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ABSTRACT

Symbolic music is widely used in various deep learning

tasks, including generation, transcription, synthesis, and

Music Information Retrieval (MIR). It is mostly employed

with discrete models like Transformers, which require mu-

sic to be tokenized, i.e., formatted into sequences of dis-

tinct elements called tokens. Tokenization can be per-

formed in different ways, and recent research has focused

on developing more efficient methods. However, the key

differences between these methods are often unclear, and

few studies have compared them. In this work, we analyze

the current common tokenization methods and experiment

with time and note duration representations. We compare

the performance of these two impactful criteria on several

tasks, including composer classification, emotion classifi-

cation, music generation, and sequence representation. We

demonstrate that explicit information leads to better results

depending on the task.

1. INTRODUCTION

Most tasks involving using deep learning with symbolic

music [1] are performed with discrete models, such as

Transformers [2]. To use these models, the music must

first be formatted into sequences of distinct elements, com-

monly called tokens. For instance, a token can represent a

note attribute or a time event. The set of all known tokens

is commonly called the vocabulary, and each token is as-

sociated to a unique integer id. These ids are used as input

and output of models.

Compared to text, tokenizing music provides greater

flexibility, as a musical piece can be played by different

instruments and composed of multiple simultaneous notes,

each having several properties such as pitch, duration and

velocity. As a result, it is necessary to represent these ele-

ments in conjunction with the time dimension. To achieve
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this, researchers have developed various methods of tok-

enizing music, which are introduced in the next section.

While these works offer model performance compar-

isons between tokenization strategies, their main differ-

ences or similarities are not always clearly stated. Few

experiments have been conducted to compare model per-

formances using different tokenization strategies. Addi-

tionally, these studies mostly focus on music generation,

for which evaluations are performed on results obtained

autoregressively, which accumulates biases [3] and is ar-

guably difficult to evaluate [4].

This paper’s primary contribution is a thorough and

well-designed comparison of common tokenization tech-

niques. Our focus is on two critical aspects: the repre-

sentation of time and note duration. We believe that they

are significant and impactful design choices for any mu-

sic tokenization approach. Through experiments on com-

poser classification, emotion classification, music gener-

ation, and sequence representation, we demonstrate that

these design choices produce varying results depending

on the task, model type, and inference process. Autore-

gressive generation benefits from explicit note duration

and time shift tokens, while explicit note offset is more

discriminating better suited for contrastive learning ap-

proaches.

We present next the related works, followed by an anal-

ysis of music tokenization, experimental results, and fi-

nally a conclusion. The source code is available for re-

producibility. 1

2. DECOMPOSING MUSIC TOKENIZATION

2.1 Related works

Early works using discrete models for symbolic music,

such as DeepBach [5] or FolkRNN [6], rely on specific

tokenizations often tied to their training data. Since then,

researchers introduced more general representations appli-

cable to any kind of music. The most commonly used are

Midi-Like [7] and REMI [8]. The former tokenizes music

by representing tokens as the same types of events from

the MIDI protocol, while the latter represents time with

Bar and Position tokens and note durations with explicit

1 https://github.com/Natooz/time-duration-music-modeling
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Time Note duration

Tokenization TimeShift Bar + Pos. Duration NoteOff

MIDI-Like [7]
√

- -
√

REMI [8] -
√ √

-

Structured [17]
√

-
√

-

TSD [15]
√

-
√

-

Octuple [10] -
√ √

-

Table 1: Time and note duration representations of com-

mon tokenizations. Pos. stands for Position.

Duration tokens. Additionally, REMI includes tokens with

additional information such as chords and tempo.

More recently, researchers have focused on improv-

ing the efficiency of models with new tokenizations tech-

niques: Compound Word [9], Octuple [10] and PopMAG

[11] merge embedding vectors before passing them to the

model; 2) LakhNES [12] and [13], SymphonyNet [14]

and [15] use tokens combining several values, such as pitch

and vocabulary.

2.2 Music tokenization design

When analyzing the possible designs of music tokeniza-

tion, we can distinguish seven key dimensions:

• Time: Type of token representing time, either

TimeShift indicating time movements, or Bar and

Position indicating new bars and the positions of the

notes within them. We can also consider the unit of

Time-Shift tokens, either in beats or in seconds. 2

• Notes duration: How notes durations are repre-

sented, with either Duration or NoteOff tokens.

• Pitch: Most works use tokens representing absolute

pitch values, although recent work shed light on the

expressiveness gain of representing as intervals in-

stead [16];

• Multitrack representation: The representation of

several music tracks in a sequence, i.e., how are the

notes linked to their associated track.

• Additional information: Any additional informa-

tion such as chords, tempo, rests, note density. Ve-

locity can also falls in this category;

• Downsampling: How "continuous-like" features

are downsampled into discrete sets, e.g. the 128 ve-

locity values reduced to 16 values;

• Sequence compression: Methods to reduce the se-

quence lengths, such as merging tokens and embed-

ding vectors.

As time and note duration can both be represented in

two different ways, existing tokenizations can be easily

classified based on these dimensions, as shown in table 1.

2 In this paper we only treat of the beat unit. The MIDI protocol repre-
sents time in tick unit, which value is proportional to the time division (in
ticks per beat) and tempo. Hence, working with seconds would require a
conversion from ticks.

However, other dimensions offer a broader spectrum of po-

tential designs.

For instance multitrack can be represented by

Program tokens 3 preceding notes as in FIGARO [18],

distinct tracks sequences separated by Program tokens

as in MMM [19], combined note and instrument tokens as

LakhNes [12] and MuseNet [13], or merging Program

embeddings with the associated note tokens (MMT [20],

MusicBert [10]). One could even infer each sequence sep-

arately and lately model their relationships with operations

aggregating their hidden states an in ColBERT [21].

The MIDI protocol supports a set of effects and meta-

data that can also be represented when tokenizing symbolic

music, such as tempo, time signature, sustain pedal or con-

trol changes. Some works also include explicit Chord

tokens, detected with rule-based methods. Nevertheless,

only a few works experimented with such additional to-

kens so far ( [8, 22]).

Previous works have mainly compared tokenization

strategies by evaluating models with automatic and some-

times subjective (human) metrics, but often do not proceed

to comparisons between the ways to represent one of the

dimensions we introduced previously. [8] compared results

for the generation task, for the use of Bar and Position

tokens versus TimeShift in seconds and beats.

To the best of our knowledge, no comprehensive work

and empirical analysis have fairly compared these possi-

ble tokenization choices. Conducting such an assessment

would require an extensive survey. In this paper, we specif-

ically focus on the time and note duration representations,

as they are the two main characteristics present in every

tokenization.

We want to highlight the importance of the explicit in-

formation carried by the token types, as they directly im-

pact the performances of models. TimeShift tokens

represent explicit time movements, and especially the time

distances between successive notes. On the other hand,

Bar and Position tokens bring explicit information on

the absolute positions (within bars) of the notes, but not

the onset distances between notes. One could assume that

the former might help to model melodies, and the lat-

ter rhythm and structure. For note duration, Duration

tokens intuitively express the absolute durations of the

notes, while NoteOff tokens explicitly indicates the off-

set times. With NoteOff, a model would have to model

note durations from the combinations of previous time to-

kens.

Our experiments aim to demonstrate the impact of dif-

ferent combinations of time and note duration tokens on

model performance and which combinations are suitable

for different tasks. Next, we introduce our methodology.

3. METHODOLOGY

3.1 Models and trainings

For all experiments, we use the Transformer architecture

[2], with the same model dimensions: 12 layers, with di-

3 Following the conventional programs from the MIDI protocol.

Proceedings of the 24th ISMIR Conference, Milan, Italy, November 5-9, 2023

90



mension of 768 units, 12 attention heads and inner feed-

forward layers of 3072.

For classification and sequence representation, it is first

pretrained on 100k steps and a learning rate of 10−4, then

finetuned on 50k steps and a learning rate of 3 × 10−5,

with a batch size of 48 examples. An exception is made

for the EMOPIA dataset, for which we set 30k pretraining

steps and 15k finetuning steps, as it is fairly small. These

models are based on the BERT [23] implementation of the

Transformers library [24]. We use the same pretraining

than the original BERT: 1) from 15% of the input tokens,

80% is masked with a special MASK token, and 20% is

randomized; 2) half of the inputs have 50% of their tokens

(starting from the end) shuffled and separated with a spe-

cial SEP token, and the model is trained to detect if the

second part is the next of the first.

For generation, the model is based on the GPT2 im-

plementation of the Transformers library [24]: it uses

a causal attention mask, so that for each element in

the sequence, the model can only attend to the current

and previous elements. The training is performed with

teacher forcing, the cross-entropy loss is defined as: ℓ =
−∑n

t=1 log pθ(xt|x≤n).

All trainings are performed on V100 GPUs, using auto-

matic mixed precision [25], the Adam optimizer [26] with

β1 = 0.9, β2 = 0.999 and ϵ = 10−8, and dropout, weight

decay and a gradient clip norm of respectively 10−1, 10−2

and 3. Learning rates follow a warm-up schedule: they are

initially set to 0, and increase to their default value during

the first 30% of training, then slowly decrease back to 0.

10% of the data is used for validation during training,

and 15% to test models. Inputs contains 384 to 512 tokens,

and begin with a BOS (Beginning of Sequence) token and

end with a EOS (End of Sequence) one.

3.2 Tokenizations

We investigate here the four combinations of possible time

and note duration representation. In the results, we re-

fer to them as TS (TimeShift), Pos (Position), Dur

(Duration) and NOff (NoteOff). It is worth noting

that TS + Dur is equivalent to TSD [15] and Structured

[17], TS + NOff is equivalent to MIDI-Like [7], and Pos +

Dur is equivalent to REMI (without additional tokens for

chords and tempo).

We apply different resolutions for Duration and

TimeShift token values: those up to one beat are down-

sampled to 8 samples per beat (spb), those from one to

two beats to 4 spb, those from two to four beats to 2 spb,

and those from four to eight beats to 1 spb. Thus, short

notes are represented more precisely than longer ones.

Position tokens are downsampled to 8 spb, resulting

in 32 different tokens as we only consider the 4/* time

signature. This allows to represent the 16th note. We

only consider pitches within the recommended range for

piano (program 0) specified in the General MIDI 2 speci-

fications 4 : 21 to 108. We then deduplicate all duplicated

4 Available on the MIDI Manufacturers Association website.

notes. Velocities are downsampled to 8 distinct values. No

additional token (e.g., Chord, Tempo) is used.

We perform data augmentation by creating variations of

the original data with pitches increased and decreased by

two octaves, and velocity by one value. Finally, following

[15], we use Byte Pair Encoding to build the vocabularies

up to 2k tokens for generation and 5k for other tasks. All

these preprocessing and tokenization steps were performed

with MidiTok [27].

4. GENERATION

For the generative task, we use the POP909 dataset [28].

The models start with prompt made of between 384 to 512

tokens, then autoregressively generate 512 additional to-

kens. Evaluation of generated results remains an open is-

sue [4]. Previous work often perform measures of similar-

ity of certain features such as pitch range or class, between

prompts and generated results, alongside human evalua-

tions. Feature similarity is however arguably not very in-

sightful: a generated result could have very similar features

to its prompts while being of poor quality. Human evalu-

ations, while being more reliable on the quality can also

induce biases. Besides, [8] already shows results on an ex-

periment similar to ours.

Hence we choose to evaluate results on the ratios of pre-

diction errors: Token Syntax Error (TSE) [15]. This met-

ric is bias-free and directly linked to the design choices of

the tokenizations. It allows us to measure how a model

achieves to make reliable predictions based on the input

context and the knowledge it learned.

We use the categories from [15]:

• TSEtype: an error of type, e.g., when the model

predicts a token of an incompatible type with the

previous one.

• TSEtime: a wrong predicted Position value,

that goes back or stay in time.

• TSEdupn (duplicated note): a note predicted

whereas it was already being played at the current

time being.

• TSEnnof (no NoteOff): a NoteOn token been pre-

dicted with no following NoteOff token to end it.

• TSEnnon (no NoteOn): NoteOff token predicted

whereas this note was not being played.

For each generated token, a rule-based function ana-

lyzes its type and value to determine if both are valid, or

which type of error was made otherwise. The overall num-

ber of errors is normalized by the number of predicted to-

kens.

The results are reported in table 2. We first observe that

the type error ratios are lower than in other categories. This

is excepted since it is less computationally demanding to

model the possible next types depending solely on the last

one, rather than on the value of the predicted token, for
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Figure 1: Histograms of the note onset positions within bars (top-row), note offset positions within bars (middle-row)

and note durations (bottom-row) of the generated notes. There are 32 possible positions within a bar, numerated from 0

(beginning of bar) to 31 (last 32th note). The durations are expressed in beats, ranging from a 32th note to 8 beats.
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Figure 2: Token type succession heatmaps of the gener-

ated results. The horizontal axis denotes the next token

type per from the ones on the vertical axis. Each row is

normalized to a sum of 1.

which the validity depends on a the whole previous con-

text.

Position tokens bring almost no type errors, but a

noticeable proportion of time errors. When decoding to-

kens to notes, this means that the time may go backward,

and resulting in sections of overlapping notes.

Although Duration tokens seem to bring slightly

more note duplication errors, the use of NoteOn and

NoteOff tokens results in a considerable proportion of

Tokenization TSEtype ↓ TSEtime ↓ TSEdupn ↓ TSEnnon ↓ TSEnnof ↓
TS + Dur < 10−3 - 0.014 - -

TS + NOff < 10−3 - 0.001 0.109 0.040

Pos + Dur 0.002 0.113 0.032 - -

Pos + NOff 0.002 0.127 0.005 0.095 0.066

Table 2: Prediction error ratios when performing autore-

gressive generation. - symbol stands for not concerned,

and can be interpreted as 0.

note prediction errors. NoteOff tokens predicted while

the associated note was not being played (TSEnnon) does

not have undesirable consequences when decoding tokens

to notes, but it pointlessly extends the sequence, reducing

the efficiency of the model, and may mislead the next to-

ken predictions. Additionaly, NoteOn tokens predicted

without associated NoteOff (TSEnnof ) result in notes

not properly ended. This error can only be handled by ap-

plying a maximum note duration after decoding. Explicit

Duration tokens allows to specify in advance this in-

formation, for both short and long notes. Conversely, with

NoteOff tokens, the note duration information is implicit

and inferred by the combinations of NoteOn, NoteOff

and time tokens. This can be interpreted as an extra ef-

fort for the model. Consequently, some uncertainty on

the duration accumulates over autoregressive steps dur-

ing generation. Based on these results, the best tradeoff

ensuring good predictions seems to represent time with

TimeShift tokens and note duration with Duration

tokens.

In fig. 1 we observe the positions within bars and dura-

tions of the generated notes. In all cases, onset positions

are more distributed at the beginning of the bars. This is

especially the case with Bar and Position tokens, for

which we may find unexpected rests at the end of bars,
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when Bar tokens are predicted during the generation be-

fore that the current bar is completed. The TS + Dur com-

bination places note onsets much more on even positions.

The probability mass of TimeShift tokens (especially for

short values) seems to be much higher. However, this is not

the case for the TS + NOff combination, as TimeShift

tokens have to be predicted to move the time on odd po-

sitions of note offsets. As shown in fig. 2, right after the

model is likely to predict a next note, resulting in evenly

distributed onset distribution.

Finally, the use of NoteOff tokens tends to produce

longer note durations, especially when combined with

Position tokens. In this last case, we can assume

that the model might "forget" the notes currently being

played, and that it struggles more to model their durations

that have to be implicitly deduced from the past Bar and

Position tokens.

Tokenization Top-20 composers ↑ Top-100 composers ↑ Emotion ↑
TS + Dur 0.973 0.941 0.983

TS + NOff 0.962 0.930 0.962

Pos + Dur 0.969 0.927 0.963

Pos + NOff 0.963 0.925 0.956

Table 3: Accuracy on classification tasks.

5. CLASSIFICATION

For some classification tasks, symbolic music is arguably

better suited than audio or piano roll. This is particu-

larly true for classical music feature classification, such

as composer [29]. Mono-instrument music with complex

melodies and harmonies and no particular audio effect ben-

efit from being represented as discrete for classification

and modeling tasks. Given this, it felt important to us to

conduct experiments on such task.

We choose to experiment with the GiantMIDI [30]

dataset for composer classification and the EMOPIA [31]

dataset for emotion classification. The results, as shown in

table 3, indicate that there is very little difference between

the various tokenization methods. However, the combina-

tion of TimeShift and Duration consistently outper-

forms the others by one point

The classification task involves modeling the patterns

from data that are characteristic to composers or emotions.

Here, it seems that the time distance between notes, and

their explicit duration play a role in these task, more than

note offsets or onset positions. This comes with no sur-

prise for the composer classification task, considering that

the data is largely composed of complex music with dense

melodies and harmonies, featuring mostly short succes-

sive notes. Intuitively, patterns of note successions and

chords are more easily distinguishable with explicit dura-

tions. With implicit note durations, the overall patterns

must be deduced by the combinations of NoteOn and

NoteOff tokens while keeping track of the time.

6. SEQUENCE REPRESENTATION

The last task that we wished to explore is sequence repre-

sentation. It consists in obtaining a fixed size embedding

representation of an input sequence of tokens pθ : VL 7→
R

d. Here V ⊂ N denotes the token ids of the vocabulary

V , L is the variable input sequence length, and d the size of

embeddings. In other words, the model learns to project an

input token sequence into a embedding space, thus provid-

ing a universal representation. We find this task interesting

and well-suited to assess model performances as it directly

trains it to model the relationships between tokens within

the input sequence and between different representations

themselves. While the real-world applications of this task

for symbolic music are currently limited, it serves as a use-

ful benchmarking technique for measuring how tokeniza-

tion impacts the learning of models.

This task has previously been addressed in natural lan-

guage processing by SentenceBERT [32] or SimCSE [33].

We adopted the approach of the latter, which uses con-

trastive learning to train the model to learn sequence rep-

resentations, for which similar inputs have higher cosine

similarities. The sequence embedding is obtained by per-

forming a pooling operation on the output hidden states

of the model. We decided to use the last hidden state of

the BOS token position, as it yielded good results with

SimCSE [33] 5 . We trained the models with the dropout

method: during training, a batch of n sequences X =
{xi}ni=0 is passed twice to the model, but with different

dropout masks, resulting in different output sequence em-

beddings Z = {zi}Ni=0 and Z̄ = {z̄i}Ni=0. Although the

dropout altered the outputs, most of the input information

is still accessible to the model. Hence, we expect pairs

of sequence embeddings (zi, z̄i) to be similar, so having a

high cosine similarity. To achieve this objective, we train

the model with a loss function defined by the cross-entropy

for in-batch pairwise cosine similarities (sim):

ℓi = − log
esim(zi,z̄i)/τ

∑N
j=1 e

sim(zi,z̄j)/τ
(1)

As a result, the model will effectively learn to cre-

ate similar sequence embeddings for similar inputs, while

pushing apart those with dissimilarities. We kept a 0.1

dropout value to train the models, and used the GiantMIDI

dataset [30].

Evaluation of sequence representation is intuitively per-

formed by measuring the distances and similarities of pairs

of similar sequences. We resort to data augmentation by

shifting the pitch and velocity of the sequences in order to

get pairs of similar music sequences. The augmented data

keeps most of the information of the original data. As such,

the models are expected to produce similar embeddings for

pairs of original-augmented sequence. Ideally, the cosine

similarity should be high, yet not to be equal to 1, as this

would indicate that the model fails to capture the differ-

ences between the two sequences. The results, presented

in fig. 3, indicate that Position-based tokenizations per-

5 SimCSE uses a CLS token which is equivalent to BOS in our case.
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Figure 3: Density plots of cosine similarities between pairs of original and augmented token sequences.

form slightly better. Therefore, it appears that explicit note

onset and offset positions information facilitates models to

obtains a universal musical representation.

Unlike classification, the contrastive learning objective

models the similarities and dissimilarities between exam-

ples in the same batch. In this context, note onset and offset

positions appear to be helpful for the models to distinguish

music.

We also note the contrasting results when augmenting

the velocity. Increasing it by one unit, which would be

equivalent to playing just a little bit louder, have arguably a

very small impact. As a result, the models mostly produces

embeddings that are almost identical for the original and

the augmented sequences, but also exhibits uncertainty for

a notable proportion of samples.

To complement these results, we estimated the isotropy

of sets of sequence embeddings. Isotropy measures the

uniformity of the variance of a set points in a space.

More intuitively, in an isotropic space, the embeddings

are evenly distributed. It has been associated with im-

proved performances in natural language tasks [34–36],

because embeddings are more equally distant proportion-

ally to the density of their area, and are in turn more dis-

tinct and distinguishable. We choose to estimate it with

the intrinsic dimension of the sets of embeddings. In-

trinsic dimension is the number of dimensions required to

represent a set of points. It can be estimated by several

manners [37]. We choose Principal Component Analysis

(PCA) [38], method of moments (MOM) [39], Two Near-

est Neighbors (TwoNN) [40] and FisherS [41]. The re-

sults, reported in table 4, show that the embeddings cre-

ated from the Pos + Dur combination tend to occupy more

space across the dimension of the model, and are poten-

tially better distributed.

7. CONCLUSION

We have discussed the importance of different aspects of

symbolic music tokenization, and focused on two major

ones: the time and note duration representations. We

showed that different tokenization strategies can lead to

Tokenization lPCA ↑ MOM ↑ TwoNN ↑ FisherS ↑
TS + Dur 213 42.6 34.3 17.5

TS + NOff 161 43.7 32.7 17.5

Pos + Dur 146 39.1 33.1 17.1

Pos + NOff 177 45.2 35.6 17.8

Table 4: Intrinsic dimension of sequence embeddings, as

an estimation of isotropy.

different model performances due to the explicit informa-

tion carried by tokens, depending on the task at hand.

Explicitly representing note duration leads to better

classification accuracy as it helps the models to capture

the melodies and harmonies of a music. Modeling dura-

tions, when represented implicitly, adds an extra effort to

the model. However, the note offset position information

it brings have been found to be more discriminative and

effective in our contrastive learning experiment.

For music generation, the time representation plays a

significant role, for which the note onset and offsets distri-

butions vary due to the successions of token types. Implicit

note durations are less suited for the autoregressive nature

of this task, from a prediction error perspective, and some-

times "forgetting" notes being played resulting in higher

durations.

We did not explore music transcription, for which we

can assume that implicit note durations (note onset and

offset) might be better suited. When training with chunks

of log-scaled mel-spectrograms as done by [42, 43], these

may contain frequencies of unended or not begun notes.

Specifying their original durations might approximate on-

sets might alter model performances.

Future research will further explore the other dimen-

sions of music tokenization, such as multitrack or meta-

data, on transcription and other tasks analogous to natural

language understanding.
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