Journal article Open Access

Verifying information with multimedia content on twitter

Boididou, Christina; Middleton, Stuart E.; Jin, Zhiwei; Papadopoulos, Symeon; Dang-Nguyen, Duc-Tien; Boato, Giulia; Kompatsiaris, Yiannis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Fake Detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Verification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Credibility</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Veracity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Trust</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Social Media</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Twitter</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Multimedia</subfield>
  </datafield>
  <controlfield tag="005">20190409131540.0</controlfield>
  <controlfield tag="001">1012722</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Southampton, IT Innovation Centre</subfield>
    <subfield code="0">(orcid)0000-0001-8305-8176</subfield>
    <subfield code="a">Middleton, Stuart E.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Chinese Academy of Sciences</subfield>
    <subfield code="a">Jin, Zhiwei</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, CERTH</subfield>
    <subfield code="0">(orcid)0000-0002-0708-7431</subfield>
    <subfield code="a">Papadopoulos, Symeon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Trento; Dublin City University</subfield>
    <subfield code="0">(orcid)0000-0002-2761-2213</subfield>
    <subfield code="a">Dang-Nguyen, Duc-Tien</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Trento</subfield>
    <subfield code="0">(orcid)0000-0002-0260-9528</subfield>
    <subfield code="a">Boato, Giulia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, CERTH</subfield>
    <subfield code="0">(orcid)0000-0001-6447-9020</subfield>
    <subfield code="a">Kompatsiaris, Yiannis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3499784</subfield>
    <subfield code="z">md5:f3eedaf2ac162c3563d6bc11b852c724</subfield>
    <subfield code="u">https://zenodo.org/record/1012722/files/multimedia-verification-mtap2017-camready.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-09-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="o">oai:zenodo.org:1012722</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Multimedia Tools and Applications</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute, CERTH</subfield>
    <subfield code="a">Boididou, Christina</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Verifying information with multimedia content on twitter</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">610928</subfield>
    <subfield code="a">REVEALing hidden concepts in Social Media</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;An increasing amount of posts on social media are used for disseminating news information and are accompanied by multimedia content. Such content may often be misleading or be digitally manipulated. More often than not, such pieces of content reach the front pages of major news outlets, having a detrimental effect on their credibility. To avoid such effects, there is profound need for automated methods that can help debunk and verify online content in very short time. To this end, we present a comparative study of three such methods that are catered for Twitter, a major social media platform used for news sharing. Those include: a) a method that uses textual patterns to extract claims about whether a tweet is fake or real and attribution statements about the source of the content; b) a method that exploits the information that same-topic tweets should be also similar in terms of credibility; and c) a method that uses a semi-supervised learning scheme that leverages the decisions of two independent credibility classifiers. We perform a comprehensive comparative evaluation of these approaches on datasets released by the Verifying Multimedia Use (VMU) task organized in the context of the 2015 and 2016 MediaEval benchmark. In addition to comparatively evaluating the three presented methods, we devise and evaluate a combined method based on their outputs, which outperforms all three of them. We discuss these findings and provide insights to guide future generations of verification tools for media professionals.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s11042-017-5132-9</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
59
49
views
downloads
Views 59
Downloads 49
Data volume 171.5 MB
Unique views 55
Unique downloads 46

Share

Cite as