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ABSTRACT

Micro-timing is an essential part of human music-making,

yet it is absent from most computer music systems. Partly

to address this gap, we present a novel system for gen-

erating music with style-specific micro-timing within the

Sonic Pi live coding language. We use a probabilistic

approach to control the exact timing according to pat-

terns discovered in new analyses of existing micro-timing

data (jembe drumming and Viennese waltz). This imple-

mentation also required the introduction of musical me-

tre into Sonic Pi. The new metre and micro-timing sys-

tems are inherently flexible, and thus open to a wide range

of creative possibilities including (but not limited to):

creating new micro-timing profiles for additional styles;

expanded definitions of metre; and the free mixing of

one micro-timing style with the musical content of an-

other. The code is freely available as a Sonic Pi plug-in

and released open source at https://github.com/

MaxTheComputerer/sonicpi-metre.

1. INTRODUCTION

1.1 Metre Versus Rhythm

Metre is distinct from rhythm in that it primarily concerns

a kind of mental representation for processing events in

musical time; a common analogy casts metre as a “grid” or

“template” for categorising rhythmic events [1–3].

Although metre often involves familiar notions such as

“the beat”, and definitions often emphasise intuitive ideas

like regular periodicity, a clear-cut definition of metre is

surprisingly hard to pin down. This is especially so when

trying to capture the extremely wide range of musical-

cultural contexts for which some concept of metre might

be relevant. Nevertheless, notwithstanding the complex-

ities of these terms, and putting any more specific defini-

tion of these terms to one side, it is reasonable to argue that

some form of both “rhythm” and “metre” feature in almost

all known musics: “rhythm” in the sense of events occur-

ring in time, and “metre” in some form of semi-regular

cycle of event expectation.
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1.2 On Micro-Timing in Theory and Practice

“Micro-timing”, in turn, refers to the specific timing of

both those actual rhythmic “events” and of the metrical

“grid” positions. While rhythm and metre are sometimes

modelled in terms of a completely regular underlying pulse

(e.g., 1-1-1-1-) and small integer combinations thereof

(e.g., 2-1-1-), it is impossible in practice for a human per-

former to play with the mechanical precision of identical

gaps between successive events. 1 Moreover, musicians

make a virtue of this. A close look at the micro-timings

in human performance reveals deeply sophisticated, style-

specific micro-timing strategies, a.k.a. “groove”. 2

Even when distinguishing between a mental “grid” for

events (metre) and the actual placement of those events

(rhythm), it is appropriate to discuss micro-timing for both

the rhythm and the metre. This distinction is sometimes

cast in terms of a difference between “categorical” and “ex-

pressive” timing where events may be expressively altered

from their expected (categorical) position [5], but note that

the “categorical” position itself is also subject to micro-

timing strategies because the “expected” positions are not

spaced with equal, 1:1 regularity. In short, although micro-

timing is sometimes described in terms of “small devia-

tions” from simple (natural number) pulse relations, it is

necessary also to consider micro-timing as part of the me-

tre itself. To continue the “metre as grid” analogy: the gaps

between grid lines are not evenly spaced.

In practice, these micro-timing durations are too short

to learn in a declarative fashion (verbal or mathemati-

cal). Partly for that reason, they are also typically ne-

glected by notation systems (including Western staff no-

tation). Nonetheless, these micro-timing strategies clearly

are taught and learned in the way that most music has been

passed on: through listening, playing, and embodiment.

Computers enable us to achieve a level of timing reg-

ularity beyond our human capability. As ever, the tech-

nology not only extends what we can do, but invites us to

consider new techniques, questions, and aesthetics. And

the human’s micro-timing can of course be combined with

the computer’s extreme timing precision, as when an MC

raps over a beat. Computers are also used to perform the

micro-timing analysis discussed here. However, comput-

ers are currently less exploited as a tool to help us engage

in creative uses of micro-timing strategies.

1 This has been systematically studied since Seashore [4].
2 See, for example, Justin London’s “many metres” [2].
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2. RELATED WORK

A substantial research field has grown to analyse the

micro-timing strategies in different musical styles. This

has included work on the Viennese waltz (from Bengts-

son and Gabrielsson’s landmark 1977 work to Yang’s 2022

analysis of ‘The Blue Danube’ [6, 7]), jembe music from

Mali (notably through Rainer Polak’s career-long focus on

this repertoire, [8–10]), and a recent surge of work on Afro-

Cuban and Latin musics (see, for instance, [11, 12]).

Creating music with synthetic micro-timing has also

been explored as part of the broad field of MIR, but

has concentrated on attempting to model human-like ex-

pressive timing [13]. For example, Flossman et al. use

probabilistic models for expressive performance render-

ing [14, 15]. There has been very little academic work

on integrating style-specific timing analyses into compu-

tational settings. The closest examples are in the commer-

cial sphere: Ableton Live, for instance, features “grooves”

which shift MIDI events from quantised positions accord-

ing to micro-timing styles, including a probabilistic ele-

ment and the option to create new “grooves” from any hu-

man performances (via MIDI).

Musical live coding is a way of creating and perform-

ing music by writing and modifying code in real time.

While there may or may not be pre-made materials, live

manipulation of the material is a given. Given the in-

herent “liveness” of live coding, 3 it is arguably an ideal

part of the computer music pantheon to integrate human

micro-timing. Yet most live coding languages lack not

only micro-timing functionality, but even a full represen-

tation of musical metre, typically encoding only events in

time, or at most an anaemic representation for beats and/or

time signatures. For example, the commercial Max/MSP

language uses its transport object to allow access to

bar and beat numbers for the current time signature. An ex-

ception is McLean’s open-source Tidal Cycles which uses

a cyclic notion of time that can be subdivided to achieve

more complex hierarchies [17].

In summary, although there has been much research into

the analysis of micro-timing in different musical styles,

and the application of expressive timing to computer-

generated music, we still lack implementations of style-

specific micro-timing in most computer-music software,

and even foundational notions of musical metre in most

live coding environments. This project seeks to address

those issues through an implementation of both metre and

style-specific micro-timing for Sonic Pi: a popular live

coding language and IDE designed to support a range of

creative possibilities while being simple enough to use as

an educational tool for use in schools [18]. 4 We aim to im-

prove not only how “life-like” the generated music sounds

in general (and thus, arguably the “liveness” of that live

coding), but also to do this in a style-specific way. In this

paper we report on implementation of two case studies as

well as a general framework for integrating further styles.

3 This is discussed in Chapter 5 of [16], for instance.
4 Sonic Pi’s domain-specific language is written in Ruby and uses the

SuperCollider sound synthesis server to produce sounds [19].
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Figure 1: An example of how MetreTree and MetreLeaf

objects are nested to construct a metrical hierarchy for 2
4 .

The total duration d of each node is also displayed, and the

duration of a parent node is the sum of the durations of its

children [22, 23].

3. IMPLEMENTING METRE

This section describes the model of metre we have imple-

mented for Sonic Pi. We argue that this is useful for a

range of applications including (but not limited to) use as

a basis for micro-timing as described below (§4). As dis-

cussed, metre is a very widespread phenomenon in gen-

eral but specific aspects differ. We can broadly distinguish

here between the specifically hierarchical aspects (impor-

tant for some styles but not all) and the more general notion

of categorical positions in a metrical cycle (much more

widespread, and axiomatic for the kind of micro-timing

systems discussed and implemented here).

3.1 Modelling Metrical Hierarchy with Trees

A favoured method for encoding metrical hierarchy in a

data structure is through trees. See Forth [20] for a de-

tailed mathematical treatment of trees used in this context

and the music21 Python library [21] for a popular imple-

menation. Our approach shares some high-level ideas with

music21 (and indeed Forth, and others), but differs in the

specific implementation.

The tree structure is implemented by the MetreLeaf

and MetreTree classes. Figure 1 shows the default tree

structure formed by these objects and their durations for

a Western 2
4 time signature. Note how the duration of a

parent node is the sum of the durations of its children.

To model tree data structures of any depth with a suc-

cinct, finite representation, we follow the Western nota-

tional assumption of diving each MetreLeaf into two equal

parts to get the next level where not specified otherwise. 5

Users can specify the full depth of a tree as necessary

against this assumption.

3.2 The MetreLeaf Class

A MetreLeaf object is the leaf node of the metrical tree

structure. It has an instance variable fraction which

represents the duration of the MetreLeaf as a fraction of a

whole note. For example, a leaf node with the duration of

one quarter note will have the value 1
4

.

5 See [24] for discussion of this point, of metrical “well-formedness”,
and the notion of “binary”, “ternary” and wider metrical structures.
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The class contains a subdivide()method, which di-

vides the MetreLeaf by two a given number of times, s. It

returns a new MetreTree with 2s MetreLeaf children, each

of value f/2s where f is the fraction of the original Me-

treLeaf.

3.3 The MetreTree Class

A MetreTree object represents the hierarchical tree or sub-

tree of a metre. The instance variable sequence is an

ordered list representing this node’s children and contains

any combination of MetreLeaf objects and other MetreTree

objects. For example, the hierarchy in Figure 1 could also

be written in list form as:

[[

1

8
,
1

8

]

,

[

1

8
,
1

8

]]

Each list is a MetreTree, and each fraction is a MetreLeaf.

The MetreTree class contains several methods for manip-

ulating and extracting information from the metrical hier-

archy it represents. The two most important of these are

explained in more detail below.

3.3.1 Getting Metrical Levels

Metrical level refers to the depth level of a metrical hier-

archy. Here, we base our representation on the beat level,

which is divided to get division levels, and grouped to get

grouping levels. 6 The get_level() method allows a

user to “flatten” the tree structure to a specified depth, ac-

cessing the sequence of events at a given metrical level.

For flattening to a division level (l > 0) or to the beat

level (l = 0), we perform a recursive depth-first search

on the tree. For each child in the sequence list, if it is a

MetreTree, the method is recursively called until the base

case of l = 0 is reached. At this point, all the children

of that node are combined into one MetreLeaf equal to the

sum of their durations. If the child is instead a MetreLeaf,

it is subdivided l times to reach the desired metrical level.

For a grouping level (l > 0), we find an estimate of

the structure of higher metrical levels by clustering nodes

together. It is an estimate because this information is not

in the MetreTree’s representation of the metre, so is just

one possibility for the higher structure. The algorithm re-

cursively clusters nodes until the desired metrical level l is

reached. The number of nodes combined in each cluster is

determined by the smallest prime factor of the number of

nodes at the level below. For example, if level l + 1 has

four nodes, they will be clustered in groups of two. If it

has nine nodes, they will be clustered in groups of three.

Some examples of the output of the flattened tree for the

following complex hierarchy are shown in Table 1:

[[

1

8
,
1

8

]

,

[

1

16
,
3

16

]

,
1

8
,

[

1

4
,

[

5

16
,
3

16

]]]

6 Centring the beat level in this way reflects the psychology of metre
better than alternative “top down” and “bottom up” approaches.

l get_level(l)

−2

[

11

8

]

−1

[

1

2
,
7

8

]

0

[

1

4
,
1

4
,
1

8
,
3

4

]

1

[

1

8
,
1

8
,
1

16
,
3

16
,
1

16
,
1

16
,
1

4
,
1

2

]

Table 1: Examples of the output of get_level(l) at dif-

ferent metrical levels l for an example hierarchy. Note how

level l = −1 is formed by the clustering of level l = 0.
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8
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1
16

1
8

1
16

1
16
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Figure 2: An example metrical hierarchy for 2
4 showing

those metrical events at each level which coincide with off-

sets x and y.

3.3.2 Getting Exact Metrical Events

We define an offset as a position in the metric cy-

cle represented by the quarter length duration to have

elapsed since the beginning of the cycle. 7 The

metrical_level_indices() method of the Metre-

Tree class finds any metrical events occurring at a given

offset, and returns their index.

Consider the example shown in Figure 2. Offset x oc-

curs on the first event of all three levels, so the function

would return L0(x) = L1(x) = L2(x) = 0, where Ll(x)
is the index of an event at level l that offset x occurs on.

Offset y occurs only on the last event of Level 1 and the

second-to-last event of Level 2, so the function would re-

turn L1(y) = 3, L2(y) = 6.

This method is important because it is used later to de-

termine the “categorical” position to link an event to and,

through that, which micro-timing probability distribution

to apply.

3.4 Bar Class

The Bar class is a representation of a single metrical cy-

cle, 8 and each instance of it has an associated metre. A

Bar object is responsible for:

7 “Quarter length” is a semi-standard measurement for a length of time
in symbolic values where the unit length is one “quarter note” duration
(UK: “crotchet”).

8 A more precise definition would account for hypermetre where bars
occur at the beat level [25], but the simple definition is sufficient for our
purposes. Note that “bar” is the UK English equivalent of “measure”
(USA).
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play :C4

sleep(1)

play :E4

sleep(1)

play :G4

sleep(0.5)

play :E4

sleep(0.5)

play :C4

(a) Old (above left)

use_metre '4/4'

bar do

add_note :C4, 0, 1

add_note :E4, 0, 1

add_note :G4, 1, 1

add_note :E4, 1, 1

add_note :C4, 0, 1

end

(b) New (above right)

(c) Western musical notation:

 
445 6 6 6 6 6

Figure 3: A bar of music represented by (a) the original

Sonic Pi syntax, (b) our new metre commands, and (c) tra-

ditional Western music notation. Note how the original

Sonic Pi syntax loses information about the metre. The

second and third arguments to add_note are the metrical

level and duration (l and d in §3.4).

• Keeping track of playback position during the cycle.

• Converting a note length given as a metrical level

and a duration into a quarter length.

• Checking if a note or rest fits in the remaining time

in the cycle, and updating the bar’s playback position

accordingly.

A note’s length is specified by a metrical level and a

duration, where the duration is in the units of an event at

the specified metrical level and acts as a multiplier. For

example, if a note’s length is defined as (l, d) = (0, 3), its

unit length is the duration of an event at level l = 0, and it

lasts for d = 3 of these units.

The add_note() method checks if a note fits into

the bar’s remaining time; if it cannot, an exception is

raised. This ensures the total (“actual”) duration of the bar

matches its metre’s (“nominal”) duration.

3.5 Playing Music

This framework for musical metre enabled the creation of

new Sonic Pi commands. Figure 3 shows a comparison

between the original Sonic Pi commands, our alternative

commands, and traditional Western music notation.

There are two main commands for metre. The first

is use_metre(m), which changes the current thread’s

metre to m (using a thread-local variable). The second

is bar do ... end, which creates a new Bar object,

stores this to a thread-local variable, then executes a block

of user code.

A user can use add_note to play a note on the cur-

rent synthesiser. This works by first getting the current Bar

object from the thread-local variables and calling the Bar’s

add_note() method to check if the note will fit in the

bar. It then passes the note pitch to Sonic Pi’s play func-

tion which creates the sound, and finally applies sleep

for the remaining duration of the note.

4. MICRO-TIMING

4.1 Storing Micro-Timing Information

In order to add micro-timing functionality to our imple-

mentation, we first needed a way of representing and

storing the micro-timing information for different musical

styles. We implement this by storing each event in the met-

rical cycle, the theoretical (isochronous) position of that

event in the cycle (e.g., 1), and the typical displacement

of the from this position (the µ of the micro-timing, e.g.,

+0.004). Actual event occurrence is modelled by normal

probability distribution around these µ values.

Samples can then be drawn from these distributions

using the Box-Muller transform [26] on uniform random

samples from Sonic Pi’s random number generator. Sonic

Pi’s generator produces a deterministic, repeatable se-

quence of pseudorandom numbers, which means the out-

put of a Sonic Pi program sounds the same each time it is

run [27].

4.2 Applying Micro-Timing

When a user sets a metre with the use_metre command,

they can optionally specify a style as well. This causes all

music played with that metre to use the micro-timing of the

chosen style.

At the start of each new bar, the Metre object sam-

ples new values from the Style’s probability distribu-

tions. When a note is played inside the bar, the add_note

command requests the timing shift that should be applied

to the note from the Metre. To calculate this, the Metre ob-

ject calls its metrical_level_indices() method

to determine which timing values from each level to use.

The individual timing contributions of each metrical level

are summed to produce an overall timing shift for the note.

A positive value means the note should be played slightly

late; a negative value means slightly early. This is returned

to add_note which then uses Sonic Pi’s time_warp

function to adjust the timing of the call to play.

For example, if the sampled timings, Tl, for each level,

l, are:

T0 = [0, 0.1]

T1 = [0.03, 0, 0,−0.02]

and the metrical level indices, Ll, for each level, l, are:

L0 = 1

L1 = 3

then the timing shift, t, would be calculated by:

t =
∑

i∈T.keys

Ti[Li]

= T0[L0] + T1[L1]

= 0.1 + (−0.02)

= 0.08

Therefore, the note will be played 0.08 quarter lengths after

the reference value.
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5. CASE STUDIES

Creating music with realistic micro-timing using the im-

plementation we have described requires a set of proba-

bility distributions which accurately characterise a style of

music. Clearly this is best implemented with data derived

from real-life examples of the musical style in question.

This project uses two different styles of music as contrast-

ing case studies for evaluation: jembe (or “djembe”) drum

music from Mali and Viennese waltz music. These two

styles both have robust, well-known micro-timing charac-

teristics. The distributions derived here form the “preset”

styles included in our Sonic Pi plugin.

5.1 Jembe Data Analysis

Jembe is a style of West African music involving a small

ensemble of drummers (typically 3–4). It provides an ideal

case study for our purposes because it has a highly con-

sistent micro-timing strategy [8]. Malian drummers have

been shown to exhibit some of the most consistent tim-

ing (lowest levels of variability) between performers in the

world [28].

Moreover, jembe music is relatively constrained in

terms of its pitch, timbre, and number of instruments. This

also helps by enabling a clear focus on timing. Exten-

sive research into the micro-timing of jembe music has in-

cluded the release of high-quality datasets of processed live

recordings [8–10].

The first dataset is from Jacoby et al. [10] and consists

of 11 processed recordings of a piece called ‘Suku’, which

is a very commonly played piece in this style. The second

dataset is from the “Interpersonal Entrainment in Music

Performance” (IEMP) Data Collection [29, 30]. This con-

sists of 15 recordings across three different pieces: ‘Man-

janin’, ‘Maraka’, and ‘Woloso’. Both datasets here use

recordings made by Rainer Polak in Mali. The datasets

supply the following information:

• Onset of the drum stroke in seconds since the start;

• Phase: beats since the start of the current cycle;

• Cycle (bar) number: a natural number count;

• Categorical metrical position within the cycle asso-

ciated with this event (integer, 0–11).

5.1.1 Micro-Timing Estimation

The pieces of jembe music in the dataset use a metre with

four beats, 9 each of which divides into three, for a total of

12 metrical events at the first division level (similar to 12
8

in Western classical notation). It is at this level, referred to

as the “pulse”, that the main micro-timing occurs.

Recall that the probability distributions described in

§4.1 store the displacement of each event. We calculate

this from the phase given by the datasets with the follow-

ing equation:

displacement =
(phase × beat division)− metric position

2
9 See Polak [8] for an ethnographically sensitive discussion of the ex-

tent to which metre applies in this context.

The phase is multiplied by the beat division (in this case,

3) to convert it into pulse units. The metric position at the

pulse level is subtracted to get the displacement. The final

division by 2 converts the displacement into quarter lengths

(because each pulse unit is an eighth length).

For example, if an onset has metric position = 6 and

phase = 2.01, the displacement would be calculated by:

displacement =
(2.01× 3)− 6

2
= 0.015 quarter lengths.

Once the displacement has been calculated for each

drum stroke, we were then able to estimate the distribution

of displacements for each of the twelve metric locations

using maximum likelihood estimation (MLE).

5.1.2 Tempo Estimation

Generating a synthetic piece of jembe music requires anal-

ysis of other musical features as well as the micro-timing to

sound realistic. One of these is the tempo, which in jembe

pieces of music typically increases substantially over the

duration of the performance [10], with the last 15 seconds

or so showing the tempo increasing at a much faster rate.

The inter-beat interval (IBI) is defined as the time be-

tween two consecutive beats in a piece of music, from

which the instantaneous tempo can be calculated [31]. A

moving average can be applied to the instantaneous tempo

to obtain an estimate of the global tempo.

For the jembe data, we first filtered all the onsets to in-

clude just those played by Jembe 2 (because it plays on

every beat as discussed in [10]), then filtered these to only

consider onsets on the beats. We then calculated the inter-

beat interval in bpm and applied a moving average with

window size 10 to smooth the tempo estimate.

Inspection of the smoothed tempo graphs (§6.2) showed

a logarithmic trend for the first ~95% of the piece. A

sharper increase follows this which was modelled by a

quadratic curve. To fit curves to the data, we used

the optimize.curve_fit function from the SciPy

Python library, which uses a non-linear least squares

method [32]. The parameters estimated by the curve fit-

ting are then used in Sonic Pi to control the tempo of a

synthetic jembe piece during playback.

5.2 Waltz Data Analysis

The Viennese waltz is a style of fast waltz notated in 3
4 (but

often counted in 1), originally intended for ballroom danc-

ing, and now often performed in concerts by Western clas-

sical orchestras.

The Viennese waltz provides a useful comparison to

Malian jembe in evaluating this project’s micro-timing im-

plementation. The fast three beats (34) and typical hyper-

metrical grouping in 2s and 4s make that metrical struc-

ture somewhat similar to that of jembe music, but with

a very different micro-timing profile. Distinctive micro-

timing can be observed on (at least) the beat level, where it

has a characteristic short-long-medium pattern [6, 33].

At the time this work was carried out, the micro-timing

in Viennese waltz had not been studied in as much detail or
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Figure 4: A histogram plot of the positions of each

pulse within the cycle for Suku. Dashed lines show the

isochronous division of the cycle for reference. Black

curves show the PDF of the MLE-derived probability dis-

tributions and the colours distinguish to the four beat.

as recently as jembe and there were no existing datasets of

Viennese waltz performances with micro-timing. There-

fore, we constructed a new dataset comprising of 30-

second samples from seven waltz recordings performed by

the Vienna Philharmonic Orchestra, all of which have no-

ticeable and statistically significant micro-timing.

We then performed automatic beat tracking on this

dataset using the libfmp Python library [34] (a dynamic

programming approach introduced by Müller [35]), with

some small manual corrections. Since the beat level is

where the primary micro-timing in the Viennese waltz oc-

curs, no additional onset detection was necessary.

Calculating the micro-timing displacement of each beat

from onset times alone involves first identifying the start

and end of each cycle, estimating the onset of each beat

as if they were isochronous, then finding the difference be-

tween this and the actual onset to get the displacement.

Once the displacements were derived, maximum likeli-

hood estimation was again used to fit the probability distri-

butions as discussed above for the jembe case.

6. RESULTS

6.1 Micro-Timing Estimation

Figure 4 shows the results of the micro-timing estimation

for one of the jembe pieces in the datasets: “Suku”. The

histograms show the positions within the cycle where the

12 pulses occurred (phase). The dashed lines indicate

where the event would occur if they were isochronous:

from this the existence of the micro-timing can be seen

clearly by the positions of the second and third pulses in

each beat. By examining the positions of the histograms,

we can see that the length of each pulse follows a short-

medium-long pattern (SML), which is consistent across

each beat. Also shown are the probability density functions

(PDF) of the maximum-likelihood estimated normal dis-

tributions. The plots/data for each beats showed the same

pattern which also corresponds to other jembe pieces and

matches results previously reported by Polak [8].

Figure 5 shows the results for the waltz dataset. The

calculations use the first beat as the definition for the start

of the cycle, so every Beat 1 has a displacement of 0.

The early onset of the second beat can be clearly seen in

the plot (µ = −0.0743, σ = 0.0795). A one-sample t-

test confirms the micro-timing as significant (t = −16.5,

p = 0.000). Beat 3 shows no significant deviation from a
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Figure 5: A histogram plot of the displacement of the sec-

ond and third beats for the waltz dataset. Dashed lines

show the metrical grid. Black curves show the PDF of the

MLE-derived probability distributions.

3-part isochronous division of the cycle, so the overall pat-

tern identified is the short-long-medium (SLM) discussed

elsewhere [7].

6.2 Jembe Tempo Estimation

The results of the jembe tempo estimation showed the in-

crease in tempo throughout the piece that is characteristic

of Malian jembe music. The more dramatic speedup at

the end is also reflected in this data – this is why we fit

two different curves to the data. For example, in “Suku”,

the tempo starts at around 135 bpm at the beginning of

the piece and ends at around 175 bpm. The tempo results

match those found by Jacoby et al. [36], and each jembe

piece showed the same trend.

7. CONCLUSION

In this project, we have investigated and implemented

probabilistic style-specific micro-timing in a musical live

coding language. To do this, we extended the Sonic Pi

language with implementations of both musical metre and

micro-timing, and we performed data analysis on record-

ings of music from two case study styles to generate music

with realistic micro-timing.

In further work (not reported here but available on re-

quest), we conducted a user study to assess how “realis-

tic” our synthesised micro-timing sounded for each of the

case study styles. Significant results were obtained for the

Viennese waltz, however participants struggled more with

the jembe, likely due to their unfamiliarity with the style.

Future work could conduct a new user study with expert

participants, as in Neuhoff [37].

Naturally, other future work could focus on additional

styles with well-documented micro-timing, such as jazz

swing rhythms [38], candombe drum ensembles from

Uruguay [11, 39], and Brazilian samba music [11, 40].

Likewise, larger datasets for the styles reported here would

enable more accurate distributions – two notable datasets

of Viennese waltz recordings have been released even since

the work reported here: Weigl et al. [41] and Yang [7].

As for software functionality, we imagine extensions in-

cluding new variable gridline positions in DAWs, and ad-

ditional controls within Sonic Pi to dynamically adjust the

“strength” of the micro-timing.
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