

(a) SAL (input). (b) Background layer. (c) Staff layer. (d) Notes layer (e) Text layer.

Figure 4: Example of the results obtained in SAL for the four layers considered in this work. The method was trained with

32 samples drawn from one page. White represents the detected information for the particular layer.

fact, the rest of the layers of that corpus also obtain low-

performance values when the annotated data is scarce.

Regarding the upper baseline, it can be seen how the

proposal, on average, improves it in all layers, although it

requires a different number of labeled samples depending

on the layer. As stated before, on average, from 16 patches

or 20% labeling, a better result is achieved. It is inter-

esting that for the simplest and more homogeneous layers

(such as staff and background), the upper baseline

obtains a better result and it is more difficult for the pro-

posal to overcome it, while for the more difficult ones that

present greater variability (notes and text), the base-

line obtains a worse result while the proposal achieves a

greater margin of improvement. This may be due to the

fact that the proposal performs some overfitting in the sim-

plest cases with less variability and, therefore, requires a

greater number of labeled samples to learn it.

To complement the quantitative results, Fig. 4 shows

an example of prediction for SAL. As can be seen, the

background and the staff layers are correctly retrieved, and

some false positives can be found in the notes layer. The

text layer seems the most challenging as it is not able to

differentiate the ink of the text from other elements. How-

ever, the text is recovered, and the false positives could

be removed by combining the predictions obtained for the

other layers.

6. CONCLUSIONS

In this work, we presented a few-shot neural approach for

pixel-wise layout analysis of music score images. The pro-

posal includes a masking layer, which acts as a regular-

izer, that is combined with an oversampling technique to

leverage the limited annotated information available. The

oversampling technique extracts annotated parts of the im-

ages at different random positions at each training itera-

tion, leaving annotated and non-annotated information in

different positions of the input. This strategy forces the

neural architecture to generalize the learned weights, sim-

ilar to a data augmentation process but adapted to the case

of few-shot and partial annotation in documents.

The proposal is evaluated on four benchmark datasets to

study the influence of the amount of annotated data in the

layout analysis task. We found that the number of anno-

tated samples is key to optimizing performance, and anno-

tating a relatively small number of them—between 16 and

32 samples, which represents using only between 20% and

39% of the total information—can achieve average results

of 65.5% of Fm
1

, which is very close to the result obtained

by the state of the art (72%) using the entire training set

annotated. It is also interesting to note that the proposal

obtains similar results when labeling more pages, so it is

enough to have a single page for training and perform a

partial annotation of between 16 and 32 patches.

In general, the approach shows very competitive results

in few-shot scenarios. Therefore, we hope this research

can open doors to new avenues in this line. Reducing the

amount of annotated data required for pixel-wise layout

analysis is essential, and techniques such as domain adap-

tation and transfer learning may help to reduce human ef-

fort. We plan to investigate new ways to address this prob-

lem, including to combine domain adaptation techniques

with our masking proposal and studying the feasibility of

incremental and active learning.
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