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Abstract—This paper presents a novel architecture for the
design of fault-detection schemes, aiming to automate the cogni-
tive process performed by human experts when designing fault
detection schemes for certain systems. The work starts with the
identification of types of cyber-physical components participating
in a fault-detection scheme. These are semantically characterized,
adopting a model driven by previous efforts of the World Wide
Web Consortium on the semantic composition of Web services.
The semantic characterizations of the components are then ex-
ploited by a Cognitive Agent with semantic reasoning capabilities,
to achieve the configuration of a fault-detection scheme, given a
set of specifications and available components. The Cognitive
Agent has access to a knowledge representation model and is
able to interact with human operators and with the components
to enrich its knowledge for making and enforcing decisions
about the configuration. The applicability of the architecture and
the reasoning steps are demonstrated through the configuration
of a water contamination event-detection scheme with learning
capabilities within a smart water distribution network.

I. INTRODUCTION

Today’s engineered systems consist of several cyber and
physical components, like sensors for monitoring system
states, electrical and mechanical actuators, controllers and a
number of other software components such a fault-detection
and online-learning implementations. Over time, it is in-
evitable that one or more of these components will fail or
system dynamics will move out of expected bounds due
to external events, necessitating the utilization of fault/event
detection and isolation mechanisms [1], [2]. By enabling the
detection and diagnosis of miss-operation of systems, these
mechanisms can help, e.g., in saving energy, in reducing
economic cost and/or in avoiding critical consequences of
cascading effects due to inter-dependencies with other systems.

During the last two decades, various methodologies have
been developed and proposed for detecting, identifying, iso-
lating and accommodating faults [1]–[3]. In general, fault
detection methods can be classified into model-free (or data-
driven) and model-based methods.

Model-free methods are the most commonly used, since
they can be developed without the requirement of understand-
ing the underline system’s model [1]. Examples are, quantita-
tive methods (e.g., neural networks, statistical classifiers), and
qualitative methods (e.g., expert systems, fuzzy logic, pattern
recognition, trend analysis) [4].

Model-based methods, on the other hand, require additional
modeling and calibration effort, since a model with physical

significance has to be developed using a-priori knowledge of
the system. Again, there are examples of quantitative methods
(e.g., observer-based/Kalman-filter state and parameter estima-
tion, parity space) and qualitative methods (e.g., fault-trees and
other causal models) [4].

Fault diagnosis methodologies with learning capabilities
have also been proposed in the past years, which combine
model-based analytical redundancy and computational intelli-
gence tools, i.e. neural networks, to detect faults and to learn
the unknown fault dynamics [5]–[7]. By learning the unknown
fault dynamics, isolating the type of fault and identifying
its magnitude, it is possible to change the control input to
accommodate the fault, during operation [8].

Designing a fault-detection scheme for a certain system is
a complicated procedure which relies on the knowledge and
reasoning capabilities of a human expert. In practice, a human
expert should have a broad background knowledge of tools
(e.g., state-of-the-art fault-detection methods, online learning
methods based on computational intelligence, state-estimation
methods, etc.) and in which situations these are best suited,
in order to make an informed selection that fully exploits the
available measurements, constraints and objectives. Depending
on the system which needs the fault-detection service, as well
as the preferred fault-detection method, different schemes can
be designed, consisting of smaller components. In practice,
it is very rare, if not impossible, to find and employ a
human expert of such breadth of knowledge whenever a fault-
detection scheme is required for a certain system. An addi-
tional drawback in current practices is the lack of mechanisms
to allow online (and where possible automatic) replacement
of individual components or of the overall fault-detection
scheme. Therefore, in case new and advance methods become
available and are implemented as components, they can only
be deployed by expert engineers who will re-design the overall
fault detection scheme. This may inhibit industry adoption
of advanced fault-detection methodologies and may act as a
barrier to the exploitation of research results.

The above motivate our proposal for a design of an ar-
chitecture which is able to utilize expert knowledge and
cognitive reasoning based on semantics, to reproduce part
of the reasoning procedure of a human expert. This would
allow new components (e.g., new on-line learning algorithms
or new fault-detection algorithms) to be gradually deployed
as they become available, by automatically configuring the



components of the fault-detection scheme. The aim is to
achieve the best composition and to facilitate interoperabil-
ity with the other available components using a common
framework for efficient exchange of data and knowledge. It
is emphasized that our work is not focusing on the design
of any new fault-detection algorithm or components, but
rather on the online configuration of fault-detection schemes
using existing components. Moreover, it is envisioned that
the adoption of a component-based fault-detection design will
facilitate the faster exploitation, testing and demonstration of
academic research in industrial applications. To demonstrate
the application of the proposed architecture, a case-study
of configuring a contamination event detection scheme with
online learning capabilities for drinking water distribution
networks is presented.

The paper is organized as follows: Section II formulates
the problem by revisiting and formulating the fault-detection
theory and also breaking the fault-detection scheme into a
set of individual components. Section III then presents the
design of the proposed architecture, the knowledge graph
with the semantic characterization of the components and the
cognitive agent which utilizes semantic reasoning towards the
automatic configuration of fault-detection schemes. Section IV
demonstrates the architecture in the configuration of a scheme
for the detection of contamination events in water distribution
networks. Finally, Section V concludes the paper and discusses
possible future directions.

II. PROBLEM FORMULATION

Fault detection is defined as the problem of determining
whether a system is operating under normal or abnormal con-
ditions (e.g., due to the occurrence of a system, actuator or sen-
sor fault). Typically, a fault-detection algorithm is specifically
designed for a certain system, taking into account the system’s
measurable variables, known dynamics and other information
available. The output of a fault-detection algorithm at discrete
time k, is given by:

d(k) = f(y(k), u(k); ζ), (1)

where f(·) is a fault-detection composite function, y(k) and
u(k) are the measured output vector and the known input
vector of the system respectively and ζ is a set of parame-
ters related to the system and the considered fault-detection
implementation. In general, the detection signal d(k) can be
a vector corresponding to a set of various fault-level classes.
Depending on the specifications, the detection signal d(k) can
be: i) binary, i.e., of the form {0, 1} or {True, False}, thus
informing of the detection of a fault or not; ii) a real number,
e.g., representing the probability or the risk of fault existence;
iii) a more generic class of values, e.g., a fault class type,
a color-based risk-level scheme, a linguistic variable, a fuzzy
value, etc.

Two families of fault-detection algorithms are typically
considered: the “model-free” and the “model-based” methods
[1]. The former process the measured output signals plus other
known or computed signals that may be required, in order to

generate certain features (e.g., operation state). These features
are passed through a “detection logic” component and are
compared to their value in non-faulty operation. Typical ex-
amples are the limit-checking approach, the change-detection
approach (such as the CUSUM) [9] and other statistical-
based approaches. In addition, learning methodologies have
also been applied within a model-free fault detection context
[10]. On the other hand, the “model-based” fault-detection
methods process the measured output and known input signals
utilizing also a known system-model, in order to generate
certain features (e.g., state estimation residuals). As in the
model-free case, these features are then passed through a
“detection logic” module and are compared to their values
in non-faulty operation. Typical examples are the analytical
redundancy fault-detection schemes, utilizing tools such as
state-estimation, filtering, parametric uncertainty learning and
adaptive approximations [5], [8], [11]–[14].

In the general case, the fault-detection algorithm f(·) can
be considered as composed of sub-components, some of
which are basic (mandatory) for all implementations of fault-
detection while others are required only in certain cases. All
these components are discussed in the sequel.

A. Basic Components

The first basic component of a fault-detection scheme is the
“Detection logic”, given by the function:

d(k) = fd(r(k), t(k); ζd), (2)

where d(k) is the detection signal defined also in (1), fd(·) is
the detection logic implementation, r(k) is a feature signal
which is computed by a separate function in order to be
compared against a threshold signal t(k), and ζd is a set
of other parameters required by the adopted detection-logic
method.

The second basic component in a fault-detection scheme is
the “Feature” given by the function:

r(k) = fr(y(k), u(k), x̂(k); ζr), (3)

where r(k) is the feature signal defined in (2), fr(·) is the
implementation of a method to derive the signal, y(k) and
u(k) are the measurable outputs and the known inputs of the
system respectively, if available, x̂(k) is the estimated system
state (optionally used) and ζr is a set of parameters required
by the adopted method.

As an example, in a model-free fault-detection scheme,
the detection logic function fd may be a limit-check, e.g.,
comparing the measured state r(k) ≡ y(k) or its difference
r(k) ≡ y(k)−y(k−1)

∆τ with a given upper and/or lower bound
t(k), such that |r(k)| ≤ t(k). Another example is the CUSUM
change-detection method, where the cumulative sum of the
differences of the measured state from a pre-defined parameter
(e.g., the statistical mean of the state signal) are compared with
a given threshold. In a model-based fault-detection scheme,
the detection logic function fd may be comparing the state-
estimation error r(k) ≡ y(k)− x̂(k) with a given or computed
threshold signal.



A third basic component of a fault-detection scheme is
the “Threshold”, which undertakes the task of generating the
threshold signal against which to compare the detection-logic
features and is given by the function:

t(k) = ft(g(·), y(k), u(k); ζt), (4)

where t(k) is the threshold signal defined in (2), ft(·) is
the implementation of a method to derive a threshold, g(·)
is a function representing new (additive) system dynamics,
y(k) and u(k) are the measurable outputs and known inputs
of the system respectively (optionally available) and ζt is a
set of parameters required by the adopted implementation
of the function. For instance, the threshold parameters may
correspond to bounds on parameters or on parts of the system
state dynamics, derived from expert knowledge about the
system operation or from the offline processing of historical
data, etc.; it may be the output of a stochastic process on
the detection logic features or it may be computed given
knowledge about a system model with parameter uncertainty
or function uncertainty. In all cases, the threshold may be a
constant value or a time-varying adaptive signal.

In summary, at a minimum, the fault-detection scheme is
composed of the functions specified above, such that f ≡
fd(fr(·), ft(·), ζ). That is, the detection logic component com-
pares measured or computed features of the system, against a
pre-selected or computed threshold signal.

B. Advanced Components

In addition to the three basic components described in the
previous sub-section, additional components may be required
by certain model-based fault-detection schemes. For instance,
in some model-based cases the estimation signal of the system
states x̂(k) is required. For this, a “State-Estimation” compo-
nent is required, given by:

x̂(k + 1) = fe(g(·), y(k), u(k); ζe), (5)

where x̂(k + 1) is the estimated system states signal at the
next time step, fe(·) is the adopted implementation of the state-
estimation, y(k) and u(k) are the vectors of system’s measured
output and known system inputs respectively, ζe is a set of
other parameters required by the adopted implementation and
g(·) is a function representing a new additive part of the
system state dynamics. For instance, the State-Estimation com-
ponent may correspond to a “Kalman filter” which produces
estimates based on some prior knowledge about the states, a
measurement vector and certain parameters of measurement
and state’s uncertainty; it can also be a “Luenberger observer”
which, based on a known model of system dynamics and
the available measurements, produces estimates of the state.
The state estimation may be also implemented as a black-
box by a system simulation, e.g., using the EPANET software
for simulating water distribution systems1 or CONTAM for
simulating contaminant propagation in buildings2.

1http://www.epa.gov/water-research/epanet
2http://www.nist.gov/el/building environment/contam software.cfm

Furthermore, in the case of having a system model with
unknown dynamics g(·), a “Learning Component” can be
utilized, to learn the unknown function using a suitable approx-
imation structure (e.g., neural network, polynomial function,
radial-basis functions, wavelets, fuzzy systems, etc), such
that g ≡ ĝ. This module undertakes the task to learn an
unknown part of the overall state dynamics function and can
be described in general by:

ĝ(k) = fθ(y(k), u(k), ζθ) (6)

where ĝ(k) is the estimated value of the unknown function,
fθ(·) is the adopted online learning implementation and ζθ are
any other parameters required by the adopted implementation
(e.g., the convergence rate, knowledge about the structure of
the function, etc.). The output of this component may be used
as input to components allowing update of the system model
on which they base their implementation (e.g., certain State-
Estimation or Threshold components).

C. Components Database
All implementations of components (functions) of the types

discussed above, can be considered as being elements of a
function-set F , thus forming a database of components. The
set F is defined as a super-set of the following sub-sets of
components:
• Fd = {f id|i = 1, ..., nFd}: all implementations of the

Detection-logic function, with cardinality nFd
• Fr = {f ir|i = 1, ..., nFr}: all implementations of the

Feature function, with cardinality nFr
• Ft = {f it |i = 1, ..., nFt}: all implementations of the

Threshold function, with cardinality nFt
• Fe = {f ie|i = 1, ..., nFe}: all implementations of the

State-Estimation function, with cardinality nFe
• Fθ = {f iθ|i = 1, ..., nFθ}: all implementations of the

Online Learning function, with cardinality nFθ
D. Cognitive Agent

Depending on the system and the given fault detection
specifications, an expert engineer would have selected and
designed a fault-detection scheme using implementations of all
basic components and possibly utilized additional components
for state-estimation and learning, depending on the availability
of measurements, models of state dynamics, as well as specific
domain knowledge expertise. In other words, for the decision,
the expert engineer relies on reasoning which considers the
available knowledge about the domain and the fault-detection
systems engineering, including the associated semantics of
each component.

The challenge addressed in this work is to design an
architecture with the ability to utilize pre-modeled expert
knowledge and a set of fault-detection specifications (including
performance criteria) and automatically design and configure
a suitable fault-detection scheme, for a large class of systems.
This is written as:

σ =fσ(G,S,F), (7)
f ≡fF (σ,Fd,Fr,Ft,Fe,Fθ), (8)



where function f is the constructed fault-detection scheme, σ
is a set of decision signals that correspond to the selection
of specific components from the subsets of F defined earlier,
fσ(·) is a function implementing the reasoning and the deci-
sion on the design, fF (·) is the function which enforces the
decision and the subsequent construction of the function f(·),
G is the graph modeling the available knowledge, S is the set
of fault-detection specifications given to the function (e.g., the
preferred form for the detection signal). The elements of σ are
index-vectors for the sets of components defined earlier, such
that σ = {σfd , σfr , σft , σfe , σfθ}, where σfd ∈ {1, ..., nFd},
σfr ∈ {1, ..., nFr}, σft ∈ {1, ..., nFt}, σfe ∈ {1, ..., nFe} and
σfθ ∈ {1, ..., nFθ}.

The next sections provide details about the proposed ar-
chitecture for the implementation of the functions fσ and
fF , emphasizing on the knowledge graph and the reasoning
mechanism.

III. ARCHITECTURE DESIGN

The fault-detection architecture, which implements the func-
tions described in the previous section, is depicted in Fig. 1.
The top-part of the figure illustrates the system on which fault-
detection is performed. Assuming, for generality, a controlled
plant by a closed-loop configuration, the system comprises the
Plant with its states x(k) measured by a set of Sensors, the
control configuration and the driven set of Actuators that act on
the Plant. The middle-part of the figure shows the composite
fault-detection scheme, comprising all components discussed
in previous section, with their input/output connections. The
inputs to the fault-detection scheme from the system are the
measured outputs y(k) and the known controlled inputs u(k).
The output is the resulted detection signal d(k). It is noted that
the white boxes refer to the sets of available components of
each type and not to specific implementations. The selection
of specific implementations is performed through the decision
signal σ given by the Cognitive Agent (blue dashed line). The
bottom layer illustrates the design of the cognitive agent. As
discussed in Section II, the cognitive agent function fσ utilizes
the stored knowledge in the knowledge graph G (including
the characterization of components discussed in subsequent
sub-sections) and any given specifications S and produces a
decision as to what implementations of components to adopt
for the fault detection. The decision signal σ is passed to the
function fF that invokes the selected implementations found
in the database of components F . An important added-value
feature, which is out of the scope of this work, is that the stored
semantic knowledge can be also enriched from internet-based
remote services with access to the database.

The following sub-sections go into details on the implemen-
tation of the Cognitive Agent.

A. The Knowledge Graph

The definitions and the design of the knowledge objects
and the subsequent knowledge graph G have been already
described in a recent work published by the same authors [15],
with application in “Smart Water Networks”. In summary,

“knowledge objects” are defined and grouped in dedicated
“type-sets” and relations between objects of pairs of type-
sets are defined as bipartite graphs. The combination of these
“relation-graphs” results is a large graph of knowledge objects
(the “knowledge graph”) which can be traversed in order to ex-
tract more complex knowledge facts and reason about relevant
semantic queries. The formal representation of the knowledge
graph achieves the encoding of the required knowledge in
machine readable format, to facilitate the automation of the
cognitive process for the design of the fault-detection scheme.
These definitions are adopted in this work and are not repeated
here.

The “graphical language” used for the representation of the
semantic characterization of components is also adopted and
extended in this work. That is, the physical representation of
the fault-detection scheme is shown in an “Implementation”
layer, while the knowledge part is shown in a “Knowledge
graph” layer. The latter is split into: i) the “Components”
sub-layer where the knowledge objects representing the im-
plementations of fault-detection components are hosted; ii) the
“Profile” sub-layer where the knowledge objects representing
the inputs A, the outputs W and other parameters Z of the
components’ implementations lie; iii) the “Domain charac-
terization” sub-layer that hosts the more detailed (domain-
relevant) knowledge about the types Q of the inputs/output-
s/parameters, as well as their characterization in terms of
represented physical properties P , measurement units M and
locations L; and iv) the “Measured-known parameters” sub-
layer which hosts the knowledge about measured (Y) and
known (Θ) variables of the system. For convenience, Fig. 2
illustrates an example of the semantic characterization of a
“Detection logic” component. In addition, it is noted that the
knowledge objects are shown with circles and the type-sets
are shown with dashed-line rectangle containers. The semantic
relations between the objects are shown by the edges.

The semantic characterization of a component is defined as:

Gω(Vω, Eω) = fλ(ω) (9)

where ω ∈ F is a knowledge object representing a certain
component and fλ(.) is a function representing the mapping
of the object to a tree sub-graph of the overall knowledge
graph, such that Gω ⊆ G, and has a set of nodes Vω and a set
of edges Eω .

The semantic characterization tree consists of “input-
output- parameter- branches” which start from the component
and pass through inputs, outputs and parameters, respectively,
associated with it and end on relevant leaf-nodes (objects) in
the domain characterization sub-layer. The input-, output- and
parameter- branches in Fig. 2 are shown with thick green,
blue and red edges and may pass through a finite number of
input, output and parameter nodes respectively (none is also
an option).

For visualization purposes, the example is limited to show-
ing only one object of each type-set in the “Profile” sub-layer.
In addition, the measured and known variables of the system
are characterized by trees marked with thick purple and black



Fig. 1: Block diagram of the architecture. Top: the System on which fault detection is performed. Middle: the Fault-Detection
Scheme. Bottom: the Cognitive Agent.

edges respectively. Finally, each specification given in advance
and that needs to be met by the fault-detection scheme, is
filling-in the relevant parts of the knowledge graph with a
different color.

For instance, the specification marked with light blue color
asks that a component must be available of which at least one
input must be of type q. Another example is the specification
marked with light green color, which says that a component
is needed that has some parameter associated with location l.

The following subsection describes how the above se-
mantic characterizations of components, in combination with
measured-known parameters and given specifications, can be

utilized in reasoning about what types of components and what
specific implementations of them to adopt in a fault-detection
scheme.

B. Semantic Reasoning Algorithm

The objective of the reasoning algorithm can be briefly
described as: Given the measured-known variables of the
underline system, find the required types of components and
the exact implementations of them that meet the pre-defined
specifications.

Since the algorithm seeks to connect components together
in terms of their input-output relations, a key part of the
reasoning is to decide whether the output of one component



Fig. 2: A “Knowledge Graph” showing the semantic charac-
terization tree of a detection logic component fd

can be used as the input of another component, creating a
meaningful connection. This sub-process is called “output-
input semantic matching” and is performed several times
during the execution of the algorithm (presented later). As-
suming the characterization tree of the object fd, with an
input a, the leaf nodes of the input branch of this tree that
lie in the “Domain characterization” sub-layer, that is, the
“input-branch-leaf-nodes”, are the elements of a subset of
nodes, V(fd,a)

σ . Similarly, the “output-branch-leaf-nodes” and
the “parameter-branch-leaf-nodes” are defined. These subsets
of nodes are very important for the implementation of the
“output-input semantic matching”. Assuming the algorithm
checks the semantic matching of an output w′ of the com-
ponent ft to an input a of a component fd, the matching
is confirmed if the set of “output-branch-leaf-nodes” of the
output is a super-set of the set of “input-branch-leaf-nodes”
of the input. In other words, V(ft,w′)

σ ⊇ V(fd,a)
σ .

Having defined the above, the reasoning is implemented by
the algorithm which is outlined below:
• Start with a “Detection logic” component
• Find a “Feature” component with outputs that match

semantically with the “Detection logic” inputs. If there
are remaining inputs and/or required parameters, find
measured-known parameters of the system that match
semantically with them.

• Repeat the above steps for a “Threshold” component, then
sequentially for a “Feature”, a “State-Estimation” and an
“Online Learning” component.

• In all cases, check if specifications are met by the
selections, otherwise re-iterate within components.

• If all successful, create the decision signal σ such as to
enforce the selection of the matching components.

It is noted that this work assumes an offline ranking of
components based on their known “quality of service”, which,

Fig. 3: A water storage tank utilised in the illustrative case-
study

in the cases of multiple options, leads to the selection of
the one with higher ranking. It is also noted that the above
procedure is iterative, that is, the checks are repeated for all
components of the same type in the order defined by their
offline ranking. In case of inability to find an appropriate
component at any relevant step, the algorithm terminates and
informs inability to configure a fault-detection scheme with
currently available components. An illustrative case-study is
presented in the following section, to clarify the procedure.

IV. ILLUSTRATIVE CASE-STUDY

A. Water-Tank Contamination Event Detection

As mentioned in Section I, faults can be defined in general
as any shifts from the normal operation of systems. The
illustrative use case, described in this section, is related to
the problem of contamination event detection in drinking
water distribution networks, exploiting the dynamics and mea-
surements of chlorine concentrations, as approached in [16].
The underlying assumption is that contaminants injected in
drinking water will react with and affect the concentration
of chlorine [17]. For instance, a bacterial toxin may decrease
the concentration of free chlorine. The low cost of sensors
measuring chlorine concentration turns them appropriate for
wide use by water utilities in monitoring for contamination
events.

In most of the cases, the actual chlorine reaction dynamics
are not known, resulting to the use of empirical models [18].
Chlorine concentration dynamics depend on a reaction rate
coefficient, which in turn depends on several pipe parameters.
Different studies have proposed various models based on
laboratory experiments, ranging from first-order linear models
to more complex second-order ones.

Consider a water storage tank of cylindrical shape in a water
network, as depicted in Fig. 3. Water treated with chlorine
is added into the tank from a pipe at the top and water is
removed from the tank from a pipe situated at the bottom of
the tank. Let k denote the discrete time with sampling interval
∆τ measured in hours. The system state is denoted as x(k) =
[x1(k), x2(k), x3(k)]> and the controlled inputs are denoted
as u(k) = [u1(k), u2(k)]>, where x1(k) is the tank volume
in liters (L), x2(k) is the chlorine concentration of the tank



water in (mg/L) and x3(k) is the concentration of a certain
contaminant in (mg/L); u1(k) is the volume of water entering
the tank in liters (L), controlled through a valve and u2(k) is
the chlorine inflow in the tank measured in (mg), controlled
using a set-point chlorination booster system. There is also
an uncontrolled input u3(k) representing the volume of water
exiting the tank, driven by consumer demands. The state-space
formulation of the water tank system is as given in [16].

B. Cognitive Agent Reasoning Example

This subsection starts with presenting the components cur-
rently available in the functions database (set F), as well as
the respective knowledge introduced in the graph G by their
semantic characterization. For clarity of the concept’s proof,
only one measured system output (chlorine concentration) and
only one known system input (chlorine inflow) are assumed;
the inclusion of the rest can be addressed in a similar way.
• Detection logic: Two components, f1

d and f2
d . The first

component, f1
d , produces an output d1 of type q1 =

“detection”, that represents the property p1 = “binary”
in measurement units m1 = “true-or-false”. It requires an
input r1 of type q2 = “feature” and an input t1 of type
q3 = “threshold”. The second component, f2

d , produces
an output d2, of type q1 = “detection”, that represents
the property p2 = “probability” in measurement units
m2 = “in-range-[0,1]”. It requires an input r2, of type
q2 = “feature” and an input t2, of type q3 = “threshold”.

• Feature: Two components, f1
r and f2

r . The first compo-
nent, f1

r , produces an output r3, of type q2 = “feature”.
It requires an input y1, of type q4 = “measured-state”.
The second component, f2

r , produces an output r4, of
type q2 = “feature”. It requires an input y2, of type
q4 = “measured-state” and an input x̂1, of type q5 =
“estimated-state”. The two inputs inherit the characteri-
zation of the measurement to be fed, for instance, they
may represent the property p3 = “chlorine-concentration”
in measurement units m3 = “mg/L” at location l1 =
“tank-1”.

• Threshold: Two components, f1
t and f2

t . The first
component, f1

t , produces an output t3, of type q3 =
“threshold”, representing a constant bound. It requires
a parameter ζ1, of type q5 = “historical-state-data”.
The second, f2

t , produces an output t4, of type q3 =
“threshold”. It requires an input y3, of type q4 =
“measured-state” that represents the property p3 =
“chlorine-concentration” in measurement units m3 =
“mg/L” at location l1 = “tank-1”, an input u1, of
type q5 = “known-system-input” that represents the
property p4 = “chlorine-inflow” in measurement units
m3 = “mg/L” at location l1 = “tank-1” and an optional
input g1 of type q6 = “system-dynamics-function”.

The specifications given for the design of
the fault-detection scheme are given by: S =
{detection signal as m1 = “true-or-false”, at location l1 =
“tank-1”, for the property p3 = “chlorine-concentration”}.

The execution of the algorithm is as follows:

• The “Detection logic” component f1
d is selected since

the component f1
d violates the specification regarding the

output in units m1 = “true-or-false”.
• The “Feature” component f1

r is selected since it does pro-
duce an output that matches the input of the selected de-
tection logic component (V(f1

r ,r
3)

σ = {q2} ⊇ V(f1
d ,r

1)
σ =

{q2}) and its input is matched with the measured system
state (V(y)

σ = {q4, p3,m3, l1} ⊇ V(f1
r ,y

1)
σ = {q4}). On

the other hand, although it also matches the input of
the detection logic component, there is no component
producing an output of type q5 = “estimated-state” which
is required as input by the component f2

r .
• The “Threshold” component f2

t is exploited first as
it is assumed ranked higher and it is selected since
it produces an output that matches with the input of
the detection logic component (V(f2

t ,t
4)

σ = {q3} ⊇
V(f1

d ,t
1)

σ = {q3}). Moreover, its two inputs are matched
by measured and known variables of the system (V(y)

σ =

{q4, p3,m3, l1} ⊇ V(f2
t ,y

3)
σ = {q4, p3,m3, l1} and

V(u)
σ = {q5, p4,m3, l1} ⊇ V(f2

t ,u
1)

σ = {q5, p4,m3, l1}).
The input that corresponds to the system dynamics func-
tion is not matched since there is no component producing
a relevant output, however, it is mentioned as optional.

• At this stage, a possible configuration of the fault-
detection scheme has been found, with component f1

d

producing the detection signal and receiving inputs from
components f1

r and f2
t . It can be seen that all specifica-

tions are met by this configuration since the knowledge
objects associated with the specifications are included in
the characterizations of the selected components. There-
fore, the configuration is confirmed and the algorithm
terminates.

Some time in the future, two more components become
available in the database F , as follows:

• State-Estimation: One component, f1
e , which produces

an output x̂2, of type q5 = “estimated-state”, that
represents the property p3 = “chlorine-concentration”
in measurement units m3 = “mg/L” at location l1 =
“tank-1”. It also has an input u2, of type q6 =
“known-system-input” that represents the property p4 =
“chlorine-inflow” in measurement units m3 = “mg/L”
at location l1 = “tank-1” and an input g2 of type
q7 = “system-dynamics-function”.

• Online Learning: One component, f1
θ , which produces

an output ĝ1, of type q7 = “system-dynamics-function”,
that is associated with the property p3 =
“chlorine-concentration” in measurement units
m3 = “mg/L” at location l1 = “tank-1”. It requires
an input y4, of type q4 = “measured-state” that
represents the property p3 = “chlorine-concentration”
in measurement units m3 = “mg/L” at location
l1 = “tank-1” and an input u3, of type
q6 = “known-system-input” that represents the
property p4 = “chlorine-inflow” in measurement



units m3 = “mg/L” at location l1 = “tank-1”.
The availability of the new components causes the re-

execution of the algorithm, which will produce the following
results:
• The “Detection logic” component f1

d is selected again for
the same reason as in the first case.

• The “Feature” component f2
r is exploited first and is

selected this time since it produces an output that matches
the input of the selected detection logic component
(V(f2

r ,r
4)

σ = {q2} ⊇ V(f1
d ,r

1)
σ = {q2}) and its inputs are

now both matched, the first with the measured system
state as for the f1

r (V(y)
σ = {q4, p3,m3, l1} ⊇ V(f2

r ,y
2)

σ =
{q4}) and the second by the output of the State Estimation
component (V(f1

e ,x̂
2)

σ = {q5, p3,m3, l1} ⊇ V(f2
r ,x̂

1)
σ =

{q5}).
• Then the same “Threshold” component f2

t is selected
as before. This time its input that corresponds to the
system dynamics function is also matched by the output
of the Online Learning component that became available
(V(f1

θ ,ĝ
1)

σ = {q7, p3,m3, l1} ⊇ V(f2
t ,g

1)
σ = {q7}).

• The “Online Learning” component f1
θ is finally selected

as well. It has been seen above that its output matches
with the input of the selected State Estimation compo-
nent, while both its inputs are matched by the measured
system output and the known system input respectively.

• A possible configuration of the fault-detection scheme
comprises the component f1

d producing the detection
signal and receiving inputs from components f2

r and
f2
t , while the component f2

r and f2
t receive input from

the component f1
e and the latter receives input from

the component f1
θ . All specifications are met by this

configuration, as well, therefore it is confirmed and the
algorithm terminates.

The graphical representation of the semantic matches above
is also possible, adopting the graphical language introduced
in Fig. 2, however it is not presented here due to space
limitations.

V. CONCLUDING REMARKS AND FUTURE PLANS

The work presented in this paper, introduced an effort to
automate the design process of a fault-detection scheme. The
expert engineering and domain knowledge have been modeled
using existing knowledge representation techniques and an
agent has been developed with the ability to reproducing
part of the cognitive process and reasoning performed by the
engineer when designing the fault-detection algorithm. The
primary impact of these results is the fact that it defines
clear semantic interfaces between parts of the fault-detection
algorithm and enables industrial setups and/or academic pro-
totypes to allow online plugging-in of new implementations
of these parts (components) without the need to re-design
the whole of the fault-detection scheme. This is the first
important milestone of the work, while future plans foresee
the enrichment of the knowledge graph, the automation of
the selection of components in case of multiple matching

configurations and the extension of the work to provide a
unified architecture for monitoring and control schemes.
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